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ABSTRACT

To estimate dynamic functional connectivity for functional magnetic resonance imaging (fMRI) data,
two approaches have dominated: sliding window and change point methods. While computationally
feasible, the sliding window approach has several limitations. In addition, the existing change point
methods assume a Gaussian distribution for and linear dependencies between the fMRI time series.
In this work, we introduce a new methodology called Vine Copula Change Point (VCCP) to estimate
change points in the functional connectivity network structure between brain regions. It uses vine
copulas, various state-of-the-art segmentation methods to identify multiple change points, and a
likelihood ratio test or the stationary bootstrap for inference. The vine copulas allow for various
forms of dependence between brain regions including tail, symmetric and asymmetric dependence,
which has not been explored before in the analysis of neuroimaging data. We apply VCCP to various
simulation data sets and to two fMRI data sets: a reading task and an anxiety inducing experiment. In
particular, for the former data set, we illustrate the complexity of textual changes during the reading
of Chapter 9 in Harry Potter and the Sorcerer’s Stone and find that change points across subjects are
related to changes in more than one type of textual attributes. Further, the graphs created by the vine
copulas indicate the importance of working beyond Gaussianity and linear dependence. Finally, the
R package vccp implementing the methodology from the paper is available from CRAN.

Keywords Dynamic functional connectivity · change points · vine copulas · fMRI · networks

1 Introduction

Functional magnetic resonance imaging (fMRI) experiments yield high dimensional data sets that contain complex
spatial correlations, often referred to as functional connectivity (FC) networks (see for example, Cribben and Fiecas,
2016, for a review). These FC networks have been previously studied to expose important characteristics of brain
function and individual variations in cognition and behavior. In particular, Greicius et al. [2004], Menon [2011],
Bakhtiari et al. [2017] and Hart et al. [2018] showed that neurological disorders disrupt the FC structure of the brain
and Hrybouski et al. [2021] studied the changes in FC in healthy aging subjects.
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Recently, there has been a surge in the development of several new statistical methods for investigating the extent to
which FC networks change over time. These changes are commonly referred to as time-varying, or dynamic FC in the
field of neuroimaging. This reconstruction of dynamic FC has a major impact on the understanding of the functional
organization of the brain. Similar to other biological networks, understanding the complex, dynamic organization and
characterizations of the brain can lead to profound clinical implications [Bullmore and Sporns, 2009].

To estimate dynamic FC for fMRI data, two approaches have dominated: sliding window and change point methods.
For the former, a sliding window of pre-specified length is defined and the correlations between distinct regions of the
brain throughout the duration of the window are estimated. While the sliding window approach is computationally
feasible, it also has limitations [Hutchison et al., 2013]. For example, the choice of window size is crucial and sensitive,
as different window sizes can lead to quite different FC patterns. Another disadvantage is that equal weight is given to
all k neighbouring time points and 0 weight to all the others. Hence, researchers considered change point methods that
partition the time series into optimal windows. Determining change points may also reveal properties of brain networks
as they relate to experimental stimuli and disease processes. There exists an extensive literature and a long history
on change points. The most widely discussed problems have been concerned with finding multiple change points in
univariate time series [Inclan and Tiao, 1994, Chen and Gupta, 1997]. Recently, the multiple change point detection
problem in multivariate time series has received some attention especially in non-stationary practical problems (see
Anastasiou et al., 2020 and the references therein).

Within neuroscience, Cribben et al. [2012, 2013] first introduced the idea of FC change points by introducing Dynamic
Connectivity Regression for detecting multiple change points in the precision matrices (undirected graphs) from a
multivariate time series. Schröder and Ombao [2015], Kirch et al. [2015], Barnett and Onnela [2016], Cribben and
Yu [2017], Kundu et al. [2018], Dai et al. [2019], Ofori-Boateng et al. [2019], Anastasiou et al. [2020], Ondrus et al.
[2021] among others have since introduced new network change point methods. However, all of these methods have
limitations. The most obvious is that they all consider a Gaussian distribution for and linear dependencies between the
fMRI time series.

In this paper, we introduce a new methodology, called Vine Copula Change Point (VCCP), to estimate multiple change
points in the FC structure between brain regions. The new method combines vine copulas, various state-of-the-art
segmentation methods to identify multiple change points, and a likelihood ratio test or the stationary bootstrap for
inference. The proposed VCCP method has the following unique and significant attributes. First, it is the first statistical
method that has applied vine copulas to neuroimaging data. Second, it is the first statistical method that considers change
points in vine copulas. Vine copulas split the multivariate distribution into marginal distributions and a dependence
measure without a need to assume that the data follows a parametric distribution (e.g., Gaussian). Hence, VCCP is very
flexible. Third, VCCP is the first method that allows us to describe various forms of dependence structures such as tail,
symmetric and asymmetric dependence between fMRI time series in a dynamic fashion, which has not been explored
before in the analysis of neuroimaging data. Therefore, VCCP is capable of modeling a wider range of dependence
patterns and hence allows for the detection of more change points. Fourth, the layers of a vine (the number of trees) can
be cut, which leads to a simplified and sparse dependence matrix which reduces computation time when the dimension
of the data expands. Fifth, VCCP allows for the exploration of network dynamics during a reading fMRI experiment
(Chapter 9 in Harry Potter and the Sorcerer’s Stone) and an anxiety inducing fMRI experiment. In the former, it detects
change points across subjects that coincide to more than one type of textual attributes. Further, the graphs created by
the vine copulas indicate the importance of working beyond Gaussianity and linear dependence. Fifth, as VCCP uses
various segmentation methods, the paper can be viewed as an extensive comparison of these methods. Sixth, while
motivated by fMRI data, VCCP is also applicable to electroencephalography (EEG), magnetoencephalography (MEG)
and electrocorticography (ECoG) data, and other time series applications where the network structure is changing.
Finally, the R package vccp implementing the VCCP methodology is available from CRAN [Xiong and Cribben, 2021].

This paper is organized as follows. In Section 2 we provide a background on copulas and vine copulas and explain the
setup of our proposed new methodology, Vine Copula Change Point (VCCP). In Section 3, we describe the simulated
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data sets with known change points locations and the two fMRI data sets. We present the performance of VCCP in
Section 4, have a discussion in Section 5 before concluding in Section 6.

2 Methods

2.1 Copulas

Table 1 provides a summary of the notation used in the paper. We now introduce copulas and vine copulas. A copula

Table 1: Notation for the Vine Copula Change Point (VCCP) model.

Index Meaning

p Data dimension
X = (x1, x2, ..., xp) A p-dimensional random variable

C(·, · · · , ·) A copula function
c(·, · · · , ·) A copula density function

n Sample size
T The length of a time series
δ The minimum distance between two adjacent candidate change points

“couples” marginal distributions into a joint distribution. Hence, copulas allow for the independent construction of joint
distributions and marginal distributions. This is convenient as marginal distributions in many cases can be adequately
estimated from data, whereas dependence information involves summary indicators and judgment. More specifically,
let X = (X1, ..., Xp) be a p-dimensional random variable or a multivariate time series from p regions of interest (ROIs)
with cumulative distribution function (cdf) F (x1, ..., xp). A copula, which is also a multivariate cdf, serves as the link
that connects the marginal distributions of X to its multivariate cdf, F (x1, ..., xp). A formal definition of a copula is
given by:

Definition 1 (Copula) A p-dimensional copula, C, is a multivariate cdf defined on [0, 1]p, C : [0, 1]p → [0, 1], and its
univariate margins have a uniform distribution.

According to Sklar [1959], every continuous cdf F has a unique copula C that satisfies

F (x1, ..., xp) = C(F1(x1), ..., Fp(xp)). (1)

The availability of high-dimensional copula models is limited, but there are several parametric bivariate copula models
such as Gauss, t, Clayton, Gumbel, and Frank copula (see the Supplementary Materials for definitions). These have led
to the development of hierarchical models, constructed from cascades of bivariate copula models, called pair-copula
constructions (PCCs) or vine copulas.

2.2 Vine copulas

PCCs is a method for building a multivariate distribution by firstly decomposing a joint density function into a sequence
of conditional densities, such as

f(x1, ..., xp) = f(x1) · f(x2|x1) · ... · f(xp|x1, ..., xp−1), (2)

making the construction of a possible complex dependence structure both flexible and tractable. Then using the definition
of conditional densities and the derivative of (1), Joe [1996] proved that f(x1, ..., xp) can be further decomposed to:

f(x1, ..., xp) =

p∏
i=1

fi(xi) ·
p∏
i=2

i−1∏
j=1

cij|(j+1)...(i−1)(F (xi|xj+1, ..., xi−1), F (xj |xj+1, ..., xi−1)), (3)
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where fi denotes the marginal density of xi, F (xi|xj+1, ..., xi−1) is its univariate conditional distribution function,
and cij|(j+1)...(i−1) is the density of the conditional pair copula associated with the bivariate conditional distribution
of xi and xj given the subset, (xj+1, ..., xi−1). There are many other decompositions of the joint density based
on the assigned conditional sets in (2). In fact, Morales Napoles [2016] proved that there are p!

2 · 2
(p−2

2 ) possible
decompositions for a p-dimensional distribution. Bedford and Cooke [1999] organized the PCCs decomposition as a
one-to-one graphical model, a sequence of p− 1 nested trees (where edges correspond to the bivariate copulas), called
a regular vine, or R-vine. For tree m (m = 1, ..., p− 1), define Tm = (Vm, Em), where Vm and Em represent the node
set and edge set, respectively, then the tree sequence (called the structure of the PCC) is an R-vine if it satisfies a set of
conditions guaranteeing that the decomposition leads to a valid joint density.

To specify a p-dimensional distribution on an R-Vine structure, V , with a node set N := N1, ..., Np−1 and an edge set
E := E1, ..., Ep−1, we need to connect each edge e = j(e), k(e)|D(e) in Ei to a conditional bivariate copula density
cj(e),k(e)|D(e), where j(e) and k(e) are the conditioned set, while D(e) is the conditioning set. Finally, the joint copula
density can be written as the product of all pair-copula densities c =

∏p−1
m=1

∏
e∈Em

cj(e),k(e)|D(e). To estimate vine
copulas, it is common to follow a sequential approach from higher trees (more nodes) to lower trees (less nodes), since
there are p!

2 · 2
(p−2

2 ) possible R-vine structures for a p-dimensional cdf. If the vine structure is known, the pair-copulas
of the first tree, T1, can be estimated directly from the data. This is not possible for the other trees in the sequence, since
data from the densities cj(e),k(e)|D(e) are not observed. However, it is straightforward to create “pseudo-observations”
using appropriate data transformations, resulting in the following estimation procedure: estimate tree T1 directly from
the data, for each edge in the tree, estimate all pairs, construct pseudo-observations for the next tree and then iterate. As
the tree sequence T1, T2, ..., Tp−1 is a regular vine, it guarantees that at each step, all required pseudo-observations are
available. In this work, in order to specify every tree’s connecting network, we utilize Algorithm 4.1 from Dißmann
[2010]:

Algorithm 1: A sequential method to select a vine copula model
Input: An n× p matrix X = (x1, ..., xp).

1 for i← 1 : (p− 1) do
2 Let (y1, ..., yp−i+1) = (x1, ..., xp−i+1);
3 Calculate Kendall’s τ between y1, ..., yp−i+1;
4 Build Ti by selecting the tree that maximizes the sum of Kendall’s absolute τs without violating the R-vine

definition (MST method; Cormen et al., 2009);
5 m = 1;
6 for s← 2 : (p− i+ 1) do
7 for t← 1 : (j − 1) do
8 if ys and yt are connected in Ti then
9 Select the best pairwise copula c for ys and yt from the candidate copulas;

10 Estimate parameter(s) in the copula function;
11 Calculate the pseudo observation xm based on ys, yt and c;
12 m = m + 1;
13 end
14 end
15 end
16 end

Output: A vine copula model, (T1, ..., Tp−1), with each edge specified by the best fitting copula.

Two special cases of an R-vine are the canonical-vine (C-vine) and the drawable-vine (D-vine). An R-vine is called a
C-vine if there is one unique node (center node) of degree p − i in each tree Ti (i = 1, ..., p − 1) (in every tree, one
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node serves as the center that links all the other nodes). An R-vine is called a D-vine if the maximal degree of freedom
of nodes in each tree is 2 (no node in any tree can be linked with more than 2 other nodes). Figure 1 shows examples of
a D-vine and a C-vine that are based on 5 variables (or 5 ROIs). The colored point on each tree of the C-vine represents
the center node, which is also indicated by the dashed line on the previous tree.

Figure 1: A connected graph for a D-vine (left) and a C-vine (right) that is based on 5 variables (or 5 ROIs)

2.3 Segmentation Methods

In this work, we are not only interested in estimating vine copulas but in estimating change points in the vine copula
structure, where we assume that those change points are discrete and at some distance from each other. In order to find
the change points, VCCP uses the Bayesian Information Criterion (BIC: Schwarz et al., 1978) metric. BIC is equal to
−2logL̂+ k ∗ log(n), where L̂ is the maximized value of the likelihood function of the vine copula model, n is the
number of observations and k is the number of parameters estimated in the vine copula. However, a time axis of length
T and r change points can be divided into (T−1)!

(r−1)!∗(T−r)! possible sub-partitions (with unknown r). It is clear that as
T increases, the number of sub-partitions explodes. Hence, VCCP uses four segmentation methods to simplify the
process, which we now detail.

Binary segmentation (BS) is a generic segmenting method. Assuming an unknown number of change points, BS can
be used to find multiple change points with low computational complexity. BS begins by searching the entire time
course for one change point. We set an auxiliary time point i that shifts from (δ + 1) to (T − δ − 1), where i indicates
a candidate change point and δ is a parameter that represents the minimal distance between two candidate change
points. δ needs to be sufficiently large enough to estimate a stable R-vine structure, but also small enough in order to
not miss candidate change points. Thus, three R-vine copula specifications are estimated on the data: between time
points (1 : i − 1), (i : T ) and (1 : T ). The reduced BIC as a result of partitioning the time course into two intervals
is calculated as i moves across time. We choose time t1, which corresponds to the largest BIC reduction as the first
candidate change point. After inference, if it is deemed a change point, the time course is split into two sub-intervals
(where the binary name originates from) and a similar search is repeated on each of them. The recursion does not stop
until BIC does not decrease by partitioning the time course, or the candidate point corresponding to the maximum BIC
reduction fails the inference test. An example of BS is shown in Figure 2. As ‘arguably the most widely used change
point search method’, the BS method is conceptually simple and is very easy to use. Despite this, as it is a ‘greedy’
procedure, each step except the first depends on the previous steps, which are never re-visited. This sequential method
leads to inconsistent estimates when the minimum spacing between two adjacent change points is of order less than
T 3/4. We propose an adapted BS method (NBS), which is similar to the old classic BS (OBS), but does not carry out
inference on each change point until the segmentation has been exhausted (the stopping criteria for NBS is whether the
maximal BIC reduction is larger than 0). Once no further candidate change points reduce the BIC score, NBS orders
the candidate change points in sequence and recalculates the reduced BIC:

∆BICti = BICti−1:(ti+1−1) − [BICti−1:(ti−1) + BICti:(ti+1−1)] (4)

where 1 = r0 < r1 < ... < tr < tr+1 = T and t1, ..., tr are the candidate change points detected by NBS. Then,
inference is performed on each non-zero BIC reduction in partitions [ti−1, ti+1].
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Figure 2: An example of Binary Segmentation (BS). Here, t1 corresponds to the first candidate change point. It is
deemed a change point, hence the data is then split into two sub-intervals. On each sub-segment, we restart a similar
search to further segment the data.

VCCP also includes more recent segmentation methods, Wild Binary Segmentation (WBS: Fryzlewicz, 2014) and
moving sum (MOSUM: Eichinger and Kirch, 2018). Briefly, WBS starts by randomly drawing S sub-samples
Ys = (Xbs , Xbs+1, · · · , Xes), where bs, es and s are integers such that 1 6 bs < es 6 T , s = 1, ..., S. Then it
estimates candidate change point tcs on each sub-sample Ys based on a single binary search (see t1 in Figure 2) and a
corresponding statistic, Ws = ∆BICtcs . After, WBS selects the candidate change point as

ti = tcs, s =


arg max
m∈{1,...,S}

{Ws} if i = 1;

arg max
s∈{1,...,S}

{
Ws : {t1, ..., ti−1}

⋂
[bs, es] = ∅

}
if i > 1.

(5)

This segmentation method exhausts when ti is not a change point or each random interval ([bs, es]) covers at least one
detected change point. To simplify computation, we remove sub-intervals that contain less than 2δ time points before
computing the BIC reduction. By ‘randomly localizing’ the range of BIC reductions, we overcome the issue of greedy
searching for certain configurations of multiple change points. Also, since intervals are drawn randomly, we avoid
issues such as choosing the appropriate window size prevalent in other segmentation methods.

MOSUM [Eichinger and Kirch, 2018] detects change points in the mean and variance based on the moving sum statistics
for a univariate time series. For multivariate time series with a changing network structure, it is not possible to directly
apply MOSUM. Hence, we adapt MOSUM for VCCP as follows. First, we calculate the BIC reduction series within a
local range [i− δ+ 1, i+ δ]. Second, we apply MOSUM to this newly created time series, resulting in several boundary
points (a1, ..., ar). Third, we separate the entire time axis into intervals [mi,mi+1], i = 0, ..., r,m0 = 1,mr+1 = T

and record time points t1, ..., tr corresponding to the local maximum BIC reduction in the different intervals. These
represent the candidate change points.

2.4 Inference

To perform inference on the candidate change points, VCCP uses the Vuong test [Vuong, 1989] or the stationary
bootstrap (SB: Politis and Romano, 1994). The Vuong test is used to compare non-nested models. In our R-vine setting,
non-nested models can refer to different copulas for edges of the same tree structure, different vine structures, or a
combination of the two. For a random variable X , the Vuong test uses the Kullback-Leibler information criterion to
compare two models Fβ = f(X|β) and Gγ = g(X|γ). Suppose β∗ and γ∗ are the true parameters of the two candidate
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models and β̂n and γ̂n are their corresponding maximum likelihood estimates. Then the null hypothesis is

H0 : E0

[
log

(
f(X|β∗)
g(X|γ∗)

)]
= 0 (6)

where E0 is the expectation under H0, and the likelihood ratio test statistic is

LRn(β̂n, γ̂n) = log

[∏n
i=1 f(xi|β̂n)∏n
i=1 g(xi|γ̂n)

]
=

n∑
i=1

log

(
f(xi|β̂n)

g(xi|γ̂n)

)
. (7)

Vuong [1989] proved that this test statistic is asymptotically normal, which leads to the asymptotic test, V̂n :=
LRn(β̂n,γ̂n)√

nω̂n

D−→ N(0, 1) as n→∞ and

ω̂2
n =

1

n

n∑
i=1

[
log

(
f(xi|β̂n)

g(xi|γ̂n)

)]2
−
[

1

n

n∑
i=1

log

(
f(xi|β̂n)

g(xi|γ̂n)

)]2
.

If we do not reject H0 under significance level α, the conclusion is that both models fit the data equally well. On the
contrary, if we were to reject H0 and the statistic V̂N is positive, the test suggests that model Fβ on the numerator
of the likelihood ratio statistic is superior, while a negative value supports model Gγ on the denominator. Similar
to BIC, Vuong [1989] included the following a penalty term in the likelihood ratio statistic, LRSchwarzn (β̂n, γ̂n) =

LRn(β̂n, γ̂n)− log(n)
2 (p+ q), where p and q are the number of parameters in models Fβ and Gγ , respectively.

The SB is an adaptation of the block bootstrap, which allows us to deal with the auto-correlation in time series by
retaining the dependence structure of the data. Unlike resampling blocks of data with a fixed block size in the block
bootstrap, the SB randomly specifies each block size. For any strictly stationary time series {Xt, t = 1, ..., T}, the SB
procedure consists of generating pseudo-samples X∗1 , ..., X

∗
T from the sample X1, ..., XT by taking the first T elements

from XH1
, ..., XH1+L1−1, ..., XHN

, ..., XHN+LN−1 where Hi is an independent and identically distributed sequence
of random variables uniformly distributed on {1,...,T} and Li is an i.i.d. sequence of geometrically distributed random
variables with P (Li = h) = q(1 − q)h−1, h = 1, 2, ..., for some q ∈ (0,1). Note that the mean block size is η = 1

q ,
where the choice of η in the SB is similar to the choice of the block length in the block bootstrap.

3 Simulated and fMRI data descriptions

In order to show the performance of our VCCP methodology we use several simulated data sets, and two task-based
fMRI data sets. To carry out inference on these data sets, we have to adjust the Vuong test (Section 2.4) when we
combine it with the segmentation methods. For NBS and MOSUM, the first step is to detect all candidate change points
1 < t1 < ... < tk < T . For interval Ii = [ti−1, ti+1], three vine copulas are estimated based on data in the intervals
[ti−1, ti+1], [ti−1, ti − 1], [ti, ti+1], which we denote by V C0, V Cl and V Cr. In each interval, the data are assumed to
be i.i.d and that there are no other change points between time points ti−1 and ti+1 except ti. If H0: ti is not a change
point in [ti−1, ti+1] is rejected, then constructing two VC models in the two partitions separately provides a superior
fit to the data than a VC model using the entire data set. Hence, we perform a Vuong test on V C0 and V Cl based on
data in [ti−1, ti − 1] and a Vuong test on V C0 and V Cr using data in the interval [ti, ti+1]. If both tests show that V C0

is worse than either V Cl or V Cr, we conclude that ti is a change point. For OBS, the only difference in the above
process is that the left and right end of the intervals are the endpoints of the partitioned data in each BS search, since
OBS runs detection and inference sequentially. For WBS, the intervals are based on the endpoints of randomly chosen
sub-samples. The rest of their procedures are the same as NBS and MOSUM.

The only difference between SB and the Vuong test is that instead of conducting likelihood-based inference, SB creates
SB pseudo-samples on [tb, te] and compares them to the original BIC reduction value, ∆BICti , where ti is the candidate
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change point, [tb, te] = [ti−1, ti+1] for NBS and MOSUM, [tb, te] = [1bsi , Tbsi ] for OBS and [tb, te] = [tbm , tem ] for
WBS.

In the simulations, we also considered the 5-copula family but we obtained similar results but with slower speed, hence
we only show the results from using the Gauss copula.

3.1 Simulated data

Table 2 provides a summary of the simulations. We include two data types: multivariate normal (MVN) data and
data from a vector autoregression (VAR) model. A VAR model is a generalization of a univariate AR process.
Given a p-dimensional multivariate time series X, the lag-1 vector autoregression model, VAR(1), is defined as
Xt = Π1Xt−1 + εt, t = 2, ..., T , where Π1 is an (p× p) coefficient matrix and εt is an (p× 1) unobservable mean
white noise vector process with time invariant covariance matrix. The VAR model is used to reconstruct the linear
inter-dependency element prevalent among multivariate time series applications such as fMRI data. In the simulations,
we consider no change points (null data), multiple change points, changes in the strength of the connectivity and
inspired by the experimental fMRI data, an off-on-off pattern. We run each simulation using 100 iterations.

Table 2: A summary of the simulated data sets. MVN, VAR and iid denote multivariate normal, vector autoregression
and independent and identically distributed data, respectively. Weak means that only the edge weights are adjusted
between change points with the non-zero edges themselves remaining constant over the entire time course, while small
means that only small changes in the networks are present between change points.

Sim Data type Change type p Locations of change points ROI connectivity

1 iid NA 15 NA Constantly related

2 MVN Normal 15 61;121;181;241

1-60s: 1-3-5-8-10 & 2-6-9;
61-120s: 1-4-5-7-9;
121-180s: 2-3-4-6-8-10 & 1-7;
181-240s: 2-7-9;
241-300s: 1-5-6 & 7-8-10.

3 MVN Weak 15 61;121;181;241
1-300s: 1-4-8-14 & 3-6-9;
(Changes in connecting strength)

4 MVN Small 15 76;151;226;301;376;451;526

1-75s & 301-375s & 526-600s:
1-5-8-10-15 & 3-6-13;
76-150s: 3-6-13;
151-225s: 1-5-8-10 & 3-6-13;
226-300s: 1-5-8-10-15;
376-450s: 1-5-8-10-15 & 3-6-13;
451-525s: 1-5 & 3-6-13.

5 VAR Normal 15 61;121;181;241

1-60s: 1-3-5-8-14 & 4-15;
61-120s: 2-6-10 & 3-9-13;
121-180s: 4-6-11-14 & 5-12;
181-240s: 1-4-7;
241-300s: 8-10-13-15.

6 VAR Weak 15 61;121;181;241
1-300s: 1-5-10-15 & 2-9-14;
(Changes in connecting strength)

7 VAR Small 10 76;151;226;301;376;451;526

1-75s & 301-375s & 526-600s:
1-5-8-10 & 2-7-9;
76-150s: 2-7-9;
151-225s: 1-5-8 & 2-7-9;
226-300s: 2-7-9;
376-450s: 1-5-8-10 & 2-7-9;
451-525s: 5-8 & 2-7-9.
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Unless stated otherwise, we have the following settings for the simulations. The minimum distance between change
points is set to δ = 30. We fix the tree structure to be D-vine. The significance level of the Vuong test is set to α = 0.1,
as two tests (left and right partitions) have to be rejected simultaneously before identifying a change point. The average
block size and the number of resamples in the SB is set to be 1/0.3 (or p = 0.3) and 100, respectively. For MOSUM,
we set the bandwidth to be G = 0.1 ∗ T and the number of random intervals to be M = [9 ∗ log(T )] in WBS, where
[x] denotes the maximal integer smaller than x.

We compare the True Positive rate (TP: the ability to detect the true change points), False Positive rate (FP: detecting
incorrect change points) and False Negative rate (FN: rejecting the true change points). As a measure of the accuracy of
the detected locations in time compared to the location of the true change points, we also provide the scaled Hausdorff
distance,

dH = n−1s max

{
max
j

min
r

∣∣tj − t̂r∣∣ ,max
r

min
j

∣∣tj − t̂r∣∣} ,
where ns is the length of the largest segment, t̂r are the estimated change points and tj are the true change points. The
optimal model obtains a minimum scaled Hausdorff distance. The bias standard we use in the tables is 10 time points,
hence detected change points located no more than 10 units away from the true change points are considered a correct
detection.

We do not compare VCCP to any other method, as all the methods mentioned in the introduction assume Gaussianity and
linear dependence for data between the change points, which is equivalent to using a Gauss copula in our simulations
and fMRI data sets. VCCP already considers four segmentation methods. Finally, for many of the methods no software
is provided.

3.2 fMRI data

We also apply our new VCCP methodology to two task-based fMRI data sets. The first fMRI data set was acquired from
9 right-handed native English speakers (5 females and 4 males) aged 18–40 years, while they read Chapter 9 of Harry
Potter and the Sorcerer’s Stone (one subject’s data was discarded due to artifacts). All subjects had read the Harry Potter
book series, or seen the movie series prior to participating in the experiment. All the subjects therefore were familiar
with the characters and the events of the book, and were reminded of the events leading up to Chapter 9 before the
experiment. This chapter was chosen because it involves many characters and spans multiple locations and scenes. The
chapter was read using Rapid Serial Visual Presentation (RSVP): the words of the chapter were presented one by one in
the center of the screen, for 0.5 s each. The sampling rate of fMRI acquisition was 2 seconds per observation, hence,
four consecutive words were read during the time it took to scan the whole brain once. The 45-minute experiment was
divided into four runs, each starting with 20 seconds (= 10 TRs) of rest, and ending with 10 seconds (= 5 TRs) of rest.
After discarding data collecting during the resting periods, we obtained 1290 scans, during which approximately 5200
words were presented. Figure 3 shows the main plotline within each run. Data was preprocessed as in Wehbe et al.
[2014]. Fourteen ROIs defined using the Automated Anatomical Atlas (AAL: Tzourio-Mazoyer et al., 2002) were
extracted from the data set (Table 3). These regions contain a variety of voxels that can distinguish between the literary
content of two novel text passages based on neural activity while these passages are being read and are important for
understanding reading processes [Wehbe et al., 2014]. In this work, we focus on exploring whether the FC network of
the 14 ROIs changed as the subjects read. We are interested in the varying textual features about story characters (e.g.,
emotion, motion and dialog) that the dynamic networks encode.

A description of the second fMRI data set (SET) can be found in the Supplementary Materials. For both fMRI data sets,
we used the same settings as the simulations (Section 3.1), except for the first fMRI data set, we set δ = 40. In addition,
since the experiment lasted 45 minutes, and given the computational burden for BS, we run VCCP on each of the four
runs separately.
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Figure 3: The main plot lines within each run of Chapter 9 of Harry Potter and the Sorcerer’s Stone.

Table 3: Information on the 14 ROIs from the AAL atlas extracted from subjects in the Harry Potter task-based fMRI
data set.

ROI id Regions number of voxels Label
1 Angular gyrus 838 AG

2 Fusiform gyrus 1447 F

3 Inferior temporal gyrus 2013 IT

4 Inferior frontal gyrus, opercular part 747 IFG 1

5 Inferior frontal gyrus, orbital part 1008 IFG 2

6 Inferior frontal gyrus, triangular part 1355 IFG 3

7 Middle temporal gyrus 2795 MT

8 Occipital lobe 6371 O

9 Precental gyrus 2030 PCG

10 Precuneus 2014 PC

11 Supplementary motor area 1322 SM

12 Superior temporal gyrus 1635 ST

13 Temporal pole 1353 TP

14 Supramarginal gyrus 550 SG.R
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4 Results

4.1 Simulations

The results for the multivariate normal (MVN) data are displayed in the Supplementary Materials. Table 4 shows the
results from applying all variations of VCCP to the VAR data with 4 change points (Simulation 5). The NBS.D.SB (NBS
segmentation, D-vine, and stationary bootstrap for inference) combination has the best performance, it almost perfectly
recognizes the four true change points within the bias range for each iteration. Similar to the corresponding MVN
simulation, the combinations NBS.D.SB and OBS.D.SB also have the smallest scaled Hausdorff distance, indicating the
detected change points are located closest to the true change points. They also have low FN and FP rates. The results
for the Vuong test and the SB are very similar in combination with all the segmentation methods. Other combinations
such as MOSUM.D present good results, but with slightly higher FP rates. WBS appears to be too conservative with
inferior accuracy but smaller FP rates.

Table 4: The results from applying all variations of VCCP to the VAR data with 4 change points (Simulation 5) over
100 simulated data sequences. NBS, OBS, MOSUM, and WBS denote the adapted binary segmentation, old binary
segmentation, moving sum, and the wild binary segmentation methods, respectively. The D denotes the D-vine. TP,
FN, FP, Cand.num, Num.det, and dH denote the true positive rate, false negative rate, false positive rate, number of
candidate change points, number of change points detected, scaled Hausdorff distance, respectively.

Stationary Bootstrap Vuong test
NBS.D OBS.D MOSUM.D WBS.D NBS.D OBS.D MOSUM.D WBS.D

TP.61 0.99 0.99 1 0.84 0.99 0.92 1 0.84
TP.121 1 1 0.99 0.92 1 0.92 0.99 0.95
TP.181 0.98 0.98 0.95 0.94 0.98 0.9 0.95 0.9
TP.241 0.99 1 0.94 0.76 0.97 0.92 0.94 0.7
FN.61 0 0 0 0.01 0 0.04 0 0
FN.121 0 0 0 0 0 0.01 0 0
FN.181 0.01 0.01 0 0 0.01 0.01 0 0.03
FN.241 0.01 0 0.02 0.07 0.03 0.03 0.02 0.09
FP.0-60 0.01 0.01 0.04 0 0.03 0.03 0.12 0.01

FP.61-120 0.03 0.03 0.01 0.02 0.06 0.06 0.02 0.02
FP.121-180 0.03 0.04 0.03 0.01 0.05 0.05 0.03 0.01
FP.181-240 0 0 0.04 0.01 0.05 0.04 0.05 0.02
FP.241-300 0 0 0.02 0.01 0.02 0.01 0.04 0.01
Cand.num 4.94 4.76 4.37 3.7 4.94 4.49 4.37 3.7
Num.det 4.02 4.04 4.03 3.49 4.14 3.84 4.14 3.46
dH 0.09 0.09 0.13 0.51 0.18 0.44 0.16 0.54

In Simulation 6, only the edge weights in the network are adjusted between change points with the non-zero edges
themselves remaining constant over the entire time course. This is a very difficult simulation but NBS in combination
with both SB and Vuong perform well, identifying almost all 4 change points (Table 5). Overall, NBS.D.V is the
best model, having the smallest scaled Hausdorff distance and the highest TP rate. Ironically, OBS, which had many
advantages over other segmentation methods in the previous simulations, has the worst performance, identifying the
least number of true change points. Since OBS carries out segmentation and inference sequentially, we attribute its
deterioration in performance to this. Once the changes become weak enough, it is likely that the SB and the Vuong test
reject the first candidate in OBS, which results in it failing to detect the remaining change points. As small changes
are common in resting-state fMRI data, it might be inappropriate to apply OBS to this data type. After NBS.D.V,
NBS.D.SB and MOSUM.D.V, WBS, has the next best performance in combination with the SB. This may stem from
the sub-sampling step in WBS. As stated in Section 2, WBS firstly creates a series of multiple candidates and with their
corresponding BIC reductions within each sub-sample. Then an OBS-like inference procedure decides the test order.
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Compared to the BIC reduction of the original OBS method, the sub-sampling idea in WBS overcomes its drawbacks.
In fact, WBS is more similar to the combination NBS-OBS, which contributes to its unique strength.

We also compared the results in Table 4 (VAR data with 4 change points) with the results in Table 5 (VAR data with 4
weak change points), and find that the results for the latter are inferior due to the less distinctive changing patterns.
Similar to the MVN data, the performance degraded from the former data set to the latter, but to a greater extent. The
FP rate and the scaled Hausdorff distance increased. Similar to the results in the MVN data with 4 weak change points,
the first change point located at time point t = 61 is the most difficult to detect, where the highest TP rate was only 61%
from NBS.D.V.

Table 5: The results from applying all variations of VCCP to the VAR data with 4 weak change points (Simulation
6) over 100 simulated data sequences. NBS, OBS, MOSUM, and WBS denote the adapted binary segmentation, old
binary segmentation, moving sum, and the wild binary segmentation methods, respectively. The D denotes the D-vine.
TP, FN, FP, Cand.num, Num.det, and dH denote the true positive rate, false negative rate, false positive rate, number of
candidate change points, number of change points detected, scaled Hausdorff distance, respectively..

Stationary Bootstrap Vuong test
NBS.D OBS.D MOSUM.D WBS.D NBS.D OBS.D MOSUM.D WBS.D

TP.61 0.56 0.43 0.35 0.5 0.61 0.19 0.42 0.3
TP.121 0.75 0.57 0.67 0.77 0.78 0.35 0.72 0.63
TP.181 0.82 0.68 0.73 0.8 0.83 0.34 0.7 0.64
TP.241 0.86 0.72 0.89 0.81 0.81 0.4 0.87 0.75
FN.61 0.23 0.09 0.35 0.11 0.18 0.21 0.28 0.11
FN.121 0.08 0.07 0.11 0.05 0.05 0.05 0.06 0.11
FN.181 0.1 0.04 0.06 0.02 0.09 0.03 0.09 0.14
FN.241 0.02 0.05 0.01 0.04 0.07 0.18 0.03 0.06
FP.0-60 0.07 0.05 0.04 0.04 0.08 0.02 0.03 0.03

FP.61-120 0.15 0.14 0.1 0.08 0.25 0.1 0.08 0.08
FP.121-180 0.09 0.12 0.16 0.17 0.19 0.1 0.23 0.14
FP.181-240 0.1 0.04 0.05 0.04 0.12 0.02 0.05 0.01
FP.241-300 0.12 0.09 0.09 0.02 0.15 0.02 0.1 0.03
Cand.Num 5.3 2.78 4.34 3.17 5.3 2.47 4.34 3.18
Num.det 3.44 2.78 3.04 3.17 3.72 1.53 3.18 2.58
dH 0.69 1.31 0.99 0.7 0.64 2.42 0.87 1.26

Table 6 shows the results of the VAR model with 7 small change points (Simulation 7). Most of the preponderant
methods for the MVN data with 7 small change points (Table 4 in the Supplementary Materials) are also evident for the
VAR data with 7 small change points, except for OBS.D.V. This combination has the largest scaled Hausdorff distance,
with TP rates less than 20% for each change point. It detects only one change point on average and has high FN rates
at for change points at time points 76, 451 and 526. To explore the reason behind its unusual performance, we notice
that in OBS, the inference result at the beginning of the procedure decides whether to conduct later segmentation. If
the first candidate change point is at time point t, the Vuong test compares the goodness of fit between V C0 and V Cl
using the left part of data (1 : (t− 1)), and V C0 and V Cr using the right part of data (t : T ). Only when both tests
show V C0 is inferior do we treat t as a change point. However, if one candidate locates close to the beginning (end) of
the timeline and the right (left) part of data contains one or more latent change points, segmentation at time point t
might not improve the goodness-of-fit of the right (left) part of data. That is to say, neither V Cr (V Cl) nor V C0 can
perfectly describe the distribution of the right (left) part of data with the latent change points undetected. In some cases,
the Vuong test even provides a reverse result that V C0 outperforms the other VC model due to a larger sample size.
This happens more frequently when the changes in the structure are less discernible. Therefore, the candidate change
point at time point t is not considered a change point, and other latent change points remain undiscovered because the
segmentation terminates, as shown in the left panel of Figure 4. Here, for one iteration of Simulation 7, OBS.D.V stops
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Table 6: The results from applying all variations of VCCP to the VAR data with 7 small change points (Simulation
7) over 100 simulated data sequences. NBS, OBS, MOSUM, and WBS denote the adapted binary segmentation, old
binary segmentation, moving sum, and the wild binary segmentation methods, respectively. The D denotes the D-vine.
TP, FN, FP, Cand.num, Num.det, and dH denote the true positive rate, false negative rate, false positive rate, number of
candidate change points, number of change points detected, scaled Hausdorff distance, respectively..

Stationary Bootstrap Vuong test
NBS.D OBS.D MOSUM.D WBS.D NBS.D OBS.D MOSUM.D WBS.D

TP.76 1 1 0.69 0.57 0.97 0.16 0.97 0.66
TP.151 0.99 0.99 0.62 0.97 0.98 0.14 0.97 0.96
TP.226 0.97 0.95 0.53 0.6 0.93 0.11 0.84 0.4
TP.301 0.89 0.89 0.63 0.69 0.89 0.12 0.82 0.58
TP.376 0.97 0.97 0.75 0.69 0.9 0.13 0.71 0.69
TP.451 0.98 0.98 0.89 0.93 1 0.19 0.94 0.87
TP.526 0.93 0.91 0.66 0.25 0.88 0.16 0.6 0.19
FN.76 0 0 0 0 0 0.29 0 0.02
FN.151 0 0 0 0 0 0.02 0.01 0
FN.226 0 0.02 0.01 0.1 0.04 0.02 0.07 0.23
FN.301 0.03 0 0.05 0.07 0.03 0 0.06 0.07
FN.376 0 0 0.01 0 0.06 0.04 0.12 0.02
FN.451 0 0 0 0 0 0.3 0 0.02
FN.526 0.02 0 0.03 0.18 0.05 0.2 0.16 0.21
FP.0-75 0.03 0.02 0.24 0.04 0.08 0 0.07 0.02

FP.76-150 0.07 0.07 0 0.01 0.06 0 0 0.03
FP.151-225 0.06 0.04 0.08 0.03 0.11 0 0.09 0
FP.226-300 0.08 0.1 0.02 0.01 0.08 0 0.04 0.03
FP.301-375 0.11 0.13 0.21 0.12 0.14 0.02 0.16 0.14
FP.376-450 0.05 0.06 0.07 0.02 0.08 0 0.03 0.01
FP.451-525 0.09 0.11 0.07 0.01 0.08 0.03 0.1 0
FP.526-600 0.11 0.13 0.21 0.12 0.14 0.02 0.16 0.14
Cand.Num 9.79 8.24 6.17 5.5 9.6 2.07 8.31 5.31
Num.det 7.27 7.29 5.67 4.94 7.24 1.07 6.44 4.53
dH 0.23 0.23 0.9 0.97 0.33 5.81 0.57 1.11

at the second candidate change point (t = 76), even though the left part of the test (the dark blue dot) has identified it as
a change point. On the contrary, NBS.D.V’s performance is superior as it performs the Vuong test on all candidate
change points after its exhaustive search.

4.2 Harry Potter task-based fMRI data

In order to show that other forms of dependence exist beyond linear dependence for fMRI data, we compare the detected
change points found by the NBS.D.V combination of VCCP using only the Gauss copula to NBS.D.V using 5 types of
copulas (Gauss, t, Clayton, Gumbel, and Frank copula). Figure 5 shows the detected change points. As expected, by
considering various forms of dependence and copulas beyond Gaussian, more change points are detected (1/3 more
detected). For example, let’s consider the detected change points for subject 7. Using NBS.D.V with the Gauss copula,
time points t = 43, 235, 282, 372, 436, 704, 1003, 1099, 1149, 1247 are identified as change points, while time points
t = 44, 241, 282, 390, 704, 746, 792, 867, 998, 1038, 1096, 1168, 1247, are identified as change points for NBS.D.V
with the 5-copula family. Now let’s focus our attention on change points at t = 998, 1038 and t = 1096. The first
and last change points are detected by both methods while the middle change point is missed by NBS.D.V with the
Gauss copula. Figure 6 displays the estimated Kendall’s τ , the upper tail dependence, the lower tail dependence,
and the optimal copula function between pairs of ROIs within different time intervals. From segment 867 − 997 to
segment 998− 1037, the Kendall’s τ network is more sparse, while the lower tail network (especially within the IFG
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Figure 4: A comparison between the OBS.D.V and NBS.D.V combination methods when applied to one iteration of the VAR data
with 7 small change points simulation. The y-axis represents the −log(p-value) from the Vuong test. The horizontal dashed line
represents the significance level, α = −0.1∗log(p-value)= 2.303. The dark blue and light blue dots represent the test using left part
and the right part of the data, respectively.

sub-network) and the upper tail network become more dense. As a result, the dominant copula type turns out to be
the Clayton copula during the second segment (998− 1037). As the Gauss copula model is unable to model tail and
other forms of dependence, the change point at t = 998 is detected only because of the change in Kendall’s τ . At time
point t = 1038, there is not an obvious strong discernible change in Kendall’s τ , hence, the Gauss copula fails to find
the related change point. Only models free of the Gaussian assumption are capable of discovering this change point.
NBS.D.V with the 5-copula family has this flexibility. From segment 1038− 1095 to segment 1096− 1167, negative
edges between nodes IT, IFG1, IFG3 and MT switch to positive, while a new sub-network between F, SM, PCG and
IT appears with most of its edges being negative in the network of Kendall’s τ . The density of edges also alters. In
addition, the lower tail dependence weakens so that only edges between TP and other nodes (TP becomes a hub node)
remain, which results in the Clayton copula not being the dominant copula type. Furthermore, there is little change in
the upper tail dependence network. Hence, both NBS.D.V with the Gauss copula and the 5-copula family are able to
detect the change point at t = 1096. To understand the rationale behind the change point at t = 1038, the last sentence
given to readers before this time is, ‘They ripped through a tapestry and found themselves in a hidden passageway, ...
which they knew was miles from the trophy room.’, and the first sentence after t = 1038 is ‘ “I think we’ve lost him,"
Harry panted, leaning against the cold wall and wiping his forehead.’ This passage occurs when Harry and the other
three characters run away from Filch, who come for Draco’s snitch. The text during this period includes changes in
locations, actions and emotions.

For a complete understanding of the changing brain networks when reading, further exploration of the simultaneous
changes in the text becomes necessary. Taking advantage of the rich text information available, we can assign attributes
to every word in the text. In particular, we focus on whether the word is a character’s name (Char), implies a kind
of emotion (Emo), refers to a motion (Mo), or contains a specific verb (Verb). Subdivisions of the four main word
types, with their frequency among the 5200 words in the text, are shown in Table 7. As the ‘Motion’ attribute takes
place over the course of a sentence, Wehbe et al. [2014] created two features: a punctual feature and a “sticky” feature.
The punctual feature coincides when the verb of the motion was mentioned, and the sticky feature is active for the
duration of the motion (i.e., the sentence). The same applies to the ‘Emotion’ attribute, where the punctual features
coincide when the emotion is explicitly mentioned, and sticky features align when it is felt by the characters. Here, we
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Figure 5: The top and bottom panels represent the change points from NBS.D.V using the 5-copula family and only the Gauss
copula, respectively, from the Harry Potter task-based fMRI study.

concentrate on the sticky features and changes in them. First, we specify an interval parameter (Int) indicating the
range in which text changes take place, i.e.[t− Int, t+ Int− 1]. The range covers two whole sentences to display
the complete textual background of the change. Since the upper quantile of the sentence length equals 17 words and
4 words are displayed within 1 TR (2 sec), Int is equal to 4 TR. We define three types of changes in text features:
‘off-on’, ‘on-off’, and ‘mixed’ patterns. If the identifier of a feature remains constant on one side of a point t (e.g.,
[t− Int, t− 1]), but contains a heterogeneous element on the other side (e.g., [t, t+ Int− 1]), we then call it a ‘off-on’
([0→ 0,1] or [0,1→ 1]) or ‘on-off’ ([1→ 1,0] or [1,0→ 0]) change type. If both sides include heterogeneous elements
(i.e., [0,1→ 0,1]), we call it a mixed type.

To understand the difficulty of our analysis; coinciding changes in brain networks and the variation of a specific text
feature, we explore the latent text changes, we consider the features before and after a particular time point in the text,
time point t = 432. Figure 7 shows the text changes: three motion features (collide, fly, manipulate) experience ‘on-off’
changes; one verb (move), one emotion (nervous), and one character (Minerva) encounter ‘off-on’ patterns; and a
character (Harry) feature has a mixed variation. Hence, for the FC change point at this time point, the corresponding
text may involve changes in multiple features, which increases the difficulty of assigning the change points detected to
one specific text feature.

In Figure 8 (top panel), we sum the frequency of attributes (Char, Emo, Mo, Verb) that correspond to change points
detected by NBS.D.V with the 5-copula family for each subject. For example, the 94% in the first cell implies that
amongst all the change points for subject 1, 94% are located at time points that coincide with character switching.
Overall, there is a great deal of subject-level heterogeneity. For example, despite there being frequent character switches
in the text, the dominant attributes at FC change points for subject 5 is motion. Further, Subjects 3, 4 and 8 react actively
to emotion and verb attributes. Considering that pre-specified verbs occur infrequently in Table 7, this large number of
change points (e.g., 13 out of 16 change points for subject 4) strongly implies that some subjects are very sensitive
to changing verbs. We also display the locations of the detected change points with the attribute underpinning them
(bottom panel). These plots further illustrate the complexity of textual changes. In summary, more than 90% of the
change points are related to at least two types of attributes simultaneously. For these attributes, the emergence, rather
than the disappearance more frequently leads to a change point, as red segments are more evident than yellow ones.
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Figure 6: The estimated Kendall’s τ , the lower and upper tail dependence, and the optimal copula function, for each edge between
pairs of nodes for networks between change points at time points t = 998, 1003, 1099 for subject 7 in the Harry Potter task-based
fMRI data set using the combination NBS.D.V of VCCP. Black (red) lines in the graph on the first row represent positive (negative)
Kendall’s τ correlation coefficients. Dashed lines indicate edges between nodes with heavy tail dependence but insignificant Kendall’s
τ . Green and blue edges in the graphs on the second and the third rows represent the lower and upper tail dependence, respectively.
The various colored lines on the bottom row indicate the optimal copula family for edges, with grey, yellow, blue, red and green
indicating the Gauss, t, Clayton, Gumbel and Frank copula, respectively.
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Table 7: The frequency of words for the following four attributes: a character’s name (Char), emotion (Emo), motion
(Mo), or a specific verb (Verb) in Chapter 9 of Harry Potter and the Sorcerer’s Stone.

Motion

move manipulate
47.67% 19.27%

fly collidePhys
9.78% 3.96%

Verbs

know see
1.00% 0.89%

hear tell be
0.66% 0.60% 0.58%

Characters

harry draco herm neville
4.19% 1.47% 1.35% 1.18%

ron minerva filch peeves wood hooch
1.14% 0.79% 0.54% 0.48% 0.41% 0.39%

Emotion

nervous fear annoyed command puzzled wonder dislike
15.85% 15.03% 13.49% 11.88% 9.89% 6.45% 5.72%

like relief hurtPhys praising hurtMental cynical pride pleading
4.60% 3.98% 3.13% 1.76% 1.60% 0.97% 0.58% 0.35%

Figure 7: An example of three types of text changes at time point t = 432 in Chapter 9 of Harry Potter and the Sorcerer’s Stone,
with the interval parameter fixed at 4 TRs.
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Figure 8: The top panel is the summation of the frequency of attributes (Char, Emo, Mo, Verb) that correspond to change
points detected by NBS.D.V with the 5-copula family for each subject. The bottom panel displays the locations of change points
corresponding to textual changes for each subject (left) and all subjects (right). Colors denote the three types of patterns.

In Figure 9, we plot the percentage of changing subdivisions (off-on) in their corresponding attributes at the change
points detected by NBS.D.V for each subject. For each attribute, the first row (Freq) records the relative frequency of
subdivisions in the original text in decreasing order, which we then compare with the frequency of change points for the
same subdivision. For example, from the top left graph (Character: off-on), we can conclude that the appearance of
characters such as ‘Hermione’, ‘Neville’, ‘Minerva’, and ‘Peeves’ in the text closely relate to the change points across
some of the subjects (match the block size in Freq to the blocks in each of the subjects). The appearance of ‘Harry’
is not as consistent across subjects. The composition of the emotion graph is even more complex, where subjects are
generally susceptible to different emotional changes of characters. Among the fifteen different emotions, ‘puzzlement’
and ‘commanding’ are most likely to be associated with changes in the brain networks across the 8 subjects. Even
though positive feelings such as ‘like’, ‘relief’ and ‘pride’ seldom appear in the text, subjects 4, 5 and 7 are still sensitive
to them. On the contrary, emotions such as ‘nervousness’ and ‘fear’ that cover a large portion of the text only stimulate
a subset of the subjects (1, 3, 5, 7 and 8), while other subjects seem unaffected by the characters evoking such emotions.
The reaction to the ‘annoyance’ of characters was the most inconsistent. Subjects 2, 3 and 6 experienced more frequent
change points in terms of emotional transition to annoyance, while subjects 1, 4 and 7 share a moderate proportion
of change points related to annoyance. Subjects 5 and 8, however, did not exhibit any reaction when confronting the
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presence of annoyance in the text. Such inconsistency could be partly due to the insufficient number of change points
detected for certain subjects (e.g., subjects 2 and 6), and perhaps partly to the real heterogeneity of dynamic brain
networks towards a certain emotion experienced by characters. The proportion of motion subdivisions in the text is

Figure 9: The percentage of changing subdivisions (off-on) in their corresponding attributes at the change points detected by
the NBS.D.V combination of VCCP for each subject. For each attribute, the first row (Freq) records the relative frequency of
subdivisions in the original text in order (of time).

consistent with that of subdivision change points for subjects 3, 4 and 7. The other five subjects did not react to the
beginning of the characters flying nor to the colliding in the story. Further research could be carried out by dividing the
‘manipulate’ and ‘move’ motions into more detailed subdivisions. The heterogeneity across subjects becomes more
evident when it comes to the variation in verbs: subjects 1 and 4 are very sensitive to the verb ‘know’; the FC of subject
8 changes intensively when the characters ‘hear’ a sound; subjects 5, 7 and 8 experience switching patterns in their
brain network at the time of speaking; subject 2 fails to give any reaction to the appearance of the five types of verbs.
Interestingly, brain networks across all 8 subjects remain in a relatively stable status when characters ‘see’ something
unexpected in Chapter 9. In other words, other than visual description, auditory stimulation to characters can generate
more change points in the brain networks for readers.

19

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 26, 2021. ; https://doi.org/10.1101/2021.04.25.441254doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.25.441254
http://creativecommons.org/licenses/by-nc-nd/4.0/


arXiv Template A PREPRINT

If we turn to the ‘on-off’ subdivision pattern in Figure 10, all 8 subjects remain in a brain network longer than the
subdivision when confronting the disappearance of a certain verb or the transfer of focus from a certain character. For
all attributes, char, Verb, Emo, the ‘on-off’ subdivision pattern are less likely to coincide with change points, however,
for attribute Mo, there is correspondence between the subdivision pattern and the detected change points. Yet, for
the attribute Emo, the abnormally higher portion of the ‘hurtPhys’ element in subjects 1 and 8, the ‘like’ element in
subjects 4 and 5, the ‘cynical’ element in subject 7 and the ‘collide’ element in subject 1 and 2 still deserves exploration.
No matter how many or what types of textual features we choose and explore, the functional network of the subjects’

Figure 10: The percentage of changing subdivisions (on-off) in their corresponding textual types at change points for each subject.
For each attribute, the first row (Freq) records the relative frequency of subdivisions in the original text in order (of time).

brain varies in accordance with the integrated variation of the text, instead of a single, specific attribute. Considering
the complex component of the reading material and the collaborative work of our brain, it is hard to directly relate a
connection variation between two nodes to one special type of textual change.

Next, we focus on general change points as a response to plot changes. By selecting a representative set of change
points shared by multiple subjects and the contexts read before and after the change, we display the heterogeneity and
homogeneity among subjects when confronting the same combined textual variation.

The first flying experience:

Blood was pounding in his ears. He mounted the broom and kicked hard against the ground and up, up he
soared; air rushed through his hair, and his robes whipped out behind him – and in a rush of fierce joy he
realized he’d found something he could do without being taught – this was easy, this was wonderful.

∣∣s5 He
pulled his broomstick up a little to make it even higher

∣∣s4 and heard screams and gasps of girls back on the
ground

∣∣s1 and an admiring whoop from Ron.
∣∣s3 He turned his broomstick sharply to face Malfoy in midair ...

We detect change points in subjects 1, 3, 4 and 5 that coincide with Harry’s first flying experience. The exact locations
of the change points are marked as vertical lines in the quotation above, and the corresponding FC networks before
and after the change points are provided in Figure 11 (we only concentrate on the positive correlation between nodes).
Several positive emotions such as ‘joy’ and ‘admiring’ emerged during this extract, which are rare emotions in Chapter
9. As a reaction to such a ‘positive’ textual change, the Kendall’s τ network of all four subjects become more sparse
(Figure 11, top left). For subject 1, the close relationship between ROIs IFG (IFG1, IFG2, IFG3), F and RSG disappears;
for subject 3, most of the edges disappear while the connections within the sub-network (ST-AG-MT) become stronger.
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In subject 4’s network, there is disconnection between ST, TP, MT and IFG, with only seven edges remaining. The FC
networks of subject 5 before and after the change point are more closely related, compared to the other three subjects,
with decreasing Kendall’s τ before and after the change point.

Contrary to the decreasing Kendall’s τ , the lower tail networks (Figure 11, bottom left) generally strengthen while the
upper tail dependence networks (bottom right) vary across subjects. Based on the increasing number of grey dashed
lines in the networks after the change point, we can ascertain that although some edges disappear, some of the tail
dependence edges remain or appear. For example, for subjects 1 and 3, Kendall’s τ between ROIs TP and IFG3
disappears but the corresponding lower tail dependence appears or stabilizes, respectively. Accordingly, changes in the
connection (strength) of the tail dependence has less to do with the variation in Kendall’s τ . Rich colors in the top right
sub-graphs for each subject represent the diversity in the best fitted copula types for edges between each pair of nodes.
As Harry is experiencing the joy of his first flying experience, the dominant copulas shift to the Clayton and Gumbel
copula after the change point, which is due to the fact that Clayton and Gumbel copulas provide a better fit to the lower
and upper tail dependence than the other three available copulas. This is best illustrated by subject 5, where both types
of tail dependence networks become denser and the preponderant F copula loses its dominance after time point t = 367.

Encountering with the three-headed dog:

"What?" Harry turned around – and saw, quite clearly, what. For a moment, he was sure he’d walked into a
nightmare – this was too much, on top of everything that had happened so far.

∣∣s7 They weren’t in a room, as he
had supposed. They were in a corridor. The forbidden corridor on the third floor.

∣∣s8 And now they knew why
it was forbidden. They were looking straight into the eyes of a monstrous dog,

∣∣s3 a dog that filled the whole
space between ceiling and floor. It had three heads. Three pairs of rolling, mad eyes; three noses, twitching and
quivering in their direction; three drooling mouths, saliva hanging in slippery ropes from yellowish fangs.

This event is the most thrilling in Chapter 9 in Harry Potter and the Sorcerer’s Stone. The exact locations of the change
points for subjects 3, 7 and 8 are marked as vertical lines in the quotation above, and the corresponding FC networks
before and after the change points are provided in Figure 11. Both consistency and heterogeneity exist in their brain
networks. For subject 3, the most obvious change after the change point at time t = 1179 is the disappearance of the
upper tail network between ROIs RSG, IT, IFG1, IFG2 and IFG3. In addition, strong connections between ROIs TP,
AG, ST and F show up in Kendall’s τ and the upper tail dependence network after the change point. For subject 7, the
Kendall’s τ network after the change point resembles that of subject 3, especially for sub-networks MT-ST-AG-F-IT
and IFG1-SM-RSG-PCG. The first sub-network hub at MT is also present in the networks of subjects 3 and 7 before
their change points, though subject 7’s former network had two hub ROIs (MT and ST) and involved more related
ROIs (e.g., AG, IFG3). The edge between ROIs SM and IFG1 also shares a reappearing pattern in subjects 7 and 8.
Interestingly, subject 8 has a lower tail dependence network hub at ROI ST similar to the Kendall’s τ network of subject
7 before the change point. However, the hub node pattern around ROI ST fades and shifts to a stronger Kendall’s τ
network between SM, RSG, PCG, IFG1 and IFG3 after the change point, which is unique during the post-change period
among the three subjects. There are also between-edge, between-subject and between-period variations in the best fitted
copula functions, which indicate the heterogeneity in the dependence type.

In general, when subjects share common change points, their dynamic reaction reflected in the FC networks embodies
not only uniformity towards a certain combination of textual changes, but also individual heterogeneity. However, to
further confirm the specific textual feature leading to the change point, more refined experiments controlling other
irrelevant variables are required. Otherwise, we can only attribute the change in brain networks to combined textual
factors.
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Figure 11: The FC networks estimated using the NBS.D.V combination of VCCP for subjects 1, 3, 4 and 5 at the change point
that coincides with Harry’s first flying experience. The left plots represent the networks before the change point while the right
plots represent the networks after the change point. The top left, top right, bottom left and bottom right represent the Kendall’s τ
coefficient network, copula type network, lower tail dependence network, upper tail dependence network, respectively.
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Figure 12: The FC networks estimated using the NBS.D.V combination of VCCP for subject 3, 7, and 8 at the change point
that coincides with the four main characters encountering the three-head dog. The left plots represent the networks before the
change point while the right plots represent the networks after the change point. The top left, top right, bottom left and bottom right
represent the Kendall’s τ coefficient network, copula type network, lower tail dependence network, upper tail dependence network,
respectively.

4.3 SET fMRI data

The results for the SET data set can be found in the Supplementary Materials. To illustrate the importance of diverse
copulae and possible tail dependence between the selected 5 ROIs, we compare the performance of the Gauss copula
against the 5-copula family in our VCCP model. We also study the effect of δ.

5 Discussion

5.1 Computational speed

Table 8 shows a computational speed comparison across the various combinations of VCCP for the VAR simulation
with 4 weak change points (Simulation 6) across 100 iterations. All were completed using a ASUS UX303UA laptop
which has an Intel(R) Core(TM) i7-6500U single core processor. Obviously, with access to more cores and introducing
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parallel computing, VCCP speeds up significantly. Among the four segmentation methods, MOSUM is the most
computationally efficient as it reduces the problem of a (possibly) high dimensional time series to a univariate time
series problem. WBS is relatively slow as the computational efficiency depends heavily on the number of random draws,
M , which should be large enough to guarantee the detection of the candidate change points. NBS and OBS have a
similar moderate speed since both apply the idea of BS. With respect to inferential methods, SB depends on the number
of resamples: as N increases, SB slows, but the result becomes more reliable. The Vuong test is computationally
efficient since it has a known asymptotic distribution. Overall, VCCP has adequate computational speed. For VCCP,
the number of ROIs included has a large influence on its computational speed. As the number of ROIs increases, the
MST methods [Cormen et al., 2009] have to consider more edges and hence more time is consumed finding the optimal
vine. By specifying the vine structure (D-vine or C-vine), MST only needs to set the linking order or the central node,
which can increase computational efficiency. Similarly, if we restrict the candidate family set of copulas (e.g., only the
Gauss family) corresponding to each edge, we can decrease speed. Finally, as the experimental time course increases,
the search space has a wider range, which leads to an increased computing time.

Method Avg Time (s) SE

NBS.D.SB 354.6324 47.91403
NBS.D.V 201.568 29.68706

OBS.D.SB 297.7229 94.55046
OBS.D.V 137.1511 49.44729

MOSUM.D.SB 186.8384 23.15093
MOSUM.D.V 47.4841 4.353137

WBS.D.SB 777.8286 141.6771
WBS.D.V 626.5993 90.56946

Table 8: A computational speed comparison across the various combinations of VCCP for the VAR simulation with 4
weak change points (Simulation 6) across 100 iterations. The Avg Time and SE represent the average time in seconds
and standard error across 100 iterations, respectively. All are completed using simple sequential computing on a single
core processor.

5.2 Extensions

To deal with a large number of ROIs, we could combine VCCP with dimension reduction tools such as Principal
Component Analysis (PCA), Linear Discriminant Analysis (LDA) or Feature Annealed Independence Rule [Fan and
Fan, 2008]. In addition, the distribution of the value of BIC reduction at certain time points could also be explored
under the vine copula specification. Then the classic hypothesis test could be applied instead of SB, to improve the
computational speed. Furthermore, similar to MOSUM, we could consider other methods that directly explore the local
maximums of the BIC reduction time series, especially if we believe there are small and subtle dynamic FC patterns in
the data.

VCCP can also be applied to multi-subject data (panel data). The only distinct difference between single-subject and
multi-subject data is that the sample size in each interval increases as a result of stacking different subjects’ data in the
same period. Accordingly, more signal and also noise is present. For more details, see Xiong and Cribben [2021].

5.3 Limitations

While different combinations of segmentation and inference methods in VCCP can be used in different settings, some
combinations have shortcomings under certain circumstances. For example, both OBS and NBS segmentation methods
have at their core BS, which is limited in that it can only find one change point at a time and then recursively splits
the data. They are also restricted by δ, the minimum between change points and hence the total number of possible
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change points. In addition, MOSUM is excessively conservative when changes in the FC are subtle (change in edge
strength, see Simulation 6). This may due to MOSUM’s indirect detection in this setting, which reduces the problem
to a univariate time series (in our case the BIC reduction series) and then chooses the local maximums as candidate
change points. For resting-state fMRI data sets, where subjects smoothly transit between states, MOSUM might confuse
the change points with random variations or might amalgamate several moderate peaks into one change point, which
ultimately leads to fewer change points. Finally, for the task based fMRI data sets, we obtained conservative results
for WBS. This is understandable given WBS stops if the point detected is not a change point or no random intervals
remains. If the number of random intervals is not sufficient and the first candidate change point is close to the middle of
the time course, the second condition is more likely to occur. Fryzlewicz [2014] proved the lower limit of the number
of random draws (S = 9T 2

δ2 log(T 2δ−1)), which we used in this work, but we may need more intervals as additional
intervals shorter than 2δ are removed.

6 Conclusion

In this paper, we introduce a new methodology, called Vine Copula Change Point (VCCP), that estimates change points
in a vine copula structure. It is motivated by the fact that no other change point method, to the best of our knowledge,
considers possible non-linear and non-Gaussian dynamic functional connectivity. Furthermore, the layers of a vine can
be cut, which leads to a simplified and sparse network, and requires less computation time when the dimension of the
data set expands.

We also compared different combinations of segmentation methods (NBS, OBS, MOSUM and WBS) and inference
methods (Vuong test and the stationary bootstrap) in VCCP. Overall, different combinations serve different needs. NBS
with the Vuong test provides the most robust change points for the task-based fMRI data sets, requires fewer inputs, and
is more computationally efficient. Although not studied here, perhaps WBS is more suitable for resting-state fMRI
data sets as it is sensitive to dense but weak change points in the network. Overall, we found that OBS (used by most
previous change point methods in the neuroscience literature) failed to perform well. SB and the Vuong test are both
suitable for inference, but Vuong is computationally faster.

We showed using an extensive simulation study that VCCP performs well on multivariate normal data and on Vector
autoregression (VAR) data, even in challenging scenarios where the subject alternates between task and rest. The MVN
data can be considered whitened data, while the VAR data can be considered un-whitened data. However, the simulation
results show the deterioration in performance is not drastic. In addition, the task-based fMRI experimental results
clearly indicate the presence of FC change points that are due to non-linear dependence, which has not been explored in
a dynamic fashion before in the analysis of neuroimaging data.

While VCCP was applied to task based fMRI data, it could seamlessly be applied to resting-state fMRI data, Elec-
troencephalography (EEG) or Magnetoencephalography (MEG), and electrocorticography (ECoG) data or other time
series applications where the network structure is changing. The outputs of VCCP could also be used as an input into a
classification model for predicting brain disorders.
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1 Kendall’s τ and copula formulae

Definition 1 (Kendall’s τ ) Let (X1, Y1) and (X2, Y2) be two independent pairs of random variables with joint cdf F
and marginal distributions FX and FY . Kendall’s τ is given by

τ(X,Y ) = P [(X1 −X2)(Y1 − Y2) > 0]− P [(X1 −X2)(Y1 − Y2) < 0]. (1)

The estimate of Kendall’s τ is given by :

τ̂ =
Nconc −Ndisc√

Nconc +Nextray ∗
√
Nconc +Nextrax

(2)

where Nconc is the number of concordant pairs (the orderings of the two Xs is the same as the ordering of the two Ys),
Ndisc is the number of discordant pairs (the ordering of the two Xs is opposite from the ordering of the two Ys) and
Nextrax , Nextray are the numbers of extra-X pairs (i, j) such that Xi = Xj , i 6= j and extra-Y pairs (i, j) such that
Yi = Yj , i 6= j, respectively.

The formulas for the copulae we consider in this work are given by:

1. Gauss Copula
C(u1, u2) = Φ2(Φ−1(u1),Φ−1(u2), ρ)

c(u1, u2) =
1√

1− ρ2
exp(−ρ

2(x2
1 + x2

2)− 2ρx1x2

2(1− ρ2)
)

τ = f(ρ) =
2

π
arcsin(ρ)

where x1 = Φ−1(u1), x2 = Φ−1(u2), and Φ2(., ., ρ) is the bivariate normal cdf with two standard univariate
marginal cdfs and a Pearson correlation coefficient, ρ.
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2. t Copula

c(u1, u2) =
2

2πdtν(x2)
√

1− ρ2

(
1 +

x2
1 + x2

2 − 2ρx1x2

ν(1− ρ2)

)− ν+2
2

τ = f(ρ) =
2

π
arcsin(ρ)

where dtν(x2) =
Γ( ν+1

2 )

Γ( ν2 )
√
πν

(1 + x2

ν )−
ν+2
2 , x1 = t−1

ν (u1), x2 = t−1
ν (u2), and t−1

ν (.) is the inverse cdf of
univariate t distribution with ν degrees of freedom.

3. Frank Copula

C(u1, u2) = −1

θ
log(1 +

(exp(−θu1)− 1)(exp(−θu2)− 1)

exp(−θ)− 1
)

τ = f(θ) = 1− 4

θ
+ 4 · D1(θ)

θ

where D1(θ) =
∫ θ

0
x/θ

exp(x)−1 and θ ∈ (−∞,+∞). As θ → −∞, the two variables linked by the Frank copula
become more negatively correlated. As θ → +∞, the two variables become more positively correlated.

4. Clayton Copula
C(u1, u2) = (u−θ1 + u−θ2 − 1)−

1
θ

τ = f(θ) =
θ

θ + 1

where θ ∈ (−1,∞)\0. Clayton copulas are only used to describe positive dependence. As θ → 0, the two
variables become more independent, and as θ →∞, the two variables become more positively correlated.

5. Gumbel Copula
C(u1, u2) = exp(−((−log u1)θ + (−log u1)θ)

1
θ

τ = f(θ) = 1− 1

θ

where θ ∈ (1,∞). Gumbel copulas are only used to describe positive dependence. When θ = 1, the two
variables are independent, and as θ →∞, the two variables become more positively correlated.

2 Anxiety fMRI data set

This fMRI data set (SET data) was taken from an anxiety-inducing experiment. Before the start of the experiment,
participants were told that they would be given 2 minutes in the scanner to present a 7-minute speech, though there
was a small chance that they might not be randomly selected to give the speech. Once the fMRI acquisition began,
subjects rested for 2 min and then an instruction slide showing the topic - ‘Why you are a good friend’ could be seen for
15s. When the slide disappeared, subjects went through a 2min silent brainstorming which was interrupted by another
instruction slide that informed participants they would not have to give the speech. Then they rested for 2min which
completed the functional run. Data was acquired and preprocessed the same way as in the previous work [Wager et al.,
2009, Cribben et al., 2012, 2013]. The experimental data set consists of 5 ROIs: (1) visual cortex, (2) left superior
temporal sulci, (3) ventral striatum, (4) right superior sulci and (5) ventromedial PFC that were created by averaging the
voxel time series across the entire region. N = 26 subjects were involved in the experiment, which lasted for T = 215,
with TR = 2 s. Our VCCP methodology weas applied to individual subjects to learn if the stressor onset triggered a
change point in the FC network between the 5 ROIs.
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3 Results

3.1 Simulations

Table 1 shows the results from the baseline case, where the data is i.i.d. multivariate normal (MVN) with no change
point. NBS and OBS perform best, they do not find many FP change points, but when candidate change points are at the
edges of the time course their performance deteriorates. MOSUM and WBS, on the contrary, seem to be overly sensitive
and hence have a higher Type I error rate. The worst combination is MOSUM.D.V, which detects 39 FP change points.

Table 1: The results from applying all variations of VCCP to the MVN data with no change points (Simulation 1) over
100 simulated data sequences. NBS, OBS, MOSUM, and WBS denote the adapted binary segmentation, old binary
segmentation, moving sum, and the wild binary segmentation methods, respectively. The D denotes the D-vine. FP and
Num.det denote the false positive rate and number of change points detected, respectively.

Stationary Bootstrap Vuong test
NBS.D OBS.D MOSUM.D WBS.D NBS.D OBS.D MOSUM.D WBS.D

FP.31-60 0.01 0.01 0.05 0.03 0 0 0.05 0.05
FP.61-90 0.01 0.01 0.02 0 0 0 0.06 0.03

FP.91-120 0 0 0.03 0.03 0 0 0.07 0.05
FP.121-150 0 0 0.05 0.02 0 0 0.07 0.05
FP.151-180 0.01 0.01 0.03 0.01 0.01 0.01 0.02 0.03
FP.181-210 0 0 0.02 0.03 0 0 0.04 0.04
FP.211-240 0.01 0.01 0.03 0.04 0.01 0.01 0.05 0.03
FP.241-270 0.08 0.09 0.02 0 0.07 0.06 0.03 0.04

Num.det 0.12 0.13 0.25 0.16 0.09 0.08 0.39 0.32

Table 2 shows the results from the MVN data with 4 change points (Simulation 2). Again, the NBS and OBS
segmentation methods shared the best performance with each perfectly recognizing the four true change points within
the bias range for each iteration, especially in combination with SB. NBS.D.SB and OBS.D.SB have the smallest
scaled Hausdorff distance, indicating the detected change points are located closest to the true change points. Other
combinations such as MOSUM.D present good results, but with a higher FP rate and larger scaled Hausdorff distance.
WBS appears to be too conservative with inferior accuracy with both the SB and the Vuong test.

In Simulation 3, the nonzero edges are fixed over the entire time course with the edge weights varying between change
points. This is a very difficult simulation but NBS in combination with both the SB and the Vuong test perform well,
identifying almost all 4 change points across the 100 iterations (Table 3). Overall, NBS.D.V has the best performance,
having the smallest scaled Hausdorff distance and the highest TP rate. However, NBS.D.SB has almost the same
performance but with a smaller number of FPs. MOSUM has the second best performance across the segmentation
methods, identifying over 3 change points on average, while WBS outperformed OBS. The OBS.D.V combination has
the worst performance, with no TP rate exceeding 65% and with a large scaled Hausdorff distance. It also has a high
FN rate at the last change point (t = 241), which may be due to the Vuong test’s conservative behavior.

We also compare the results in Table 2 (MVN data with 4 change points) with the results in Table 3 (MVN data with 4
weak change points), and find that the results for the latter are inferior due to the less distinctive changing patterns. The
number of detected change points declines from 3.27 to 2.58 on average across all variations of VCCP. For the latter
data set, the change point located at time point t = 61 is the most difficult to detect, where the highest TP rate is 61%
from NBS.D.SB. While the FN rate remains low in the former data, it increases for the latter data, especially using
MOSUM, where the FN rate for the first partition exceeds 0.3 when combined with the SB. Since MOSUM is based on
segmenting the reduced BIC series, the soaring FN rate may be due to the selection of the fixed bandwidth G. Due to
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Table 2: The results from applying all variations of VCCP to the MVN data with 4 change points (Simulation 2) over
100 simulated data sequences. NBS, OBS, MOSUM, and WBS denote the adapted binary segmentation, old binary
segmentation, moving sum, and the wild binary segmentation methods, respectively. The D denotes the D-vine. TP,
FN, FP, Cand.num, Num.det, and dH denote the true positive rate, false negative rate, false positive rate, number of
candidate change points, number of change points detected, scaled Hausdorff distance, respectively.

Stationary Bootstrap Vuong test
NBS.D OBS.D MOSUM.D WBS.D NBS.D OBS.D MOSUM.D WBS.D

TP.61 1 1 1 0.84 1 0.97 1 0.8
TP.121 1 1 1 1 1 0.96 1 0.98
TP.181 1 1 1 0.98 1 0.96 1 1
TP.241 1 1 1 0.73 0.99 0.96 1 0.82
FN.61 0 0 0 0 0 0.01 0 0
FN.121 0 0 0 0 0 0.01 0 0
FN.181 0 0 0 0 0 0 0 0
FN.241 0 0 0 0.03 0.01 0.02 0 0.02
FP.0-60 0 0 0.01 0.02 0 0 0.01 0.03

FP.61-120 0 0 0.02 0.01 0.02 0.02 0.02 0.03
FP.121-180 0 0 0 0 0.09 0.07 0 0
FP.181-240 0 0 0.03 0.01 0.02 0.02 0.04 0.02
FP.241-300 0 0 0.01 0.01 0.01 0.01 0.01 0.05
Cand.num 4.67 4.57 4.12 3.73 4.67 4.47 4.12 3.77
Num.det 4 4 4.07 3.6 4.13 3.97 4.08 3.7
dH 0.03 0.03 0.08 0.39 0.1 0.23 0.09 0.34

its conservative behavior, WBS does not perform well in either data set. However, it did have low FN and FP rates and
high TP rates at the change points at t = 121 and t = 241 in the latter data set.

Table 3: The results from applying all variations of VCCP to the MVN data with 4 weak change points (Simulation
3) over 100 simulated data sequences. NBS, OBS, MOSUM, and WBS denote the adapted binary segmentation, old
binary segmentation, moving sum, and the wild binary segmentation methods, respectively. The D denotes the D-vine.
TP, FN, FP, Cand.num, Num.det, and dH denote the true positive rate, false negative rate, false positive rate, number of
candidate change points, number of change points detected, scaled Hausdorff distance, respectively.

Stationary Bootstrap Vuong test
NBS.D OBS.D MOSUM.D WBS.D NBS.D OBS.D MOSUM.D WBS.D

TP.61 0.61 0.51 0.43 0.39 0.6 0.42 0.45 0.29
TP.121 0.87 0.87 0.89 0.93 0.89 0.63 0.85 0.91
TP.181 0.61 0.72 0.67 0.45 0.67 0.47 0.66 0.38
TP.241 0.96 0.95 0.96 0.93 0.96 0.65 0.91 0.84
FN.61 0.16 0.12 0.31 0.14 0.17 0.09 0.29 0.09
FN.121 0.04 0.01 0 0.01 0.02 0.07 0.04 0.01
FN.181 0.25 0.12 0.12 0.09 0.19 0.08 0.13 0.17
FN.241 0.01 0.01 0 0.04 0.01 0.12 0.05 0.09
FP.0-60 0.13 0.14 0.06 0.03 0.14 0.05 0.05 0.01

FP.61-120 0.1 0.17 0.09 0.03 0.15 0.09 0.11 0.03
FP.121-180 0.09 0.09 0.15 0.12 0.12 0.07 0.16 0.13
FP.181-240 0.04 0.1 0.06 0.04 0.13 0.1 0.1 0.05
FP.241-300 0.03 0.04 0.06 0.02 0.06 0.02 0.05 0.01
Cand.Num 5.38 3.55 4.48 2.9 5.38 3.44 4.48 3.25
Num.det 3.38 3.55 3.31 2.9 3.67 2.47 3.29 2.58
dH 0.64 0.52 0.66 0.79 0.52 1.57 0.81 1

In Simulation 4, the MVN data is composed of networks that contain 7 small change points (changes in edge structure)
and not weak change points (changes in edge strength). NBS and OBS with the SB have the best performance, with
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OBS marginally outperforming NBS. MOSUM and WBS have a similar performance in terms of scaled Hausdorff
distance with MOSUM detecting more change points on average. Overall the SB marginally outperforms the Vuong
test. However, for MOSUM, the Vuong test outperforms the SB. The worst TP and FN rates are for the last change
point at time point t = 526 for the Vuong test, while the change point at t = 301 is difficult to detect using the SB.

Table 4: The results from applying all variations of VCCP to the MVN data with 7 small change points (Simulation
4) over 100 simulated data sequences. NBS, OBS, MOSUM, and WBS denote the adapted binary segmentation, old
binary segmentation, moving sum, and the wild binary segmentation methods, respectively. The D denotes the D-vine.
TP, FN, FP, Cand.num, Num.det, and dH denote the true positive rate, false negative rate, false positive rate, number of
candidate change points, number of change points detected, scaled Hausdorff distance, respectively.

Stationary Bootstrap Vuong test
NBS.D OBS.D MOSUM.D WBS.D NBS.D OBS.D MOSUM.D WBS.D

TP.76 1 1 0.67 0.57 1 0.96 1 0.56
TP.151 1 1 0.42 0.97 1 0.96 0.96 0.96
TP.226 0.96 0.97 0.72 0.92 0.95 0.96 0.87 0.86
TP.301 0.73 0.68 0.44 0.44 0.71 0.44 0.49 0.3
TP.376 0.96 0.94 0.74 0.85 0.93 0.66 0.78 0.73
TP.451 1 1 0.99 1 1 1 1 1
TP.526 0.78 0.84 0.57 0.23 0.65 0.54 0.32 0.21
FN.76 0 0 0.02 0.02 0 0.02 0 0
FN.151 0 0 0 0 0 0 0.01 0
FN.226 0.02 0 0 0 0.03 0 0.03 0.05
FN.301 0.07 0 0.12 0.02 0.09 0.01 0.24 0.02
FN.376 0 0 0.01 0.01 0.04 0.26 0.11 0.05
FN.451 0 0 0 0 0 0 0 0
FN.526 0.12 0.02 0.09 0.25 0.19 0.09 0.27 0.21
FP.0-75 0.03 0.02 0.28 0.02 0.11 0.03 0.04 0.01

FP.76-150 0 0.02 0 0.02 0.13 0.08 0.1 0.02
FP.151-225 0.04 0.02 0.07 0.01 0.16 0.07 0.05 0.04
FP.226-300 0.18 0.16 0.13 0.03 0.19 0.11 0.12 0.03
FP.301-375 0.13 0.08 0.13 0.06 0.18 0.05 0.15 0.05
FP.376-450 0.03 0.04 0.08 0.02 0.07 0.02 0.1 0
FP.451-525 0.05 0.07 0.02 0.01 0.24 0.13 0.05 0.05
FP.526-600 0.13 0.08 0.13 0.06 0.18 0.05 0.15 0.05
Cand.num 10.57 7.92 6.42 5.76 10.44 7.04 8.58 5.47
Num.det 6.91 6.92 5.4 5.21 7.46 6.05 6.14 4.84
dH 0.38 0.33 0.95 0.96 0.52 0.75 0.84 1.03

3.2 SET fMRI data

In Figure 1, we display the results from applying all segmentation methods of VCCP (with the Vuong test) to the SET
fMRI data set. The solid vertical lines indicate the times of the showing and of the removal of the visual cues. We
compared the change points detected across the segmentation methods and using the Gauss and the 5-copula family.
Similar to the simulation results, the best method segmentation method is NBS, finding the most change points that are
close to the times of the showing and of the removal of the visual cues (change points are more tightly clustered around
the four vertical lines). OBS and MOSUM have a similar performance to NBS, however MOSUM detects a smaller
number of change points across all subjects. WBS has the worst performance. The 5-copula family has a marginal
superior performance over the Gauss copula across all segmentation methods of VCCP, but many of the change points
align, indicating that the change points are due to changes in the Gauss copula.
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Figure 1: The results from applying all segmentation methods of VCCP (with the Vuong test) to the SET fMRI data set. NBS,
OBS, MOSUM, and WBS denote the adapted binary segmentation, old binary segmentation, moving sum, and the wild binary
segmentation methods, respectively. We set the minimum distance between change points to be δ = 40 and used the Gauss and the
5-copula family. The solid vertical lines indicate the times of the showing and of the removal of the visual cues.

In Figure 2, we display the results from applying all segmentation methods of VCCP (with the SB) to the SET fMRI
data set. The results are very similar to applying the Vuong test (Figure 1). The main difference is that the SB is more
computationally intense due to the resampling procedure.

As discussed in Section 2.3 (main file), the parameter δ, represents the the minimal distance between two candidate
change points. It needs to be sufficiently large enough to estimate a stable D-vine structure, but also small enough
in order to not miss candidate change points. In Figure 3, we explore the change points detected from applying the
combination NBS.D.V (NBS segmentation, D-vine, and the Vuong test) from VCCP to the SET fMRI data set using
values of δ = 20, 30, 40. As expected, the number of change points decreases as δ increases. This inverse relationship is
reasonable as once a candidate point t0 is detected, we exclude other possible change points in the range [t0 − δ, t0 + δ]

to ensure sufficient sample size during the vine copula construction. Remarkably, even when we explore a limited range
(δ = 40), NBS can identify change points close to the times of the showing and of the removal of the visual cues. This
value of δ appears to provide and the best and most stable results. The 5-copula family has a superior performance over
the Gauss copula across all δ values, but many of the change points align, indicating that the change points are due to
changes in the Gauss copula. The results from using the SB instead of the Vuong test are very similar.

Using the results from Figure 3 (δ = 40), we plot the networks for subjects 2, 7 and 25 in the SET data, with change
points detected by NBS.D.V and the 5-copula family in Figure 4. The main graph of each partition corresponds to the
Kendall’s τ network, while the two sub-graphs on the top corners summarize the tail dependence. All partition specific
networks (apart from the last partition for subject 7) contain at least an edge with heavy tail dependence, some of them
are only displayed in dashed lines in the main graph due to an insignificant Kendall’s τ . Since the tail dependence
cannot be described by Gaussian models, changes in these non-Kendall-but-heavy-tail correlations may be neglected
if researchers build their change point detection model on the Gaussianity assumption. This may be the reason for a
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Figure 2: The results from applying all segmentation methods of VCCP (with the SB) to the SET fMRI data set. NBS, OBS,
MOSUM, and WBS denote the adapted binary segmentation, old binary segmentation, moving sum, and the wild binary segmentation
methods, respectively. We used the Gauss copula and the 5-copula family. The solid vertical lines indicate the times of the showing
and of the removal of the visual cues.

sparser change point detection using the Gauss copula than the results from the 5-copula family. For example, in Figure
3 the Gauss copula is only able to detect the two change points for subject 2, while the 5-copula family can detect three
change points. For subject 7, the change points using the Gauss copula and the 5-copula family are identical indicating
that the change points are due to the Gauss copula with little tail dependence. The middle panel of Figure 4 verifies this.

In Figure 4, we also label the best copula type for each edge. Only a small portion of them are denoted as Gauss copulas
(N), while most of the edges are best fitted with Clayton (C) or Gumbel (G) copulas, consistent with their heavy tail
dependence. During different periods, some best-fitting copula types remain the same, such as the F copula linking
ventromedial PFC (vPFC) and right superior temporal sulci (R.STS), and Gumbel copula linking the right superior
temporal sulci (R.STS) and the left superior temporal sulci (L.STS) in subject 25. However, some edges experience
changes not only in connecting strength but also in copula types. The diversity and the variability of copula types in the
networks once again prove the superiority of a vine copula model with multiple copula candidates.

Overall, for the anxiety-inducing experiment, the NBS segmentation method performs best with consistent change
point detection close to time points (61− 67.5) and (131− 137.5). The performance of the SB and the Vuong test are
similar. While the 5-copula family allowed for more flexibility in the model and change points in the network, it also
increases the computational time.

7

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 26, 2021. ; https://doi.org/10.1101/2021.04.25.441254doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.25.441254
http://creativecommons.org/licenses/by-nc-nd/4.0/


arXiv Template A PREPRINT

Figure 3: The results from applying the combination NBS.D.V (with Gauss and 5-copula family) from VCCP to the SET fMRI data
set. The minimum distance between change points is set to δ = 20, 30, 40. The solid vertical lines indicate the times of the showing
and of the removal of the visual cues.
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Figure 4: The networks for subjects 2, 7, and 25 in the SET data, with change points detected by NBS.D.V and the 5-copula
family. Black and red lines in the main networks correspond to positive and negative Kendall’s τ , with a grey label marking the
best-fitting copula type for each edge. Only edges that are found to be significant in Kendall’s correlation test or with heavy heavy
tail dependence are shown. The green sub-network on the top left corner represents lower tail dependence, and the blue sub-network
on the top right corner represents upper tail dependence. Dashed lines indicate ROIs with heavy tail dependence but insignificant
Kendall’s τ .
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