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ABSTRACT13

Nearly all animals forage, as it is essential to acquire energy for survival through efficient search and resource
harvesting. Patch exploitation is a canonical foraging behavior, but a systematic treatment of how animals cope
with uncertainty is lacking. To address these shortcomings, we develop a normative theory of patch foraging
decisions, proposing mechanisms by which foraging behaviors emerge in the face of uncertainty. Our model
foragers statistically and sequentially infer patch resource yields using Bayesian updating based on their resource
encounter history. A decision to leave a patch is triggered when the certainty of the patch type or the estimated
yield of the patch fall below a threshold. The timescale over which uncertainty in resource availability persists
strongly impacts behavioral variables like patch residence times and decision rules determining patch departures.
When patch depletion is slow, as in habitat selection, departures are characterized by a reduction of uncertainty,
suggesting the forager resides in a low-yielding patch. Uncertainty leads patch-exploiting foragers to overharvest
(underharvest) patches with initially low (high) resource yields in comparison to predictions of the marginal
value theorem. These results extend optimal foraging theory and motivate a variety of behavioral experiments
investigating patch foraging behavior.

14

1 Introduction15

Foraging is performed by many different species1–5 and engages cognitive computations such as learning of resource16

distributions across spatiotemporal scales, route planning, and decision-making6. Comparing species, one can ask17

how these integrated processes have been shaped by natural selection to optimize returns in the face of environmental18

and physiological constraints6, 7. Foraging thus provides the opportunity to study and quantify how both evolution19

and neural circuitry shape a natural behavior8–11.20

In natural landscapes, foraging involves a decision hierarchy that unfolds across multiple length and time scales,21

that consider both where to forage as well as how long to exploit a certain resource12, 13. On long timescales, animals22

accumulate evidence to choose which of a collection of large areas they will dwell in and forage, during which their23

activity does not appreciably change the resource landscape. Following previous work, we refer to this as “habitat24

choice”12. Within habitats, animals exploit resources on shorter time scales, while their activity depletes resources in25

visits to localized regions. We refer to this behavior as “patch-exploitation”, or “patch-leaving”. Questions of where26

to forage and how long to exploit local patches of resource comprise a multi-level framework for examining behavior27

across spatial scales; still larger scales consider the home range of an individual, as well as the species range13, 14.28

For both habitat-choice and patch-leaving, the local regions of an environment can be conceptualized as a “patch”;29

the key difference is in whether or not the forager’s activity impacts the resource availability in the landscape. As30

a decision problem, both are sequential choice processes, so the forager does not make a choice between discrete31
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alternatives that are presented simultaneously, but rather only receives evidence from the current patch, and must32

decide whether to stay or go15. Thus, habitat-choice and patch-leaving are related but differ in the length and time33

scales involved (Fig. 1A). However, most theoretical work has considered these two problems separately.34

Regarding habitat-choice, the optimal behavior is clear: the forager should locate and spend as much time as35

possible in the habitat patch with the best resources. Observational studies of habitat-choice often consider the36

combined effects of multiple factors to ask how well they predict observed habitat use (e.g.16). Theoretical and37

experimental studies have investigated multiple factors, such as density-dependent effects predicted by the ideal-free38

distribution when there are multiple foragers on a landscape17, and how perceptual constraints may lead to deviations39

from optimal choices18. However, with a focus on examining and predicting optimal behavior, most studies do not40

consider the process by which individuals use information to reach decisions of habitat-choice.41

Patch-leaving considers shorter timescales, where the forager substantially depletes the patch during their visit,42

and must subsequently decide when to leave the current patch in search of another. A basic result in behavioral43

ecology, the marginal value theorem (MVT) states that an animal can optimize resource intake rate by leaving its44

current patch when the estimated within-patch resource yield rate falls below the global average resource intake rate45

of the environment19. While this theory has been validated in multiple behavioral studies20–29, it does not describe46

how animals learn key environmental features (e.g., resource distribution) from experience, or how such a decision47

rule can be implemented mechanistically. Most mechanistic models of foraging do not consider the process of48

statistical inference20, 21, 25, 28, 30, and thus cannot explain how optimal foraging decisions are shaped by the presence49

and reduction of uncertainty based on resource encounters. On the other hand, Bayesian models of patch leaving50

that do ask how animals use limited information to make foraging decisions31–33, 33–48 tend to consider a narrow51

range of environmental conditions.52

The aim of our study is thus to develop a Bayesian framework of foraging behavior, treating decisions as a53

statistical inference problem, and connecting normative theory of foraging decisions with mechanistic evidence54

accumulation models30. We first define a general mathematical framework to model patch-foraging decisions that55

applies at different timescales with regards to search and depletion of the resource. These represent the different56

ecological decision cases described above: “habitat-choice” and “patch-leaving”. Because these cases are only57

separated in the timescale of resource depletion, we treat both with the framework of patch foraging as an evidence58

accumulation process whereby a threshold on available evidence triggers a decision.59

Using several mathematically tractable cases in which probabilistic updating based on the receipt of resources60

within a patch can be modeled by stochastic differential equations (SDEs), we determine patch leaving statistics61

via solutions to first passage time problems. We thus obtain analytical expressions for optimal decision thresholds62

that connect to observable quantities of interest, including patch residence time, travel time, resource consumption63

over time, and patch yield rate over time. For both habitat-choice and patch-leaving, we show that in uncertain or64

resource-poor environments, uncertainty causes even an ideal Bayesian observer to tend to stay too long in low65

yielding patches (overharvesting) and not long enough in high yielding patches (underharvesting). Other studies have66

suggested that such a sub-optimality arises due to a limit in discriminating between similar patches18, or deviations67

from the MVT due to state-dependence or other decision factors49, but here we arrive at this result from principles68

of statistical inference. By establishing a general Bayesian framework for patch foraging at multiple scales, our69

study provides a platform to study behavioral and neural mechanisms of naturalistic decision-making akin to how70

trained decision-making behavior is studied within systems neuroscience8, 50.71

2 Sequential sampling model framework72

The patch foraging model framework, which describes both habitat-choice and patch-leaving, considers an animal73

searching its environment, which contains distributed resource patches (Fig. 1A). When the animal enters a patch,74

they consume resources within the patch. We represent the decision process via a sequential sampling model for an75

ideal observer’s posterior of their current patch’s yield rate λ (t). This assumes an animal learns over time the yield76

of the patch they are currently in, in order to make a decision about if and when they should leave and search for77

another patch.78
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Figure 1. Patch-departure tasks and model. A. Task environments: On long timescales, an animal decides
between habitats whose resource yields change slowly, and on shorter timescale, the animal exploits patches whose
resources are depleted more quickly. B. Ideal observer foraging model: Initial yield of patch is drawn from the
distribution p(λ0), generating random resource encounter times t1:K , and updating belief of current resource yield
rate λ (t) for patch. The maximum likelihood estimate λMLE approaches the true λtrue yield rate over time.

The initial yield rate λ k
0 determines the rate at which the animal initially encounters a resource in the patch and79

is drawn from the distribution p(λ0). We assume the forager knows and initializes their belief with the prior p(λ0)80

when arriving in a patch (Fig. 1B). This simplifying assumption allows us to obtain tractable solutions. We later81

discuss future extensions that could explore how learning p(λ0) shapes long term foraging strategies. Considering82

randomly timed resource encounters within a patch, we use a Poisson-distributed rate λ (t) = λ0−ρK(t) (as in83

random search51) that decreases with K(t), the number of resource encounters so far, where ρ is the impact of84

each resource encounter on the underlying yield rate of the patch. Resource encounter history can be described by85

the summed sequence of encounters, each at time t j: x(t) = K′(t) = ∑
K(t)
j=1 δ (t− t j). An ideal forager performs a86

Bayesian update of their belief about the current patch yield rate λ :87

p(λ |x(t)) = p(x(t)|λ ) p0(λ +K(t)ρ)
p(x(t))

∝
(λ/ρ +K)!
(λ/ρ)!

e−λ t p0(λ +Kρ), λ ≥ 0. (1)88

89

In general, resource encounters both: (1) give evidence of higher yield rates λ , since encounters are more probable90

in high yielding patches; and (2) deplete the patch, decrementing the yield rate λ by the ρ (Fig. 1B).91

Changing ρ changes the rate of patch-depletion relative to the timescale of the foraging process. Small relative92

values of ρ/λ0 represent a large resource patch that the forager depletes very slowly. The limiting case ρ/λ0→ 093

represents the habitat-choice problem. Alternatively, when this ratio is intermediate up to unity (ρ/λ0 = 0.01 to 1),94

the forager considerably depletes the patch with each encounter. We refer to this as the patch-leaving problem, and95

show that in such cases, uncertainty in the patch yield can play a major role in shaping the departure strategy. We96

first consider the habitat-choice problem in Section 3, then following this, we consider the patch-leaving problem in97

Section 4.98

3 “Habitat-choice”: Minimizing time to find high resource habitats99

Habitat-choice refers to patch use at scales where the forager’s activity does not significantly affect the resource100

distribution or, in other words, that resource depletion occurs very slow relative to the time needed to the search101

process. We represent this with the theoretically tractable yet representative limit of zero patch depletion. In this102

case, the optimal behavior is to quickly locate a patch with the highest yield and remain there. Although in real103

3/20

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 26, 2021. ; https://doi.org/10.1101/2021.04.24.441241doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.24.441241


environments, habitats eventually deplete and the forager would leave, our theoretical treatment of a “remain in the104

high patch” strategy can simply translate to a “stay a long time in the initially high yielding patch” strategy, with105

results applying similarly to both due to the separation of timescales: for habitat-choice, the time needed to search106

and decide on a high yield patch to remain in (which we denote as Tarrive), is much less than the time that would be107

needed to actually deplete the patch.108

Upon entering a patch, the forager must use their experience of resource encounters to decide whether to stay in109

the patch, or leave for another. We first consider a simplified binary environment where there are only two patch110

types – high yield versus low yield – and that the forager knows these possible patch types and their return rates.111

Here, the optimal behavior is to infer whether or not they are currently in a high yield patch, and if so, to stay, but112

otherwise to leave. Uncertainty and stochasticity of resource encounters means that the forager will visit some113

low yielding patches until they learn the yield rate and depart, and may also visit and depart from high yielding114

patches if the type is incorrectly inferred. We then consider more general cases, and show that the general trends and115

optimal strategies from the simpler binary case still apply; this includes environments with multiple patch types and116

environments with continuous distributions of patch types where the forager has a threshold for accepting a patch117

as sufficiently good. With this approach, we can explicitly derive statistics associated with patch departures and118

examine how the efficient identification of high quality habitats depends on environmental parameters like patch119

discriminability (e.g., λH/λL) and high patch prevalence (pH).120

3.1 Two patch types121

An environment with two possible patch types – high-yielding or low-yielding – is a theoretically tractable case that122

gives insight into optimal decision strategies and their resulting behavioral observables. Here, the distribution of123

patch types is p0(λ ) = pHδ (λ −λH)+ pLδ (λ −λL): H denotes the higher-yielding patch and L denotes the lower124

yielding patch. As stated, we assume the forager knows the values λH and λL and uses these as prior information to125

infer the type of the current patch. Using the limit of slow depletion (ρ → 0) to represent habitat choice, the animal126

determines which patch type they are currently in using the log-likelihood ratio (LLR) y(t)≡ log p(λH |x(t))
p(λL|x(t))

. With127

this, their belief update can be written as a stochastic differential equation (SDE):128

dy
dt

= log
λH

λL

∞

∑
j=1

δ (t− t j)︸ ︷︷ ︸
resource encounters

− (λH −λL)︸ ︷︷ ︸
time between encounters

, (2)129

130

with initial condition set by the prior y(0) = log pH
1− pH

. Elapsed time between resource encounters builds up131

evidence for the low-yielding patch while resource encounters provide evidence for the high-yielding patch. Eq. (2)132

has a simple form similar to classic evidence accumulation models of decision-making psychophysics52, 53, recently133

extended to foraging decisions30.134

The long-term resource intake rate is maximized if the forager finds and remains in a high-yielding patch135

(Fig. 2A). If the forager remains in a high-yielding patch, then the energy intake rate will reach λH in the limit of136

long time. Before locating and deciding to remain in a high-yielding patch, the forager may also visit low-yielding137

patches, leaving when their belief crosses the threshold (Fig. 2A), and may also visit and depart from high-yielding138

patches, if they are mistaken for low-yielding ones. The departure threshold sets the certainty that the forager obtains139

before leaving; a low threshold means high certainty of the patch type before leaving, while a high threshold will140

result in more departures. Too low of a threshold can lead to too much time spent in low-yielding patches while141

gathering more evidence, while too high of a threshold can lead to (incorrectly) departing from high-yielding patches142

before gathering enough evidence to distinguish their type. By setting the optimal threshold that balances uncertainty143

to minimize the time to arrive and remain in a high-yielding patch, we can ask how the environmental characteristics144

of relative patch yield, relative patch density, and travel time influence behavior and expected return of resources.145

The forager’s strategy is determined by the threshold θ on their belief (LLR), given by Eq. (2), shaping the time146

to find and remain in a high patch T̄arrive(θ). This quantity can be computed from the patch departure statistics of the147

forager, using first passage time methods, given the prior y(0) = log pH
1−pH

54, 55; τ is the mean travel time between148
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Figure 2. Statistics of habitat identification in environments with two patch types. A. Habitat type belief
y(t) = log p(λH |x(t))

p(λL|x(t)) (as animal decides between a habitat with a high, λH , and low, λL, resource yield) increases with
resource encounters and decreases between until y(t) = θ and the observer departs the patch. B,C. Mean time to
arrive and remain in a high yield habitat varies nonmonotonically with departure threshold θ and decreases as the
patch discriminability λH/λL and high yield fraction pH increase. Solid lines are Eq. (3). Dots are averages from
104 Monte Carlo simulations. λH = 2 and pH = 0.5 are fixed unless indicated. D,E. Departure threshold θ opt

minimizing the time to arrive in the high patch decreases with λH/λL and τ . Solid lines are numerically obtained
minima of Eq. (3), dotted lines are Eq. (4), and dashed lines are Eq. (5). In D, dotted lines appear overlaid on solid
line because of the close fit. F. The minimal mean time T̄ opt

arrive to arrive in a high yield patch decreases with λH/λL

and pH . We fix λL = 1 and τ = 5.

patches which we assume is known or determined from experience. Using this, the time to arrive and remain in a149

high yield patch is150

T̄arrive(θ) =(1− pH)

[
1+ eθ

pH − (1− pH)eθ

][ log pH
1−pH

−θ

(λH −λL)−λL log λH
λL

+ τ

]
. (3)151

152

The minimum of this, corresponding to θ opt (Fig. 2B,C) can be determined numerically (solid lines in Fig. 2D,E).153

An explicit approximation of θ opt is obtained by differentiating Eq. (3) dropping higher order terms and solving for154

θ
opt ≈W−1

[
−(1− pH)

(
λH

λL

)λLτ

e−(λH−λL)τe2pH−1

]
+Aτ + log

pH

1− pH
+1−2pH , (4)155

156

where A = (λH −λL)− λL log λH
λL

is defined for ease of notation (A = 0 for λH = λL, and A > 0 for λH > λL), and157

W−1(z) is the (−1)th branch of the Lambert W function (inverse of z =WeW ). This approximation matches well158

with the numerically obtained minima of Eq. (3) (dotted lines in Fig. 2D,E), and can be further simplified using the159

approximation W−1(z)≈ log(−z)− log(− log(−z)) yielding160

θ
opt ≈ log(1− pH)− log [Aτ− log(1− pH)−2pH +1] , (5)161

162
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indicating the scalings of the optimal threshold in limits of environmental parameters (dashed lines in Fig. 2D,E).163

Details on the derivation of the optimal threshold can be found here55.164

How best should an animal adapt their habitat search strategy to the statistics of the environment? When high165

yield patches are rare (low pH), travel times are large (high τ), or patches are easily discriminable (high λH relative166

to λL) the forager should gain higher certainty by deliberating longer before departing a patch; indeed, from Eq.167

5 and Figures 2D-E we see that the optimal threshold decreases with ρH , τ , and λH . Increasing discriminability168

(λH/λL) or the high yield patch fraction pH decreases the minimal mean time T opt
arrive needed to arrive and remain in a169

high yield patch (Fig. 2F), since this makes finding a high yielding patch easier for the animal.170

Furthermore, the outcome T̄arrive(θ) is most sensitive to the strategy (choice of threshold θ ) in environments171

with low discriminability and a small fraction of desirable patches (Fig. 2B-C). In experiments, the value of Tarrive is172

an observable that can be used to infer the effective value of θ that an animal is using. The parameter sensitivity173

suggests an animal’s patch-selection strategy – i.e. the value of θ they are using – could be more precisely inferred174

when high patches are rare or more difficult to identify. Note, the patch-leaving rule of thresholding one’s LLR is175

mathematically equivalent to thresholding the mean estimated resource yield rate since λ̄ = (λH +e−yλL)/(1+e−y),176

analogous to previous patch-departure rules developed33, 43. Next, we generalize this approach to environments177

having more than two patch types, so decisions use multiple LLRs, such that optimal decisions do not simply map to178

thresholding estimated yield rate.179

3.2 Multiple patch types180

Animals may have to select from any number of patch types in an environment, which begs the question as to how181

decision and search strategies should extend to more general environments. With multiple patch types, decisions182

made by computing only two LLRs is sufficient to obtain near optimal performance in terms of minimizing the183

time to find and remain in a high-return patch. This result thus complements and extends previous work, which has184

considered optimal strategies for two patch types, or with fixed prior distributions32, 35, 36.185

To model multiple patch types, consider environments with N patch types having resource yield rates λ1 > λ2 >186

· · ·> λN ≥ 0 with patch fractions p1, p2, ..., pN . Defining LLRs y j = log p(λ1|x(t))
p(λ j+1|x(t)) for j = 1, ...,N−1, yields the187

N−1-dimensional system fully describing an ideal observer’s belief about the current patch type188

y′j = log
λ1

λ j+1

∞

∑
j=1

δ (t− t j)− (λ1−λ j+1), (6)189

190

where y j(0) = log p1
p j+1

, and any likelihood can be recovered as p(λ j+1|x(t)) = e−y j

1+∑
N−1
k=1 e−yk

, j = 0,1, ...,N−1, where191

y0 = 0 for j = 0.192

As in the binary case, the optimal strategy is to find and remain in the highest yielding patch (λ1). We again193

represent patch-leaving decisions by thresholding the probability of being in the high yielding patch, such that when194

p(λ1|x(t)) = φ ∈ (0, p1), the forager exits the patch. We approximate this thresholding process by requiring y j ≥ θ195

(for j = 1,2, ...,N) to remain in the patch, so the forager departs given sufficient evidence they are not in the highest196

yielding patch (See Fig. 3A for three patch types).197

To determine the sensitivity of strategies to their complexity, we also consider reduced strategies in which the198

observer only tracks the first L LLRs y1,y2, ...,yL and compares these with the threshold θ to decide when to leave199

the patch. Thus, we compute the mean time to arrive and remain in the high patch, which depends on the escape200

probability π1(θ) from the high yielding patch and the mean times to visit each patch T̄j(θ ,L) when escaping:201

T̄arrive(θ) =
π1(θ ,L)

1−π1(θ ,L)
(T̄1(θ ,L)+ τ)+

1− p1

p1

∑
N
j=2 p j(T̄j(θ ,L)+ τ)

1−π1(θ)
, (7)202

203

where patch departure strategy depends on the number L of LLRs thresholded and the threshold θ used.204

The mean high patch arrival time T̄arrive depends strongly on the high patch resource yield rate λ1, decreasing205

considerably as the patch becomes more discriminable (3 patches: Fig. 3B; 5 patches: Fig. 3D). On the other hand,206
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Figure 3. Optimal departure strategies for habitat choice in environments with multiple patch types.
A. Beliefs about three possible habitat types y1(t) = log p(λ1|x(t))

p(λ2|x(t)) and y2(t) = log p(λ1|x(t))
p(λ3|x(t)) increase with resource

encounters and decrease between until either reaches the departure threshold θ . B. Mean time T̄arrive to arrive and
remain in highest yielding patch λ1 (Eq. (7)) (with N = L = 3) decreases with patch discriminability λ1 as does the
optimal departure threshold θ opt (circles). Three patch types with λ2 = 2, λ3 = 1, τ = 5, and p1 = p2 = p3 = 1/3.
C. T̄arrive decreases with the prevalence of the best patch p1 (while p2 = p3 = (1− p1)/2), but θ opt varies
non-monotonically. D. The mean time T̄arrive to arrive and remain in highest yielding patch λ1 (see Eq. (7)) depends
on how many log-likelihood ratios (L) the forager uses to make a decision. Although the optimal time T̄ opt

arrive (curve
minima – circles) decreases with L, the dependence is weak; L = 2 yields nearly identical mean optimal arrival
times as L = 4. The optimal threshold which leads to T̄ opt

arrive decreases with L. Other parameters are p j = 1/N,
λ j = 6− j, j = 1,2,3,4,N = 5. In C and F, 106 Monte Carlo simulations are used to compute the curves T̄arrive.

T̄arrive depends weakly on the worst patch’s yield rate λ3 (Fig. S1A), so uncertainty amongst the less valuable patches207

has little effect on behavior. In a related way, T̄arrive is much more strongly affected by changes in the fraction of the208

high yielding patch (p1: Fig. 3C) than changes in the balance of the middle (λ2) and low (λ3) patches (Fig. S1B).209

Again, the optimal threshold decreases when patches are more discriminable: as λ1 increases the forager should210

gain a higher certainty before leaving (Fig. 3B). The average high patch arrival time T̄arrive depends weakly on the211

threshold near the optimum, but the optimum threshold shows a non-monotonic dependence on p1. The lower212

optimum threshold for both low and high p1 values represents that in these cases it is optimal to be more certain of213

the patch type before leaving: for low p1 this occurs because high yield patches are rare (and thus there is a higher214

premium on distinguishing the high yielding patch when actually in one), and for high p1 this occurs because they215

are plentiful (one is more likely to land in a high yielding patch, so one can afford to require more certainty to depart).216

Between these cases, although the optimal threshold is slightly higher, the dependence is weak. Additionally, this217

demonstrates that if the forager did not know p1 (we assumed this is known and is used to formulate the leaving218

decisions), the best strategy would be to err on the side of choosing a low threshold, because the sensitivity of T̄arrive219

to threshold is relatively weak for choices too low, but can be higher for choices too high ((Fig. 3C).220

In an environment with five patches, performance depends weakly on how many LLRs are used to make patch221

leaving decisions for L > 2. It is sufficient to simply track the LLRs between the first three patches, which correspond222

to using L = 2 (Fig. 3D). This is because the forager only needs to know whether they are in one of the best patches223
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or not, since the goal is to eventually settle in one such patch as a habitat. This demonstrates again that the key224

features of uncertainty that matter to the optimal forager are the discriminability and prevalence of the best and225

second best patch type.226

3.3 Continuum limit: many patch types227

Building on the N-patch case, we now consider a scenario where there is a continuous distribution of patch qualities228

(N→ ∞), so the resource yield rate for each patch λ is drawn from a continuous distribution p0(λ ), which serves229

as a prior for the posterior p(λ |x(t)) with each patch visit (Fig. 4A). For any continuous probability distribution230

function p0(λ ), the maximum λ will never be sampled, so arriving and remaining in the “maximum” yielding patch231

is not possible. We therefore assume the forager seeks patches with yield rates λθ or above, but deems lower yield232

rates to be insufficient. With this formulation, the forager updates a LLR based on a belief of whether current patch233

is greater or less than λθ . Because this divides the continuous distribution into two categories, the mathematical234

treatment is similar to the binary case, but with added uncertainty because the patches in each category do not have235

the same return.236

To model this, given a reference yield rate λθ , we represent decisions in an environment with a continuous237

distribution of patch qualities by tracking P(λ > λθ |x(t)) =
∫

∞

λθ
p(λ |x(t))dλ . For the case of an exponential prior238

p0(λ ) = αe−αλ , given K(t) resource encounters, we define ρ(t) = log P(λ>λθ |x(t))
P(λ<λθ |x(t)) and state the forager departs239

the patch when ρ(t)≤ θ̂ or when P(λ > λθ |x(t))≤ θ := 1/(1+ e−θ̂ ). Note, to allow evidence accumulation, we240

require that θ < α
∫

∞

λθ
e−αλ dλ = e−αλθ ≡ φ , which represents the fraction of patches where λ ≥ λθ .241

Computing the probability of escaping a high patch, πH(θ ;λθ ) =
∫

∞

λθ
p0(λ )π(θ ;λ )dλ , and the mean time per242

visit to a high and low patch types, T̄H(θ ;λθ ) =
∫

∞

λθ
p0(λ )T̄ (θ ;λ )dλ and T̄L(θ ;λθ ) =

∫ λθ

0 p0(λ )T̄ (θ ;λ )dλ , when243

departing (using Monte Carlo sampling), we then use Eq. (3) to compute the time to arrive in a high yielding patch244

(Fig. 4B). Placing a higher threshold λθ on the quality of an acceptably high yielding patch increases the time to245

arrive in an acceptably high patch. Moreover, the optimal threshold θ decreases, as more time must be spent in246

patches to discriminate a high yielding patch, which become rarer as λθ increases. Increasing λθ corresponds to247

making sufficiently high patches more discriminable and more rare.248

With this formulation, the mathematical treatment in the case of a continuous distribution of patches is then the249

same as the binary case, and we can map corresponding results: setting a higher λθ is equivalent to decreasing pH250

and concurrently increasing λH . Although we considered an exponential distribution for p0(λ ), we note that if this251

distribution changes, then this will affect the relationship between λθ and the equivalent mapping onto the binary252

case (in terms of pH and λH). Another further possibility would be to further “bin” the continuous distribution to253

correspond to 3 effective types, instead of two, as we did using a single threshold. The continuous case then would254
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be treated analogously to a 3 patch type environment, and could be represented with two LLRs. However, further255

binning may not be necessary to achieve near-optimal decisions. Overall, this demonstrates that effective strategies256

for foraging environments with a continuum of patch types could be generated using particle filters that compute257

likelihoods over a finite set of patch types56.258

3.4 Summary of results: Habitat choice problem259

In general, we see that the results of considering the simple case of two distinct patch yield rates informs the general260

strategy when there are many possible patch types. The optimal time to arrive and remain in the highest yielding261

patch decreases as the high patch discriminability increases and as high patches become more common. Considering262

more than two patch types, the associated foraging strategies are most strongly coupled to environmental parameters263

of the highest and second highest yielding patch types. It is not necessary to compute LLRs associated with all264

possible types in order to efficiently find a high patch – even considering only a single LLR gives reasonable results,265

and the average time to arrive in a high patch is not strongly affected when the number of LLRs continues to increase266

beyond two. This suggests that animals select habitats by estimating a possible range of high-quality patches and267

then making patch-departure decisions based on whether patches meet those criteria or not.268

4 Patch-leaving: Depletion- vs. uncertainty-driven decisions269

When the scale of a patch is smaller, the forager will significantly deplete the patch’s resources during their visit.270

The decision is then not of which patch to remain in, but rather of when to leave the current patch in search of271

another. We therefore refer to this as patch-exploitation (Fig. 1A;12, 57). While the nature of the resource differs272

for different animals (and typical patch residence times can accordingly vary from seconds up to hours - for some273

examples, see31, 38, 47, 58, 59). These cases all have in common that each resource patch is small enough such that274

availability within the patch is affected by the consumption of the forager.275

The marginal value theorem (MVT) sets the optimal time to leave a patch in order to maximize resource276

consumption over time: when the current patch yield rate equals the overall average yield rate for the environment19.277

However, the MVT is simply an optimal rule, and does not specify the mechanistic process of how an animal278

uses its experience to reach a decision to leave a patch. Previous work has demonstrated that rewards in discrete279

chunks – instead of as a continuous rate – can affect the process an animal uses in decision-making 21, 24, 30. From a280

Bayesian perspective, decisions should use available information about the resource distribution in the environment.281

If resource availability within a patch is discrete or uncertain, even an ideal observer may not be able to accurately282

infer the actual rate of return, and thus would not be able to implement the leaving rule prescribed by the MVT.283

Experiments show that while the general trends predicted by the MVT hold in many cases, animals often deviate284

from an MVT-predicted strategy49. Moreover, in cases where patches contain very few items (e.g. 0 or 1 resource285

chunks), reward is not described by a rate function, and the MVT leaving rule does not apply.286

Here we consider an animal that encounters resources in discrete chunks and infers the state of the environment287

and subsequently acts. This allows us to ask when the MVT rule is actually optimal versus when it does not apply,288

when deviations from the MVT occur due to uncertainty, and how a forager can incorporate prior knowledge about289

the resource distribution in the environment to reach a patch-leaving decision. We first treat the simple case of290

homogeneous patch types to establish the basic theoretical approach. Then, we consider an environment with two291

patch types to show how the inference procedure affects decisions in different environmental configurations, which292

we refer to as the “depletion-dominated” versus “uncertainty-dominated” regimes.293

4.1 Homogeneous environments294

To show how discreteness of resources affects decisions21, 24, we first consider the simple case of a homogeneous
environment with a single patch type. An ideal forager with prior knowledge of the initial yield rate λ0 can track
time and resource encounters to determine the current yield rate λ (t), and then depart the patch when the inferred
value of λ (t) falls below some threshold λθ . Prior knowledge of the initial patch yield can be used in order to infer

λ (t) = λ0−K(t)ρ, (8)
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which represents the true underlying value of λ (t). Using this in a patch-leaving decision strategy is equivalent to295

departing after a fixed number of resource encounters30.296

Using this inference strategy, we calculate the long term resource intake rate by assuming that λθ is an integer297

multiple of ρ . With this, the number of chunks consumed before departure is mθ ≡ K(T (λθ )) := (λ0−λθ )/ρ .298

Linearity of expectations allows us to compute the mean departure time as the sum of mean exponential waiting299

times between resource encounters Tλθ
= [Hm0−Hm0−mθ

]/ρ , where Hn is the nth harmonic number. Thus, we can300

approximate the long term resource intake rate given λθ as301

Rλθ ≈ m0ρ−λθ

log(ρm0)− logλθ +ρτ
, (9)302

303

valid for m0� 1. There is an interior optimum mθ that maximizes long term resource consumption rate, which we304

can estimate by computing the approximate critical point equation of Eq. (9)305

m0ρ−λθ

λθ

= log
ρm0

λθ

+ρτ. (10)306

307

For large m0 (many chunks per patch), λθ = Rλθ , i.e. the leaving threshold is equal to the overall average rate of308

return in the environment; this is the optimum prescribed in the MVT19. Using the exact formula in Eq. (9), we can309

numerically determine the optimal threshold for small m0 (few chunks per patch). This shows that when there are310

only few chunks per patch, the true optimal threshold is close to, but not exactly equal to, Rλθ (Fig. 5A).311

4.2 Binary environments312

In binary environments, the forager estimates the underlying yield rate of the current patch, λ̃ (t), and departs when313

this falls below a threshold λθ . Constant threshold strategies are our focus due to their relative simplicity, but we314

note that alternatively dynamic programming could be used to determine optima of a more general class of departure315

strategies60. We assume the forager uses knowledge that two different patch types exist to estimate the yield rate316

of the current patch; this involves using prior information to discriminate the patch type (high or low), combined317

with resource encounters which decrement the estimated yield rate. The belief can be determined according to a318

non-autonomous SDE for an LLR:319

dy
dt

=
Kmax

∑
j=1

log
λH − ( j−1)ρ
λL− ( j−1)ρ

·δ (t− t j)− (λH −λL), (11)320
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321

where y(0) = log pH
1− pH

as in the case of habitat choice.322

We focus on two different scenarios, which we refer to as: (a) Depletion-dominated regime, where the initial323

yield rate of the patch is known, and therefore leaving decisions are based solely on depletion, and (b) Uncertainty-324

dominated regime, where the type of the patch is not known upon entry, and optimal leaving decisions must consider325

uncertainty in the estimate of the current yield rate of the patch. For the uncertainty-dominated regime, we consider326

first the cases where low return patches contain zero resources, and then generalize to different amounts of resources327

per patch type.328

Depletion-dominated regime. To represent what we term the depletion-dominated regime, we assume that the329

forager arrives in a patch and immediately knows the patch type λ j ( j ∈ {H,L}) in which they reside (e.g., due to330

information provided by conspecifics or visual cues). In this case, the forager can make an accurate estimate of the331

true underlying yield rate of the patch, and therefore there is no uncertainty. Thus, leaving decisions are driven by332

depletion of the patch, as determined by when the estimated yield rate falls below some level λ
j

θ
.333

Following our calculations from the homogeneous case, the long term resource intake rate depends on the initial334

resource chunk count in patches of type j, m j
0, and the departure thresholds, so in the large m j

0 limit,335

Rλ
H,L
θ ≈

pH(mH
0 ρ−λ H

θ
)+ pL(mL

0ρ−λ L
θ
)

pH T̃H(λ H
θ
)+ pLT̃L(λ L

θ
)+ρτ

, (12)336

337

where T̃j(λ
j

θ
) = log(ρm j

0)− logλ
j

θ
and the critical point equations for each partial derivative ∂

λ
j

θ

Rλ
H,L
θ = 0 imply338

pH(mH
0 −λ

H
θ )+ pL(mL

0ρ−λ
L
θ ) = λ

j
θ

[
pH(log(ρmH

0 )− logλ
H
θ )+ pL(log(ρmL

0)− logλ
L
θ )+ρτ

]
. (13)339

340

This can be rewritten as Rλ
H,L
θ = λ

j
θ

( j = H,L). The aforementioned equation shows that, like the homogeneous case,341

an optimal strategy when there are many chunks per patch is to depart as the inferred yield rate equals the mean rate342

of resource encounters for the environment; additionally, the optimal threshold only depends on the average yield343

rate for the environment, and not the individual patch types (MVT: Fig. 5B). When there are few chunks per patch,344

the optimal threshold may slightly differ from this value (See results for the homogeneous case in Fig. 5A). The345

depletion-dominated regime is similar to a homogeneous environment: Since the forager knows the initial yield346

rate of the patch they are currently in, they can accurately infer the true underlying yield rate, and depart based on347

depletion of the patch. As in the homogeneous case, the optimal decision strategy can be formulated equivalently as348

either leaving when the estimated rate of return falls below a threshold, or as counting – leaving after consuming a349

certain amount of resources.350

Uncertainty-dominated regime - Empty low patch. In the “uncertainty-dominated” regime, the forager does not351

know the initial yield rate of the patch upon entry. However, we assume that they have prior knowledge of the types352

of patches in the environment, i.e. that they know the values of λH and λL. We first consider the tractable scenario353

where the low yielding patch is empty (λL = 0). Such situations occur if certain regions of the environment appear354

to have food (e.g., fruiting vegetation) but on closer inspection turn out to be empty (e.g., already foraged or rotten).355

The optimal strategy is for the observer to first wait a finite time Tθ to depart if no resources is encountered, but if356

resources are encountered before t = Tθ , consume resources until the inferred yield rate drops to λθ = (m0−mθ )ρ .357

Early/late decisions are thus driven by uncertainty/depletion. Assuming m0� 1, we can continuously approximate358

the long term resource intake rate and find it is maximized using a waiting time Tθ that is insensitive to pH . However,359

the threshold λθ depends on both pH and travel time, because these parameters affect the overall average rate of360

resources available in the environment (Fig. 5C). The optimal threshold λ
opt
θ

is not specified by the MVT, since361

uncertainty drives the forager to spend non-zero time in empty patches, adding extraneous time to the foraging362

process.363

Many resource chunks. Next, we generalize to examine binary environments in which mH
0 > mL

0 are arbitrary364

integers. In this case, the belief y(t) = log P(λH−K(t)ρ|x(t))
P(λL−K(t)ρ|x(t)) evolves according to Eq. (11). The forager estimates the365
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0 and mL
0 , Rλθ near the optimum (dots) deviates between
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current yield rate of the patch from this belief,366

λ̃ (t) =
λH + e−yλL

1+ e−y −ρK(t), (14)367
368

and an optimal strategy is to depart when λ̃ (t) ≤ λθ . The threshold λθ should be tuned to λ
opt
θ

so the long term369

resource intake rate370

Rλθ =
pHm̄H + pLm̄L

pH T̄H + pLT̄L + τ
371

372

is maximized. We can compute departure times T̄H and T̄L numerically via Monte Carlo sampling. For an environment373

where the overall availability of resources is low and there are few resource chunks per patch, the optimal strategy374

when the patch type is known is to fully deplete each patch before leaving - this is represented by a threshold of375

λθ = 0 for the inferred return rate. However, this is only optimal when the patch type is known; in the case of376

unknown patch type, the forager has uncertainty in whether or not there are remaining resources in the patch, and377

this causes the optimum threshold to be nonzero. In both cases, discreteness of resource encounters causes the378

optimal threshold to be lower than predicted by the MVT, although within this range of threshold values the average379

resource intake actually received is similar (Fig. 6A). In the case of high resource availability and many chunks per380

patch, the optimal thresholds are similar whether or not the forager knows the patch type upon arrival (Fig. 6B;381

compare black/blue curves), and coincides with optimal threshold predicted by the MVT.382

Comparing cases, we see that foragers in sparser environments (lower average initial resource amount m̄0 =383

(m̄H
0 + m̄L

0)/2) stay in low patches too long and leave high patches too soon in comparison to observers that384

immediately know their patch type, due to their uncertainty about their current patch before and at the time of385

departure (Fig. 6C). Uncertainty thus drives animals to underexploit (overexploit) high (low) yielding patches386

when high and low patches are different enough so that it is optimal to spend significantly more time in high387

versus low patches, but similar enough as to not be immediately distinguishable. We also note that in contrast388

to the depletion-dominated regime, where an optimal strategy can be implemented equivalently as either through389
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Figure 7. Summarized taxonomy of foraging strategies. See Table 1 for details. In different environments with
three patch types (low: red, medium: yellow, high: green yielding), the different time series of decision variables
(for a single patch decision) and patch visit time intervals. A. In habitat choice, an animal must determine whether
their current patch is of the highest yielding type, departing if the probability they are not in the highest reaches
some threshold, and undergoing a sequence of patch visits until finding and remaining in a high yielding patch.
B. An ideal forager performing patch exploitation infers the yield rate of their current patch and departs when
resource yield rate reaches a threshold, continuing patch visits indefinitely in large environments.

rate-estimation or by leaving after consuming a certain amount of resources (counting). Optimal leaving decisions in390

the uncertainty-dominated regime must use a rate-estimation process, because of the associated uncertainty in the391

true yield rate of the current patch.392

5 Discussion393

Patch foraging is a rich and flexible behavior where an animal enters a patch of resources, harvests them, and then394

leaves to search for another patch. An animal’s behavior can be quantified by their patch residence time distribution,395

travel time distribution, the amount of resources consumed, and the movement pattern between patches. In this work396

we used principles of probabilistic inference to establish a normative theory of patch leaving decisions. With this397

general framework, we showed how foraging at different temporal and spatial scales are connected by a similar398

decision problem: “habitat-choice” refers to larger scales when foragers do not significantly deplete a resource, and399

“patch-exploitation” refers to smaller scales where the forager’s activity depletes the patch. For habitat-choice, the400

optimal behavior is to quickly locate and remain in a high-yielding habitat, while for patch-exploitation, it is optimal401

to use prior information along with reward encounters to estimate the current underlying yield rate to determine402

when to leave the patch (Fig. 7; Table 1). In ecological contexts, these activities are part of a behavioral hierarchy,403

where an animal must decide where to forage and how long to exploit a certain resource.404

In the case of habitat choice, the forager should use their experience of reward encounters to determine whether405

to stay or leave; in our model an optimal forager departs a habitat when their log-likelihood ratio for the probability406

of high yield versus other habitats falls below a threshold. Optimal decisions are based on inference of habitat407

quality, with uncertainty being the driving factor in habitat departure times; while this is related to resource intake408

rates, it is not the same, because of how prior information can be used in patch inference. We showed that with409

multiple different patch types, it is not necessary to track LLRs for all patch types – behavior is most strongly410

affected by inference related to the highest and second-highest yield habitat types. The optimal time to arrive and411

remain in a high yielding habitat is lower when patches are more discriminable, or when high yield patches are more412

common. While Tarrive is an experimentally observable quantity, an animal’s internal decision threshold is not; our413

model connects these quantities, and thus can be used to infer the decision rules an animal is using (Fig. 2). We414

showed that it is optimal to have a lower threshold – and thus gain a higher certainty before leaving – when travel415

times are large, high patches are rare, or high patches are easier to discriminate. These results give quantitative416

predictions that can be used to interpret experiments, for example, to examine whether the animal is minimizing the417

time to reach the highest yield habitat in a heterogeneous environment. Moreover, we showed how behavior in the418

general case where many habitat types exist can be understood by mapping results onto the tractable case of only419
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Environment Decision strategy and dependencies Equations Figures

Habitat selection.
Objective: Minimize time to find highest yielding habitat.
Known: Resource yield rates of each habitat type.

N-habitat types

• Depart habitat when likelihood of being in highest yielding habitat
falls below a threshold.
• Optimal strategy and arrival time depend on fraction and
discriminability of high yield habitats.

N = 2: Eq. (2);
N ≥ 3: Eq. (6).

N = 2: Fig. 2;
N ≥ 3: Fig. 3

Continuum of
habitat types

• Categorize habitats as high or low yielding and depart habitat if
likelihood of a high yield falls below a threshold.
• Time to identify high-yielding habitat is non-monotonic in departure
threshold, and much longer when high patches are rare.

Fig. 4

Patch-exploitation.
Objective: Maximize mean resource intake rate R over a long time (several patches).
Known: Initial yield rates of each patch type.

1-patch type
• Depart when yield rate λ (t) falls to a threshold value λθ .
• Matches MVT except when there are very few chunks per patch in
which case the forager should empty the patch.

Eq. (10) Fig. 5A

2-patch types:
patch type known
on arrival

• Depart when resource yield rate λ j(t) reaches a threshold.
• Represents ‘Depletion-dominated’ regime. Recovers MVT.

Eqs. (12) & (13) Fig. 5B

2-patch types:
empty low yield
patch

• Wait a time Tθ , then depart patch if no resources found. If resources
are encountered by t < Tθ , use threshold on inferred yield rate to make
leaving decision (similar to single patch type case).
• ‘Uncertainty-dominated’ regime deviates from MVT.
• Optimal wait time and departure threshold λθ increase with
prevalence of high-yielding patch.

Fig. 5C

2-patch types:
both high and low
patches have
resources

• Decision via threshold on current estimated yield rate λ̃ (t). Choose
optimal threshold λθ that maximizes long term resource intake rate.
• Optimal return differs from known case given few resources per
patch, converges to known patch case when resource density is high.
• Forager stays in low patches too long, leaves high patches too soon
when there are few resources per patch (uncertainty-dominated regime).

Eq. (14) Fig. 6

Table 1. Detailed taxonomy of departure decision strategies. Departure strategies and observable trends
depend on environment and task: habitat selection or patch-exploitation (see also Fig. 7). Columns describe
important aspects of the optimal decision strategy for each case, along with key model results.

two different patch types (Figs. 3 & 4). By varying systematically the percentage of high yielding habitats and the420

discriminability (ratio of high to low yield rate), the model predicts how this affects the minimal time to arrive at the421

highest yield habitat, and connects this to a process that could implement such computations.422

For patch-exploitation, when the forager depletes patches in their habitat, in most cases the long term intake rate423

is maximized by departing a patch when the in-patch estimated resource yield rate matches the average return rate of424

the environment (i.e. by implementing the MVT rule). However, this does not apply when resources within a patch425

are limited so there is more uncertainty about the yield of the current patch upon departure (Fig. 6). Often in nature,426

the environment is volatile and animals make foraging decisions while uncertain about local resource availability61.427

Our model predicts that if there is high uncertainty about the patch type, this causes even an ideal Bayesian forager428

to stay longer in low yield patches and shorter in high yield patches than predicted by the MVT.429

Our theoretical treatment of patch leaving decisions builds on previous Bayesian models of foraging33–41, 43.430

Our approach goes further than previous work by providing a step-by-step derivation of the normative strategies431

associated with a continuum of different environmental conditions, systematically identifying the dependence of432

observable behaviors (e.g., patch departure times) on environmental parameters. During habitat choice, the minimal433

arrival time to the high yield habitat scales with the probability of high yield patches in the environment. On the434

other hand, we have shown that in the case of depleting patches, the amount of time a forager overstays or understays435
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in a patch scales with the density of resources in the patch. We are also able to infer the optimal threshold an436

animal should use. While this cannot be measured directly in experiments, our observations do reveal environmental437

parameter regimes under which performance (e.g., foraging yield) is sensitive to changes in strategy. This can not438

only inform the design of behavioral foraging experiments, so as to determine task parameters that best reveal an439

animal’s strategy, optimal yields can also be compared with those obtained by animals in the wild to see how finely440

tuned their foraging strategies are.441

Analysis of experiments shows animals forage in ways that suggest they use Bayesian reasoning42–48, using442

prior knowledge of their environment to modulate foraging behavior59, 62, 63. For example, bumblebees31 and Inca443

doves64 adjust their foraging strategies in response to the predictability of the environment, as a Bayesian forager444

would, but this is not a universal trend65. Patch-leaving decisions may deviate from Bayes optimality as animals445

become risk-averse in variable environments66. Although other Bayesian models have considered patch-foraging446

decisions32, 36, it has been difficult to relate these results to experiments due to limited theoretical considerations447

of the environmental configuration. By showing how trends from more realistic environmental distributions relate448

to the theoretically simpler case of two patch types, and suggesting a mechanistic implementation that the forager449

can use to implement optimal decision rules, our model provides optimal behavior predictions that can be used to450

interpret experimental results. Moreover, our theoretical approach applies not only to patch-exploitation, but also to451

habitat-choice – where the MVT does not apply – and thus enables connections across these multiples scales of452

behavior13.453

Although we used a constant threshold value based on either the belief or estimated yield rate, other work has454

examined cases where optimal decision strategies involve time-dependent decision thresholds60, 67–69. Typically,455

these results arise in the context of multi-trial experiments in which the quality of evidence on each trial varies456

stochastically and is initially unknown. In the habitat choice context, the quality of evidence is fixed across habitat457

visits, fitting the assumptions of classic, constant threshold optimal policies. We would therefore expect an analysis458

allowing for a dynamic threshold to yield the same results as we obtained here. On the other hand, when the animal459

performed patch-exploitation in an uncertain binary environments, we projected a higher-dimensional description of460

the patch value to a single scalar estimate of the patch yield rate. In this case, a constant-threshold implementation461

may not be purely optimal. Leveraging methods from dynamic programming commonly used to set optimal decision462

policies68 would be a fruitful next step in ensuring the optimality of our patch leaving decision strategies. A463

common theme in previous Bayesian models that use dynamic programming32, 43 and our approach, is that the464

forager should use the expected future return, not the current return, to make departure decisions. An advantage to465

the constant-threshold treatment is that it enables simple explicit quantitative relations that can be used to interpret466

experimental data (Fig. 2). For example, experiments evaluating how animals value the quality of evidence could467

help us delineate whether the animal is using a constant threshold or not.468

Effective search is integral to survival in nature70, and search behavior can give information on individual469

decision strategies. One can consider search within and in-between patches. Although we assumed random timings470

of resource encounters, an extension of our model could take into account different spatial arrangements. Within471

patches, an animal may perform random or a systematic search. For example, a recent study found that rats can472

solve the stochastic traveling salesman problem using a nearest neighbour algorithm71. A similar approach could473

ask how an animal’s search and navigation pattern interact with different patch leaving decisions to create an474

effective foraging strategy that also considers memory of specific patch locations. Indeed, the explicit consideration475

of spatial movement may be necessary to understand foraging decisions. Previous work found that when rats476

must physically move to perform foraging, the observed behavior differed from tasks that “simulate” foraging by477

presenting sequential choices or that consider visual search72. It is an open question as to how the animal integrates478

aspects of spatial movement with economic valuations of future reward.479

Our model assumes animals know the initial yield rate of each type of patch in the environment. In a real life480

context or in an experimental setup, the animal would learn the environmental parameters, which we could model by481

considering another level in the inference hierarchy whereby the patch type quality and fraction are learned along482

with the transit time distribution. Although we considered a single forager acting alone, another important extension483

will be to consider interactions between animals, either through predator-prey interactions which affect foraging484
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decisions73, social foraging of groups 74, 75, or even competitive foraging17, 18, 76. In our model, the forager only485

receives direct (non-social) information about resource availability; in collective foraging, an individual receives486

both social and non-social information77, 78. This can significantly affect foraging decisions, for example in the487

case where an individual must balance resource-seeking with group cohesion. Building on our modeling approach,488

foragers could share social information either by cooperating in the inference of the patch quality or by signaling to489

each other when to depart a patch as a threshold is reached.490

To conclude, our model establishes a formal framework for the quantitative analysis of a natural behavior – patch491

foraging (involving both habitat-choice and patch exploitation) – that can be studied in the same formal rigor as492

many trained behavioral tasks. Such validated behavioral algorithms are crucial for the systematic design of future493

experiments and interpretation of data on animal behavior79. By comparing with theoretical optimal strategies,494

experiments and data can be used to understand the decision strategies an animal is employing and relate these to495

recorded animal movement and neural data. Future work will build on this model framework to generate testable496

hypotheses on the role of social interactions and the neural mechanistic underpinnings of foraging behavior.497
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Figure S1. Insensitivity of patch finding performance to worst patch statistics. A. T̄arrive increases with λ3 as
does θ opt, since the worst patches become less easy to distinguish from the best (λ1 = 3). Here λ2 = 2, τ = 5,
p1 = p2 = p3 = 1/3. B. T̄ opt

arrive increases with p2 (while p1 = 0.333 and p3 = 1− p1− p2) as does θ opt. All curves
for T̄arrive computed from 106 Monte Carlo simulations.
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