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Abstract 1 

With 70% of the global population in urban centers, the ‘greening’ of cities is central to future 2 

urban wellbeing and livability. Urban trees can be nature-based solutions for mental and physical 3 

health, climate control, flood prevention and carbon sequestration. These ecosystem services 4 

may be severely curtailed by insect pests, which pose high mortality risks to trees in urban 5 

centers. Until now, the magnitudes and spatial distributions of mortality risks were unknown. 6 

Here, we combine new models of street tree populations in ~30,000 United States (US) 7 

communities, species-specific spread predictions for 57 invasive insect species, and estimates of 8 

tree death due to insect exposure for 48 host tree genera. We estimate that an additional 1.4 9 

million street trees will be killed by insects from 2020 through 2050, costing an annualized 10 

average of US$ 30M. However, these estimates hide substantial variation: 23% of urban centers 11 

will experience 95% of all insect-induced mortality, and 90% of all mortality will be due to emerald 12 

ash borer (Agrilus planipennis, EAB). We define an EAB high-impact zone spanning 902,500km2, 13 

largely within the Midwest and Northeast, within which we predict the death of 98.8% of all ash 14 

trees. “Mortality hotspot cities” facing costs of up to US$ 13.0 million each include Milwaukee, WI, 15 

Chicago, IL, and New York, NY. We identify Asian wood borers of maple and oak trees as posing 16 

the highest future risk to US urban trees, where a new establishment could cost US$ 4.9B over 17 

the same time frame. 18 

Significance Statement 19 

 20 

US urbanization levels are already at 82% and are growing, making losses of ecosystem services 21 

due to urban tree mortality a matter of concern for the majority of its population. To plan effective 22 

mitigation, managers need to know which tree species in which parts of the country will be at 23 

greatest risk, as well as the highest-risk insects. We provide the first country-wide, spatial 24 

forecast of urban tree mortality due to invasive insect pests, including forecasts for each host tree 25 

and each insect species in each US community. This framework identifies dominant pest insects 26 

and spatial hotspots of high impact. Further, these findings produce a list of biotic and 27 

spatiotemporal risk factors for future high-impact US urban forest insect pests. 28 

 29 

Main Text 30 

 31 

Introduction 32 

 33 

Previous analyses suggest that impacts associated with urban trees are likely to comprise the 34 

dominant share of economic damages caused by invasive alien forest insects (IAFIs) in the 35 

United States (US) [1]. Urban tree populations include highly susceptible species like ash 36 

(Fraxinus spp.) that are being decimated by emerald ash borer (EAB, Agrilus planipennis) [2]. To 37 

eliminate the potential for injury or property damage due to dead trees, infested urban trees must 38 

be treated or removed [3]. Moreover, the importance of urban forests is only expected to grow. 39 

While urbanization is already very high in the US (82% in 2018), it has not yet reached saturation 40 

(World Bank, http://data.worldbank.org, UN DESA, http://population.un.org). At the same time, 41 

there has been a push for urban ‘greening’ (i.e., increasing urban forest canopy). Urban trees 42 

perform many important ecosystem services, including lowering cooling costs [4], buffering 43 

against flooding, increasing air quality, carbon sequestration, improving citizens’ mental and 44 

physical health outcomes, and creating important habitat [5,6]. The high tree mortality risk posed 45 

by IAFIs can greatly diminish these myriad benefits. 46 

While IAFI life histories differ, they are known to be transported long distances by 47 

humans [7], potentially with similar drivers across entire dispersal pathways [8]. Thus, the 48 

creation of a pathway-level damage estimate can provide insight into the benefit of limiting future 49 

spread via these pathways (e.g. through quarantines, highway checkpoints to limit firewood 50 
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movement). Past estimates of IAFI damage have been important in providing support for 51 

phytosanitary measures such as ISPM15 [10], a wood packing material treatment protocol, 52 

whose adoption is growing worldwide [11]. A previous pathway-level estimate for the cumulative 53 

cost of all US IAFIs was performed a decade ago and had substantial data limitations [1]. Since 54 

then, contemporary advances allow direct estimates of spread for every IAFI species as well as 55 

host prevalence and IAFI-induced mortality for every tree species in every community across the 56 

United States. This allows not only the estimation of country-wide IAFI damages, but also IAFI 57 

and host-specific damages and their spatial distribution. Further, we can examine the impact of 58 

tree mortality dynamics on cost dynamics, and derive better risk assessments of not-yet 59 

established pests, based their functional traits and host distributions. 60 

In this paper, we synthesized four subcomponent models of IAFI invasions: 1) a model of 61 

57 IAFI species’ spread, 2) a model for the distribution of all urban street tree host genera across 62 

all US communities, 3) a model of host mortality in response to IAFI-specific infestation for all 63 

urban host tree species, and 4) the cost of removing and replacing dead trees, to provide the best 64 

current estimate of the damage to street trees, including explicit estimates for all known IAFIs 65 

across all major insect guilds (Fig. S1-S2).  66 

 67 

Results 68 

 69 

Urban tree pest exposure 70 

Total tree abundance models were predictive with some outliers (Appendix S1, Fig. S4, small 71 

trees: R2 = 0.78, medium trees: R2 = 0.58 large trees: R2= 0.42). Removing the outliers changed 72 

the R2 to 0.76 for small trees, 0.76 for medium trees, and 0.58 for large trees. Our genus-level 73 

abundance models were strong but became slightly weaker for rare genus - size class 74 

combinations (Fig. 1, overall R2
 for all genera of small trees: R2= 0.93, medium trees: R2 = 0.93, 75 

large trees: R2 = 0.92). While relationships were variable across genera, the genera that were fit 76 

most poorly did not make up a large proportion of predicted trees, and none were below R2 = 0.25 77 

(Fig. S5).  78 

We tested four model types (global BRT, global GAM, customized BRT, or customized 79 

GAM) to fit 1) genus-level tree presence/absence and 2) genus-level abundance models (Fig. 80 

S1). The optimal genus-level fitting approach differed across genera depending on diameter 81 

class, prevalence of genera, and whether presence/absence or tree abundance was the 82 

response variable (Table S2). Generally, rarer genera were better fit by global BRT and GAM 83 

models, which utilized information from all other species while common species were better fit by 84 

customized models (Fig. S6). According to our models, while subject to regional variation, the 85 

population of street trees is mostly made up of maple (Acer) and oak (Quercus), with substantial 86 

ash (Fraxinus, Fig. S7). 87 

We analyzed street trees separately from residential and community trees. Predicted 88 

street tree exposure (measured as the number of predicted susceptible trees in Fig. 2a * IAFI 89 

relative propagule pressure in Fig. 2b, [8]) across all tree types from 2020 to 2050 was generally 90 

high in the eastern US, and only sporadically high across the western US (Fig. 2c). Predicted 91 

street tree exposure was highest among maples (Acer spp., 25.6M predicted exposed trees), 92 

oaks (Quercus spp., 5.9M), and pines (Pinus spp. 3.4M). The greatest number of trees were 93 

predicted to become exposed to Jose scale (Quadraspidiotus perniciosus, 7.3M), Japanese 94 

beetle (Popillia japonica, 6.7M), calico scale (Eulecanium cerasorum, 6.4M), San. Among 95 

residential and community trees, exposure was greatest among maples, oaks, and Prunus spp. 96 

(1.7B,1.1B, 707M, respectively), and the most frequently predicted IAFI encounters were with the 97 

same three species (Japanese beetle, San Jose scale, and calico scale). 98 

 99 

Host tree mortality 100 

The best-fitting mortality model indicated that most IAFIs fall in the low severity groups. Within all 101 

severity groups, the majority of IAFIs were at the low end of severity (Fig. 3, full results in 102 

Appendix S2). We define the term ‘mortality debt’ as the time period between an IAFI initiating 103 

damage within a community and reaching its estimated asymptotic host mortality within that 104 
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community (see Methods). In our most likely mortality debt scenario (i.e., 10-year scenario for 105 

borers, 50-year scenario for defoliators, 100-year scenario for sap feeders), we estimated a 106 

mortality level of 0.7-2.5% beyond expected natural mortality of street trees by 2050, where our 107 

most likely scenario fell on the higher end of this range (Table 1). Predicted street tree death 108 

varied by a factor of four based on the mortality debt scenario, with longer debts leading to lower 109 

total mortality between now and 2050 (Table 1). This was because in longer mortality debt 110 

scenarios, trees experience mortality in the years 2020-2050 from IAFIs that initially established 111 

in their communities in 2000 (50yr debt) or 1950 (100yr), but our highest impact IAFI (EAB) can 112 

only begin to cause mortality after 2002 in any scenario. Sensitivity was driven largely by wood 113 

boring species, as demonstrated by the sensitivity of mortality estimates to their mortality debt 114 

scenarios (“Vary Borers” row, Table 1). We also found that longer mortality debts lead to a 115 

smoother cost curve, or costs that do not vary much due to more consistent host mortality rates 116 

(Fig. 4). 117 

Spatially, future damages will be primarily borne in the Northeast and Midwest, driven by 118 

EAB spread (Fig. 2d). We predict that EAB will reach asymptotic mortality in 6747 new cities, 119 

which means that 98.98% of its preferred Fraxinus spp. hosts will die. Thus, the mortality is 120 

predicted to be concentrated in a 902,500km2 zone encompassing many major Midwestern and 121 

Northeastern cities (Fig. S10). This mortality is also predicted to result in a 98.8% loss of all ash 122 

street trees within this zone. Over 230,000 ash street trees are predicted to have died before 123 

2020, and there are a further 69 cities where EAB is predicted to reach asymptotic mortality within 124 

10 years of 2050 (i.e., 98.8% ash mortality by 2060). Due to the restricted range of forest ash 125 

relative to urban ash, we predict that 68% of ash trees and 76% of communities containing street 126 

ash will remain unexposed to EAB in 2060. Furthermore, at-risk ash trees are unequally 127 

distributed. We projected the highest risk close to the leading edge of present-day EAB 128 

distributions, particularly in areas predicted to have high ash densities. The top “mortality hotspot 129 

cities”, where projected added mortality is in the range of 5,000-25,000 street trees, include 130 

Milwaukee, WI, the Chicago Area (Chicago/Aurora/Naperville/Arlington Heights, IL), Cleveland, 131 

OH, and Indianapolis, IN (Fig. 2d). Cities predicted to have high mortality outside of the Midwest 132 

include New York, NY, Philadelphia, PA, and Seattle, WA – communities with high numbers of 133 

street trees and high human population densities, which attract EAB propagules within our spread 134 

model. The states most impacted by street tree mortality match these patterns, where the highest 135 

mortality is predicted for Illinois, New York, and Wisconsin. 136 

 137 

Cost estimates 138 

We estimated annualized street tree costs across all guilds to be between US$29-33M per year in 139 

our most likely scenario (mean = $30M, Table 1). Roughly 90% of all costs across the entire US 140 

were due to EAB-induced Fraxinus spp. mortality. The total cost associated with street tree 141 

mortality in the top ten hotspot cities was estimated at $50M from 2020 to 2050, with $13M in 142 

Milwaukee, WI alone.  143 

The ranking of feeding guild severity was relatively robust across mortality debt 144 

scenarios, in spite of the potential for differences due to the interaction of IAFI-specific spread 145 

and mortality debt dynamics. Costs were higher for longer mortality debt scenarios for borers, 146 

peaked at intermediate debt for defoliators, and peaked at the longest debt for sap feeders. 147 

These patterns were due to the relative rates of historical and contemporary range expansion of 148 

more impactful IAFIs (i.e. high impact borers have more rapid recent range expansion, while 149 

contemporary high impact defoliator expansion is slow compared to 50 years ago). Borers were 150 

predicted to be the most damaging feeding guild ($8M-28M mean annualized street tree 151 

damages across scenarios), and EAB was consistently the top threat. Defoliators were predicted 152 

to be the second most damaging feeding guild in the next 30 years (means = $0.8M-$1.4M), in 153 

spite of more widespread hosts than wood borers, due to lower asymptotic mortality levels. 154 

Defoliators had a 1-2 order of magnitude lower cost than wood-boring species, but again showed 155 

consistency in which species were the top threats within the guild. Consistent with previous work 156 

in [1], European gypsy moth had the highest cost of all defoliators, followed by Japanese beetle 157 

and cherry bark tortrix (Enarmonia formosana). The sap-feeding group accrued the lowest costs 158 
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in the next 30 years due to their lower asymptotic mortality and rarer street tree hosts (mean = 159 

$0.2M-1.1M). Hemlock woolly adelgid (Cryptococcus fagisuga) was the highest impact sap 160 

feeder, followed by oystershell and elongate hemlock scale insects (Lepidosaphes ulmi, Fiorinia 161 

externa). Total costs were only notably sensitive to borer mortality debt scenario misspecification 162 

(Table 1), which is promising, given our certainty of the shorter scenario for EAB. 163 

 164 

Potential impacts to non-street trees 165 

Mean added mortality (i.e. above background rates) for residential and non-residential community 166 

trees in the most likely scenario was 1.0% (13.3M residential and 72.1M non-residential trees, 167 

Table S10). While recognizing that non-street tree management will likely be more variable, to 168 

provide a rough estimate, we assumed that non-street trees would be managed in the same way 169 

as street trees (i.e. removal and replacement of dead trees). In this scenario, added mortality 170 

would incur an estimated annualized cost of $1.5B for non-residential trees and $356M for 171 

residential trees. Further, a disproportional amount of the total damages (91% of the mortality to 172 

residential non-residential community trees) is expected to be felt in the aforementioned hotspot 173 

zone, with 12.1 million residential and 65.9 million non-residential community trees expected to 174 

be killed. Given the relatively limited data, and the difference in potential management behaviour 175 

for these trees, we caution against overinterpretation of these results. 176 

 177 

Novel IAFI risk forecast 178 

Our framework allowed us to identify the factors leading to the greatest impacts for IAFIs already 179 

known to have established in the United States. We were able to identify the most common urban 180 

host trees, the sites facing the greatest future IAFI propagule pressure, and the IAFI-host 181 

combinations with the greatest mortality. However, this approach can also be synthesized with 182 

IAFI entry scenarios to understand potential impacts of novel invasive IAFIs. To illustrate the 183 

utility of this framework predictively, we have provided a checklist of risk factors in Table S11 and 184 

future spread simulations in Table S12 and Fig. S12. We show that entry via a southern port (e.g. 185 

the Port of South Louisiana) would lead to the greatest number of exposed trees. Further, an 186 

EAB-like borer of oak and maple trees could kill 6.1 million street trees and cost $4.9B over the 187 

next 30 years.  188 

 189 

 190 

Discussion  191 

 192 

While previous analyses have indicated that urban trees are associated with the largest share of 193 

economic damages due to IAFIs [1,13,14], until recently, data did not exist on the urban 194 

distribution of host trees [15], the spread of IAFIs [8], nor the mortality risk for hosts due to 195 

different IAFIs [16]. With these new models, it is now possible to forecast where and when IAFIs 196 

will have the most damages across the US. Our analysis suggests an overall added mortality of 197 

between 2.1-2.5% of all street trees, amounting to $US 30M per year in management costs. 198 

However, the most interesting and potentially useful element was our ability to forecast hotspots 199 

of future forest IAFI damages, including a 902,500km2 region that we expect to experience 95.7% 200 

of all mortality, in large part due to a 98.8% loss of its ash street trees due to EAB. This type of 201 

forecasting has been highlighted as a crucial step in prioritizing management funds [17]. These 202 

data can be used by municipal pest managers to anticipate future costs, and may help motivate 203 

improved spread control programs that aim to identify the potential source counties of future 204 

invasions and mitigate the worst anticipated impacts (complete forecast available at 205 

http://github.com/emmajhudgins/UStreedamage). 206 

Beyond present IAFI risks, our integrated model can also act as a risk assessment tool 207 

for street tree mortality caused by novel IAFIs (Table S11-S12, Fig. S12). While ash trees are 208 

assured to be dramatically affected by EAB over the next few decades, our models suggest oak 209 

and maple to be the most common street tree genera nationwide. Further, while ash species are 210 

being substituted for less susceptible tree species, maples and oaks continue to be widely 211 

planted within our street tree inventories. Therefore, IAFIs with host species spanning these 212 
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genera should be of heightened concern. Secondly, the timescale and magnitude of the impacts 213 

of wood borers (see also [1]) make them the highest risk to street trees. We integrated these two 214 

pieces of information with information on major ports of entry within the US (American Association  215 

of Port Authorities 2015, http://aapa.com/), as well as our general model of IAFI spread [8], to 216 

forecast the extent of exposed maple and oak street trees from 2020-2050 (Fig. S12, Table S12). 217 

Our analyses show that entry via a southern port would lead to the greatest number of exposed 218 

trees. Further, larger trade volumes between the US and Asia compared to other regions [18] 219 

suggest Asian natives will be the most likely future established IAFIs. One potential candidate 220 

species fitting these criteria is citrus longhorned beetle, which is an Asian wood borer thought to 221 

have many potential host species within the United States, including ash, maple and oak [19]. 222 

The lack of strict implementation of current wood treatment protocols such as ISPM15 [20] 223 

increases the susceptibility of the US to invasion and subsequent spread of this species and 224 

other potentially high-risk borers. 225 

Our impact estimates vary substantially based on dynamics of host mortality following 226 

initial IAFI invasion, especially because of variability in the duration and functional form of 227 

mortality debt. Luckily, the guild (borers) and species (EAB) whose impact on total community 228 

costs are most sensitive to correct specification of the mortality debt dynamics are the ones for 229 

which we are most confident. Several publications have demonstrated near-complete decimation 230 

of ash stands in the decade following EAB infestation [2,21,22]. Furthermore, since total tree 231 

mortality is asymptotically equivalent across all mortality debt regimes, if other feeding guilds 232 

possessed 10-year mortality debt regimes, we should have been able to detect a rapid die-off of 233 

their hosts as they spread, similarly to what we found for EAB (albeit scaled by their maximum 234 

mortality rates). This is not the case in the literature [22].  235 

With our integrated model, we also estimated economic damages, which updates the 236 

decade old Aukema et al. [1] using recent advances [13,14]. Surprisingly, the previous cost 237 

estimates were not that different at the country scale. The previous cost estimate separated 238 

urban trees into residential and non-residential types (grouping street trees in the latter). We 239 

estimate annualized costs for non-residential trees to be somewhat lower than those in [1] ($1.3B 240 

versus $2.0B in total “Local Government expenditures”). This lower estimate is likely because of a 241 

lower rate of predicted Fraxinus exposure to EAB (i.e., lower predicted ash abundance in areas of 242 

predicted EAB spread) in non-residential areas. Interestingly, our estimate of residential tree 243 

costs is roughly one third that in [1] ($303M vs $1.1B in total “Household Expenditures”), again 244 

likely due to a (more extreme) overestimate in the nationwide prevalence of residential ash trees 245 

in the previous publication.  246 

Additionally, we predict that 75% of communities containing ash trees and 68% of all 247 

street ash will remain untouched by EAB by 2060 because of the lack of forest ash beyond our 248 

forecasted invasion extent (i.e., affecting exposure). However, in some EAB infested 249 

communities, it is important to note that our street tree distributional model may overestimate the 250 

tree mortality projected, due to the role of preventative cutting prior to EAB arrival, which occurred 251 

in many cities across IN, IL, MI, and WI. Preventative cutting would have led to the payment of 252 

tree removal costs prior to our estimation window. This is particularly likely to have inflated the 253 

2020-2050 costs to communities with large street tree budgets in regions where EAB was 254 

predicted to invade in the years 2010-2020 (therefore initiating mortality 2020-2030).  255 

Spatially, our results show clear patterning of high threat in the eastern and central US, 256 

and lower threat in the western US. This pattern is consistent with previous findings [20], and can 257 

be explained by the high impacts of EAB, European gypsy moth, and hemlock woolly adelgid, 258 

whose distributions are projected to concentrate further east in the short term. However, some of 259 

the highest-impact non-native pathogens have emerged in the western US, and were not 260 

captured in this analysis [23,24]. Western regions could also see high future risks due to the 261 

polyphagous shot hole borer (Euwallacea whitfordiodendrus), and its insect-disease complex with 262 

fusarium fungus (Fusarium spp.) [25]. This complex has already established in California and has 263 

maple and oak trees among its many hosts.  264 

While the substantial advances that emerged recently allowed us to develop a more fully 265 

integrated model, we also identified data deficiencies which require additional research. A relative 266 
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quantification of additional sources of uncertainty is provided in Appendix S3. This cost estimate 267 

is arguably a lower bound, since it only examines the cutting of dead trees. The analysis also fails 268 

to account for preventative management, to fully examine non-street tree management, and to 269 

assess the impacts of IAFIs that have not yet established in the United States. Furthermore, our 270 

analysis assumes a complete identification of ‘high impact IAFIs’. Some presently established US 271 

may not yet have been identified as ‘high impact’, either due to lags in their impact, and/or lags 272 

the detection of this impact [26], but may achieve the same level of recognition as those in [1]  273 

before 2050.  274 

 275 

Conclusion 276 

We have shown that the suite of known IAFIs have the potential to kill roughly a hundred million 277 

additional urban trees in the US in the next 30 years. While these numbers themselves are 278 

striking, reporting only a country-level impact estimate without IAFI species, tree, and community-279 

level resolution does little to inform management prioritizations. Here, we were able to identify 280 

specific urban centers, IAFI species, and host tree genera associated with the vast majority of 281 

these impacts. We predict that 90% of all street tree mortality within the next 30 years will be 282 

EAB-induced ash mortality, and that ~95% of all street tree mortality will be concentrated in less 283 

than 25% of all communities. These estimates illustrate the gravity of IAFI infestations for 284 

communities in the path of high impact invaders that are rich in susceptible hosts. Further, we 285 

were able to use this framework to identify a checklist of biotic and spatiotemporal risk factors for 286 

future high-impact street tree IAFIs. 287 

 288 

Materials and Methods 289 

 290 

We synthesized four subcomponent models of IAFI invasions: 1) a model of 57 IAFI species’ 291 

spread, 2) a model for the distribution of all urban street tree host genera across all US 292 

communities, 3) a model of host mortality in response to IAFI-specific infestation for all urban host 293 

tree species, and 4) a simple model of the human management response to dead host trees, to 294 

provide the best current estimate of the damage to street trees (see conceptual diagram, Fig. S1). 295 

 296 

IAFI dispersal forecasts 297 

We modelled spread using the Semi-Generalized Dispersal Kernel (SDK, [8]). This is a spatially 298 

explicit, negative exponential dispersal kernel model that can account for additional spatial 299 

predictors in source and recipient sites. The SDK builds from the Generalized Dispersal Kernel 300 

(GDK, [8]) as a starting point, using human population density, forested land area and tree 301 

density in source and destination sites as moderators of spread. The SDK combines up to three 302 

species-specific corrections for each species to maximize predictive ability: 1) a species-specific 303 

intercept term, 2) information on an IAFI’s likely initial invasion location, and 3) niche-related 304 

limitations when evidenced in the literature. The SDK was applied to all 57 IAFIs believed to 305 

cause some damage from [1], and projected from 2020 to 2050 (Fig. S2). 306 

 307 

Street tree models 308 

Our fitting set consisted of 653 street tree databases for US communities where street tree 309 

inventory data had been collected (Fig. S3, [14]). In two communities (Tinley Park and, IL and 310 

Fort Wayne, IN), preventative cutting for EAB was conducted prior to the most recent inventory 311 

and was therefore accounted for within our dataset. We modelled the abundance and diameter at 312 

breast height (DBH) for trees within each genus, as treatment costs are dependent on number 313 

and diameter of trees [1]. We split trees into three diameter classes (small = 0-30cm, medium = 314 

31-60cm, large >60cm). We first fit models for the total tree abundance of all species by diameter 315 

class, and then used these total tree models to help predict genus-specific tree abundance within 316 

each diameter class. Street tree inventory data are not always reliably reported to the species 317 

level across municipalities, and some species are so rare in street tree inventories that it would 318 

have been very difficult to develop robust species-level models, so we limited our examination to 319 

the genus level. Since IAFIs may not be equally impactful to all host tree species in a genus, we 320 
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had to estimate the genus-level severity of each IAFI species for each IAFI-host combination. We 321 

did so by estimating the species-level breakdown of each genus based on their average relative 322 

proportions across our 653 inventoried communities, and assuming this distribution was 323 

representative in other projected communities.  324 

 We modelled the total abundance of street trees in a community using boosted 325 

regression trees (BRT, gbm.step within R package dismo, [27]) relating the logarithmically-scaled 326 

total tree abundance within a diameter class to community-specific predictors, employing 327 

environmental variables from WORLDCLIM [28] and community characteristic s used in [13], and 328 

sourced largely from the National Land Cover Database (NLCD,[29]), the US Census and the 329 

American Community Survey (https://www.census.gov/data.html, Table S1). We hypothesized 330 

that the age and wealth of a community would influence the types and sizes of trees planted 331 

there. In our model, median home value and mean year of construction (at the block-group level) 332 

as well as median household income (at the county level) were used as proxies of the age of the 333 

urban tree community and the community budget for street trees. We also tested the use of 334 

Poisson GAM models, but high levels of concurvity (the GAM equivalent of multicollinearity, [30]) 335 

amongst predictors and lower predictive performance indicated Poisson GAMs were an inferior 336 

modelling structure for estimating total abundance. 337 

Next, we estimated the abundance of street trees within each genus, using the same 338 

climatic and demographic factors as the total tree abundance model as well as the total tree 339 

abundance model output as predictors (Fig. S1). We considered two approaches: 1) Zero-inflated 340 

Poisson GAMs, or 2) a two-step BRT approach. For BRT, we modeled tree presence/absence, 341 

followed by tree abundance given presence (using logarithmically-scaled tree abundance and 342 

back-transforming when predicting), and then combined the two models. The number of trees of 343 

genus i in size class j at a particular site k was: 344 

������,�,� � ��,�,� � ���	�����,�,�,� � ���		
���,�,�,�    (1) 345 

��,�,� �
�

∑ ���������,�,�,�����	
���,�,�,��/ ∑ ���	
���,�,�,���
    (2) 346 

This process is similar to a zero-inflated Poisson (ziP) model [31] but does not link the 347 

parameters of the binary and continuous components of the model, instead fitting them 348 

separately. Because our BRT approach was built from two independent parts, we needed to add 349 

a rescaling step so that the output summed to the observed counts (eqn. 2), as occurs for ziP 350 

models by default [31]. We removed all highly correlated variables (r > 0.8) prior to fitting, and 351 

refit GAMs until maximum estimated worst-case concurvity using three-knot smoother functions 352 

was below 0.8 (concurvity function within mgcv,[32]).  353 

We compared BRT and GAM models that were fit to all genera simultaneously (general 354 

BRT/GAM models using genus-specific intercept terms) with models that were fit to each genus 355 

separately (customized BRT/GAM models) (Fig. S1). Predictive power could be higher when 356 

modelling all genera together if the genera respond similarly to predictors, while power could be 357 

higher for individually fitted genera where environmental and community characteristic 358 

relationships are idiosyncratic and where the sample is sufficiently large.  359 

We chose the model that produced the strongest relationship for each genus using R2 
360 

values that were relative to the 1:1 line (i.e, a normalized mean squared error, R2
MSE). R2

MSE more 361 

correctly measures deviations between observations (y) and predictions (
�� than conventional R2.   362 

���
� � 1 �

∑�������

∑�������
     (3) 363 

We removed New York, NY from the fitting set as it was likely to be a high leverage observation 364 

and could have significantly changed the resulting models due to it possessing a markedly 365 

different street tree genus composition from all other communities. Both the GAM and BRT 366 

models were fitted using their built-in cross-validation algorithms for parameter estimation, and 367 

can therefore tolerate occasional outliers with minimal effect on their parameter estimates (though 368 

we have less evidence that other outliers would have changed model parameters for cities other 369 

than New York, NY). Given the higher data requirements of GAMs (i.e. all parameters must be fit 370 

simultaneously, rather than BRT, which can fit subsets of predictors to each tree, [33]), genus-371 

specific GAMs were not considered when data were insufficient (i.e., when only a few cities 372 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 26, 2021. ; https://doi.org/10.1101/2021.04.24.441210doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.24.441210
http://creativecommons.org/licenses/by/4.0/


 

 

9 

 

contained that genus). For each genus, we used the best-fitting model to predict urban tree 373 

distributions throughout the contiguous US. We used the observed number of trees rather than 374 

model predictions in cities where these data were available. Alaska and Hawaii were removed to 375 

match the spatial extent of IAFI spread predictions, and because urban tree genus composition is 376 

likely quite different in these areas compared to the contiguous US. 377 

We synthesized the previous two modelling steps, intersecting IAFI spread forecasts with 378 

predicted tree distributions (using observed tree data where available), to create forecasts of tree 379 

exposure, which we define as the sum of predicted density of each IAFI species, multiplied by 380 

their predicted host tree abundance in each community. 381 

 382 

Host mortality model 383 

We examined the impacts of the three major feeding guilds of IAFIs [34]: Foliage feeders included 384 

insects that feed on leaf or needle tissue. Sap feeders included all species that consume sap, 385 

including scale insects and gall-forming species. Borers included species that feed on phloem, 386 

cambium, or xylem. Across insect guilds, the logic from [1] appeared to hold: most species were 387 

innocuous, but a small number caused high mortality (Table S7). In contrast, while several 388 

invasive pathogens were mentioned in [14], pathogens are only reliably reported when they 389 

produce noticeable (i.e. intermediate) impacts [1]. To avoid mischaracterizing their impacts, we 390 

removed pathogens from the remainder of our analysis. 391 

 We ranked the severity of a given IAFI infestation on a particular host using a scale 392 

based on observed long-term percent mortality (defined in [14], Table S7). We added two 393 

additional categories to this scale to represent IAFI species missing from their database that are 394 

still considered pests on a particular host in [1]. The lowest-impact IAFI-host combinations were 395 

those featuring IAFIs reported as ‘low impact’ in [1]. These accounted for most known 396 

combinations. The second lowest category featured ‘intermediate impact’ IAFI species from [1] 397 

that did not appear as threats to a given known host in [14]. We assumed that, were these 398 

species quantified by [14], their associated severities would be lower than the lowest category 399 

within the authors’ ranking scheme. All other IAFI-host combinations were assigned to the same 400 

categories as in [14]. IAFI frequency within severity categories was normalized across the sum of 401 

their known hosts so that each IAFI had equal impact on the frequency distribution (i.e., 402 

frequency summed to 1 for each IAFI). For instance, if an IAFI had 3 hosts, and had severities of 403 

3, 5, and 9 on each host, we would give them a frequency of 1/3 under each bin. We fit a Beta 404 

distribution to the frequency distribution of IAFIs in each of these categories using Stan [35], a 405 

program and language for efficient Bayesian estimation. We chose to fit a Beta distribution 406 

because proportional mortality ranged between 0 and 1. Additionally, we fit the upper limit of the 407 

two lowest mortality categories and the lower limit of the highest category, as these categories did 408 

not have quantified bounds, but could be ranked relative to others. We used the posterior mean 409 

as the expected mortality for an IAFI in each severity category, rather than the simple midpoint of 410 

the range of each category.  411 

We define the term ‘mortality debt’ as the time period between an IAFI initiating damage 412 

within a community and reaching its estimated asymptotic host mortality within that community. 413 

While we had estimates of the asymptotic proportional mortality of host trees [14], we had no 414 

information on the rate by which trees reach this plateau. Previous estimates have ranged from 5 415 

to 100 years [1,36], so we analyzed three scenarios within this range (10, 50, 100 years). To 416 

account for what is currently known about the mortality dynamics of IAFIs within each of the 417 

feeding guilds, we also examined scenarios based on our most likely scenario of the duration of 418 

mortality debt across IAFI feeding guilds. EAB is estimated to kill the majority of its susceptible 419 

hosts in the first decade following infestation [19], while maximum mortality is estimated to take 420 

closer to 100 years for hemlock woolly adelgid [1], so we used the 10 and 100-year scenarios for 421 

borers and sap-feeders, respectively. A recent publication examining mortality rates in forested 422 

areas suggested that European gypsy moth has a mortality rate intermediate between borers and 423 

sap-feeders, so we set defoliators at 50-years [20]. Once an IAFI was predicted to infest an area, 424 

we imposed a 10-year initial lag phase between IAFI arrival at a site and the initial onset of 425 

damage [37,38] and then began increasing the host mortality following our mortality debt scenario 426 
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to the asymptotic level (defined by the host mortality model).  For simplicity, we assumed 427 

mortality increased by a constant fraction over time until reaching its maximum and levelling off. 428 

For example, in the 50-year mortality debt scenario, if an IAFI’s maximum host mortality was 429 

defined as 90%, mortality would increase by 9% at each 5-year timestep for 10 timesteps until 430 

90% mortality had been reached. 431 

The joint impact of maximum mortality and mortality debt is best illustrated by a series of 432 

examples. Estimates of street tree natural mortality range around 2.4-2.6% per year [12]. Within a 433 

30-year window, this would amount to roughly 53% natural street tree mortality. Our model 434 

assumes that if IAFI enters site at the beginning of this window (2020), it first undergoes a 10-435 

year time lag, and can then cause mortality in the final 20 years. The maximum level of mortality 436 

induced by a borer (EAB on several Fraxinus spp., Category H = 98.98%), would result in 98.98% 437 

additional mortality (mortality of remaining the trees that survived natural mortality) at the end of a 438 

30-year window. This level of mortality would be clearly detectable above natural street tree 439 

mortality. Hemlock woolly adelgid has a similar maximum mortality to EAB (Category H on Tsuga 440 

spp.), but we have assumed that sap-feeder mortality takes 100 years to reach asymptotic levels. 441 

As such, by the end of a 30-year window, only (98.98%/100)*20 years = 19.80% of additional 442 

host trees would be killed. While defoliators have shorter mortality debts, they tend to cause lower 443 

mortality, making their impacts the least detectable above background mortality. For defoliators, 444 

the IAFI with the greatest damage on any host is the larch casebearer, (Coleophora laricella on 445 

Larix laricina, category E = 16.46%). Given a 50-year mortality debt for defoliators, the maximum 446 

mortality above background rates by 2050 is (16.46% / 50) * 20 years = 6.58%. While these 447 

estimates are much lower, many host trees of sap feeders and defoliators are very common, and 448 

this mortality could very well be inflating the perceived background mortality rates of these host 449 

trees measured in [12].  450 

 451 

Management costs 452 

As a final layer that allowed us to move from mortality estimates to cost estimates, we estimated 453 

the cost of removing and replacing dead trees. We used this cost because we believe it to be the 454 

minimum management response required, and because the extent and variability of preventive 455 

behaviour would be much harder to estimate. However, we note that this cost does not account 456 

for additional preventive cutting or any non-cutting management such as spraying or soil 457 

drenching with pesticides. We assumed that cutting was a one-time 100% effective treatment 458 

against IAFIs, or in other words, that newly planted trees were of different species and thus not 459 

susceptible to the same IAFI species that killed the previous trees. We assumed a 2% discount 460 

rate for future damages [1] and also that infestations were independent, or in other words that 461 

invasion by one IAFI did not interfere with invasion by another. This is likely a fair assumption, as 462 

there is minimal host sharing across IAFIs, and IAFI species each infest only a small proportion of 463 

hosts at a given time interval, so there is minimal potential for species interactions [30]. We 464 

assumed the same per-tree cost estimates for cutting and replacing dead trees as in [1], where 465 

the cost of cutting increases nonlinearly with size class. If we assume that street trees are always 466 

under the jurisdiction of local governments, the cost of removal and replacement of each tree is 467 

US$450 for small trees, US$600 for medium trees, and US$1200 for large trees (these costs 468 

jump to an estimated US$600, US$800, and US$1500 for homeowners). We reported all costs 469 

incurred from 2020 to 2050 in 2019 US dollars based on a 2% discount rate relative to these 470 

baseline costs. Since these baseline per-tree management costs came from a 2011 publication, 471 

we converted them to 2019 dollars via the consumer price index, which amounted to an inflation 472 

of 13.65% (World Bank, https://data.worldbank.org), though we note that the present-day costs of 473 

per-tree removal may have declined with advances in technology.  474 

 475 

Model synthesis  476 

Once all subcomponent models had been parameterized, we synthesized the street tree 477 

estimates, IAFI spread estimates, host mortality estimates, and removal costs to produce overall 478 

cost estimates (Fig. S1). We summed the damages from 2020 to 2050 to obtain a total 479 
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discounted cost for this 30-year window. We then obtained annualized costs by calculating an 480 

annuity over the 30-year time horizon using the following equation:   481 

���������	 	����� � �
∑ ���������
���
�������	

����� !���	�����
    (4) 482 

Where D is the discount rate (2%). Using these forecasts, we extended the concept of 483 

cost-curves from [1], which were based on frequencies of occurrences of low and intermediate 484 

damaging IAFI, and explicit economic estimates of three ‘poster pests’. To parameterize the cost-485 

curves in this manuscript, rather than just 3 poster pests, we estimated street tree costs for all 57 486 

intermediate-impact IAFIs across the 3 major insect feeding guilds, in addition to frequencies of 487 

low-impact species (Table S4.1). The summed area under each guild-specific curve can be 488 

interpreted as the estimate of the total annualized cost of all IAFIs in the US to street trees. Since 489 

our curves were missing only low-impact species, the total cost estimated with these approaches 490 

is not appreciably different from a simple sum of the costs of the non-missing (57 intermediate) 491 

species reported in text, but we included these analyses to allow for the prediction of the costs of 492 

novel invaders from each guild (Appendix S4).  493 

We assessed parameter uncertainty in proportional host mortality by sampling from our 494 

posterior beta mortality distribution. We also used sensitivity analysis to explore the effect of 495 

different mortality debt scenarios, including 1) our most likely scenario, 2) setting all guilds to 10, 496 

50, or 100-year debts, and 3) varying each guild separately while holding the other two guilds at 497 

their most likely scenario. While our host distribution models were based on standard modelling 498 

approaches (e.g. GAM), our Bayesian formulations underlying the mortality estimates were novel 499 

and needed to be tested theoretically, to ensure that parameters were identifiable, and 500 

reproduced the correct behavior. See Appendix S4 for details of our theoretic analyses.  501 

 502 

Potential impacts to non-street trees 503 

To provide a rough estimate of non-street tree impacts, we built a model for whole-community 504 

trees (i.e., street + non-street trees) from the dataset of 56 communities where genus-level 505 

estimates were reported, subtracted predicted street trees from this whole community estimate, 506 

and apportioned the remaining trees into residential and non-residential trees based on their 507 

average fractions across all sites where land type breakdowns were provided (32 municipalities). 508 

Given the relatively limited data, we caution against overinterpretation of these results. 509 

 510 
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Figures and Tables 634 

 635 

 636 

 637 

Figure 1. Fit of the genus-specific host tree models across all genera and size classes.  638 
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 639 
Figure 2. Model outputs for the first three subcomponent models, including a. predicted street 640 

tree abundance, b. predicted newly invaded sites of existing IAFIs, c. predicted street tree 641 

exposure levels (number of focal host tree + IAFI interactions) from 2020 to 2050, and finally d. 642 

Predicted total tree mortality from 2020 to 2050 in the most likely mortality debt scenario across 643 

space. The top seven most impacted cities or groups of nearby cities are shown in terms of total 644 

tree mortality 2020 to 2050 (A = Milwaukee, WI; B = Chicago/Aurora/Naperville/Arlington Heights, 645 

IL; C = New York, NY; D = Seattle, WA; E = Indianapolis, IN; F = Cleveland, OH; G = 646 

Philadelphia, PA).   647 

d. 
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648 

  649 

Figure 3. Posterior distribution for the beta model of host mortality due to IAFIs within each 650 

severity category. 95% Bayesian credible intervals are shown in grey, and the posterior median is 651 

shown in black. Colored bins represent severity categories extended from [14]. 652  
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  653 
Figure 4. Depiction of the influence of mortality debt on temporal cost patterns. Predicted costs 654 

2020 to 2050 for the 10 year (yellow), 50 year (teal), and 100 year (purple) mortality debt 655 

scenarios with a 10 year initial invasion lag. The most likely scenario predictions are shown as a 656 

dashed red line. Costs are presented in 5-year increments in accordance with the timestep length 657 

within our spread model.  658 
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Table 1. Predicted annualized cost (in 2019 US dollars) and tree mortality across invasion 659 

scenarios from 2020 to 2050 across all 57 IAFI species. “Most likely” indicates the scenario with 660 

expert-elicited mortality debt durations by feeding guild, “Vary” scenarios hold all guilds but the 661 

focal guild constant at their most likely scenario, and “All” fix all three guilds at a given mortality 662 

debt duration. Mean mortality for most likely scenario = 2.3%, 1.38M trees, US$ 30M annualized 663 

(US$ 679M over the next 30 years). 664 

 665 

Mortality Debt 
Scenario 

Annualized Cost  
(US$ millions) 

Tree Mortality 
(Millions) 

Percent Mortality 

lower 95% 
CI 

upper 
95% CI 

lower 95% 
CI 

upper 
95% CI 

lower 
95% CI  

upper 
95% CI  

Most likely 28.5 33.2 1.29 1.54 2.1% 2.5% 

       

Vary Borers 10.1 32.1 0.45 1.45 0.7% 2.4% 

Vary Defoliators 28.1 32.6 1.28 1.48 2.1% 2.4% 

Vary Sap-feeders 28.5 32.5 1.30 1.47 2.1% 2.4% 

All 10 27.8 30.4 1.27 1.39 2.1% 2.3% 

All 50 18.5 22.3 0.84 1.00 1.4% 1.7% 

All 100 9.77 13.5 0.44 0.60 0.7% 1.0% 

 666 
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