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Abstract 

Combining interaction rates of different social behaviours into social relationship indices to represent 

the structure of dyadic relationships on one underlying dimension is common practice in animal sociality 

studies. However, the properties of these relationship indices are not well explored – mainly because, 

for real-world social systems, the ‘true’ value of relationships is unobservable. Here, we use simulation 

studies to estimate the accuracy and precision of three relationship indices: the Dyadic Composite 

Sociality Index, the Composite Relationship Index, and the Dynamic Dyadic Sociality Index. We simulated 

one year of social interactions for multiple groups of 25 individuals and 4 interaction types with different 

properties, and tested the impact of different focal follow regimes, data densities and sampling 

conditions on the representation of social relationships. Accuracy and precision of social relationship 

indices were strongly driven by sample size, similar to simple interaction rates. Under the assumption 

that there was a clear, one-dimensional relationship underlying interactions, and that different 

interaction types constituting an index were highly correlated, indices indeed increased accuracy over 

single interaction rates for small sample sizes. Including uninformative constituting behaviours (i.e., 

those not highly correlated with the underlying relationship dimension) reduced the accuracy of all 

indices. The precision of each index (i.e., whether multiple simulated focal follow regimes achieve the 

same dyadic values for the same data) was generally poor and was driven by the precision of the least 

precise constituting behaviour, making them less precise than some single interaction rates. Our results 

showed that social relationship indices do not remove the need to have sufficient data for each 

individual constituting interaction type. Index quality was defined by the least accurate and precise 

constituting interaction type. Indices might only be useful if all constituting interaction rates are highly 

correlated and if there are clear indications that one dimension is sufficient to represent social 

relationships in a group. 
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Introduction 

Animals in stable social groups maintain a variety of differentiated social relationships with group 

members, from kin relations and mating partners, to cooperative social ties between non-kin (Cheney, 

2011; Gero et al., 2009; Kern & Radford, 2016; Mitani, 2009; Riehl & Strong, 2018; Samuni et al., 2021; 

Schülke et al., 2010; Silk et al., 2003; Wilkinson et al., 2016). Individuals’ social environment appears 

crucial for improved development, social status, health, stress management, reproductive success, and 

survival (Cameron et al., 2009; Riehl & Strong, 2018; Silk et al., 2010b; Wittig et al., 2016). As such, a 

large body of research is dedicated to studying the contribution of differentiated social relationships to 

fitness consequences (Snyder-Mackler et al., 2020). Equally, much research has been devoted to the 

cognitive challenges arising from differentiated and changing social relationships and their role in 

competition for resources, mates, and cooperation partners (Seyfarth & Cheney, 2015). Relying on the 

characterisation of ‘social relationships’ to ask questions about social complexity, cooperation, and 

fitness makes it vital to quantify the underlying distribution and strength of dyadic relationships 

accurately. However, data collection in the behavioural sciences is messy and patchy as only some 

animals can be followed every day. We often do not know what an ‘accurate’ description of 

relationships would look like, as we do not know how individuals represent their connections with 

others. It is therefore important to explore the assumptions and properties of our social relationship 

indices, to enable researcher to make the best decisions about how to describe relationships within 

their study group. 

To calculate social relationship indices, researchers often use behavioural observations of species-typical 

dyadic interactions (e.g., grooming, coalition formation, spatial proximity) aggregated over time, and 

standardised for observation effort and/or individual gregariousness and/or group-typical interaction 

rates (Silk et al., 2013). These (standardised) interaction rates are combined to create an index that 

represents the quality of the underlying relationship of each dyad on a single dimension. This seemingly 

straightforward application makes indices popular. However, if not applied correctly, sociality indices 

affect the validity and robustness of results and limit replicability (Whitehead, 2008). Attempts to 

validate the reliability and robustness of interaction-based indices are largely absent – more detailed 

attempts exist for association indices (Davis et al., 2018; Whitehead, 2008). Importantly, researchers 

face a number of choices when creating their study-specific relationship index, posing problems for the 

replicability of researcher degrees of freedom across studies (Wicherts et al., 2016). Researchers have to 

identify interaction types to include in their index, how to standardise them, how to weight them, and 

how to combine them (Silk et al., 2013). Another difficulty is sample size: fewer data points come with 

increased measurement error and decreased power and precision when making dyadic indices 

(Whitehead, 2008). Many interaction types, such as food sharing or coalitionary support, are rare in wild 

animals given the number of individuals in a group, making the calculation of interaction rates unreliable 

(Mielke et al., 2021), but it is currently unknown whether combining several interaction types with 

independent error rates increases or decreases overall error.  

A variety of social relationship indices is currently used across species and studies. Here, we focus on 

three indices: the Dyadic Composite Sociality Index (CSI or sometimes DSI; Sapolsky et al., 1997; Silk et 

al., 2003), the Composite Relationship Index (CRI; Crockford et al., 2012), and the Dynamic Dyadic 

Sociality Index (DDSI, Kulik, 2015). Each of these indices makes different assumptions (please see SI for 

detailed descriptions of index formulas and underlying assumptions), but their main goal is to describe 

social relationships on a single dimension. The CSI and CRI aggregate multiple interaction rates and 
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quantify how dyads compare with average rates within their group. The CSI only includes socio-positive 

interaction, while the CRI also incorporates socio-negative interactions and can weigh rare interactions 

more strongly. The DDSI can include socio-positive and socio-negative interaction types and has dynamic 

features resembling the Elo rank index (Albers & De Vries, 2001): positive interactions increase dyadic 

values from that day onwards, while negative interactions decrease values (De Moor et al., 2020; Mielke 

et al., 2017; Samuni et al., 2018). The impact of each interaction type is frequency-dependent, with rare 

interaction types weighing more strongly; however, weights can be set manually. 

Relationship indices make assumptions that are rarely met or validated, some of which have the 

potential to increase inter-individual measurement error and result in outcome uncertainty. On the 

most basic level, we assume that social relationships can be presented on a single dimensions without 

losing important information – this is by no means a given and not inherent in the original 

understanding of ‘social relationships’ (Hinde, 1976). We assume that the index we choose is accurate 

(approaches the ‘real’ relationship value) and precise (multiple applications of different data for the 

same timeframe should converge on a similar solution). The approaches should be reproducible – 

different research groups with the same dataset should independently converge on the same results 

(LeBel et al., 2018). We also make numerous assumptions regarding the data used to compile the 

indices.  We assume that our sample size is sufficient to construct accurate social tendencies, that the 

types of social interactions included are a meaningful representation of differentiated social 

relationships, or that our dataset represents balanced sampling effort of individuals and interaction 

types (or instead that the indices used are robust against unbalanced sampling efforts). All those 

assumptions are not method-specific and should be considered independently of the choice of method.  

Method-specific assumptions likely also increase measurement error and uncertainty. Being composite 

measures, relationship indices incorporate assumptions regarding the relative contribution of various 

interaction types to the overall measure. For example, the CSI assigns the same importance to rare and 

common affiliative interaction types (e.g., body contact and food sharing), even though these might 

reflect relationships differently and might have different measurement error. The CSI and CRI are 

variance-dependent, so dyadic values can be high either because the dyad interacts a lot, because other 

dyads interact little, or because too few data are available – the interaction type with the largest 

number of zeros will potentially have an outsized influence on the final index. When rates are 

standardised against the group mean, individual differences in interaction rates are ignored – 

‘friendship’ might manifest itself very differently across individuals, reducing the ability of an index to 

predict observed behaviour. Further, social indices treat ‘social relationships’ as either fixed averaged 

parameters (CSI and CRI) or dynamic sequential processes (DDSI), but we have not yet validated which 

approach is more biologically meaningful, or how varying sampling effort and timing in combination 

within each approach may affect indices values. All indices press the assumed underlying relationships 

into a specific distribution (right-skewed with a mean of 1 for the CSI, normally distributed with a mean 

of 0 for the CRI, normally distributed with a mean of 0.5 for the DDSI) – independent of the actual 

distribution of interactions in the social group. 

Despite the potential for spurious inferences if assumptions are violated, attempts to validate existing 

indices are largely lacking. Consequently, evaluating how the different indices perform when 

assumptions are not met, or assessing which index provides a more meaningful representation of ‘true’ 

occurrence, is a crucial next step in advancing the reliability and replicability of social relationship 

studies. As a first step to increase robustness of social relationship assessments, we must identify the set 
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of tools that allows us to minimize uncertainty and measurement error in existing methods. Although 

we operate under the premise that an underlying distribution of social relationships exists within our 

data, we do not know what the ‘real’ underlying distribution is, making validation attempts challenging 

based on real-world data. To overcome this challenge, in this study, we simulated datasets of social 

groups of animals, with each group member ‘followed’ daily, thus representing an optimal social 

interaction dataset – both the underlying relationship dimension and the ‘full’ dataset are known. We 

conducted simulations according to a defined set of rules regulating the underlying distribution of 

different types of interaction. Each dyad was assigned a specific ‘expected probability’ of affiliative 

interaction (see Supplementary for description of simulation process), while different ‘interaction types’ 

skew the distribution to be more or less selective. In more selective interaction types, only dyads with 

high probability of affiliation would interact, while in less selective interaction types, dyads with low 

probabilities also have a chance to interact (Whitehead, 2008). Interaction probabilities of socio-

negative interaction types followed adapted rules that meant they were negatively correlated with the 

socio-positive interaction types, as typically so in real-world data. The underlying ‘expected probabilities’ 

serve as the ‘true’ basis of the social environment in the group, upon which different applications of 

social relationship indices can be compared and validated. 

Using the simulated dataset, we focused our questions on both intra- and inter-index validation steps. 

We assessed the quality of each index by varying the a) overall sampling effort, b) balance of sampling 

effort across subjects, and c) measurement error, by incorporating interaction types that diverge from 

the ‘true’ relationship and thus create random variation. We then compared how the different indices 

performed under these scenarios. We compared the performance of indices 1) against the ‘true’ 

interaction probabilities and 2) against the indices calculated based on the full datasets, which 

incorporates all interactions for all individuals of the group. These two measures represent the accuracy 

of the index. We also 3) determine the impact of sampling variation – if taking data from the same 

overall datasets but with different focal individuals chosen on different days, how similar are the 

resulting indices? 

 

Methods 

Generating Data 

To assess the robustness of the different social relationship indices, we simulated social interactions 

between individuals within ten different social groups of 25 individuals (equals 300 dyads) over a one-

year period. For each individual, we generated a daily dataset of social interactions during 12 

observation hours. Each dyad was randomly assigned an interaction probability, and probabilities were 

subsequently standardised within individuals to sum to 1 to create the expected interaction probabilities 

from one partner to the other – see Supplementary for details and GitHub for scripts.  

The expected interaction probabilities of individuals with specific partners represent their ‘social 

relationship’ with this individual: dyads with high expected probabilities interact positively a lot, while 

those with low expected probabilities would hardly interact positively with each other but show a higher 

level of aggression. Socio-positive interaction probabilities are roughly symmetrical within dyads but 

right-skewed overall, so few dyads have a high probability to interact a lot (see Fig. 1). Socio-negative 

interaction probabilities were created by repeatedly squaring the expected interaction probability and 
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subtracting it from 1, and then standardising it to sum to 1 within individuals. This created a right-

skewed distribution that was negatively correlated with the expected interaction probabilities and the 

socio-positive interaction distributions. Random error is added by making each interaction choice based 

on a random sample of all group members – simulating flexible spatial patterns in social animals. 

Therefore, both the expected probabilities and partner availability defined who would interact in case 

interactions occur.  

We aimed to simulate interactions types that are typically used when constructing social relationship 

indices. For each individual and day, a fixed number of interactions of each type was set. As in real social 

systems, the frequency and selectivity of occurrence of interaction types varied. The frequency value of 

the behaviour represents the average number of interactions of that type exhibited per day. The 

selectivity of the behaviour, reflected in higher or lower coefficient of variance for different interaction 

types, signifies partner choice fidelity for the respective interaction type. If selectivity is high, only a 

small number of partners are ever chosen, and the interaction distribution is highly right-skewed; if 

selectivity is low, the likelihood of choosing each partner is roughly even. A behaviour of low selectivity 

has low explanatory power of the relationship value and vice versa. Overall, we simulated three socio-

positive and one socio-negative interaction types, with varying frequencies and certainties – their 

distributions can be seen in Figure 1:  

1) Behaviour 1 (“grooming”) – socio-positive behaviour of medium frequency and 

selectiveness. We simulated a frequency of 3 interactions per day with medium selectivity 

(coefficient of variance ~ 1.2). 

2) Behaviour 2 (“food sharing”) - socio-positive behaviour of low frequency and high 

selectiveness. We simulated a frequency of 1 interaction per day with high selectivity 

(coefficient of variance ~ 1.8).  

3) Behaviour 3 (“spatial proximity”) – a common socio-positive behaviour of low selectiveness.  

We simulated a frequency of 8 interactions per day with low selectivity (coefficient of 

variance ~ 0.8).  

4) Behaviour 4 (“aggression”) - socio-negative behaviour of medium frequency and 

selectiveness. We simulated a frequency of 3 interactions per day with medium selectivity 

(coefficient of variance ~ 1.2). 

Unless otherwise indicated, ‘CSI’ refers to the Dyadic Composite Sociality Index using behaviours 1-3, 

‘CRI’ refers to the Composite Relationship Index using all four behaviours (with Behaviour 2 weighted 

stronger and Behaviour 4 having a negative impact), and the DDSI refers to the Dynamic Dyadic Sociality 

Index on the last day of the observation period, using all four behaviours. For all indices, we test the 

impact of ‘bad’ or uninformative behaviours by exchanging Behaviour 1 (medium frequency and 

selectivity) with an unrelated behaviour. 
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Figure 1: Density of interaction distributions for each of the four simulated interaction types and the expected probability. High 

selectivity (e.g., for food sharing) creates stronger right skew, while less selectivity (e.g., proximity) leads to more even 

distributions. 

 

Simulations 

We conducted a series of simulations to investigate the measurement accuracy of the three indices (i.e., 

CSI, CRI and DDSI) and rates of single interaction types. We generated the complete datasets, with every 

interaction for every individual known for the entire period. Each individual had 3 grooming bouts, 1 

food sharing event, 8 proximity events, and 3 aggression events per day – the total number of 

interactions for the whole group therefore amounted to about 27,000 grooming and aggression events, 

9,000 food sharing events, and 72,000 proximity events. These constitute our ‘optimal’ value and serve 

as a test for the accuracy and precision of the simulations. One focal individual was randomly chosen per 

day, and the number of observation days was varied randomly. After, we included a number of 

conditions (differing observation effort, sampling bias, inclusion/exclusion of specific interaction types; 

see below) to test the accuracy and precision of the indices in different circumstances. It is worth noting 

that our datasets contain less noise than real-world data and are therefore expected to show clearer 

patterns with less data available. For example, in most primate species, grooming is not only reserved 

for relationship maintenance but also traded for infant access or use for reconciliation (Carne et al., 

2011) or varies according to changes in the ecological or social environment (Brent et al., 2013), blurring 

the picture. 

 

How are indices affected by the observation effort? 
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For each of the 10 generated datasets, we conducted 100 random selections of observation days, with 

one focal observed on each day (Mielke et al., 2021) . We randomly selected between 30 and 360 

observation days (360h – 4320h of observation, which is within the usual range for field studies), 

resulting in 10 x 100 datasets. We used the simulated datasets to evaluate the performance of the 

different indices for varying sampling efforts and under different conditions (i.e., sampling bias, 

inclusion/exclusion of specific interaction types; see below) to test the accuracy and precision of the 

indices.  

For each condition, we report two main measures of index quality: accuracy and precision. We 

measured the accuracy of the index as the correlation between the observed index and a) the expected 

interaction probability, and b) the index based on the full dataset. We measured the precision as the 

variability of index values that dyads showed across simulations (Whitehead, 2008). We quantified the 

variability by simulating 100 random focal selections for the same number of observation days and 

calculating the 80%-interquantile ranges of the resulting indices –obtaining a range of values into which 

most of the dyadic index values fell. If this range is small, then sampling has little impact on dyadic 

values; if the range is large, following specific focal individuals on certain days skews the results, even 

for this artificially clean data set. For precision, we focus on two sample sizes as examples for high or low 

data density: 60 observation days (or 1800 interactions an individual is on average exposed to as sender 

or receiver) and 360 observation days (or 10,800 interactions an individual is on average exposed to). 

For all questions, we present graphs to report the results of the simulations: for the accuracy, we 

present graphs showing the observation effort on the x-axis and the correlation coefficient with the 

‘true’ values on the y-axis. For the precision, we plot the ‘true’ relationship value (based on all 

interactions) of a dyad on the x-axis, and the 80%-interquantile range of dyadic values across 100 

randomised focal follow regimes on the y-axis. Thus, the x-axis represents dyadic relationship strength, 

while the y-axis represents precision. 

 

Do indices outperform single interaction rates? 

One of the main aims of social relationship indices is to improve representation in case few data points 

are available – the assumption being that pooling several interaction rates creates more robust 

measures than a single interaction rate. Comparing different interaction types and indices directly, we 

test whether indices are more accurate and precise than the single interaction types constituting them. 

We also test whether social indices have a better explanatory power of the expected interaction 

probabilities over the separate interaction types, by fitting a series of Generalized Linear Models (GLM) 

with either the indices or the single interaction types as the predictors and the expected probabilities as 

response. Due to the proportional nature of the expected probabilities and their range between 0 and 1, 

we fitted the models with beta error distribution and logit link function using the betareg function of the 

identically named package (Zeileis et al., 2016). To quantify the relative performance of each model, we 

used a measure of model fit, the Akaike’s Information Criterion (AIC; Burnham et al., 2011). Lower AIC 

values indicate improved model fit. We then calculated the ΔAIC of each model as the difference from 

the lowest AIC value, which has a ΔAIC of zero. We centered our inference on ΔAIC (Burnham et al., 

2011). 
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Do non-indicative interaction types bias indices? 

How robust are indices if inappropriate behaviours are included in the calculation? For example, spatial 

proximity is a poor indicator of sooty mangabey social relationships (Mielke et al., 2020), but was 

previously included in social relationship indices for the species (Mielke et al., 2017) – would the index 

still be robust? We evaluated the relative robustness of index output by swapping some interaction 

types with others of identical frequencies and selectivity that are otherwise poor indicators of the 

interaction probabilities (i.e., ‘uninformative’ behaviours). We achieved this by borrowing interaction 

data of the same behaviour types across datasets (e.g., ‘positive medium behaviour’ from one dataset 

replaced ‘positive medium behaviour’ in another and was thus non-indicative of the expected 

interactions in that dataset, while otherwise showing the same properties). The correlation between the 

different behaviour types and the expected values are depicted in Figure S2.  

 

Does unbalanced collection effort bias indices? 

In addition to being incomplete, behavioural data collection is prone to collection effort biases between 

individuals, as not all individuals are sampled at the same frequencies. Therefore, to address whether 

uneven sampling densities between individuals may impact measurement accuracy of the three indices, 

we conducted our simulations while varying the sampling probabilities of individuals, using 0.2, 0.5 or 

0.8 as the probability for an individual to be sampled. Thus, some individuals are on average 4 times as 

likely to be sampled as others, for whom most individual will be derived when they are non-focal 

interaction partners. We then investigated the influence of varying sampling efforts across individuals 

and dyads on index values.  

 

Results 

How are indices affected by observation effort? 

One central point of this study is that, even in these highly predictable and stable data, low sampling 

effort leads to high uncertainty in all three relationships indices – negatively affecting their accuracy and 

precision. Figure 2 shows the correlation between each of the three indices – CSI, CRI, and DDSI – with 

the expected interaction probability and with the same index calculate over the full dataset. Indices 

based on smaller sample sizes are less accurate, regardless of the method. In our simulated datasets the 

‘optimum’ is roughly achieved from ~15 interactions per dyad, meaning that 4,500 interactions (15 

interactions for 300 dyads in a group of 25 individuals) are needed to achieve adequate accuracy – a 

large number for any observational study. The indices do not differ in their trajectories, but the CRI 

correlated less highly with the underlying probability distribution than the other two indices. 
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Figure 2: Pearson correlation of the CRI, DDSI, and CSI with the expected probability distribution (left) and the same index based 

on the full dataset (right). Each point marks one random selection of focal days. 

For the precision of the indices, Figure 3 shows the dyadic value for the full dataset on the x-axis 

(standardised between 0 and 1 for interpretability), and on the y-axis it shows the 80%-interquantile 

range of values that a dyad was assigned with over the 100 randomized iterations of focal selections. A 

dyad with a value of 0.5 in the x-axis falls halfway between the maximum and minimum value of the 

index distribution, but if it has an interquantile range of 0.6 then index values ranging between 0.2 and 

0.8 are likely – making dyadic values volatile and hard to interpret. Large interquantile ranges indicate 

high levels of imprecision. Our main assumption of focal follows is that the dyadic relationship values we 

find in our data are independent of the days on which individuals were followed. If a dyad sometimes 

falls into the top 20% of all dyads, and sometimes into the bottom 20%, that means that any result will 

be conditional on sampling biases. As Figure 3 shows, this is the case for all three indices, especially 

when data are sparse (i.e., 60 observation days or 1800 interactions). Note that for both the CRI and 

DDSI, dyads who never interact would have values around the centre of the distribution, leading to the 

observed shapes. 

Smaller sample sizes (i.e., 60 observation days, around 1800 interactions in total) lead to more 

imprecision, especially for extreme values. For example, the dyad with the highest CSI value for the full 

dataset (1 on the x-axis) was regularly assigned the lowest and highest CSI values depending on the focal 

follow sampling scheme, leading to an interquantile range of 1. For the larger sample size (360 days), 

dyads with very high CSI values show higher consistency. For the CRI and DDSI, positive and negative 

extreme values exist (here standardized between 0 and 1), because dyads can exhibit more aggression 

than affiliation (Figure 3). For all three indices, with increasing data density, the uncertainty shifts from 

the extreme values to those in the centre of the distribution: while the indices correctly identify those 

dyads with extremely high and low values, the ones in between are poorly classified. For example, even 

with 360 observation days (around 10,800 interactions in total), a dyad with a ‘true’ standardized CSI 

value of 0.5 could be classified as 0.3 or as 0.7 – depending on which individual was sampled on which 

day. The assumptions of the indices lead to difference in the expression of precision, as dyads who never 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 26, 2021. ; https://doi.org/10.1101/2021.04.25.441321doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.25.441321
http://creativecommons.org/licenses/by/4.0/


interact do not occupy the same space in the distribution for every sampling scheme. For the CSI, dyads 

who never interact always get a value of 0, so their assignment is precise – on the other hand, 

estimating the actual distribution of those dyads that do interact is highly dependent on the sampling. 

The CRI, on the other hand, and to a lesser degree the DDSI, suffer in precision across the distribution 

because negative interactions are included and shift the minimum value of the distribution. 

 

Figure 3: Precision for the three indices. The x-axis depicts dyadic values, standardised between 0 and 1 (i.e., 1 is the dyad with 

the highest value in the group). The y-axis depicts the 80%-interquantile range for 100 randomized sampling regimes. Colors 

depict different observation efforts. Higher range indicates lower precision. The differences in distribution shapes between 

indices are due to the fact that the CSI only includes socio-positive interaction types, so low values indicate no interactions 

(highly stable), while dyads without interactions are at the centre of the CRI distribution and have variable positions in the DDSI. 

 

Do indices outperform single interaction rates? 

One of the main reasons to apply a relationship index is to circumvent small sample sizes: if insufficient 

data are available for each individual interaction type, maybe combining them can reduce error. Figure 4 

shows that this is indeed the case for small samples: as long as all included interaction types are highly 

correlated and measurement errors are uncorrelated (e.g., no seasonal effects exist), all relationship 

indices are able to improve accuracy of predictions of the underlying probability distribution compared 

to the individual interaction rates. The CRI does only do so for low sample sizes, and with increasing 

sample size, the advantage of the CRI index decreases – thus, once sufficient data is available for a single 

interaction type, that interaction type would, in theory, be a more accurate predictor than the CRI. 
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Figure 4: Pearson correlation between indices/rates and the expected probability and index/rate based on the full dataset. 

Comparison of accuracy for the three socio-positive interaction types and the three indices. With increasing sample size, the 

advantage of the indices is reduced. 

In Figure 5, we observe the precision of the CSI compared to each of the socio-positive interaction types. 

Due to the different shapes of the DDSI and CRI distributions, which include negative interaction types, 

we omit them here, but results are the same. The CSI does not appear more precise than the individual 

interaction rates. It is also visible that the sample size (i.e., interaction frequency), which differs between 

the interaction types, impacts their precision, more so than the selectiveness of partner choice: ‘food 

sharing’, which had the highest selectivity but lowest frequency, is less precise than ‘proximity’ with the 

lowest selectivity but highest frequency. The precision of the CSI is most similar to the ‘food sharing’ 

rate, indicating that this relationship index is more strongly influenced by the most imprecise 

component.  

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 26, 2021. ; https://doi.org/10.1101/2021.04.25.441321doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.25.441321
http://creativecommons.org/licenses/by/4.0/


 

Figure 5: Precision for the CSI and three interaction rates. The x-axis depicts dyadic values, standardised between 0 and 1 (i.e., 1 

is the dyad with the highest value in the group). The y-axis depicts the 80%-interquantile range for 100 randomized sampling 

regimes. On the left are randomized samples containing 60 observation days (around 1300 interactions), on the right 360 

observation days (around 10,800 interactions). Higher range indicates lower precision. 

 

As we can see in Figure 6, a CSI made without ‘food sharing’ (the least precise context) is more precise 

than one with all three socio-positive behaviours, while removing ‘proximity’ (the most precise context) 

reduces precision further as ‘food sharing’ has a stronger impact. Thus, index precision seems driven by 

the least precise constituting interaction type – which will usually be the rarest interaction type. 

 

Figure 6: Precision for the CSI with and without the most precise (‘proximity’) and least precise (‘food sharing’) interaction type. 

The x-axis depicts dyadic values, standardised between 0 and 1 (i.e., 1 is the dyad with the highest value in the group). The y-axis 

depicts the 80%-interquantile range for 100 randomized sampling regimes. On the left are randomized samples containing 60 

observation days (around 1300 interactions), on the right 360 observation days (around 10,800 interactions). Higher range 

indicates lower precision. 
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To test which of the social relationship indices or the constituting interaction rates best explain the 

expected interaction probabilities, we conducted beta regressions with the expected interaction 

probabilities as outcomes and calculated the ΔAIC values. Figure 7 shows the ΔAIC values obtained from 

four models containing either one of the three indices or all four interaction types as separate 

predictors. Including the interaction types as separate predictors in the same model captures a larger 

share of the variation in the expected probability distribution – the ΔAIC for the combination of 

independent rates is the best solution for most of the iterations, independent of sample size. Between 

the relationship indices, the DDSI, followed by the CRI, best explained the variation in the expected 

probability, with the CSI performing poorly in capturing the expected probability variation.  

 

Figure 7: Delta AIC for the beta regression models with the expected probability as outcome and each index or the combination 

of interaction rates as predictor variables. Smaller values indicate more accurate models, with the combination of interaction 

rates as best model in most cases having a value of 0 throughout. 

 

Do uninformative interaction types bias indices? 

Often researchers must decide whether to include interaction types into their relationship indices 

despite some uncertainty as to how well these reflect the underlying social relationship. However, we 

do not yet know whether or not this is a valid concern. Do we lose precision and accuracy by including 

an interaction type that does not represent the social relationship (i.e., uninformative) into the index? 

Figure 8 shows that all three indices are highly susceptive to uninformative (or ‘bad’) interaction types: 

in all indices, accuracy drops below the level of a single, informative, interaction type (i.e., an interaction 

correlated with the expected interaction probability). The effect is larger for the CSI, because it includes 

fewer components than the other two indices, each having a greater impact on its distribution. Figure 9 

shows the difference for the performance of the CSI build with three informative behaviours, two 

informative and one uninformative behaviour, and one informative and one uninformative behaviour. 
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As we can see, the fewer informative behaviours are involved, the stronger the negative impact of the 

uninformative behaviour is.  

 

 

Figure 8: Pearson correlation between indices/rates and the expected probability. Comparison of accuracy for the three indices 

with and without an uninformative or ‘bad’ component. Interaction rate of Behaviour 1/’Grooming’ shown for comparison. 

Adding uninformative behaviours reduces accuracy dramatically. 
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Figure 9: Pearson correlation between indices/rates and the expected probability. Comparison of accuracy for the CSI based on 

three informative, two informative and one uninformative (‘bad index’ – 3 behaviours), and one informative and one 

uninformative behaviours (‘bad index’ – 2 behaviours). Adding uninformative behaviours reduces accuracy dramatically 

 

Does unbalanced collection effort bias indices? 

At times, it is not possible to maintain a balanced data collection effort across individuals, as not all 

individuals are easily observable/available or because studies demand a focus on some individuals over 

others. Unbalanced sampling effort did not impact the accuracy of the indices – with possible except of 

the DDSI, but the impact was weak (Figure 10). The precision of dyadic values did differ between 

balanced and imbalanced sampling efforts, but this was dependent on the index – the CSI was less 

precise for unbalanced data, while there was some evidence that the CRI was more precise for the 

unbalanced dataset (Figure 11). However, note that all individuals in the group were followed at some 

point, just not with the same regularity, and that dyadic interaction probabilities were held constant 

throughout the dataset – this is likely different from sampling schemes in real-world field sites.  

  

Figure 10: Pearson correlation between indices and the expected probability. Comparison of accuracy for the three indices with 

and without unbalanced focal sampling. Interaction rate of Behaviour 1/’Grooming’ shown for comparison.  
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Figure 11: Precision for the three relationship indices with balanced and unbalanced focal sampling scheme, using only results 

for 360 observation days. The x-axis depicts dyadic values, standardised between 0 and 1 (i.e., 1 is the dyad with the highest 

value in the group). The y-axis depicts the 80%-interquantile range for 100 randomized sampling regimes. Higher range 

indicates lower precision. 

 

Discussion 

In this study, we use simulations of social interactions within an animal group to determine the precision 

and accuracy of social relationship indices as scientific tools. Both are relevant: accuracy tells us how 

well an index could potentially measure what it claims to measure – that is, how similar are the 

observed values to the ‘true’ relationship of a dyad? Precision informs the error due to sampling bias: 

how likely is it that observer sampling decisions influence the estimation of dyadic values? What we 

show in this study is that while all three relationship indices can improve accuracy over the use of single 

interaction rates under specific circumstances, this is not always the case. This and their lack of 

improvement of precision means their overall value as instruments might be more limited than their 

current use suggests. 

Before interpreting our results, it is important to re-iterate that while the simulated data here resemble 

real-world animal interaction data, they differ in important ways. The most salient is that different 

interaction types were based on one underlying ‘relationship’ dimension and are therefore highly 

correlated. This is an assumption of relationship indices but not a given in actual animals (Bergman & 

Beehner, 2015). The simulations also assume that dyads had stable interaction probabilities that did not 

vary over time. This last point means that errors of interaction rates are independent from each other, 

which is likely not the case in real-world data: non-random processes dictate the availability of partners 

for interactions, but also interaction rates on any given day. If we for example focal follow a chimpanzee 

on a day where the group has an intergroup encounter, we would overestimate their cooperative rates 

with other group members (Samuni et al., 2020). We have previously shown that this non-independence 

leads to low consistency in interaction rates especially for rare behaviours, conditional on sampling 
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choices (Mielke et al., 2021). Our simulations did not include in seasonal effects, changes in underlying 

relationships, changes in reproductive states of females, and many other aspects that make real data 

interesting. Thus, the simulations might paint a more positive picture than what we would expect for a 

real social group. 

One point to consider throughout is that we got different results for the accuracy and the precision: 

even for relatively small datasets, accuracy (the representation of the underlying dimension) of all 

indices was fairly good. However, the precision shows that dyadic values, especially for small datasets, 

were highly volatile. The reason for this difference is that, in right-skewed distributions, the dyads with 

low interaction frequencies will be low independent of sampling scheme, so the correlation between the 

expected and observed values will be high. However, whether a dyad was assigned a value in the highest 

30% of the distribution or the lowest 30% can vary dramatically depending on who was sampled when. 

As we usually have one sample (our observational data), we do not know whether our data properly 

reflect the underlying dyadic values.  

Overall, the three indices shared some advantages but also suffered the same problems. With the 

indices, it was faster to collect enough data to estimate the underlying relationship dimension - 

conditional on the fact that there is one relationship dimension and that all included interaction types 

are accurate representations of this dimension. The CSI and DDSI performed better at this than the CRI – 

with the latter probably performing worse because aggression, which is given higher weight in the CRI, 

was not as strongly correlated with the underlying dimension as the other interaction types. Given that 

both aggression rates and socio-positive interaction rates are usually highly right-skewed in animal 

groups, it is hard to imagine a linear dimension that results in both distributions if aggression is simply a 

mirror image of affiliation. Including aggression as a negative aspect on the same relationship dimension 

in the CRI and DDSI reduces precision when values are standardised (e.g., for analysis in a linear model), 

because dyads who never interact with each other are not on one end of the distribution, but in the 

centre. On average, when many aggressive events are observed in the group, dyads who never interact 

with each other appear to be more valuable than if there are few aggression events, but this might not 

reflect biology. Thus, it is worth considering whether aggression events in a species provide enough 

information to justify including them in one-dimensional indices. 

Another aspect of all indices (and all interaction rates) was that their accuracy and precision increased 

with increasing sample sizes. We showed this effect previously for the consistency of real-world data 

(Mielke et al., 2021). The precision of indices seemed to be driven by the precision of the rarest 

interaction type – here, the precision of the CSI was most similar to the rarest and most imprecise 

interaction type, ‘food sharing’. Social relationship indices thus do not alleviate the need for having 

sufficient data available per dyad per interaction type to estimate dyadic values for each of the 

components. It is still common for social animal studies to calculate interaction rates and sociality 

indices for very short time periods with little information available for each individual, or to include 

extremely rare interaction types. This is particularly problematic in large groups, where inherently more 

data is needed to achieve adequate accuracy and precision of social indices. It is also still surprisingly 

rare for authors who use relationship indices to present information on the sample size for each of the 

components included in the index– how many grooming bouts, proximity events, etc. were involved in 

making the index? This is relevant, because the quality of the index and therefore the interpretability of 

the results can only be judged conditional on the fact that sufficient data are available. Interaction rates 

and indices that are based on fewer interactions than there are dyads in a group cannot possibly 
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represent social relationships or networks accurately (Mielke et al., 2021). There is a responsibility for 

reviewers and editors to ask authors to make this information publicly available. 

Another aspect of social relationship indices that ties into this is that unbalanced data collection did not 

have a strong effect on the accuracy of the indices, and had mixed results for the precision. A central 

tenet of field ethology is that focal follow data collection procedures produce the most accurate 

representation of individual social relationships, because they control for inter-individual differences in 

observation effort (Altmann, 1974). However, sampling imbalance affected precision and accuracy less 

than insufficient interaction data. If the accuracy and precision of an index or interaction rate is 

influenced mainly by the sample size, then focal follows are poorly suited to maximise accuracy and 

precision, because so many observed interactions are ignored by the observer. Scan sampling or all 

occurrence and ad libitum sampling (Altmann, 1974) could potentially circumvent this problem of lost 

data, but this would need a rethinking of how to calculate interaction rates and design studies using 

these observation methods (Canteloup et al., 2020). With new technological solutions and electronic 

data collection methods, scan samples and ad libitum data collection are becoming simpler to 

implement (Smith & Pinter-Wollman, 2020; Van Der Marel et al., 2021). 

With increasing sample size, precision of relationship indices increased for the extremes – non-

interacting dyads and very strong ‘friends’ were detected reliably independent of sampling decisions 

(conditional on dyadic interaction probabilities being expressed the same way across interaction types). 

However, there was low precision for dyads who interact regularly, but not every day. This is similar to 

precision problems reported for association indices (Whitehead, 2008). As it is common in studies of 

social bonds to delineate a subset of dyads (e.g., the top 10% or top 3 per individual) as ‘friends’ and 

assign them special significance (Silk et al., 2010a), this level of imprecision is worrisome. The values for 

some of these dyads will not be robust – a second observer who followed the same group on different 

days would assign different ‘friends’. Depending on when individuals were followed and how much data 

were available, results might be highly conditional on sampling biases, and we do not currently know 

how this affects interpretation.  

Any scholar trying to make a relationship index for their study group will be faced with the question 

which interaction types to include in the index. Is it better to include more interaction types, even if few 

data are available or when the connection between the interaction type and the underlying relationship 

quality is unclear (e.g., infant handling, affiliative gestures)? Our results showed that the accuracy and 

precision of the relationship index was dependent on the accuracy and precision of the most imprecise 

component that made up the index. The inclusion of uninformative interaction types severely limited 

the ability of the index to detect the underlying relationship dimension, even if such a dimension 

existed. When adding uninformative or imprecise interaction rates, researchers mainly add noise. If an 

interaction type exists for which sufficient data is available, and which is believed to closely represent 

the underlying relationship (e.g., grooming), then this interaction rate might be better for most studies 

than just compiling interaction types together in an index. One reason for representing social 

relationship on a single dimension in the past was that it was easier to run univariate statistical models 

this way – however, linear models make this process increasingly unnecessary, and we could show that 

including interaction types as independent fixed effects in a linear model retained more information 

than combining them into an index. Thus, including independent rates into analyses of outcomes of 

social relationships might be more useful for most studies. 
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Attempts to represent social relationships or ‘bonds’ on one dimension are increasingly challenged by 

non-linear and multi-dimensional approaches using cluster analysis (Fischer et al., 2017) or mixture 

models (Weiss et al., 2019) to identify underlying relationship ‘types’ (Bergman & Beehner, 2015). 

Multilevel networks will also become more popular as they become easier to implement (Lehmann & 

Ross, 2011). However, these approaches are as sensitive to sampling biases and measurement error as 

relationship indices and results will be highly dependent on the interaction types researchers choose to 

include in their analyses. The current problem is that we do not have a clear quality measure that would 

differentiate a ‘good’ index/cluster solution from a ‘bad’ one. The fact that we can create an index and it 

has a certain distribution does not inform us about data-generating process – we cannot quantify 

sampling and measurement error, and how they influence the observed rates.  

Social relationships in animals, under these circumstance, can best be understood as a state space 

model (Nielsen, 2019). Relationships cannot be observed directly, but have to be inferred after two 

stochastic processes take place: each interaction choice by an individual is an imperfect representation 

of their true relationships, and our attempts to aggregate across many interactions adds more noise. 

However, there should be an assignment of dyadic values that best approximates the underlying 

structure, given the data. It should be possible to approximate this value using probability-based 

approaches and likelihood maximisation, rather than relying on interaction rates. One important step to 

reduce at least the impact of sampling biases would be to move away from working with aggregated 

interaction rates as outcome variables for the study of social interactions. If we calculate dyadic values 

over one year of data collection, we cannot control for all the different factors that potentially influence 

who chooses which interaction partner at any point in time. Studying social interactions as decision 

situations (Kajokaite et al., 2019; Mielke et al., 2018; Samuni et al., 2018) might be more informative 

because more situational factors can be accounted for statistically. The ‘optimal’ relationship 

representation (whether one-dimensional or relationship type) would be one that optimises partner 

choice probabilities across social situations and interaction types, while controlling for the social 

environment – this is an optimisation problem that should be solvable.  

What this study shows is that we need more detailed meta-scientific studies of the tools that animal 

behaviour researchers are using on a regular basis. Currently, researcher degrees of freedom in this area 

are large, resulting in known threats to replicability and reproducibility (Wicherts et al., 2016). We need 

more detailed and realistic simulation studies that explore the underlying properties of indices we use; 

however, we also need further observational studies that compare the precision and accuracy of 

different interaction rates and social indices (Canteloup et al., 2020; Davis et al., 2018). Importantly, 

researcher need to be more transparent about their choices, why they make them, and how choices 

influence interpretation of social outcomes – it is not enough to simply calculate interaction rates and 

social relationship indices because it is easily done, but researchers must show that their results are not 

conditional on the choices made (Asendorpf et al., 2013). One solution to this is increased transparency: 

readers need to know how many interactions were used to create an interaction rate, because the 

validity of results will be conditional on this fact. Another solution is multiverse analysis (Steegen et al., 

2016): instead of calculating one relationship index and basing interpretations on this choice, 

researchers could simply run models based on different indices and interaction rates – if results are 

robust, it is unlikely that any particular researcher choice influenced analyses. However, this does not 

alleviate one very central problem: if insufficient data are available to estimate interaction rates, and 

many dyads are assigned false zeros, no measure of robustness or multiverse analysis can correctly 
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estimate the relationship values. This study did not address all choices that researchers might face when 

calculating relationship indices – for example, how robust are indices to changes in underlying 

relationships? Should interaction rates be standardised by the group mean, and should they be 

standardised by the observation time or time spent in association? How should we weigh different 

interaction types against each other? Is it better to have study group specific solutions or use only 

interaction types that are generally available for all primates? This study is only a first step in a process 

of exploring the properties of social relationship indices and how they relate to the social lives of our 

study animals.  

 

Data Availability 

R scripts for simulation: https://github.com/AlexMielke1988/Social_Relationship_Simulations. We 

encourage researchers to test other scenarios, but please be advised that running the simulations might 

take a long time. 
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Supplementary Information 

Social Relationship Indices 

Dyadic Composite Sociality Index 

The most prominent social relationship index used in animal behaviour research is the Dyadic Composite 

Sociality Index (CSI or sometimes DSI; Silk et al., 2003), a modification of the Composite Sociality Index 

(Sapolsky et al., 1997). The CSI evaluates how rates of dyadic socio-positive interactions (e.g., grooming, 

proximity) differ from the mean population rates, providing a relative measure indicating how dyadic 

relationships compare. The index typically incorporates several socio-positive interaction types that are 

supposed to be highly correlated (Silk et al., 2013). As such, an underlying assumption of the CSI is that 

the relative contribution of each interaction type to the composite measure is dependent on their 

variance, with highly variable interaction types (large dispersion from the population mean) more 

strongly influencing the index. However, variability could be a result of measurement error, so 

interaction types with high variation, due to insufficient data, potentially bias the index 

disproportionally. The CSI standardizes interactions compared to the mean of the group; thus, dyadic 

values are dependent on accurate data for all individuals in the group. The index has a mean of 1 and is 

usually right-skewed, with most dyads having low values and few having high values (see Fig. S1). In this 

study, we use the following formula to calculate the CSI: 
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d – number of behaviours included in the index 

fixy – rate of behaviour i for dyad xy  

fi – mean rate of behaviour i across all dyads in the dataset  

Sx,y – Sum of all standardised interaction rates 

 

We calculated a series of CSIs that included either 1) all socio-positive behaviours, that is Behaviour 1-3 

(‘Grooming’, ‘Food Sharing’, ‘Proximity’); 2) socio-positive behaviours of medium or high frequency (i.e., 

Behaviours 1 and 3; ‘DSI common’), or 3) socio-positive behaviours of medium or high partner choice 

certainty (i.e., Behaviours 1 and 2; ‘DSI Interactions’). We calculated the CSI using the balanced and 

unbalanced datasets, and calculated a ‘bad’ version of each CSI where Behaviour 1 is replaced by an 

interaction distribution that is not correlated with the underlying expected probability distribution. 

 

Composite Relationship Index 

Considering that the entirety of dyadic interactions underlies social relationships (Hinde, 1976), 

including socio-positive and -negative interactions may be more informative in relationship 

characterization. Following this rationale, another social relationship index, the Composite Relationship 

Index (CRI; Crockford et al., 2012), was developed as a derivative of the CSI. Like the CSI, this index 
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incorporates rates of different interaction types and their deviation from the population mean, with 

each interaction type influencing the index relative to its variance. Unlike the CSI, the CRI consists of 

both affiliative and agonistic interaction rates, some of which are not correlated. Doing so, the CRI can 

take on negative (mainly aggressive) and positive values (mainly cooperative); however, it comes with 

the assumption that aggression is an expression or antecedent of a ‘negative’ social relationship and on 

the same dimension as the socio-positive interaction types. The index also differentiates specifically 

between rare and common socio-positive behaviours; requiring the user to make decisions about 

classifying interaction types as rare/common or strongly/weakly predictive of ‘social bonds’. The CRI is 

roughly normally distributed around 0 (see Fig. S1). The CRI has mainly been applied in great ape 

research, including studies in chimpanzees (Crockford et al., 2013) and bonobos (). We used the 

following formula to calculate the CRI: 

����,� �  
���,� 	 �
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S1 - rates of frequent socio-positive behaviours (grooming and proximity)  

S2 - rates of rare socio-positive behaviours (food sharing)  

S3 - rates of socio-negative behaviours 

We calculated the CRI with all four interaction types. We also created it for both balanced and 

unbalanced datasets. Additionally, we created a ‘bad’ CRIs in which Behaviour 1 was replaced by a socio-

positive behaviour of similar properties but uncorrelated with the underlying interaction probability. 

 

Dynamic Dyadic Sociality Index 

Both the DSI and the CRI provide a single averaged parameter per dyad that is fixed per observation 

period, thus overlooking the dynamic and flexible nature of social interactions (Wittig et al., 2020). For 

example, rates of interactions are subjected to changes in individuals’ reproductive or social status 

(Gumert, 2007), the ecological environment (Brent et al., 2013), and fluctuations in within- and 

between-group competition (Samuni et al., 2020), aspects that may vary over short periods of time. 

Thus, the Dynamic Dyadic Sociality Index (DDSI; Kulik, 2015) incorporates the dynamic aspect of social 

relationships into their characterization. The DDSI evaluates dyadic social relationships by applying a 

method similar to Elo ratings (Albers & De Vries, 2001), in which every interaction sequentially changes 

the dyadic value either positively (affiliative interaction) or negatively (agonistic interaction). The weight 

of the dyadic social change for each interaction type is determined by its frequency in the dataset, such 

that rarer interactions impact the index stronger. Changes in the value of a dyad lead to opposite 

changes in all other dyads containing the two individuals, so that the group average value remains at 

stable at 0.5, leading to roughly normal distributions. An advantage of the DDSI over other established 

methods is that it provides a daily representation of social relationships that is based on experience, 

thereby avoiding the assumption that relationships are fixed and can be reliably quantified by 

aggregation over time (Mielke et al., 2017). The DDSI has thus far been applied in studies of 
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chimpanzees (Mielke et al., 2018; Preis et al., 2018; Samuni et al., 2018), sooty mangabeys (Mielke et al., 

2018), and Assamese macaques (De Moor et al., 2020). 

We calculated the DDSI using the script provided by Kulik (2015). All four behaviours were entered and 

weighted by their frequency of occurrence – thus, the more common an interaction type, the less each 

single instance affects the index. The index is updated daily and thus provides daily values; as there are 

no changes in the underlying dyadic probabilities, we used the DDSI for the last day of the study period 

to represent the whole study period, as that is the data point that includes the largest amount of 

information. 

 

Figure S1: Example of distribution of the three relationship indices based on a full simulated dataset. All indices were min-max 

standardized between 0 and 1; naturally, the CSI has a mean of 1, the CRI of 0, and the DDSI of 0.5 . 

 

Simulations 

To assess the robustness of the different social relationship indices we simulated social interactions 

between individuals within different social groups of 25 individuals (10 datasets in total) over a one-year 

period. Each dyad was randomly assigned an expected interaction probability from a right-skewed beta 

distribution with α = 0.5 and β = 2. The interaction probabilities of A to B and B to A are therefore based 

on the same dyadic value – however, all probabilities were subsequently standardised to sum to 1 
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within individuals, so that there are light differences depending on direction. The final distribution 

differs between simulations, but the coefficient of variation for all expected probabilities was usually 

around 1.0, with a right-skewed distribution. Dyads with high expected probabilities interact positively a 

lot, while those with low expected probabilities would hardly interact with each other. As not all types of 

social interactions occur at the same frequency, and since different positive interaction types likely vary 

in how accurately they represent the value of the social relationship, we varied the frequency and 

certainty of occurrence of interaction types. The frequency value of the behaviour represents the 

average number of interactions of that type exhibited per day. The certainty of the behaviour signifies 

how selective partner choice is for the respective interaction type, such that a behaviour of low 

certainty/selectiveness has low explanatory power of relationship value and vice versa. If certainty is 

high, only a small number of partners are ever chosen, and the interaction distribution is highly right-

skewed; if certainty is low, the likelihood of each partner is roughly even. 

Socio-positive interaction types are variations on these expected dyadic interaction probabilities, but the 

distribution was changed by raising the probability to different powers to make them more or less 

certain (Behaviour 1/Grooming: 1.2; Behaviour 2/Food Sharing: 3; Behaviour 3/Proximity: 0.5). The 

higher the power, the larger the difference between ‘favourite’ partners and non-partners; thus, the 

more the favourite partners would be chosen. Interaction types also differed in how common they 

were: Behaviour 1 occurred 3 times per day per individual, Behaviour 2 occurred 1 time a day per 

individual, Behaviour 3 occurred 8 times a day per individual. Behaviours 2 and 3 were considered 

events, while each occasion of Behaviour 1 was assigned a duration, with dyads with higher interaction 

probability also having longer interactions (similar to real-world grooming). 

Socio-negative interaction probabilities were calculated by taking the expected interaction probability 

for each dyad and taking the square root of that value 4 times and subtract the result from 1 (to switch 

the skew), and then again standardising probabilities to sum to 1 within individuals. Behaviour 4 was 

created by taking the result and raising it to the power of 2.5 to achieve the same distribution as 

Behaviour 1; Behaviour 4 also had 3 occurrences per individual per day, to make it the mirror image of 

Behaviour 1. The ‘Aggression’ distribution correlated at around r = -0.3 with the expected interaction 

probability and the socio-positive behaviours, similar to what we observe in some real-world social 

systems (see Fig. S2). 
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Figure S2. The correlation of different behaviour types with expected probabilities of interaction   

 

For each individual for each day, a fixed number of interactions of each type was set. We introduced 

random variation in interaction partner choice by limiting the number of group members available as 

partners for any interaction. We achieved this by simulating random party compositions in which on 

average 50% of the group was available at any given time. Therefore, both the expected probabilities 

and partner availability defined who would interact in case interactions occur. For each individual, we 

generated a daily dataset of social interactions during 12 observation hours.  

To simulate actual data collection efforts in a primate group, we selected one focal per day and varied 

how many days a year observers were following groups. As the overall interaction probabilities are the 

same for every single day, randomly selecting observation days is the same as simulating a shorter but 

consistent study period. Please note that this is not the same for real-world data, where seasonal effects 

and changes in relationships will influence results. For balanced datasets, the probability of each focal 

being followed was the same; for unbalanced dataset, individuals were assigned one of three weights 

(rare, medium, common) to indicate their probability of being chosen as a focal – in many primate field 

sites, one sex is followed more regularly than others, and often some individuals are harder to observe 

than others. For each dataset, we ran 100 iterations that randomly selected between 30 and 360 focal 

follow days and calculated all indices and results for each of these iterations. 

Overall, we generated an ‘optimal’ dataset in which every group member was followed daily with all 

their interactions marked. Thus, for one year of interactions, we know who interacted how with whom. 

As a measure of accuracy, we report the correlations between the ‘true’ relationship and each index, 

and the index calculated over the full dataset and each index. As a measure of precision, we compared 

the dyadic values achieved across all 100 simulations. As a measure of how well each index explain the 
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underlying partner choice probabilities, we fitted a beta regression of each index against the expected 

interaction probabilities and compared the Akaike Information Criterion of each model. 
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