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Abstract

The survival of human organisms depends on our ability to solve complex tasks, which is bounded
by our limited cognitive capacities. However, little is known about the factors that drive complexity
of the tasks humans face and their effect on human decision-making. Here, using insights from com-
putational complexity theory, we quantify computational hardness using a set of task-independent
metrics related to the computational requirements of individual instances of a task. We then exam-
ine the relation between those metrics and human behavior and find that these metrics predict both
performance and effort allocation in three canonical cognitive tasks in a similar way. Our findings
demonstrate that the ability to solve complex tasks can be predicted from generic metrics of their
inherent computational hardness.

Introduction

The adaptiveness of human organisms is bounded by their limited cognitive capacities, sometimes re-
ferred to as bounded rationality [1]. In the words of Herbert Simon, “[h]uman rational behavior [. . . ]
is shaped by a scissors whose two blades are the structure of task environments and the computational
capabilities of the actor” [1].

In the past several decades, the study of human behavior has focused predominantly on the latter.
This work characterizes cognitive capacities and cognitive strategies, algorithms and heuristics people
use in different task environments. It includes approaches such as the heuristics and biases program
[2], resource and computational rationality [3, 4] as well as ecological rationality [5], among others.
However, very little is known about how properties of the task environment affects computational re-
quirements and how they compare to bounds of human cognitive capacities.

Several studies have explored how the task environment affects the performance of specific algo-
rithms or cognitive strategies [6–8]. However, this approach ignores the diversity in strategies imple-
mented not only across humans, but also across situations. Even if the task environment is the same,
different people might approach a task using different procedures and might change their procedures
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depending on the situation or their level of experience [6, 9–13]. Understanding the interaction between
task environment and an agent’s computational capabilities is then particularly difficult given the lack of
a generic cognitive strategy.

A principled and generic way to characterize the computational requirements of a task environment
is to formalize the task as a computational problem and analyze its problem complexity. Here, computa-
tional requirements are typically analyzed at the level of problems, such as sorting an array of numbers.
These requirements are typically expressed in terms of asymptotic worst-case growth of a resource such
as compute time or memory. This means that resource requirements are characterized in terms of their
growth as a function of the input size of the problem, for example, the length of the array to be sorted.
Importantly, this is generally done by considering the growth in requirements in the worst-case as the
input size increases. Problems with similar resource requirements, thus defined, are then grouped into
complexity classes [14].

As it stands, problem complexity is not amenable to modeling human behavior directly. Critically,
although this approach can shed light on the a priori plausibility of models of human behavior [15], it is
inadequate for the derivation of empirically testable predictions at finer detail. First, while complexity
classes are based on asymptotic growth of resources, in practice many instances (that is, cases of a prob-
lem) people face are small in size [16]. Second, complexity classes are typically based on worst-case
growth of resources. This means that hardness is defined in terms of resources required to solve the most
difficult instance of a problem. However, in most cases, there is substantial variation in resource require-
ments of instances of the same input size [17, 18], and the worst case is often far away from typical, or
average, cases and may not be encountered in the natural environment [19]. Third, the approach classi-
fies problems according to hardness, like a taxonomy, but it does not identify the sources of hardness, for
example, which properties of instances make some harder than others. What would be desirable is a set
of generic properties of individual instances of a class of problems that are associated with computational
hardness in a way that is independent of the problem it belongs to. Similar to how properties like mean,
variance and other statistics characterize the level of uncertainty in the class of probabilistic problems.
However, there is as yet no analog for characterizing computational hardness.

There is limited research on how properties of instances of problems affect human problem-solving.
To date, most studies are based on a problem-specific approach [9, 10, 20, 21]. Hence, their findings may
not generalize to other problems. Recent theoretical advances in computer science and statistical physics
provide a framework, referred to as typical-case complexity (TCC), that addresses this issue. It allows
the characterization of computational hardness of individual instances of a problem. More specifically, it
is concerned with the average computational hardness of random instances of a computational problem,
linking structural properties of those instances to their computational complexity, independent of a par-
ticular computational model [17, 18, 22–24]. This work has identified computational ‘phase transitions’,
which resemble phase transitions in statistical physics and which are related to computational hardness of
instances. Such phase transitions have been found in a number of canonical NP-complete problems (i.e.,
problems that are both in NP and NP-hard) [17, 18, 22–24], including the graph coloring problem [18,
25], the traveling salesperson problem [17] and the K-SAT problems (Boolean satisfiability problems)
[18, 25, 26], among others. This program has led to a deeper understanding of computational hardness
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by relating it to structural properties of instances. Importantly, it has identified that hardness of an in-
stance is related to a generic instance property, namely constrainedness (see Fig 1). The framework has
also been useful for understanding patterns in the performance of algorithms [25, 27], and subsequently,
generating more efficient algorithms [24].

A recent study applied this framework to study human behavior in the knapsack problem, a (NP-
hard) combinatorial optimization problem [28]. The study found that both effort (time-on-task) and
ability to solve an instance were related to computational phase transitions, with patterns similar to those
exhibited by generic constrained optimization algorithms. An important question is whether these find-
ings generalize to other problems. If they do, then these properties related to computational complexity
would be prime candidates for generic measures of computational hardness of human cognition, in the
way that statistics like mean, variance and kurtosis serve as generic measures of probabilistic uncertainty
in a task [29].

Here, using a behavioral experiment, we study the relation between a set of problem-independent
measures of instance complexity and human performance in two canonical NP-complete computational
problems, the Boolean satisfiability problem (3SAT) and the traveling salesperson problem (TSP). We
then compare those results to results previously obtained for the 0-1 knapsack decision problem (KP)
[28], to test their generalizability across NP-complete problems.

Results

Each participant solved one of the three problems: either 72 instances of the TSP task, 64 instances of
the 3SAT or 72 instances of the KP (Figs 1,5). TSP is the problem of determining whether a path of a
particular length (or less), connecting a set of cities, exists or not. 3SAT is the problem of determining
whether a set of variable configurations (true/false) exist that render a set of clauses true. And KP is
the problem of determining whether there exists a subset of items with differing values and weights
exceeding a minimum total value while not exceeding a maximum total weight. All three problems are
decision problems, that is, problems whose answer is either ‘yes’ or ‘no’. If there exists a configuration of
variables such that the solution of the instance is ‘yes’, the instance is called satisfiable and unsatisfiable
otherwise.

Instances varied in their computational hardness (see Methods). Both TSP and 3SAT were self-
paced (with time limits per trial), while the KP was not. Results for KP have previously been reported
elsewhere and are included here for comparison only [28].

Summary statistics

We first present summary statistics for each of the three tasks. We measured performance as a binary
outcome, depending on whether a participant’s response was correct or not. Additionally, we studied
effort by analyzing time-on-task. This captures another dimension of the agent’s problem-solving process
that is not entirely determined by performance because, unlike algorithms implemented by electronic
computers, humans have the option to stop working independently of the solving strategy. It is worth
noting that the effort analysis was not performed for the KP, since this task was not self-paced.
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Figure 1: 3SAT problem, complexity metrics and experimental design. The problem. The aim is to
determine whether a Boolean formula is satisfiable. The task. The Boolean formula is represented with
a set of light bulbs (clauses), each of which has three switches underneath (literals) that are characterized
by a positive or negative number. The number on each switch represents the variable number, which can
be turned on or off (TRUE or FALSE). The aim is to determine whether there exists a way of turning
on and off variables such that all the light bulbs are turned on (formula evaluates TRUE). Instance
properties. The constrainedness of the problem (α) is captured by the ratio of clauses to variables.
This parameter characterizes the probability that a random instance of the problem is satisfiable. In the
limit this probability undergoes a phase transition around the satisfiability threshold (αs). Complexity
metrics. Instances near this threshold are on average harder to solve than instances further away. Average
hardness is captured by the typical-case complexity metric (TCC). This metric can be estimated entirely
from the features of the problem (feature-space) without the need to solve the problem. Alternatively,
instance complexity (IC) can be estimated from features of the solution-space. IC is characterized as the
difference between the constrainedness of the instance (α) and α∗, the maximum number of clauses that
can be satisfied normalized by the number of clauses.
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In the TSP, all instances had 20 cities and a time limit of 40 s. The number of cities and time
limit were selected, based on pilot data, to ensure that the task was neither too difficult nor too easy (see
Methods). Mean human performance, measured as the proportion of trials in which a correct response
was made, was 0.85 (min = 0.76, max = 0.93, SD = 0.05). Participants’ average time spent on an
instance was 32.2 s and ranged from 19.9 s to 39.2 s (SD = 5.2). Performance did not vary during the
course of the task, but time-on-task decreased as the task progressed (S3 Appendix).

All instances of the 3SAT task had 5 variables and a time limit of 110 s. Similar to TSP, the number
of variables and time limit were selected, based on pilot data, to target a specific average performance
(≈ 85%; see Methods). Mean human performance was 0.87 (min = 0.75, max = 0.98, SD = 0.06).
The average time spent on an instance varied from a minimum of 15.9 s to a maximum of 104.3 s (mean =
60.2, SD = 18.7). Similar to TSP, performance did not vary during the course of the task, but participants
tended to spend less time on a trial as the task progressed (S3 Appendix).
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In the KP decision task implemented by Franco et al. [28], all instances had 6 items. This task was
not self-paced, that is, participants had exactly 25 seconds to solve each instance and could not skip to
the next screen before the time ended. Mean human performance was 83.1% (min = 0.56, max = 0.9,
SD = 0.08). Like in the other two tasks, performance did not vary during the course of the task (S3
Appendix).

Feature-space complexity metrics

We now examine how generic properties of instances affect the quality of decisions and the computational
effort exerted. We study two types of properties: feature-space and solution-space metrics. The main
difference between them is that feature-space metrics can be estimated from mathematical properties of
the instance without any knowledge of an instance’s solution, whereas the calculation of solution-space
metrics require knowledge of an instance’s solution, that is, require the solution to be computed (Fig 1).

We first examine the effect of typical-case complexity (TCC), a feature-space metric of complexity,
on human performance and effort. This measure is based on a framework in computer science developed
to study the drivers of computational hardness in computational problems by analyzing the difficulty
of randomly generated instances of those problems. The study of random instances has revealed that
there is substantial variation in computational resource requirements for instances with the same input
length [17, 18, 22, 30]. This variation in computational hardness has recently been related to various
structural properties of instances. In particular, it has been shown for several intractable (specifically,
NP-complete) problems, including the KP [30], TSP [17] and 3SAT [23, 24], that there exists a set of
parameters ᾱ that captures the constrainedness of an instance. Moreover, it has been shown that there is
a threshold αs such that random instances with α � αs are mostly satisfiable whereas they are mostly
unsatisfiable if α � αs. Importantly for our study, it has been shown for each of the problems under
consideration that instances near αs are, on average, computationally harder than instances further away
from αs [17, 18, 22, 30]. In our study, we sampled instances with varying values of α and categorize
instances with α ∼ αs as instances with a high TCC and instances with α� αs or α� αs as low TCC
(see Fig 2 and Methods).

We first examine the effect of TCC on human performance across problems. We hypothesized
that participants would have lower performance on instances with high TCC compared to those with
low TCC. We found that this was indeed the case for both TSP and 3SAT as well as for KP (TSP:
β0.5 = −2.10, HDI0.95 = [−2.50,−1.73], S1 Table Model 2; 3SAT: β0.5 = −1.58, HDI0.95 =

[−1.95,−1.20], S2 Table Model 2; KP: β = −1.327 P < 0.001, main effect of TCC on performance,
GLMM; Fig 2a).

Instances with an α � αs or α � αs are considered to have a low TCC. However, these in-
stances belong to two structurally different regions, namely an overconstrained and an underconstrained
region. We studied whether differences in constrainedness affected performance among low TCC in-
stances. We found that for the TSP and 3SAT, there was no difference in performance between un-
derconstrained and overconstrained regions (TSP: β0.5 = 0.14, HDI0.95 = [−0.58, 0.87], S1 Table
Model 3; 3SAT: β0.5 = −0.43, HDI0.95 = [−1.12, 0.28], S2 Table Model 3; the difference in ef-
fect, overconstrained − underconstrained, on performance, GLMM). These results are consistent
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Figure 2: Typical-case complexity (TCC). (a) Human performance and satisfiability probability.
Each dot represents an instance of one of the three problems considered. For each instance human per-
formance corresponds to the proportion of participants that solved an instance correctly. The instances
are categorized according to their constrainedness region (α) and their TCC. The correct solution (sat-
isfiability) of an instance is represented by its color. (b) Time-on-task and TCC. Median time spent
solving an instance before submitting an answer. Time is represented as a proportion of the maximum
time allotted on each trial (40s in the TSP and 110s in the 3SAT). (c) Satisfiability probability and
constrainedness parameter α. Probability that a random instance is satisfiable as a function of α (the
probability is empirically estimated; see Methods). In the underconstrained region (low TCC) the satisfi-
ability probability is close to one while in the overconstrained region (low TCC) the probability is close
to zero. The region with a high TCC corresponds to a region in which the probability is close to 0.5.
The box-plots represent the median, the interquartile range (IQR) and the whiskers extend to a maximum
length of 1.5*IQR
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with those obtained previously in relation to KP (β = 0.250, P = 0.355, the difference in effect,
overconstrained − underconstrained, on performance, GLMM; Fig 2a). Taken together, these find-
ings suggest that the mapping between α and TCC captures the effect of α on performance.

We also expected TCC to have an effect on time-on-task. We hypothesized that participants
would spend more time on instances with high TCC. We found this to be the case for 3SAT and TSP
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(3SAT: β0.5 = 0.149, HDI0.95 = [0.116, 0.182], S5 Table Model 2; TSP: β0.5 = 0.118, HDI0.95 =

[0.090, 0.147], S6 Table Model 2; effect of TCC on time-on-task as a proportion of the maximum pos-
sible time, censored linear mixed-effects models (CLMM), Fig 2b). The effect was mainly driven by
the constrainedness level (α). Specifically, participants spent less time-on-task on instances in the un-
derconstrained region (3SAT: β0.5 = −0.352, HDI0.95 = [−0.385,−0.318] S5 Table Model 3; TSP:
β0.5 = −0.199, HDI0.95 = [−0.233,−0.164], S6 Table Model 3; difference in time-on-task between
instances in the underconstrained region and those with high TCC (α ∼ αs), CLMM). In the TSP, par-
ticipants spent less time on overconstrained instances compared to those instances with α ∼ αs, but
this effect was not significant (β0.5 = −0.024, HDI0.95 = [−0.059, 0.011], difference in time-on-task
between instances in the overconstrained region and α ∼ αs, CLMM; S6 Table Model 3). In contrast,
in the 3SAT participants spent more time on overconstrained regions compared to those instances with
α ∼ αs (β0.5 = 0.071, HDI0.95 = [0.036, 0.106], difference in time-on-task between instances in the
overconstrained region and with high TCC, CLMM; S5 Table Model 3). It is worth noting that in 3SAT,
the more constrained the problem is, the higher the amount of clauses presented, which could have driven
this effect.

Our results so far show that participants expend more effort on instances with higher TCC and
yet they perform worse on these instances. This suggests a negative correlation between time-spent and
performance (TSP: β0.5 = −0.1, HDI0.95 = [−0.13,−0.08], S1 Table Model 5; 3SAT: β0.5 = −0.02,
HDI0.95 = [−0.02,−0.01], S2 Table Model 5); effect of time-spent on performance, GLMM).

Solution-space complexity metrics

In the previous section, we studied the effects of feature-space complexity metrics on human performance
and effort. These metrics can be estimated based on a problem’s input, that is, without the need to solve
the instance. We now turn our attention to complexity metrics based on an instance’s solution space.
We will use the term solution space to refer to the set of solution witnesses of an instance, that is, the
set of configurations of variables (e.g., possible paths or variable assignments) that satisfy an instance’s
constraints. Note that in order to estimate solution-space metrics, the instance, or a harder variant, has to
be solved. In some cases, all possible solution witnesses must be found.

An important difference in the structure of instances, is their satisfiability, that is, whether the
instance’s solution is ‘yes’ or ‘no’. We found that satisfiability affects performance but that this effect
varies between problems. In 3SAT, participants performed worse on satisfiable instances (β0.5 = −1.35,
HDI0.95 = [−1.73,−0.99], main effect of satisfiability, GLMM, S2 Table Model 8), whereas there
was no significant effect of satisfiability on performance in the TSP and the KP (TSP: β0.5 = −0.06,
HDI0.95 = [−0.34, 0.22], S1 Table Model 6; KP: β0.5 = −0.29, HDI0.95 = [−0.57, 0.01], S3 Table
Model 1; main effect of satisfiability, GLMM).

Turning our attention to the effect of satisfiability on time-on-task, we find that less time was
spent on satisfiable instances in both TSP and 3SAT (TSP: β0.5 = −0.17, HDI0.95 = [−0.20,−0.15],
S6 Table Model 4; 3SAT: β0.5 = −0.32, HDI0.95 = [−0.35,−0.29], S5 Table Model 4; effect of
satisfiability on time-on-task, CLMM). We further explored the effect of satisfiability by studying its
interaction effect with TCC. We only found an interaction effect between satisfiability and TCC in 3SAT,
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in relation to both performance and time-on-task (Fig 2; S1 Appendix).
In summary, we observed that participants spent less time-on-task on satisfiable instances in both

TSP and 3SAT, yet the effect of satisfiability on performance varied across problems. Moreover, our
results suggest that satisfiability and TCC might interact and affect performance and time-on-task on
some problems.

We can analyze the drivers of hardness in satisfiable instances at a more granular level by studying
the number of solution witnesses of an instance. This generic feature of decision instances captures the
constrainedness of an instance: a higher value of witnesses is related to a lower degree of constrainedness.
It is worth noting that this metric is only informative for satisfiable instances (by definition, unsatisfiable
instances have zero solution witnesses). Thus, we restrict our analysis to these instances.

We found, in line with our hypothesis, a positive effect of the number of witnesses on performance
in all three problems (3SAT: β0.5 = 0.62, HDI0.95 = [0.49, 0.79]; TSP: β0.5 = 0.45, HDI0.95 =

[0.37, 0.53]; KP: β0.5 = 0.26, HDI0.95 = [0.19, 0.34]; main effect of the number of witnesses on
performance, GLMM; S4 Table Models 1,4,6; Fig 3a). We further hypothesized that participants would
spend less time solving instances with a higher number of witnesses. This was indeed the case (TSP:
β0.5 = −0.02, HDI0.95 = [−0.03,−0.02], S6 Table Model 5; 3SAT: β0.5 = −0.041, HDI0.95 =

[−0.047,−0.036], S5 Table Model 5; effect of number of witnesses on time-on-task, CLMM; Fig 3b)).
These results suggests that, among satisfiable instances, the more constrained an instance, the harder it
is to solve.

It is worth noting that the number of witnesses is a metric conceptually similar to TCC. After
all, TCC is a mapping from expected constrainedness (α) to hardness. We studied the link between
these metrics and found that the effect of TCC on performance on satisfiable instances is driven, at least
partially, by the number of witnesses of an instance (see S4 Appendix).

An alternative solution-space complexity metric that can be used to study the difficulty of all in-
stances (both satisfiable and unsatisfiable) is instance complexity (IC) [28]. It is related to the con-
strainedness of an instance and the order parameter ᾱ. It is defined based on the distance between the
decision threshold of an instance and the maximum attainable value in the optimization variant of the
instance. For example, the optimization variant of an instance of the TSP corresponds to finding the
minimum path-length connecting all cities. For the KP, it corresponds to finding the maximum value
that can fit into the knapsack given the weight constraint. Analogously, for the 3SAT, the optimization
version (MAX-SAT) corresponds to finding the maximum number of clauses that can be rendered true
simultaneously.

We define IC as the absolute value of the normalized difference between target value of the decision
variant and the maximum value attainable of the corresponding optimization variant. In the KP, for
example, it is the absolute value of the difference between target profit of the decision instance and the
maximum profit attainable of the corresponding optimization instance, divided by the sum of the values
of all items, that is,
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Figure 3: Number of solution witnesses. The number of witnesses is defined as the number of state-
space combinations (i.e., paths, items or switch-setups) that satisfy the constraints. On satisfiable in-
stances, the problem becomes harder as the number of witnesses approaches 0. Only satisfiable instances
are included. (a) Human performance. Each green shape represents the mean accuracy per instance.
The blue line represents the marginal effect of the number of solution witnesses on human performance
(GLMM S4 Table Models 1,4,6). (b) Time-on-task. Each green shape represents the median time-on-
task per instance. The blue line represents the marginal effect (and 95% credible interval) of the number
of solution witnesses on time-on-task (LMM S6 Table Model 5 and S5 Table Model 5). Each black dot
corresponds to the time-on-task of one participant while solving a single instance.
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where the decision instance and the corresponding optimization instance have the same set of items

and the same total weight (capacity) constraint. Intuitively, IC in KP is the normalized value of the
distance between the target profit of a decision instance and the maximum profit that can be attained
with the same set of items and the same capacity constraint. The corresponding expressions for TSP and
3SAT are provided in the Methods section.

We studied the effect of IC on performance and effort in each of the problems. Note that lower
values of IC indicate that the decision threshold is closer to the optimum, which corresponds to a higher
level of computational hardness. Therefore, we expected a positive relation between IC and performance.
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We found a positive non-linear relation in all problems (KP: β0.5 = 9.05, HDI0.95 = [7.20, 11.02], S3
Table Model 2; TSP: β0.5 = 21.13, HDI0.95 = [17.63, 24.91], S1 Table Model 7; 3SAT: β0.5 = 30.30,
HDI0.95 = [21.95, 39.24], S2 Table Model 6; the effect of IC on performance, GLMM; Fig 4a).

Figure 4: Instance complexity. Instances become harder as IC = |αp − α?
p| approaches 0. (a) Hu-

man performance. Green and orange shapes represent the mean accuracy for each instance. The blue
lines represents the marginal effect of IC on human performance (GLMM S3 Table Model 2, S1 Table
Model 7, S2 Table Model 6). (b) Time-on-task. Green and orange shapes represent the median time-
on-task for each instance of the TSP and 3SAT problems. The blue lines represents the marginal effect
(and 95% credible interval) of IC on time-on-task (LMM S6 Table Model 6, S5 Table Model 6). Each
black dot corresponds to the time spent by a single participant on a particular instance.
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IC is a metric at the level of individual instances and thus we expected that it captures a substantial
amount of the variability in performance between instances. Indeed, IC was able to explain a high
proportion of the variance in average instance performance in the TSP and the KP (KP:R2 = 0.65; TSP:
R2 = 0.75) but was lower in 3SAT (3SAT: R2 = 0.16). We explore this further in the S5 Appendix.

Next, we explored how well IC predicted time-on-task. We expected a negative relation be-
tween IC and the average time spent on an instance. This was the case for TSP (β0.5 = −0.735,
HDI0.95 = [−0.901,−0.581], main effect of IC on time-on-task, CLMM; S6 Table Model 6; Fig 4b),
but for the 3SAT we found a significant positive effect (β0.5 = 6.04, HDI0.95 = [5.41, 6.70], main
effect of IC on time-on-task, CLMM; S5 Table Model 6; Fig 4b). Based on this result, we hypothesized
that the positive effect of IC on time-on-task in 3SAT could have been driven by the effect of satisfia-

10

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 26, 2021. ; https://doi.org/10.1101/2021.04.25.441300doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.25.441300
http://creativecommons.org/licenses/by/4.0/


bility, but we are unable to test this hypothesis directly. Therefore, we investigated the effect of IC on
time-on-task in unsatisfiable instances only and found a non-significant negative effect (β0.5 = −0.557,
HDI0.95 = [−1.912, 0.782], main effect of IC on time-on-task for unsatisfiable instances, CLMM; S5
Table Model 7). These results indicate a negative relation between IC and time-on-task in the TSP,
whereas in 3SAT the results are inconclusive.

We have shown that generic instance-level complexity metrics are able to explain differences in
performance and time-on-task across instances and problems. However, it remains an open question
whether these generic properties can shed light on how humans solve those problems. To explore this
question, we investigated whether our metrics could explain differences in the number of clicks across
instances. The number of clicks is a useful metric in studying the algorithms implemented by humans.
Specifically, the number of clicks is related to the way that the problem’s state space is explored. In the
3SAT, the state space consists of all possible on-off switch setups (25 possible combinations) while in the
TSP the state space consists of all possible ordered path selections (2(202 ) = 2190 possible combinations).
Arguably, participants search the state space by clicking on different state combinations in order to decide
whether an instance is satisfiable or not. Differences in the quantity of clicks used to solve an instance
can shed light into how the state space is explored (under the assumption that the state space is explored
by clicking on elements in the task). We investigated whether generic properties of the instance captured
differences in the number of clicks.

We found that the length of search in the state space, that is, the set of paths or variable config-
urations, is related to two properties of the instance, namely satisfiability and complexity. Search was
longer in general in the case of unsatisfiable instances and there was a positive effect of TCC on search
length. Moreover, longer search was also related to lower values of IC and lower number of witnesses
(see S2 Appendix). These patterns suggest that the length of search in the state space can be explained,
at least partially, by the properties of an instance. Interestingly, the effect of our metrics on performance
can shed light on the possible strategies used by participants (see Discussion).

Discussion

Human behavior arises as an interaction between the agent, subject to limited cognitive capacities, and its
environment [1]. Much research on this interaction to date has focused in characterizing cognitive strate-
gies employed by agents in a given environment [2, 5, 31]. Comparatively little work has investigated
how properties of the task environment relate to cognitive demands and how these interact with cognitive
capacities. In the present study, we propose a generic framework for quantifying computational hardness
of cognitive tasks based on structural properties of individual instances of the the underlying computa-
tional problem. We find that a set of metrics based on these properties predict both task performance and
effort exerted across three cognitive tasks related to different NP-complete computational problems.

More specifically, using a controlled experiment, we show that three generic properties of NP-
complete problems, typical-case complexity (TCC), the number of solution witnesses, and instance com-
plexity (IC), affect human performance and effort exerted when performing a task. While the extent of
effort increased with higher complexity of instances, efficacy, and thus performance in those instances,
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decreased. We show that the relation between the complexity metrics presented on the one hand and task
performance and effort exerted on the other, are similar across three different NP-complete problems.

Our results complement findings from computer science and suggest that hardness stems partially
from intrinsic difficulty of the problem and the instance, regardless of the algorithm and the computing
device used. In particular, our findings suggest that the same intrinsic hardness metrics describe the
performance of algorithms executed by both electronic computers [17, 18, 22–24, 30] and humans. This
is particularly interesting because the theory in which our analysis is based is derived without taking into
account limits on human computation. For instance, no memory constraints are imposed on the solving
algorithms. Interestingly, our results also show that computational hardness affects how much time an
agent decides to spend on an instance. This is far from obvious because, unlike the standard algorithms
executed by electronic computers, humans have the option to stop working independently of the solving
strategy.

Critically, our results provide support for the premise that a comprehensive and accurate charac-
terization of human behavior requires the study of both ‘blades’ of the scissors: an agent’s cognitive
capacities as well as the task environment. The proposed approach can shed light on how to operational-
ize bounded rationality [1] by shaping the canvas to which cognition must be confined in order to model
a computationally feasible agent.

Computational complexity in cognition

The role of computational complexity in cognition has been studied before. Problem complexity has been
used to study the limits of what is potentially human computable [15, 32, 33]. According to this work,
many tasks we face in our lives—and corresponding computational models of human behavior—are
computationally intractable (NP-hard) [15], including planning, learning and many forms of reasoning
(for example, analogy, abduction and Bayesian inference) [15]. This means that the computational re-
quirements quickly grow to levels that make solving those tasks infeasible within a reasonable amount
of time and memory.

This analysis is, however, too coarse to explain differences in performance and behavior across
the class of human-computable problems. Such differences have generally been ascribed to the solver
or the agent [6–8, 21, 34–36]. This approach, however, is problematic given the diversity of algorithms
implemented and their specificity to a particular problem [11].

We propose that a new level of analysis be included in the study of cognition: instance-level com-
plexity. This additional level of analysis describes the generic or intrinsic complexity of problems at a
more granular level. In the present study, we show that our conceptual approach captures differences in
behavior across different NP-complete problems without reference to an algorithm or particular compu-
tational device. More specifically, we explored the effect of three generic complexity metrics on human
performance. Each of them can be used to unearth generalities in human behavior. Typical-case com-
plexity (TCC) captures the average hardness of a random ensemble of instances of a problem based on
its constrainedness. Critically, TCC can be computed ex-ante—without knowledge of an instance’s solu-
tion. Instance complexity (IC) maps constrainedness to complexity, but does this at the level of a single
instance rather than an average across instances. Finally, the number of solution witnesses captures a
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structural property of an instance that is related to the hardness of search for satisfiable instances.
Our three metrics capture generalities in behavior using generic metrics of computational hardness

on NP-complete problems, just like metrics of uncertainty, such as mean, variance and other statistics,
capture generalities in behavior in probabilistic problems. Importantly, our framework can be applied to
other decision problems in classes P or NP [18, 22, 23], and has also been shown that it can be extended
to optimization problems [28].

The generality of TCC is limited by its dependence on a particular sampling distribution. We
sampled instances for each of the problems from a specific procedure in which the components of the
instances were randomly sampled from uniform distributions. We leave it to future research to study
whether TCC can be extended to other probability distributions, and particularly, to those found in real
life [19].

Importantly, we provided two alternatives to TCC (IC and number of witnesses), which do not
depend on a sampling procedure. These metrics quantify the hardness of specific instances of problems.
However, they do come at a cost: these metrics are computationally intensive. That is, in order to
compute them, the decision problem, or a harder variant, needs to be solved first. For IC to be estimated,
the optimization variant of the instance needs to be solved, whereas to compute the number of witnesses,
all of the possible witnesses of an instance need to be counted.

We argue that the computational requirements of calculating these metrics is not prohibitive in the
context of the study of human problem-solving and cognition in general. These metrics can be used to
predict generalities in human behavior with the aid of any of the resources at hand, including electronic
computers. Therefore, since the practical instances of problems solvable by humans are relatively small
compared to those solvable by electronic computers, cognitive scientists effectively have access to an
oracle machine to estimate computationally intensive metrics.

Future directions

This paper focuses on generalities across problems within a well-defined class (i.e., NP-complete). A
related question is whether intrinsic characteristics specific to a problem can complement the generic
metrics presented here. Intrinsic metrics of complexity, specific to a problem, have been previously
shown to affect performance. Specifically, for all three problems considered in this study, measures
derived from the features of the problem have been shown to affect computational time of algorithms
executed on electronic computers [37–40]. Additionally, problem-specific complexity metrics have been
show to be related to human performance in the optimization variants of the TSP [9, 10]. Future work
should be undertaken to study how instance-complexity generic metrics and problem-specific measures
jointly affect human performance.

Importantly, our results suggest that the metrics put forward in this study are generic as they provide
both ex-ante and ex-post predictability across different problems. However, our work also highlights that
certain structural properties of the problem might have problem-specific effects that could interact with
the effect of generic metrics of hardness. This is particularly evident in the 3SAT. In this task we find
that IC explains less of the variance in performance than in on the other two tasks and that the effect of
IC on time-on-task is inconclusive. This might be related to the intertwinement of satisfiability and IC

13

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 26, 2021. ; https://doi.org/10.1101/2021.04.25.441300doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.25.441300
http://creativecommons.org/licenses/by/4.0/


in this problem. Specifically, the structure of the 3SAT problem generates an unavoidable confounding
between these two metrics given that all satisfiable instances have IC = 0, thus rendering IC incapable
of explaining variance across satisfiable instances. This is further relevant because in this task, unlike
in the other two, satisfiability has a significant effect on performance. Taken together, this suggests that
the effect of IC on performance in the 3SAT might be incongruously driven by satisfiability, in a way
that cannot be differentiated in our experimental design. In future studies, it should be attempted to
disentangle these effects, for example, by studying the related maximum satisfiability problem (MAX-
SAT). More importantly, these results warrant further investigation of the effect of satisfiability, and
other structural properties, on human behavior. Moreover, future work could explore the differences
in these effects across classes of problems. For instance, NP-complete problems could be categorized
into finer classes based on the effect of particular properties on human problem-solving. Our findings
would suggest that more abstract logical problems might be solved differently to other more life-pertinent
problems, such as KP and TSP.

We investigated the effect of different metrics of instance-level complexity keeping the size of
instances fixed. An additional dimension in this framework that has been shown to affect human behavior
is an instance’s size [7, 9] and the size of the state space (that is, the number of possible combinations or
paths) [6, 41]. Additionally, the instance complexity metrics we presented are based on the satisfiability
threshold and the number of witnesses. Recently, it has been shown that the performance of algorithms,
designed for electronic computers, as α approaches αs, is not only related to the decrease in the number
of witnesses, but also to the shattering of witnesses into distinct clusters [25, 42]. Further research is
needed to integrate these different dimensions of complexity and determine their combined effect on
human problem-solving.

We have argued that the framework presented here can be used to characterize the effect of the task
environment on human performance. However, instance-level complexity metrics can also shed light on
the type of strategies employed by agents. Note, for example, that our results suggest that participants
did not predominantly perform random search. In a random algorithm, random combinations from the
state space (i.e., paths or variable configurations) are tried and an answer (yes/no) is selected depending
on whether a solution witness is found. If participants implemented such an algorithm, we would expect
the length of search to be similar on all unsatisfiable instances given that completing an exhaustive search
of the state space is unlikely because of the limits on time and number of clicks. This, however, is not
what we found. In unsatisfiable instances the length of search, time-on-task (in TSP) and performance
were affected by IC. In fact, by applying the same argument, we can rule out other more directed search
heuristics such as greedy algorithms [43], which have been proposed to be linked to human behavior
[6]. Overall, our results suggest that when people solve decision problems, they implement procedures
to exclude alternatives from the witness solution set. If this was not the case, we would not find any
effect of our complexity metrics among unsatisfiable instances. Further research is needed in order to
disentangle between prospective algorithms and explore how instance-level complexity measures can be
used to inform the study of algorithm selection in humans.

* * *
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We provide empirical evidence that studying the intrinsic computational hardness of the task en-
vironment predicts human cognitive effort and performance on a task. This has important practical
implications, which could help improve human decision-making. The approach presented here could
be used to quantify the computational hardness of problems people face in everyday life, such as mak-
ing financial investments or health insurance decisions. Our generic approach would provide a rigorous
method to estimate average quality of such decisions. Both designers of products as well as regulators
could use a framework like ours to identify upper limits in the complexity of the tasks that consumers
face when dealing with those products and services.

Methods

Ethics statement

The experimental protocol was approved by the University of Melbourne Human Research Ethics Com-
mittee (Ethics ID 1749594.2). Written informed consent was obtained from all participants prior to com-
mencement of the experimental sessions. Experiments were performed in accordance with all relevant
guidelines and regulations, including the Declaration of Helsinki.

Participants

A total of 47 participants were recruited in two separate groups from the general population (group 1:
24 participants; 12 female, 12 male; age range = 19-35 years, mean age = 24.1 years; group 2: 23
participants; 13 female, 10 male; age range = 18-32 years, mean age = 23.3 years). Inclusion criteria
were based on age (minimum=18 years, maximum=35 years) and normal or corrected-to-normal vision.

Each group of participants were asked to solve a set of random instances of a computational prob-
lem. Group 1 participants were presented with 64 instances of the Boolean satisfiability problem (3SAT).
Group 2 participants were presented with 72 instances of the decision variant of the traveling salesperson
problem (TSP).

Experimental tasks

Boolean satisfiability task

This task is based on the 3-satisfiability problem. In this problem, the aim is to determine whether a
boolean formula is satisfiable. In other words, given a propositional formula, the aim is to determine
whether there exists at least one configuration of the variables (which can take values TRUE or FALSE)
such that the formula evaluates to TRUE. The propositional formula in 3SAT has a specific structure.
Specifically, the formula is composed of a conjunction of clauses that must all evaluate TRUE for the
whole formula to evaluate TRUE. Each of these clauses, takes the form of an OR logical operator of
three literals (variables and their negations). An example of a 3SAT problem is:
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Does there exist xi ∈ {TRUE,FALSE} s.t.

(¬x3 ∨ ¬x4 ∨ x5) ∧ (x2 ∨ x3 ∨ ¬x4) ∧ (¬x1 ∨ x2 ∨ ¬x3)

evaluates TRUE?

In order to represent this in an accessible way to participants we developed a task composed of
switches and light bulbs (Fig 5b). Participants were presented with a set of light bulbs (clauses), each of
which had three switches underneath (literals) that were represented by a positive or negative number.
The number on each switch represented the variable number, which could be turned on or off (TRUE or
FALSE). The aim of the task is to determine whether there exists a way of turning on and off variables
such that all the light bulbs are turned on (that is, the formula evaluates TRUE).

At the beginning of each trial, participants were presented with a different instance of the 3SAT
problem. A bar in the top-right corner of the screen indicated the time remaining in the trial. Each
participant completed 64 trials (4 blocks of 16 trials with a rest period of 60 seconds between blocks).
Trials were self-paced with a time limit of 110 seconds. Participants could use the mouse to click on any
of the variables to select their value ({blue = TRUE, orange = FALSE}). A light bulb above each
clause indicated whether a clause evaluated to TRUE (light on) given the selected values of the variables
underneath it. The number of clicks in each trial was limited to 20. The purpose of this limit was to
discourage participants from using a trial-and-error strategy to solve the instances. When participants
were ready to submit their solution, they pressed a button to advance from the screen displaying the
instance to the response screen where they responded YES or NO. The time limit to respond was 3
seconds, and the inter-trial interval was 3 seconds as well. The order of instances and the side of the
YES/NO button on the response screen were randomized for each participant.

Instance sampling A random instance is a selection of clauses and literals in whichM clauses of three
literals are chosen randomly. Each of the literals is associated with one of N variables. Both numerical
[23] and analytical [24] evidence suggests that in the limit N →∞, there exists a value of the clause to
variables ratio α = M/N , αSAT

s , such that typical instances are satisfiable for α < αSAT
s , while typical

instances are unsatisfiable for α > αSAT
s . The current best estimate for the satisfiability threshold, αSAT

s ,
as N → ∞ is 4.267 [24] (note that the value of αs is a function of the number of literals per clause,
which was fixed at 3 in this study). As N → ∞, instances near the threshold are on average harder to
solve [18, 22]. We exploit both the threshold phenomenon in satisfiability and its link to computational
hardness.

We generated random instances with different degrees of complexity by varying α. We picked
a value of α, starting at the lower bound of its range and incrementing in steps of 0.1 until the upper
bound was reached. For each value of α, we computed the number of clauses M by multiplying α and a
fixed value of N and rounding to the nearest integer. N (and the time limit for the task) was determined
before hand using pilot data to ensure that the task was not too easy nor too hard for participants (i.e.
to ensure sufficient variation in performance). Importantly, N was also restricted to values in which the
corresponding number of clauses could fit in the screen of the task. Specifically, we restricted the number
of clauses to be at most 36.
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Figure 5: Experimental Tasks. (a) Traveling salesperson task. Participants are given a list of cities
displayed on a rectangular map on the screen and a limit L on path length. The problem is to determine
whether there exists a path connecting all N cities with a distance at most L. The task was interactive.
Participants could click from city to city and the corresponding path and distance traveled would display
and update automatically. This stage lasted a maximum of 40 seconds. Afterwards, participants had 3
seconds to make their response. (b) Boolean satisfiability task. In this task, the aim is to determine
whether a Boolean formula is satisfiable. The Boolean formula is represented with a set of light bulbs
(clauses), each of which has three switches underneath (literals) that are characterized by a positive or
negative number. The number on each switch represents the variable number, which can be turned on
or off (TRUE or FALSE). The aim of the task is to determine whether there exists a way of turning
on and off variables such that all the light bulbs are turned on (the corresponding Boolean formula
evaluates to TRUE). The task was interactive. Participants could click on switches to turn them on and
the corresponding literals and light bulbs would change color automatically. This stage had a time limit
of 110 seconds. Afterwards, participants had 3 seconds to make their response (either a ‘YES’ or ‘NO’).
(c) Knapsack decision task. Participants are presented with a set of items with different values and
weights. Additionally, a capacity constraint and target profit are shown at the center of the screen. The
aim is to ascertain whether there exists a subset of items for which (1) the sum of weights is lower or
equal to the capacity constraint and (2) the sum of values yields at least the target profit. The task was not
interactive. This stage lasted for 25 seconds. Finally, participants had 2 seconds to make their response.
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Once N was fixed, we generated 1000 random instances for each value of M . Each random
instance was generated by first selecting the literals for each clause. Each literal is represented by a
positive or negative sign (negation of a variable) and is sampled from the set {−1,+1} with equal
probability. Afterwards, three variables were selected for each clause by sampling without replacement
from the set of N variables [18, 23].

From the randomly generated instances we first determined the satisfiability threshold of our finite
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instances (N = 5). That is, we calculated the value of α at which half of the randomly generated
instances were satisfiable and half were unsatisfiable. This was the case for α = 4.8. Based on this we
selected a subset of random instances to use in the task.

We asked participants to solve a set of instances randomly sampled from three different regions:
an underconstrained region (α� αSAT

s ), a region around the satisfiability threshold (α ∼ αSAT
s ) and an

overconstrained region (α� αSAT
s ). Instances near the satisfiability threshold are defined to have a high

TCC, whereas instances further away from the satisfiability threshold (in the under-constrained or over-
constrained regions) are defined to have a low TCC. We selected 16 instances from the underconstrained
region (α = 2) and 16 instances from the overconstrained region (α = 7). We then sampled 32 instances
near the satisfiability threshold (α = 4.8), such that 16 of the selected instances were satisfiable and 16
were not satisfiable.

In order to also ensure a sufficient degree of variability between instances near the satisfiability
threshold, we added an additional constraint in the sampling. For each set of instances (satisfiable and not
satisfiable) we forced half to have algorithmic complexity less than the median algorithmic complexity at
this value ofα, and the other half to be harder than the median. The algorithmic complexity was estimated
using an algorithm-specific ex-post complexity measure of a widely-used algorithm (Gecode propaga-
tions parameter). Gecode is a generic solver for constraint satisfaction problems that uses a constraint
propagation technique with different search methods, such as branch-and-bound. We chose an output
variable, the number of propagations, that indicates the difficulty for the algorithm of finding a solution
and whose value is highly correlated with computational time. We did not use compute time directly as a
measure of complexity because for instances of small size, like the ones used in this study, compute time
is highly confounded with overhead time. Thus, our set of instances in the region α ∼ αs comprised 8 in-
stances in each of the following categories {satisfiable, unsatisfiable}×{low/high algorithmic difficulty}.

Traveling salesperson task

This task is based on the traveling salesperson problem. Given a set ofN cities displayed on a rectangular
map on the screen and a limit L on path length, the decision problem is to answer whether there exists a
path connecting all N cities with a distance of at most L (Fig 5a).

In the TSP task, each participant completed 72 trials (3 blocks of 24 trials with a rest period of
30 seconds between blocks). Each trial presented a different instance of TSP. Trials were self-paced
with a time limit of 40 seconds. Participants could use the mouse to trace routes by clicking on the
dots indicating the different cities. The length of the chosen route was indicated at the top of the screen
(together with the maximum route length of the instance). When participants were ready to submit their
answer, they pressed a button to advance from the screen displaying the cities to the response screen
where they responded YES or NO. The time limit to respond was 3 seconds, and the inter-trial interval
was 3 seconds as well. The order of instances and the sides of the YES/NO button on the response screen
were randomized for each participant.

Instance sampling A TSP instance is a collection of N cities, a matrix of distances d between each
pair of cities, and a limit L on path length. Here, we restrict the problem to the euclidean TSP; that is,
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we constraint our distance matrices d to those that can be represented in a two-dimensional map of area
M2.

Just like for 3SAT, it has been proposed that there exists a parameter αTSP that captures the con-
strainedness of the problem, specifically αTSP = −L/(M

√
N) [17]. Evidence suggests that in the limit

N → ∞, there exists a value of α, αTSP
s , such that typical instances are satisfiable for α � αTSP

s ,
while typical instances are unsatisfiable for α � αTSP

s . αTSP
s for the euclidean TSP is estimated at

−0.7124 ± 0.0002 in the limit N → ∞ [17, 44]. As N → ∞ instances near αTSP
s have been shown

to be, on average, harder to solve [17]. We use the this insight to vary typical-case complexity of finite
instances.

Instances of the TSP hadN = 20 cities. This value, and the time limit for the task, were determined
using pilot data to ensure that the task was not too easy nor too hard for participants (i.e. to ensure
sufficient variation in performance). Random instances of the euclidean TSP were then generated by
choosing (x,y) coordinates for each of the N = 20 cities, uniformly at random from a square with side
length M = 1000 [17]. We generated 100 sets of coordinates; that is, 100 distance matrices d. For each
distance matrix, we generated instances with different values of L. We did this by varying the value of
α, which was incremented in the range [−0.25,−1.25] with step size 0.02.

To determine the location of the satisfiability threshold in our sample of random instances (with
N = 20), we determined the value of α at which half of the randomly generated instances were satisfiable
and half were unsatisfiable. The satisfiability threshold was located at αTSP = −0.85. We randomly
sampled instances at this value of α such that half of the selected instances were satisfiable and half
were not satisfiable. We also ensured that half of the instances had a number of propagations above the
median and half of them had a number of propagations below the median (see description of 3SAT above
for details). Thus, our set of of instances in the region α ∼ αs comprised 9 instances in each of the four
following categories: {satisfiable, unsatisfiable} × {low/high algorithmic difficulty}.

For the underconstrained region, α � αs, we randomly chose 18 instances from the set of 100
randomly generated instances with αTSP = −0.99. For the overconstrained region, α � αs, we
randomly chose 18 instances from the set of 100 randomly generated instances with αTSP = −0.71. We
made sure that no two instances in our set of selected instances had the same set of city coordinates.

Knapsack task

In this paper we report on the experimental data collected on the knapsack decision task by Franco et al.
[28]. Statistical results from [28] were used when available.

The knapsack task is based on the 0-1 knapsack problem (KP). An instance of this problem consists
of a set of items I = {1, . . . , N} with weights 〈w1, . . . , wN 〉 and values 〈v1, . . . , vN 〉, and two positive
numbers c and p denoting the capacity and profit constraint (of the knapsack). The problem is to decide
whether there exists a set S ⊆ I such that

∑
i∈S

wi ≤ c, that is, the weight of the knapsack is less than or

equal to the capacity constraint; and
∑
i∈S

vi ≥ p, that is, the value of the knapsack is greater than or equal

to the profit constraint.
In their study they implemented the knapsack decision problem in the form of the task presented in

19

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 26, 2021. ; https://doi.org/10.1101/2021.04.25.441300doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.25.441300
http://creativecommons.org/licenses/by/4.0/


Fig 5c. In their task all instances had 6 items (N = 6) and wi, vi, c and p were integers. In the task each
participant completed 72 trials (3 blocks of 24 trials with a rest period of 60s between blocks). Each trial
presented a different instance of the KP. Trials had a time limit of 25 seconds and were not self-paced.
A green circle at the center of the screen indicated the time remaining in each stage of the trial. During
the first 3 seconds participants were presented with a set of items of different values and weights. Then,
both capacity constraint and target profit were shown at the center of the screen for the remainder of the
trial (22 seconds). No interactivity was incorporated into the task; that is, participants could not click
on items. When the time limit was reached, participants were presented with the response screen where
they responded YES or NO. The time limit to respond was 2 seconds, and the inter-trial interval was
5 seconds. The order of instances and the sides of the YES/NO button on the response screen were
randomized for each participant.

Instance sampling It has been proposed that there exists a set of parameters ᾱKP = (αKP
c , αKP

p )

that captures the constrainedness of the problem, specifically αKP
p = p∑N

i=1 vi
and αKP

c = c∑N
i=1 wi

[30]. These parameters characterize where typical instances are generally satisfiable (under-constrained
region), where they are unsatisfiable (over-constrained region) and where the probability of satisfiability
is close to 50% (satisfiability threshold). Instance near the satisfiability threshold have been shown to be,
on average, harder to solve [30].

Instances in Franco et al. [28] were selected such that αKP
c was fixed (αKP

c ∈ [0.40, 0.45])
and the instance constrainedness varied according to αKP

p . 18 instances were selected from the under-
constrained region (αp ∈ [0.35, 0.4]; low TCC) and 18 from the over-constrained region (αp ∈ [0.85, 0.9];
low TCC). Additionally, 18 satisfiable instances and 18 unsatisfiable instances were sampled near the sat-
isfiability threshold (αp ∈ [0.6, 0.65]; high TCC).

Like for 3SAT and TSP, high TCC instances were selected such that they varied according to the
number of propagations (see description of 3SAT sampling for details).

Procedure

After reading the plain language statement and providing informed consent, participants were instructed
in the task and completed a practice session. Each experimental session lasted around 110 minutes. The
tasks were programmed in Unity3D [45] and administered on a laptop.

Participants received a show-up fee of AUD 10 and additional monetary compensation based on
performance. In the 3SAT, they additionally received AUD 0.6 for each correct instance submitted plus a
bonus of AUD 0.31 per instance if all instances in the task were solved correctly. In the TSP, participants
received 0.3 per correct instance submitted plus 0.14 per instance if all instances were solved correctly.
In the KP task [28], participants received a show-up fee of A$10 and earned A$0.7 for each correct
answer.

Note that the 3SAT and TSP tasks were self-paced (with time limits per trial), whereas the KP was
not.
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Derivation of metrics

We estimated a collection of metrics based on the features of each instance and its solution space. We
estimated one feature-space metric and several solution-space metrics. We first defined Typical-case
complexity (TCC) according to the problem-parameter α for each task. Estimation of this metric is
tightly related to the instance sampling procedure and its derivation is described in the previous section.
Instances were sampled such that there was an equal number of instances with low and high TCC on
each of the problems.

Once instances for the tasks were sampled, we estimated their solution-space metrics. We esti-
mated the number of solution witnesses for 3SAT instances using exhaustive search and used the Gecode
algorithm [46] for TSP instances. For the TSP, we allowed the algorithm to stop after finding 30,000
solution witnesses. This was done to reduce the computational requirements of solving an instance. 15
TSP instances reached the 30,000 maximum imposed. Given the variability in the number of witnesses
in the TSP, the results on number witnesses are reported in logarithmic scale (natural logarithm).

We define the instance complexity metric (IC) as the absolute value of the normalized difference
between target value of the decision variant and the maximum value attainable of the corresponding op-
timization variant. In the KP, the optimization variant’s problem is to find the maximum value attainable
given the weights, values and capacity. In the TSP, the optimization variant is to minimize the path trav-
eled given a distance matrix. In the 3SAT, the optimization variant (MAXSAT) is to find the maximum
number of satisfiable clauses given the Boolean formula presented. Explicitly, IC is defined as follows:

ICKP =
∣∣αp − α?

p

∣∣ =
∣∣∣Target profit−Maximum profit attainable∑

vi

∣∣∣
ICTSP =

∣∣α− α?
∣∣ =

∣∣∣ Path limit - Minimum path√
Map area× Number of cities

∣∣∣
ICSAT =

∣∣α− α?
∣∣ =

∣∣∣Number of clauses - Max number of clauses set to TRUE
Number of variables

∣∣∣
In order to estimate the instance complexity metric (IC), the optimization variant of each instance

needs to be solved. These optima were estimated using Gecode [46] in TSP and using the RC2 algorithm
from the ‘pysat’ python library [47]. For the KP we used the metrics estimated in Franco et al. [28].

Statistical analysis

Python (version 3.6) was used to sample and solve instances. The R programming language was used
to analyze the behavioral data. All of the linear mixed models (LMM), generalized logistic mixed mod-
els (GLMM) and censored linear mixed models (CLMM) included random effects on the intercept for
participants (unless otherwise stated). Different models were selected according to the data structure.
GLMM were used for models with binary dependent variables, LMM were used for continuous depen-
dent variables and CLMM were used for censored continuous dependent variables (e.g., time-on-task).

All the models were fitted using a Bayesian framework implemented using the probabilistic pro-
gramming language Stan via the R package ‘brms’ [48]. Default priors were used. All population-level
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effects of interest had uninformative priors; i.e., an improper flat prior over the reals. Intercepts had a
student-t prior with 3 degrees of freedom and a scale parameter that depended on the standard deviation
of the response after applying the link function. The student-t distribution was centered around the mean
of the dependent variable. Sigma values, in the case of Gaussian-link models, had a half student-t prior
(restricted to positive values) with 3 degrees of freedom and a scale parameter that depended on the stan-
dard deviation of the response after applying the link function. Standard deviation of the participant-level
intercept parameters had a half student-t prior that was scaled in the same way as in the sigma prior.

Each of the models presented was estimated using four Markov chains. The number of iterations
per chain was by default set to 2000. This parameter was adjusted to 4000 on some models to ensure
convergence. Convergence was verified using the convergence diagnostic R̂. All models presented reach
an R̂ ≈ 1.

Statistical tests were performed based on the 95% credible interval estimated using the highest
density interval (HDI) of the posterior distributions calculated via the R package ‘parameters’ [49]. For
each statistical test we report both the median (β0.5) of the posterior distribution and its corresponding
credible interval (HDI0.95).

For the knapsack task, we report the statistical results from [28] if available and are, here, reported
as effect estimates (β) and P-Values (P ). Otherwise we used the data available at the OSF (project:
https://doi.org/10.17605/OSF.IO/T2JV7) to run statistical tests on the behavioral data.
These tests were performed and reported following the same Bayesian approach used in the TSP and
3SAT analysis.

Some trials and participants were excluded due to different reasons. In the 3SAT task, two partic-
ipants were omitted from the analysis given that their performance (close to 50%) differed significantly
from the group. Additionally, 10 trials (from 9 participants) were omitted given that no answer was
given. One participant was excluded from the time-on-task analysis since they never advanced to the
response screen before the time limit. In the TSP, one participant was excluded from the analysis given
that they did not understand the instructions. This was determined during the course of the experiment.
Additionally 9 trials (from 8 participants) were omitted given that no answer was selected. Finally, in the
knapsack task, 13 trials (from 8 participants) were excluded in which no response was made.

Data and code availability

The behavioral data and the data analysis code are both available at the Open Science Framework. The
3SAT and TSP tasks are also available there (project: https://osf.io/tekqa/).
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49. Lüdecke, D., Ben-Shachar, M. S. & Makowski, D. Describe and understand your model’s parame-
ters. CRAN. https://easystats.github.io/parameters (2020).

28

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 26, 2021. ; https://doi.org/10.1101/2021.04.25.441300doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.25.441300
http://creativecommons.org/licenses/by/4.0/


S1 Appendix: Satisfiability and TCC

In the results section we found that TCC had a negative effect on performance. Since we are interested
in understanding what generic features make instances hard for humans to solve, we explored whether
TCC and satisfiability interact to make instances harder. We first explore the interaction of TCC and
satisfiability on performance. Performance was not affected by satisfiability in low TCC instances on all
three problems (TSP: β0.5 = −0.16, HDI0.95 = [−0.85, 0.55], S1 Table Model 4; 3SAT: β0.5 = −0.52,
HDI0.95 = [−1.27, 0.11], S2 Table Model 4; KP: β = −0.250, P = 0.355, [28]; marginal effect
of satisfiability, GLMM). Moreover, in line with the previous study on the KP, we found a negative
effect of TCC on both satisfiable and unsatisfiable instances for both problems considered (TSP: βsat0.5 =

−2.07, HDIsat0.95 = [−2.64,−1.55], βunsat0.5 = −2.16, HDIunsat0.95 = [−2.74,−1.62], S1 Table Model 4;
3SAT: βsat0.5 = −2.06, HDIsat0.95 = [−2.56,−1.59], βunsat0.5 = −0.77, HDIunsat0.95 = [−1.49,−0.13], S2
Table Model 4; the effect of TCC on performance for satisfiable and unsatisfiable instances, respectively,
GLMM). Interestingly, in the 3SAT problem we found that the reduction in performance due to TCC was
larger for satisfiable instances (β0.5 = −1.29, HDI0.95 = [−2.11,−0.46], interaction effect of TCC and
satisfiability on performance, GLMM; S2 Table Model 4). In contrast, in the TSP, as with the KP, the
size of the effect of TCC on performance was similar for both satisfiable and unsatisfiable instances
(β0.5 = 0.10, HDI0.95 = [−0.65, 0.90], interaction effect of TCC and satisfiability on performance,
GLMM; S1 Table Model 4). This suggests that unlike the KP and TSP, in the 3SAT there is an interaction
effect between TCC and satisfiability on performance, which makes satisfiable instances with high TCC
harder than the rest.

When analyzing how satisfiability affected time for different levels of TCC we found different
results across problems. In the TSP there was no interaction effect on time between satisfiability and
TCC (β0.5 = 0.002,HDI0.95 = [−0.054, 0.058], interaction effect of satisfiability and TCC on time-on-
task, CLMM; S6 Table Model 7), meaning that both properties had independent effects on time-on-task.
In contrast, in 3SAT the effect of TCC was modulated by satisfiability in such a way that there was no
effect of TCC when the instance was unsatisfiable (β0.5 = 0.022, HDI0.95 = [−0.016, 0.063], marginal
effect of TCC on time-on-task for unsatisfiable instances, CLMM; S5 Table Model 8). In summary, we
only found an interaction effect between satisfiability and TCC in the 3SAT. This was the case for both
performance and time-on-task.

S2 Appendix: Search strategies

Generic instance-level complexity metrics are able to explain differences in performance and time-spent
across instances. However, it remains an open question whether the generic properties can shed light into
how humans solve problems. To explore this question we investigated whether instance-level metrics
could explain differences in the number of clicks across instances. This analysis was performed for TSP
and 3SAT. In both tasks, participants had the opportunity to click on cities or literals throughout the trial,
whereas in the KP clicking on items was not possible. Note that while for the TSP there was no limit
in the number of clicks, in the 3SAT participants were only allowed to make a maximum of 20 clicks
per trial. The purpose of this limit was to discourage participants from using a trial-and-error strategy to
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solve the instances.
The number of clicks is a useful metric in studying the algorithms implemented by humans. Specif-

ically, the number of clicks is related to the way that the problem state-space is explored. In the 3SAT,
the state-space consists of all possible on-off switch setups (25 possible combinations) while in the TSP
the state-space consists of all possible ordered path selections (2(202 ) = 2190 possible combinations). Ar-
guably, participants search the state-space by clicking on different state combinations in order to decide
whether an instance is satisfiable or not. Differences in the quantity of clicks used to solve an instance
can shed light into how the state-space is explored (under the assumption that the state-space is explored
by clicking on elements in the task).

We investigated whether generic instance-level complexity metrics could capture differences in
the number of clicks. We found that participants performed more clicks on instances with high TCC,
compared to low TCC, in 3SAT and TSP (TSP: β0.5 = 1.66, HDI0.95 = [1.01, 2.33], GLMM S8 Table
Model 1; 3SAT: β0.5 = 1.88, HDI0.95 = [1.23, 2.54], CLMM, S7 Table Model 1; effect of TCC on
number of clicks; Fig 6c). Additionally, less clicks were performed on satisfiable instances compared
to unsatisfiable ones (TSP: β0.5 = −2.48, HDI0.95 = [−3.13,−1.85], LMM S8 Table Model 2; 3SAT:
β0.5 = −7.41, HDI0.95 = [−7.95,−6.88], CLMM, S7 Table Model 2; effect of satisfiability on number
of clicks; Fig 6b). We explored how these two metrics jointly affected the length of search and we found
that both effects were still significant when controlling for each other in the TSP (S8 Table Model 3;
Fig 6b). However, in 3SAT the positive effect of TCC on the number of clicks was only present on
satisfiable instances (S7 Table Model 3).

We then explored how the solution-space complexity metrics affected the length of search. Among
satisfiable instances a higher number of witnesses was related to a lower amount of clicks (TSP: β0.5 =

−0.41, HDI0.95 = [−0.54,−0.26], LMM S8 Table Model 5; 3SAT: β0.5 = −0.59, HDI0.95 =

[−0.69,−0.49], CLMM, S7 Table Model 5; effect of number of witnesses on the number of clicks;
Fig 6c). Additionally, we found that a higher IC was related to lower number of clicks in the TSP and
on unsatisfiable 3SAT instances (TSP: β0.5 = −10.22, HDI0.95 = [−13.87,−6.37], LMM, S8 Table
Model 4; 3SAT: β0.5 = −29.88, HDI0.95 = [−54.52,−6.63], CLMM, S7 Table Model 4); effect of
IC on number of clicks; Fig 6b). We excluded satisfiable 3SAT instances from the analysis since we
are unable to disentangle the effect of IC and satisfiability; all satisfiable instances have an IC = 0. In
the TSP we investigated the joint effect of IC and satisfiability on the number of clicks and found that
the effects were still significant when controlling for each other and that there was no interaction effect
between the variables (β0.5 = −5.95, HDI0.95 = [−13.43, 1.78], interaction effect between IC and
satisfiability, LMM, S8 Table Model 6).

Taken together, these findings suggest that the length of search in the state-space can be partially
explained by properties of the instance, namely satisfiability and complexity. We found that there was
an positive effect of TCC on search length and that the search was in general longer on unsatisfiable
instances. Additionally, lower values of IC and number of witnesses were related to a longer search.
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Figure 6: Number of Clicks. (a) Satisfiability and TCC. Median number of clicks performed while
solving an instance before submitting an answer. Each colored dot represents an instance of a problem.
(b) IC. Each green and orange shape represent the median number of clicks for each instance of TSP
and 3SAT problems. The blue lines represents the marginal effect of IC (LMM, S8 Table Model 4,
CLMM S7 Table Model 4). Satisfiable 3SAT instances are excluded from the 3SAT model since we are
unable to disentangle the effect of IC and satisfiability. Each black dot corresponds to the number of
clicks by a single participant on a particular instance. The range of number of clicks presented for the
TSP ([10, 50]) contains more than 98% of observations. (c) Number of solution witnesses. Each green
shape represents the median time-on-task per instance. The blue line represents the marginal effect of the
number of solution witnesses (LMM, S8 Table Model 5 and CLMM, S7 Table Model 5). The box-plots
represent the median, the interquartile range (IQR) and the whiskers extend to a maximum length of
1.5*IQR
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S3 Appendix: Summary statistics

Boolean satisfiability task

On average, participants chose the ‘YES’ option on 45% of trials (min = 28%, max = 61%). Per-
formance did not vary during the course of the task (β0.5 = 0.001, HDI0.95 = [−0.008, 0.011], main31
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effect of trial number on performance, generalized logistic mixed model (GLMM); S2 Table Model 1),
suggesting that neither experience with the task nor mental fatigue affected task performance. However,
time spent did vary throughout the task. As the task progressed they spent on average less time on a
trial (β0.5 = −0.005, HDI0.95 = [−0.006,−0.004], main effect of trial number on time-on-task -as
a proportion of the maximum possible time-, censored linear mixed effects model (CLMM); S5 Table
Model 1).

Traveling salesperson task

On average, participants chose the ‘YES’ option on 50% of trials (min = 35%, max = 60%). Con-
sistent with our results for the 3SAT, performance did not vary during the course of the task (β0.5 =

0.00, HDI0.95 = [−0.003, 0.013], main effect of trial number on performance, GLMM; S1 Table
Model 1), but participants spent less time on a trial as they progressed (β0.5 = −0.002, HDI0.95 =

[−0.003,−0.001], main effect of trial number on time-on-task -as a proportion of maximum possible
time-), linear mixed effects model (LMM); S6 Table Model 1).

Knapsack decision task

On average, participants chose the ‘YES’ option in 48.1% of trials (min = 0.32, max = 0.60, SD =

0.06). Performance did not vary during the course of the task (β = 0.005, P = 0.196, main effect of
trial number on performance, GLMM; [28]).

S4 Appendix: TCC and the number of witnesses

It is feasible that the effect of TCC on performance, on satisfiable instances, is driven by the number
of witnesses. After all, TCC is constructed from a metric of expected constrainedness (α). We thus
examined the link between these features of an instance. As expected, we found that the number of
witnesses of low TCC instances was significantly higher than that of instances with high TCC in all three
problems (PSAT < 0.001, PTSP < 0.001, PKP < 0.001, p-values of unpaired t-tests; Fig 3). This cor-
roborates the link between the typical-case constrainedness (α) and the solution-space constrainedness
of satisfiable instances.

Based on the previous results, we hypothesized that the effect on performance of TCC (on satisfi-
able instances) is driven by the number of witnesses. To test this hypothesis, we studied the effect of TCC
on performance while controlling for the number of witnesses. In line with our conjecture, we found that
once we controlled for the number of witnesses the marginal effect of TCC on performance was not
significant on all three problems (3SAT: β0.5 = 0.47, HDI0.95 = [−0.30, 1.22]; TSP: β0.5 = −0.12,
HDI0.95 = [−0.84, 0.68]; KP: β0.5 = 0.17, HDI0.95 = [−0.57, 0.90]; marginal effect of TCC on
performance, GLMM; S4 Table Models 2,5,8). We studied further this relation and tested whether there
was an interaction effect of TCC and the number of witnesses on performance. The results were different
across problems. We found a significant interaction in the KP, an inconclusive result in the 3SAT and
a non-significant results in the TSP (KS: β0.5 = 0.54, HDI0.95 = [0.26, 0.81]; 3SAT: β0.5 = 0.56,
HDI0.95 = [−0.00, 1.22]; TSP: β0.5 = −0.26, HDI0.95 = [−0.66, 0.15]; interaction effect between
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TCC and number of witnesses on performance, GLMM; S4 Table Models 3,6,9). Taken together, these
results suggest that the effect of TCC on performance is, at least partially, driven by the number of wit-
nesses. However, on some problems, TCC might affect human performance through other mechanisms
as well.

S5 Appendix: Instance complexity in 3SAT

Unlike TSP and KP, the IC metric takes a values of zero (IC = 0) when the instance is satisfiable; by
definition an instance is only satisfiable if the maximum number of clauses set to TRUE is equal to the
number of clauses in the instance (i.e., IC = 0). This entails that IC would only be able to explain
differences in performance on unsatisfiable instances, which (given our sampling procedure) are half of
the instances used in the task. However, we did not find evidence for this explanation when we restricted
our analysis to unsatisfiable instances (R2 = 0.001 for unsatisfiable 3SAT instances). For this set of
instances the positive relation was not significant in the 3SAT, but significant in KP and TSP (KP: β0.5 =

13.48, HDI0.95 = [10.11, 17.30], S3 Table Model 3; TSP: β0.5 = 20.10, HDI0.95 = [15.39, 24.96], S1
Table Model 8; 3SAT: β0.5 = 9.81, HDI0.95 = [−14.59, 33.94], S2 Table Model 7; the effect of IC on
performance for unsatisfiable instances, GLMM). This suggests that the performance variance explained
by IC in 3SAT instances might be driven by satisfiability. However, we are unable to disentangle the
effect of IC and satisfiability given that all 3SAT satisfiable instance have IC = 0. Overall, these results
indicate that IC is able to explain variance in performance across instances, but to a lesser degree in 3SAT.
Moreover, the effect of IC on performance in the 3SAT might be incongruously driven by satisfiability.

S6 Appendix: Supplementary Tables
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Table 1: Human performance in the Boolean satisfiability task. Logistic regressions with random intercept effects for participants relating the accuracy on an instance and
trial number (1), typical-case complexity (TCC) (2), constrainedness region (3), TCC and satisfiability (4), time-on-task (5), instance complexity (IC) (6), IC on unsatisfiable
instances (7) as well as satisfiability (8). Parameter estimates correspond to the median of the posterior distribution (β0.5) and the 95% HDI credible interval (HDI0.95).
ELPD denotes the expected log posterior predictive density.

Dependent variable: Human performance

(1) (2) (3) (4) (5) (6) (7) (8)

Trial number 0
[-0.01,0.01]

TCC -1.58 -0.77
[-1.95,-1.2] [-1.49,-0.13]

Overconstrained 1.39
[0.93,1.86]

Underconstrained 1.82
[1.31,2.4]

Satisfiability -0.52 -1.35
[-1.27,0.11] [-1.73,-0.99]

TCC:Satisfiability -1.29
[-2.11,-0.46]

Time-on-task -0.02
[-0.02,-0.01]

IC 30.3 9.81
[21.95,39.24] [-14.59,33.94]

Intercept 1.95 2.99 1.41 3.33 3.15 1.51 2.99 2.84
[1.59,2.26] [2.59,3.43] [1.13,1.75] [2.73,3.97] [2.53,3.73] [1.23,1.8] [1.58,4.29] [2.43,3.22]

Observations 1398 1398 1398 1398 1335 1398 675 1398
ELPD -533.3 -493.27 -493.42 -456.8 -487.73 -505.05 -138.46 -503.36
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Table 2: Human performance in the traveling salesperson task. Logistic regressions with random intercept effects for participants relating the accuracy on an instance and
trial number (1), typical-case complexity (TCC) (2), constrainedness region (3), TCC and satisfiability (4), time-on-task (5), satisfiability (6), instance complexity (IC) (7),
as well as IC on unsatisfiable instances (8). Parameter estimates correspond to the median of the posterior distribution (β0.5) and the 95% HDI credible interval (HDI0.95).
ELPD denotes the expected log posterior predictive density.

Dependent variable: Human performance

(1) (2) (3) (4) (5) (6) (7) (8)

Trial number 0
[0,0.01]

TCC -2.1 -2.16
[-2.5,-1.73] [-2.74,-1.62]

Overconstrained 2.18
[1.65,2.73]

Underconstrained 2.05
[1.56,2.63]

Satisfiability -0.16 -0.06
[-0.85,0.55] [-0.34,0.22]

TCC:Satisfiability 0.1
[-0.65,0.9]

Time-on-task -0.1
[-0.13,-0.08]

IC 21.13 20.1
[17.63,24.91] [15.39,24.96]

Intercept 1.66 3.19 1.09 3.29 5.36 1.81 0.14 0.52
[1.43,1.94] [2.83,3.58] [0.91,1.3] [2.8,3.84] [4.39,6.34] [1.59,2.03] [-0.14,0.4] [-0.21,1.29]

Observations 1575 1575 1575 1575 1575 1575 1575 787
ELPD -656.28 -578.48 -579.52 -580.43 -612.95 -656.93 -534.35 -241.48
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Table 3: Time-on-task in the Boolean satisfiability task. Censored linear regressions with random intercept effects for participants relating the time spent on an instance
and trial number (1), typical-case complexity (TCC) (2), constrainedness region (3), satisfiability (4), number of solution witnesses (5), instance complexity (IC) (6), IC on
unsatisfiable instances (7), as well as TCC and satisfiability (8). Parameter estimates correspond to the median of the posterior distribution (β0.5) and the 95% HDI credible
interval (HDI0.95). ELPD denotes the expected log posterior predictive density.

Dependent variable: Time-on-task

(1) (2) (3) (4) (5) (6) (7) (8)

Trial number -0.01
[-0.01,0]

TCC 0.15 0.02
[0.12,0.18] [-0.02,0.06]

Overconstrained 0.07
[0.04,0.11]

Underconstrained -0.35
[-0.39,-0.32]

Satisfiability -0.32 -0.42
[-0.35,-0.29] [-0.46,-0.38]

No. of witnesses -0.04
[-0.05,-0.04]

IC 6.04 -0.56
[5.41,6.7] [-1.91,0.78]

TCC:Satisfiability 0.21
[0.16,0.27]

Intercept 0.68 0.51 0.65 0.74 0.59 0.45 0.77 0.73
[0.65,0.72] [0.4,0.62] [0.54,0.75] [0.64,0.84] [0.51,0.69] [0.35,0.57] [0.63,0.91] [0.62,0.83]

Observations 1335 1335 1335 1335 691 1335 644 1335
ELPD -683.08 -456.79 -268.31 -296.9 -15.46 -340.59 -128.73 -224.94
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Table 4: Time-on-task in the traveling salesperson task. Censored linear regressions with random intercept effects for participants relating the time spent on an instance
and trial number (1), typical-case complexity (TCC) (2), constrainedness region (3), satisfiability (4), number of solution witnesses (scaled via natural logarithm) (5), instance
complexity (IC) (6), as well as TCC and satisfiability (7). Parameter estimates correspond to the median of the posterior distribution (β0.5) and the 95% HDI credible interval
(HDI0.95). ELPD denotes the expected log posterior predictive density.

Dependent variable: Time-on-task

(1) (2) (3) (4) (5) (6) (7)

Trial number 0.00
[0.00,0.00]

TCC 0.12 0.12
[0.09,0.15] [0.08,0.16]

Overconstrained -0.02
[-0.06,0.01]

Underconstrained -0.2
[-0.23,-0.16]

Satisfifiability -0.17 -0.17
[-0.2,-0.15] [-0.21,-0.14]

No. of witnesses (ln) -0.02
[-0.03,-0.02]

IC -0.74
[-0.9,-0.58]

TCC:Satisfiability 0.00
[-0.05,0.06]

Intercept 0.97 0.85 0.97 1.00 0.99 1.00 0.94
[0.87,1.08] [0.75,0.95] [0.87,1.06] [0.89,1.1] [0.89,1.09] [0.9,1.11] [0.84,1.04]

Observations 1575 1575 1575 1575 788 1575 1575
ELPD -515.38 -499.04 -460.55 -459.22 -189.73 -491.96 -426.44
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Table 5: Human performance an the number of solution witnesses. Logistic regressions with random intercept effects for participants with accuracy as dependent variable.
The data included on each regression is comprised of the satisfiable instances of one of the three tasks considered: 3SAT (1-3), TSP (4-6) and KP (7-9). Regressions (1), (4)
and (7) include the the number of witnesses alone as regressor (the number of witnesses for the TSP is scaled via natural logarithm). Models (2), (5) and (8) include TCC,
additionally, as regressor. Models (3), (5) and (8) include the interaction between TCC and number of witnesses as well. Parameter estimates correspond to the median of the
posterior distribution (β0.5) and the 95% HDI credible interval (HDI0.95). ELPD denotes the expected log posterior predictive density.

Dependent variable: Human performance

3SAT TSP KP

(1) (2) (3) (4) (5) (6) (7) (8) (9)

No. of witnesses 0.62 0.7 0.63 0.26 0.29 0.11
[0.49,0.79] [0.51,0.91] [0.44,0.85] [0.19,0.34] [0.17,0.41] [-0.03,0.25]

TCC 0.47 -0.42 -0.12 2.24 0.17 -1.77
[-0.3,1.22] [-1.71,0.7] [-0.84,0.68] [-1.5,6.13] [-0.57,0.9] [-2.95,-0.44]

TCC:No. of witnesses 0.56 0.54
[0,1.22] [0.26,0.81]

No. of witnesses (ln) 0.45 0.44 0.68
[0.37,0.53] [0.33,0.54] [0.25,1.03]

TCC:No. of witnesses (ln) -0.26
[-0.66,0.15]

Intercept -0.02 -0.52 -0.21 -1.07 -0.92 -3.2 0.41 0.22 1.55
[-0.62,0.53] [-1.58,0.47] [-1.19,0.93] [-1.78,-0.46] [-2.16,0.21] [-6.83,0.73] [-0.04,0.83] [-0.7,1.22] [0.35,2.78]

Observations 723 723 723 788 788 788 716 716 716
ELPD -258.83 -259.54 -258.59 -244.8 -245.4 -245.76 -303.21 -303.92 -297.45
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Table 6: Human performance in the knapsack task. Logistic regressions with random intercept effects for participants relating the accuracy on an instance and satisfiability
(1), instance complexity (IC) (2), and IC on only unsatisfiable instances. Parameter estimates correspond to the median of the posterior distribution (β0.5) and the 95% HDI
credible interval (HDI0.95). ELPD denotes the expected log posterior predictive density.

Dependent variable: Human performance

(1) (2) (3)

Satisfiability -0.29
[-0.57,0.01]

IC 9.05 13.48
[7.2,11.02] [10.11,17.3]

Intercept 1.79 0.59 0.47
[1.51,2.1] [0.28,0.92] [0.08,0.92]

Observations 1427 1427 711
ELPD -637.57 -574.82 -253.01 .
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Table 7: Number of clicks in the Boolean satisfiability task. Censored linear regressions with random intercept effects for participants relating the number of clicks
performed on an instance and typical-case complexity (TCC) (1), satisfiability (2), TCC and satisfiability (3), instance complexity (IC) on unsatisfiable instances (4), as well
as the number of solution witnesses on satisfiable instances (5). Parameter estimates correspond to the median of the posterior distribution (β0.5) and the 95% HDI credible
interval (HDI0.95). ELPD denotes the expected log posterior predictive density.

Dependent variable: Number of clicks

(1) (2) (3) (4) (5)

TCC 1.88 0.06
[1.23,2.54] [-0.66,0.84]

Satisfiability -7.41 -8.8
[-7.95,-6.88] [-9.51,-8.05]

TCC:Satisfiability 2.91
[1.81,3.88]

IC -29.88
[-54.52,-6.63]

No. of witnesses -0.59
[-0.69,-0.49]

Intercept 10.43 15.15 15.11 16.4 10.09
[9.19,11.67] [13.95,16.39] [13.76,16.4] [14.19,18.82] [9.23,10.96]

Observations 1375 1375 1375 664 711
ELPD -4111.67 -3825.19 -3794.12 -1645.16 -2016.33
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Table 8: Number of clicks in the traveling salesperson task. Linear regressions with random intercept effects for participants relating the number of clicks performed on an
instance and typical-case complexity (TCC) (1), satisfiability (2), TCC and satisfiability (3), instance complexity (IC) (4), the number of solution witnesses (transformed via
natural logarithm) on satisfiable instances (5), as well as IC and satisfiability (6). Parameter estimates correspond to the median of the posterior distribution (β0.5) and the
95% HDI credible interval (HDI0.95). ELPD denotes the expected log posterior predictive density.

Dependent variable: Number of clicks

(1) (2) (3) (4) (5) (6)

TCC 1.66 0.89
[1.01,2.33] [0.05,1.83]

Satisfiability -2.48 -3.23 -1.77
[-3.13,-1.85] [-4.12,-2.3] [-2.81,-0.65]

TCC:Satisfiability 1.53
[0.2,2.77]

IC -10.22 -6.71
[-13.87,-6.37] [-12.41,-0.87]

TCC:No. of witnesses (ln) -0.41
[-0.54,-0.26]

IC:Satisfiability -5.95
[-13.43,1.78]

Intercept 24.21 26.38 26 26.29 27.31 27.2
[21.99,26.32] [24.09,28.56] [23.61,28.28] [24.04,28.61] [25.52,29.17] [24.87,29.46]

Observations 1575 1575 1575 1575 788 1575
ELPD -5236.1 -5220.82 -5207.65 -5234.03 -2544.04 -5207.35
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