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 2 

ABSTRACT 14 

The vertebrate hindbrain is segmented into rhombomeres (r) initially defined by 15 

distinct domains of gene expression. Previous studies have shown that noise-16 

induced gene regulation and cell sorting are critical for the sharpening of 17 

rhombomere boundaries, which start out rough in the forming neural plate (NP) 18 

and sharpen over time. However, the mechanisms controlling simultaneous 19 

formation of multiple rhombomeres and accuracy in their sizes are unclear. We 20 

have developed a stochastic multiscale cell-based model that explicitly 21 

incorporates dynamic morphogenetic changes (i.e. convergent-extension of the 22 

NP), multiple morphogens, and gene regulatory networks to investigate the 23 

formation of rhombomeres and their corresponding boundaries in the zebrafish 24 

hindbrain. During pattern initiation, the short-range signal, fibroblast growth factor 25 

(FGF), works together with the longer-range morphogen, retinoic acid (RA), to 26 

specify all of these boundaries and maintain accurately-sized segments with 27 

sharp boundaries. At later stages of patterning, we show a nonlinear change in 28 

the shape of rhombomeres with rapid left-right narrowing of the NP followed by 29 

slower dynamics. Rapid initial convergence improves boundary sharpness and 30 

segment size by regulating cell sorting and cell fate both independently and 31 

coordinately. Overall, multiple morphogens and tissue dynamics synergize to 32 

regulate the sizes and boundaries of multiple segments during development.	33 

  34 

  35 
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 3 

Author Summary 36 

In segmental pattern formation, chemical gradients control gene expression in a 37 

concentration-dependent manner to specify distinct gene expression domains. 38 

Despite the stochasticity inherent to such biological processes, precise and 39 

accurate borders form between segmental gene expression domains. Previous 40 

work has revealed synergy between gene regulation and cell sorting in 41 

sharpening borders that are initially rough. However, it is still poorly understood 42 

how size and boundary sharpness of multiple segments are regulated in a tissue 43 

that changes dramatically in its morphology as the embryo develops. Here we 44 

develop a stochastic multiscale cell-base model to investigate these questions. 45 

Two novel strategies synergize to promote accurate segment formation, a 46 

combination of long- and short-range morphogens plus rapid tissue convergence, 47 

with one responsible for pattern initiation and the other enabling pattern 48 

refinement.  49 
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 4 

INTRODUCTION 50 

 51 

A fundamental question in developmental biology is how cell fate decisions are 52 

coordinated with tissue morphogenetic changes during pattern formation. During 53 

embryogenesis, cells must convert concentration-dependent positional 54 

information from diffusible chemical morphogens into coordinated cell fate 55 

decisions [1-3]. Mathematical models have successfully integrated tissue 56 

morphogenesis and spatial signaling during patterning of embryonic segments in 57 

both flies [4, 5] and vertebrates [6-8], in structures such as the wing imaginal 58 

discs in Drosophila [9-11], as well as the limb buds [12], neural tube [13-15], 59 

hindbrain [16-18], pharyngeal arches [19], skin [20, 21] and hair follicles [22] of 60 

vertebrates.  61 

 62 

Understanding stochastic effects in patterning systems, particularly how precision 63 

is achieved in spite of biological noise in gene expression and spatial signals, is a 64 

major challenge in developmental biology. Noise attenuation mechanisms in 65 

gene expression have been widely explored in diverse cellular networks [23, 24]. 66 

For spatial signals, binding with membrane-bound non-signaling entities [25], 67 

regulation of gradient steepness by ligand shuttling [26, 27] and self-regulated 68 

ligand uptake [28, 29] can reduce spatial variation in morphogen gradients. Anti-69 

parallel morphogens [14] and gene regulatory networks [30-32] that translate 70 

noisy spatial signals into cell fate decisions can also reduce patterning errors. 71 

Interestingly, noise in gene expression can counteract other stochastic effects 72 

(e.g. noise in morphogen levels) to improve pattern formation precision [17, 33]. 73 

In addition to these molecular strategies, pattern precision can be improved 74 
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 5 

through cellular strategies, such as cell sorting driven by cell-cell interactions [16, 75 

20] or “community effects” of signals from adjacent cells [34]. Previous modeling 76 

studies have often neglected to take into account rapid changes in tissue 77 

morphology, and how the interaction between these and noise attenuation 78 

mechanisms impacts pattern precision remains poorly understood.  79 

 80 

The embryonic zebrafish hindbrain is a powerful model system to study the roles 81 

of gene regulation, stochasticity, cell sorting, and tissue morphogenesis in 82 

segmental pattern formation. Neurons in the hindbrain contribute to the cranial 83 

nerves that innervate the face and neck and control many involuntary functions, 84 

such as feeding and breathing. These neurons arise in early embryonic 85 

segments, called rhombomeres (r), that progressively subdivide along the 86 

anterior-posterior (A-P) axis [35]. Initial gene expression domains that specify 87 

segmental cell identities in rhombomeres 1-7 (r1-7) have rough borders that 88 

subsequently sharpen [17, 36]. Several spatial signals provide positional 89 

information for the establishment of rhombomeres, such as retinoic acid (RA) [28, 90 

37-40] and fibroblast growth factors (FGFs) [41-45]. These signals regulate 91 

numerous transcription factors, including hox genes, krox20, val, vhnf1 and irx, 92 

with rhombomere-specific expression domains that specify rhombomere cell 93 

identity [46-48]. Rhombomere-specific gene regulatory networks commit cells to 94 

distinct segmental fates and can switch their identities from one segment to 95 

another by interpreting RA and FGF signals [34, 49]. In addition, the 96 

complementary segmental expression of Ephrins and Eph receptors drives 97 

boundary sharpening by regulating cell sorting with differential 98 

adhesion/repulsion [50-53]. Previous computational models incorporating one 99 

morphogen, RA, and two transcription factors, hoxb1a and krox20, successfully 100 
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mimic boundary sharpening in r3-5 by incorporating gene regulation and cell 101 

sorting [16, 17]. During the period when these boundaries sharpen, the hindbrain 102 

grows and elongates, often termed as convergent extension, where the hindbrain 103 

narrows along the left-right (L-R) axis and elongates along the anterior-posterior 104 

(A-P) axis [49, 54]. However, previous computational models have shown that 105 

tissue elongation disrupts the sharpening of rhombomere boundaries [17]. It 106 

remains unclear in any segmented tissue how multiple segments simultaneously 107 

form with accurate sizes and sharp boundaries during such morphogenetic tissue 108 

dynamics.  109 

 110 

Here we consider hindbrain patterning across multiple stages, from pattern 111 

initiation to sharpening, across multiple segments (r2-6) and in the context of 112 

morphogenetic changes in hindbrain size and shape. We include a second 113 

morphogen in our model, FGF produced in r4, and two additional transcription 114 

factors, vhnf1 and irx3. We find that FGF produced in r4 is critical to specify the 115 

r5/r6 boundary, and to achieve a robust five-segment pattern with accurate 116 

segment sizes and sharp boundaries despite variations in initial gene expression. 117 

At later stages of patterning, we show experimentally that L-R narrowing of the 118 

zebrafish hindbrain occurs rapidly at first (11-12 hours post fertilization (hpf)), but 119 

the narrowing rate drops rapidly over the following two hours (12-14 hpf). 120 

Interestingly, comparisons of hindbrain pattern formation in our model under 121 

different convergence rates suggest that such a rapid initial convergence 122 

facilitates robust patterning, both in the accuracy of segment size and boundary 123 

sharpness. This rapid initial convergence helps mediate a trade-off between 124 

boundary sharpness and segment size. Together, the cooperation between two 125 
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morphogens and morphogenetic dynamics effectively regulates robust segmental 126 

patterning in the zebrafish hindbrain.  127 
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RESULTS  128 

 129 

A stochastic multiscale cell-based model for hindbrain 130 

segmentation  131 

To address how multiple morphogens and dynamics of tissue morphogenesis 132 

contribute to segmental pattern formation in the hindbrain, we developed a 133 

computational model that incorporates stochastic gene regulation, cell sorting 134 

and tissue shape changes (Fig 1). We first provide an overview of the elements, 135 

assumptions, and metrics included in our models (details see Methods and 136 

Supplementary Materials).  137 

 138 

Hindbrain morphogenesis and computational domains. During 139 

embryogenesis from 11-14 hpf, the zebrafish hindbrain narrows along the L-R 140 

axis and elongates along the A-P axis [49, 54]. The midbrain-hindbrain boundary 141 

(MHB) (anterior to the hindbrain and adjacent to r1) and the RA production region 142 

(posterior to the hindbrain and adjacent to r7) provide A-P landmarks for the 143 

region that forms the hindbrain (Fig 1A). To quantify these changes in size and 144 

shape, we performed whole mount in situ hybridization with markers for the MHB 145 

(otx2), r3 and r5 (krox20) and RA production (aldh1a2). At each hour between 146 

11-14 hpf, we measured hindbrain width at the level of r4 as well as the A-P 147 

distance between the otx2 and aldh1a2 domains (Fig 2A, B). Based on these 148 

experimental measurements, we modeled the hindbrain (r1-r7) along with the RA 149 

production region as a rectangle, subsequently referred to as the morphogen 150 

domain (Fig 1B). Two morphogens, RA and FGF, were modeled in the 151 

morphogen domain. Due to the expensive computational cost, instead of 152 
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 9 

modeling all cells in the morphogen domain for this study, we explicitly modeled 153 

cells in a smaller region containing r2-r6, subsequently referred to as the tissue 154 

domain.  155 

 156 

Morphogens, gene regulation and cell fate. Gene expression in the zebrafish 157 

hindbrain initially forms a rough r2-6 pattern at 11 hpf, which is refined over time 158 

into five precise segments of similar size with four sharp boundaries by 14 hpf 159 

(Fig 1C, D). RA synthesized in somites adjacent to the anterior spinal cord 160 

diffuses anteriorly and is required for proper rhombomere formation, including 161 

direct activation of vhnf1 in r5 and r6 and hoxb1a in r4 [37-39]. Mutual inhibition 162 

between vhnf1 and irx3 specifies the first pre-rhombomeric r4/r5 boundary at 9.5-163 

10 hpf [48]. RA then activates hoxb1a and vhnf1 which represses hoxb1a 164 

expression [39], restricting it to r4 where it activates FGF synthesis [41, 45, 55]. 165 

FGF diffuses both anteriorly and posteriorly to induce krox20 in r3 and r5 [42-44]. 166 

Through auto-regulation, krox20 has two steady-state expression levels, either 167 

zero or non-zero, depending on the FGF concentration [18, 44], and the r2/r3 and 168 

r5/r6 boundaries are specified by krox20 levels. Auto-regulation and mutual 169 

inhibition between hoxb1a and krox20 establish a toggle switch that specifies and 170 

refines the r3/r4 and r4/r5 boundaries [17]. As a result, three distinct cell fates are 171 

specified by hoxb1a and krox20 expression levels to establish the r2-r6 pattern, 172 

specifically, high hoxb1a and low krox20 expression in r4, low hoxb1a and high 173 

krox20 expression in r3 and r5, and low expression of both hoxb1a and krox20 in 174 

r2 and r6 (Fig 1D). 175 

In the model, morphogens (RA and FGF) were described by stochastic 176 

PDEs in a continuum fashion. Regulation of genes downstream of morphogens 177 

was modeled using stochastic ODEs for each individual cell. Interactions 178 
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 10 

between morphogens were modeled at a regular rectangular mesh in the 179 

morphogen domain, and the downstream genes for each cell were modeled as 180 

being located at the center of each individual cell. Numerical interpolation was 181 

used to capture the interplay between morphogens and gene regulation modeled 182 

at different grid points (Supplementary Materials S1).  183 

 184 

Mechanical models for individual cells. In the cell mechanical model, we used 185 

the subcellular element method (SCEM) [16, 56] to model individual cells and 186 

cell-cell mechanical interactions involved in cell sorting (Supplementary 187 

Materials S2). In this computational formalism, an individual cell consists of a 188 

constant number of sub-cellular elements (i.e. nodes). Elements interact 189 

according to a prescribed force potential. This force between elements within the 190 

same cell is repulsive at short ranges and attractive at long ranges to maintain 191 

stable cell volume and circular structure. The forces between elements within 192 

different cells are repulsive at short ranges to prevent cell overlaps. At longer 193 

ranges, the intercellular forces between elements can be either repulsive or 194 

attractive depending on cell identities.  195 

 196 

Cell sorting. In the zebrafish hindbrain, cell sorting has selectivity based on cell 197 

identities. One well-known mechanism of selectivity is cell-cell adhesion 198 

mediated by Ephrin-Eph signaling. Ephrin-B2 ligands are expressed highly in 199 

even-numbered rhombomeres (r2, r4 and r6), while EphA4 receptors are 200 

expressed highly in odd-numbered rhombomeres (r3 and r5), and this alternating 201 

pattern controls repulsion between cells in one rhombomere and another [52]. 202 

Depletion of EphA4 has more dramatic effects on rhombomere boundaries than 203 

EphrinB2a, but knockdown of both enhances boundary defects [50]. Krox20 204 
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 11 

directly activates transcription of ephA4 [57], thereby regulating Ephrin-Eph 205 

mediated cell sorting. Our model mimics the selective cell-cell adhesion between 206 

two cells based on their krox20 expression levels (Fig 1D). Specifically, cells 207 

attract each other if they have similar krox20 levels, and repel each other if one 208 

expresses krox20 and the other does not.  209 

 210 

Initial conditions.   We chose 11 hpf as the starting point for our modeling study 211 

soon after the initiation of gene expression in some rhombomeres. At this stage 212 

in the simulations cells were assumed to align uniformly in the rectangular tissue 213 

domain. For initial gene expression, we first ran simulations with the stochastic 214 

gene regulation model over two hours and used those simulation results as the 215 

initial condition. We started with equilibrium solution for RA by solving the 216 

corresponding steady-state PDE because RA gradients are established as early 217 

as 6 hpf [39]. Because vhnf1 and irx3 expression appear much earlier than 218 

hoxb1a, krox20 and FGF [39], we ran stochastic simulations for RA, vhnf1 and 219 

irx3 in the first hour with zero values for vhnf1 and irx3. In the second hour, we 220 

included stochastic simulations for all morphogens and genes. krox20 and FGF 221 

start with zero expression while hoxb1a starts with a constant expression level 222 

because hoxb1a has weak expression over the hindbrain domain at early stages 223 

[17] and shows dynamic changes in expression earlier than FGF or krox20 [48].  224 

 225 

One-dimensional gene expression model. In the one-dimensional gene 226 

expression models, we consider steady-state solutions of genes and 227 

morphogens in a one-dimensional fixed A-P domain (Supplementary Materials 228 

S3). The initial conditions were chosen similarly to the full model. Equilibrium 229 

solutions for RA, vhnf1 and irx3 were taken as the initial conditions. Both krox20 230 
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 12 

and FGF levels were initially set at zero. We included hoxb1a expression at low 231 

but non-zero initial levels.   232 

 233 

A cell sorting-only model. In the model with only cell sorting without gene 234 

regulation, cells sorted based on their pre-assigned identities, and cell identities 235 

and numbers did not change throughout the simulations. Three cell identities 236 

based on threshold levels of high or low expression of hoxb1a and krox20 in the 237 

five segments (r2-6) were considered. The initial “salt-and-pepper” pattern of cell 238 

identities was sampled by a mixture Gaussian probability distribution based on 239 

each cell’s A-P position (Supplementary Materials S4).  240 

 241 

Quantification of cell fate, rhombomere boundary A-P locations and 242 

boundary sharpness. Once these three cell identities were determined in r2-r6 243 

we evaluated rhombomere boundaries (Supplementary Materials S5). We 244 

defined three critical quantities in our simulations: boundary location along the A-245 

P axis, boundary sharpness (represented as a sharpness index, SI) and the 246 

number of dislocated cells (DCs) (see Methods). Four boundaries between 247 

rhombomeres (r2/r3, r3/r4, r4/r5 and r5/r6) are all perpendicular to the A-P axis. 248 

For a single boundary determination, we selected a predefined boundary and 249 

calculated total deviations of cells located on the wrong side of this predefined 250 

boundary. The total deviations were minimized over the A-P position of the 251 

predefined boundary. SI was defined by the minima of total deviations and the A-252 

P position of this boundary was defined based on these minima. A lower SI 253 

indicates a sharper boundary. DCs are cells located over three cell-diameters 254 

away from the rhombomere to which they belong and they are excluded in 255 
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calculating boundary location. If the number of DCs exceeds 8 cells, we consider 256 

the pattern failed.  257 

 258 

 259 

Including multiple morphogens and tissue morphogenesis in the 260 

models recapitulates the r2-6 pattern 261 

The stochastic multiscale cell-based model successfully recapitulated the 262 

dynamics of r2-6 formation observed in the zebrafish hindbrain. As shown for one 263 

stochastic simulation with spatial distributions of multiple genes, both RA and 264 

FGF signals have noisy distributions over the space (Fig 2C, D). The RA 265 

gradient decreases from its origins at the posterior end of the hindbrain to the 266 

anterior, while FGF levels are high in r4 where it is secreted and decreases in 267 

both anterior and posterior directions. By generating a time series of the spatial 268 

patterns of gene expression (Fig 2E-2G), including hoxb1a, krox20, vhnf1 and 269 

irx3, our model recapitulates rhombomere boundary sharpening [17, 49]. For 270 

example, krox20 is weakly expressed in r3 and r5 at 11 hpf and upregulated by 271 

12 hpf, with expression stronger in r3 than r5 (Fig 1A, 2E). At this stage, 272 

hoxb1a+ and krox20+ cells intermingle and a few cells close to the r4/r5 273 

boundary undergo identity switching as they co-express low levels of both krox20 274 

and hoxb1a [49]. By 13 hpf, cells closer to the boundaries and most of the 275 

krox20/hoxb1a co-expressing cells commit to one segment or another and 276 

boundaries become sharper. At 14 hpf, all cells segregate to their territories and 277 

the boundaries fully sharpen, producing a precise five-segment pattern.  278 

The modeling output naturally accounts for the sharpening of other gene 279 

expression boundaries in r2-6, despite differences in their interactions. For 280 
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example, the anterior edge of vhnf1 expression and the posterior edge of irx3 281 

expression specify the position of the pre-rhombomeric r4/r5 boundary at 11 hpf 282 

(Fig 2F, G). At later stages, this vhnf1/irx3 border shifts posteriorly to become 283 

located in r5 [48]. Unlike hoxb1a and krox20, vhnf1 does not auto-induce itself to 284 

maintain its own expression without RA signals. Consequently, vhnf1 shifts 285 

posteriorly [39] after 12 hpf as RA decreases everywhere  (Fig S1C). 286 

Stochastic simulations were repeated independently (Fig 2H). The results 287 

are consistent with experimental measurements of rhombomere A-P length at 14 288 

hpf (r3 = 42±5 µm, r4 = 34±5 µm, r5 = 37±4 µm) as well as sharpening. For 289 

example, from 11-12 hpf, identity switching affects the sharpness of the r4/r5 290 

boundary [17], with a higher SI and DC number during this period. From 12-14 291 

hpf, SI and DC number gradually decrease to the minimum as all boundaries 292 

sharpen.  293 

 294 

Cooperation between RA and FGF improves robustness of 295 

initiation of the segmental pattern  296 

A previous model that only considered the RA morphogen gradient without cell 297 

sorting or convergent extension successfully simulated many aspects of the 298 

formation of the r2-5 pattern [17]. In the model, hoxb1a and krox20 were 299 

considered as direct downstream targets of RA, despite krox20 being indirectly 300 

induced by RA through hoxb1a and FGF. Our new model incorporates both RA 301 

and FGF as well as these additional features of krox20 regulation.  302 

 Comparing the two-morphogen (RA + FGF) to the one-morphogen (RA) 303 

model reveals many similarities and some key differences (Fig 3). In both, the 304 

borders between hoxb1a and krox20 specify r3/r4 and r4/r5 boundaries, the 305 
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border between vhnf1 and irx3 lies posterior to the r4/r5 boundary, and krox20 306 

has two steady-state levels induced by either RA (one-morphogen model) or 307 

FGF (two-morphogen model) depending on the morphogen levels. In the two-308 

morphogen model, FGF has the highest expression in r4 where it is secreted and 309 

decreases in both anterior and posterior directions. By inducing krox20 in a 310 

concentration-dependent manner, FGF can specify the r2/r3 and r5/r6 311 

boundaries. In contrast, the one-morphogen model, with RA decreasing 312 

monotonically from posterior to anterior, can only specify r2/r3 and not the r5/r6 313 

boundary. Overall, the two-morphogen model can specify four boundaries (r2/r3, 314 

r3/r4, r4/r5 and r5/r6), while the one-morphogen model can specify only three 315 

boundaries (r2/r3, r3/r4 and r4/r5).  316 

 Additionally, we compared robustness in the two models with respect to 317 

initial hoxb1a expression. With constant initial hoxb1a level everywhere in space, 318 

we compared phase diagrams and resulting rhombomere lengths between the 319 

two-morphogen and one-morphogen models (Fig 3B, C, E, F). Interestingly, the 320 

inclusion of FGF makes the model relatively less sensitive to initial hoxb1a levels, 321 

in terms of the locations of gene expression boundaries and sizes of r3-5. When 322 

the initial hoxb1a level exceeds a certain level (e.g. 0.3), three rhombomeres (r3, 323 

r4 and r5) expand slightly along the A-P axis with r2/r3 and r3/r4 expanding 324 

anteriorly, and r4/r5 and r5/r6 expanding posteriorly (Fig 3B, C). In contrast, with 325 

RA alone, lengths of r3 and r4 are more sensitive to initial hoxb1a levels. In 326 

simulations with low initial hoxb1a levels (<0.2), r4 does not form (Fig 3E, F). As 327 

initial hoxb1a levels increase from 0.2 to 0.4, the r4 region rapidly expands at the 328 

expense of r3. A 15% increase in initial hoxb1a level (0.2-0.23) leads to an over 329 

two-fold expansion of r4 (21-44 µm) and r3 essentially vanishes when the initial 330 

hoxb1a level is close to 0.4. Thus, the two-morphogen model outperforms the 331 
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one-morphogen model in robustness of rhombomere length, in that the second 332 

morphogen buffers responses to initial gene expression variation.  333 

 We also examined how the pattern reacts to perturbations of initial gene 334 

expression. We consider noisy initial hoxb1a levels over the space. In the two-335 

morphogen model, such noise has negligible effects on later hoxb1a and krox20 336 

distributions resulting in clear segmental patterns and sharp r3/r4 and r4/r5 337 

boundaries, and multiple simulations result in almost identical patterns (Fig 3A). 338 

However, in the one-morphogen model, hoxb1a and krox20 distributions 339 

fluctuate more dramatically than the two-morphogen model. Despite a much 340 

smaller magnitude of perturbation (13%) in initial hoxb1a levels, the one-341 

morphogen model shows fluctuating boundaries for both r3/r4 and r4/r5 (Fig 3D). 342 

Overall, the two-morphogen cooperation facilitates both accurate rhombomere 343 

lengths and sharp boundaries with perturbations of initial gene expression, 344 

providing robustness in patterning during the initial stages.  345 

  346 

Rapid initial convergence improves boundary sharpness and 347 

segment size  348 

Due to stochasticity, the initial pattern shows rough boundaries between 349 

rhombomeres. Later on, patterns sharpen and refine boundaries from 11-14 hpf. 350 

During these stages, the zebrafish hindbrain changes shape dramatically as it 351 

narrows in width along the L-R axis, extends in length along the A-P axis (Fig 352 

1A) and thickens in the D-V axis [58]. We mainly studied A-P and L-R axes and 353 

their dimensions were experimentally measured (Fig 2A, 2B). Length along the 354 

A-P axis changes slowly during this period, but width along the L-R axis rapidly 355 

shrinks from 283 µm to 162 µm during the first hour, and further to 104 µm during 356 
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the last two hours with approximately a 75% drop in the average rate after which 357 

patterning is largely complete. To determine how such rapid initial convergence 358 

influences hindbrain patterning we compared models incorporating medium or 359 

slow initial convergence with the rapid initial convergence rate we measured 360 

experimentally. All three types of convergence have the same initial and terminal 361 

L-R width. The curve of the medium convergence is taken as a linear function. 362 

The curves of the slow and rapid initial convergences are symmetric to the linear 363 

curve (Fig 4A).  364 

We first performed simulations with full models including both gene 365 

regulation and cell sorting. Regardless of the convergence speed, most cells 366 

segregate to their correct territories and the final patterns display sharp 367 

boundaries between rhombomeres (Fig 4B-4E). Rapid initial convergence allows 368 

the sharpest boundaries and the fewest DCs while slow initial convergence 369 

results in the roughest boundaries and more DCs (Fig 4F). SI and DC numbers 370 

at 14 hpf in multiple independent simulations confirm conclusions based on 371 

single simulations (Fig 4H, I). The exception is that rapid and medium 372 

convergence rates yield similar SI and DC numbers at the r5/r6 boundary (Fig 373 

4H, I). Rhombomere A-P lengths also vary greatly in this model with different 374 

convergence rates (Fig 4G). Simulations with slow initial convergence result in all 375 

three rhombomeres (r3-5) elongated. Simulations with medium convergence 376 

result in a shorter r5 compared to r3 and r4. Simulations with rapid initial 377 

convergence result in r3-5 being all roughly the same length (with r4 slightly 378 

shorter) similar to experimental measurements of the hindbrain at 14 hpf (Fig 2H, 379 

4G). 380 

Taken together, rapid initial convergence facilitates robust patterns by 381 

optimizing boundary sharpness and rhombomere A-P length. These influences 382 
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depend on multiple mechanisms, including cell sorting and gene regulation, and 383 

their coordination.  384 

 385 

Rapid initial convergence improves boundary sharpness through cell 386 

sorting. Next, we performed simulations with models incorporating cell sorting 387 

alone and excluding gene regulation using the cell sorting-only model. Initial 388 

“salt-and-pepper” cell distributions by assigning each cell an identity generated 389 

the five-segment pattern with rough boundaries (Fig 5A). Similar to observations 390 

in full models (Fig 4), most cells segregate to their correct territories and the final 391 

patterns display sharp boundaries between rhombomeres (Fig 5B-D). Rapid 392 

initial convergence allows the sharpest boundaries and the fewest DCs, while 393 

slow initial convergence results in the roughest boundaries and more DCs (Fig 394 

5E). SI and DC numbers at 14 hpf in multiple independent simulations confirm 395 

conclusions based on single simulations (Fig 5G, H). In the model with cell 396 

sorting alone, while these different speeds of convergence have major effects on 397 

boundary sharpness, they have relatively minor effects on rhombomere A-P 398 

length (Fig 5F). These results suggest rapid initial convergence improves 399 

boundary sharpness by facilitating the efficiency of cell sorting. 400 

 401 

Rapid initial convergence helps specify correct rhombomere lengths by 402 

regulating cell fate. To investigate the effects of convergence on rhombomere 403 

lengths, we studied dynamics of gene expression under different convergence 404 

rates. We first investigated the influence of convergence rate on spatiotemporal 405 

dynamics of morphogen distribution and cell fate commitment (Fig 6). With rapid 406 

initial convergence, the RA signal and its direct target, vhnf1, increase quickly 407 

from 11-12 hpf, particularly in the posterior hindbrain (150 µm and 200 µm in Fig 408 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 22, 2021. ; https://doi.org/10.1101/2021.04.22.440966doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.22.440966
http://creativecommons.org/licenses/by-nc/4.0/


 19 

6A, B), then decrease gradually. Near the r4/r5 boundary, hoxb1a is repressed 409 

by the increasing levels of vhnf1. FGF made in r4 then activates krox20 leading 410 

to identity switching for cells near the r4/r5 boundary with low hoxb1a expression 411 

(Fig 4C). With medium or slow initial convergence, the RA signal and vhnf1 412 

remain relatively unchanged compared to rapid initial convergence (Fig 6A, B). 413 

Indeed, we observed that fewer cells switch from an r4 to an r5 identity and the 414 

r4/r5 boundary is located further posteriorly with medium or slow initial 415 

convergence (Fig 4C-E). Similar to RA, FGF levels increase and peak around 12 416 

hpf with models that include rapid initial convergence (Fig 6C). With medium 417 

convergence, FGF levels remain relatively unchanged, while with slow initial 418 

convergence, FGF levels remain unchanged at the early stage then increase and 419 

peak quickly at 13-14 hpf. At the same A-P position, slow initial convergence 420 

results in higher maximum FGF levels than rapid or medium convergence rates. 421 

Since FGF induces krox20 expression to drive identity switching from r2 identity 422 

to r3 (and r6 to r5) identity, the higher maximum FGF levels that result from slow 423 

initial convergence lead to displacement of the r2/r3 boundary anteriorly and the 424 

r5/6 boundary further posteriorly than rapid or medium convergence rates.  425 

 The different rhombomere A-P lengths under different convergence rates 426 

can be observed consistently either in the full model (Fig 4) or in the model 427 

excluding cell sorting (Fig S2). The dynamics of the morphogens provides an 428 

explanation for the length behaviors. Rapid initial convergence leads to the 429 

smallest r4 because more r4 cells switch to r5 identities near the r4/r5 boundary. 430 

Slow initial convergence leads to a larger r3 and r5 because more r2 or r6 cells 431 

switch to r3 or r5 identities. Medium convergence results in the smallest r5 432 

because fewer cells switch near the r4/r5 boundary than rapid initial convergence 433 

and fewer cells switch near the r5/r6 boundary than with slow initial convergence.  434 
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 Interestingly, r3 emerges earlier and it initially has a larger A-P length 435 

than r5 since vhnf1 expressed posteriorly represses the FGF activator, hoxb1a, 436 

resulting in weaker FGF signaling in r5 (Fig 4A). Through rapid convergence, r4 437 

cells can switch to an r5 identity to compensate for the difference between r3 and 438 

r5 lengths to achieve correct A-P rhombomere lengths similar to experimental 439 

measurements.  440 

 441 

Rapid initial convergence improves boundary sharpness through synergy 442 

between gene regulation and cell sorting. To study potential coordination 443 

between gene regulation and cell sorting in boundary formation, we restricted 444 

them individually at different patterning stages. Minimizing gene regulatory 445 

interactions in the model at early stages causes major patterning defects, while 446 

at later stages effects on boundary sharpness are minor (Fig S3). Conversely, 447 

limiting selective cell sorting to one-hour intervals within 11-14 hpf (with cells 448 

allowed to sort uniformly at other times) yields the worst patterns when limited to 449 

11-12 hpf (Fig S4). These results suggest that gene regulation is more important 450 

during early patterning stages and cell sorting later for boundary sharpening.  451 

 As shown in the previous subsection, with rapid initial convergence rates 452 

morphogen levels increase and peak at around 12 hpf, while morphogen levels 453 

increase and peak much later with medium or slow initial convergence. Since 454 

hoxb1a and krox20 are direct targets of RA and FGF, respectively, the timing of 455 

cell commitment as measured by expression of these genes is closely tied to the 456 

timing of peak morphogen levels. Consequently, rapid initial convergence drives 457 

the earliest cell commitment at around 12 hpf. Slow initial convergence leads to 458 

much later cell commitment (Fig 6D). One notable exception is that r4 cells 459 

commit later in the case of rapid initial convergence, due to switching near the 460 
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r4/r5 boundary, but most cells still commit before 13 hpf (Fig 6D). Driven by early 461 

cell commitment, rapid initial convergence extends the effective period of cell 462 

sorting and shortens the effective period of gene regulation to improve boundary 463 

sharpness.  464 

 465 

Rapid initial convergence mediates the trade-off between 466 

rhombomere length and boundary sharpness 467 

To examine the sensitivity of our observations to model parameters, we 468 

performed a large number of simulations with random parameters, assaying both 469 

rhombomere A-P length and boundary sharpness. Using n=1000 independent 470 

repeats for each convergence rate, we found 513, 563 and 452 simulations that 471 

successfully produced a five-segment pattern for rapid, medium and slow initial 472 

convergence, respectively.  473 

 These results also revealed a trade-off between rhombomere length and 474 

sharpness, i.e. reduced length typically resulted in higher Sis, indicating rougher 475 

boundaries (Fig 7 and Fig S5). This can likely be explained by the fact that a 476 

shorter rhombomere has fewer cells with the same identity, thus cell sorting has 477 

less effect and cells are more susceptible to noise. As a result, a single stray cell 478 

has more impact on the boundary sharpness index. Such trade-offs are also 479 

observed for the model without convergent extension, leading to shorter and 480 

rougher rhombomere lengths (Supplementary Material S11). With shorter 481 

rhombomeres, rapid initial convergence significantly reduces this trade-off, 482 

particularly in r4 and r5 (Fig 7 and Fig S5).  483 

 Moreover, we quantified fractions of simulations achieving roughly equal 484 

segment length. We considered a simulation having equal rhombomere lengths if 485 
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A-P lengths of r3, r4 and r5 were close to their experimentally measured average 486 

lengths within ranges 
  

m * 100%− d%( ), m * 100%+ d%( )⎡⎣ ⎤⎦ , where m was the 487 

measured average length (Table S7). With any values of deviation d, there are 488 

higher fractions of simulations achieving roughly equal length under rapid initial 489 

convergence compared to medium and slow initial convergence at 14 hpf (Fig 490 

7G). Experimentally, standard deviations of r3, r4 and r5 length are within the 491 

range between 10% and 15% (Table S7). Within this range of d, rapid initial 492 

convergence has at least 69% and 175% higher fractions of simulations 493 

achieving roughly equal segment length than medium and slow initial 494 

convergence, respectively (Fig 7G). These results are consistent with our 495 

findings that rapid initial convergence generates more accurate lengths of 496 

rhombomere and sharper boundaries.   497 
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DISCUSSION  498 

 499 

Our models suggest that a combination of two morphogens and rapid initial 500 

tissue convergence together drive robust hindbrain segmentation. Inclusion in the 501 

model of the short-range morphogen (FGF) secreted from r4, combined with the 502 

longer-range morphogen (RA) secreted posteriorly, substantially improves the 503 

robustness of segmental patterning compared with RA alone. Cooperation 504 

between morphogens is common in pattern formation in many contexts, in part 505 

because it helps maintain accuracy in size and boundary sharpness of target 506 

gene expression domains. Our previous models and experiments in the hindbrain 507 

have focused primarily on the r4/r5 boundary, where many gene regulatory 508 

interactions are known and the RA gradient is relatively steep [17, 49, 50]. The 509 

current model expands upon this work to explain the formation of other 510 

rhombomere boundaries, particularly r2/r3, r3/r4 and r5/r6, with the additional 511 

positional information provided by FGF. Surprisingly, rapid initial convergence 512 

dramatically improves robustness of rhombomere patterning, both segment size 513 

and boundary sharpness. Rapid initial convergence may also be a conserved 514 

strategy for precise establishment of gene expression domains in other 515 

embryonic tissues that elongate by convergent extension [59-61] such as axial 516 

mesoderm in early vertebrate embryos [62] or stacking of chondrocytes in 517 

developing cartilages [63, 64].  518 

 519 

Complementary roles of long- and short-range morphogens in 520 

pattern accuracy and precision  521 
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In morphogen gradient-mediated patterning, it is crucial not only that target gene 522 

expression boundaries are accurately positioned but also that they are sharp. 523 

However, there is a trade-off between accuracy and precision of boundary 524 

patterning that depends on morphogen gradient steepness [1, 27]. A steep 525 

morphogen gradient specifies boundary locations more precisely in the face of 526 

fluctuations in signal, is less sensitive to noise and facilitates boundary 527 

sharpness. However, the trade-off is that it makes positioning boundaries more 528 

sensitive to perturbations or noise in morphogen synthesis, slight shifts in which 529 

can move the boundaries along the A-P axis. Since RA is responsible for the 530 

initial A-P patterning of the hindbrain, starting from gastrulation, it likely plays a 531 

more prominent role in accuracy, due to its shallow distribution across much of 532 

the patterning region [40] and self-enhanced degradation [28]. On the other 533 

hand, FGF likely plays a prominent role in precision to help improve the 534 

sharpness of boundaries adjacent to its source, since its gradients are likely 535 

steeper due to its local effects [41, 45, 55]. In addition, FGF synthesis most likely 536 

varies less since one of its upstream regulators, hoxb1a, is bi-stable and tightly 537 

controlled by a complex network [46, 47, 65]. Together, these complementary 538 

features of the long-range shallow RA gradient and the short-range steep FGF 539 

gradient help overcome the trade-offs inherent in morphogen patterning systems 540 

for achieving both accurate and precise rhombomere pattern.  541 

 During hindbrain segmentation, r4 becomes the secondary signaling 542 

center that produces FGFs (e.g. Fgf4 and Fgf8) in zebrafish [41, 42, 45, 55] that 543 

are regulated by the posteriorizing signal RA [28]. The MHB is another secondary 544 

FGF (i.e. Fgf8 in zebrafish) signaling center that likely contributes to anterior 545 

rhombomere patterning [66]. In many biological contexts, two morphogens 546 

interact with each other to facilitate spatial pattern formation. Interactions 547 
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between the long- and short-range morphogens induce Turing patterns, such as 548 

Sox9 and Bmp in digit patterning [12], Edar and FGF in murine tooth 549 

development [67], FGF and Shh in limb regeneration [68], and Nodal and Lefty in 550 

early mesoderm formation and left-right patterning [69, 70]. Two long-range 551 

morphogens with anti-parallel distributions improve the precision of a single 552 

boundary, such as Bcd and Cad in Drosophila embryo segmentation [71], and 553 

Bmp and Shh in vertebrate neural tube patterning [14, 71, 72]. Unlike these 554 

examples, the novel two-morphogen mechanism presented in this work includes 555 

one long-range and one short-range morphogen that act in parallel on 556 

downstream targets. This system specifies multiple boundaries of gene 557 

expression and improves both accuracy and precision of segmental patterns.  558 

 559 

Rapid initial convergence in tissue morphogenesis improves 560 

pattern robustness 561 

Intuitively, elongation along the A-P axis might be expected to hinder segmental 562 

patterning and rhombomere boundary sharpening [17], since cells quickly 563 

change neighbors and intercalate. However, we find quite the opposite (Fig 8). 564 

Rapid initial convergence facilitates boundary sharpening through two strategies. 565 

First, it induces stronger intercellular interactions, consequently stronger cell 566 

sorting, leading to sharper boundaries (Fig 8A). Second, it induces an early peak 567 

of morphogens that can result in early cell commitment, allowing cell sorting 568 

sufficient time for rearrangements without disrupting cell fate switching (Fig 8B). 569 

Rapid initial convergence can also regulate rhombomere length through 570 

morphogen dynamics. Initially the length of r5 is shorter than r3. Through a 571 
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steeper RA distribution induced by rapid initial convergence, cells switch from an 572 

r4 to an r5 leading to similar r3 and r5 lengths (Fig 8C).  573 

Another consequence of convergent extension is the movement of 574 

morphogen production and responding cells relative to one another. RA levels 575 

increase with time during early stages of hindbrain development due to increased 576 

synthesis and accumulation [39], then decrease due to the movement of the 577 

source of RA (aldha1a expression) further posteriorly as the body axis elongates  578 

[39, 46, 47]. Our model successfully recapitulates these RA dynamics (Fig 6A), 579 

which are also critical for specifying rhombomeres of the correct length and 580 

boundary sharpness. Previous manipulations of convergent extension in early 581 

zebrafish or mouse embryos, which result in a shortened body axis, have shown 582 

that convergent extension is critical in establishing signaling gradients and 583 

subsequently maintaining robust segmental patterning of the hindbrain, 584 

consistent with our results [73, 74].  585 

As tissue deforms, extracellular morphogens may have both active 586 

motion driven by the tissue dynamics as well as movements of the signals 587 

induced by morphogens within cells. In our model, both extra and intracellular 588 

morphogens were modeled in continuum context with Eulerian coordinates, 589 

where the advections are usually required to capture morphogen dynamics with 590 

moving boundaries [75]. We found that even if we removed intracellular 591 

advections from the models, our main results showing a positive influence of 592 

rapid initial convergence on patterning remain (Fig S11). 593 

 594 

Tissue size, thickening and additional signals in hindbrain 595 

patterning 596 
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The embryonic zebrafish hindbrain is extremely small and composed of relatively 597 

few cells compared with most other vertebrates [49, 76, 77]. The actual A-P 598 

length of each rhombomere at the stages we have examined (11-14 hpf) is 599 

approximately 3~5 cell-diameters. This small size presents a challenge for 600 

sharpening rhombomere boundaries, where a few neighbor cells with the same 601 

identity provide weak adhesion during sorting, and even more so for generating a 602 

series of rhombomeres of similar size. A rapid initial convergence rate may be 603 

particularly important for coordinating size and boundary sharpness in such a 604 

miniaturized embryo. However, given the conserved patterns of gene expression 605 

and neuronal differentiation observed in hindbrains across species, we are 606 

confident that many of the same rules apply.   607 

Our modeling and experimental measurements correspond in many 608 

respects, including the dynamics of RA synthesis and FGF4/8 expression as well 609 

as hoxb1a, krox20, vhnf1 and irx3 expression in zebrafish. However, many 610 

questions remain. In our simulations, DCs remain in r2 and r6 due to 611 

randomness in gene expression. For example, in some cases hoxb1a+ cells are 612 

observed in r2 because of early increases in RA, which induce hoxb1a. The 613 

model cannot account for how these cells switch to their correct segmental 614 

identities, but perhaps they are displaced along the D-V axis, undergo apoptosis 615 

or are extruded from the hindbrain. Such switching may also reflect a “community 616 

effect” by which cells switch identity depending on the collective influences of 617 

their neighbors, but the underlying mechanisms have not been fully identified [34, 618 

49]. Gene regulatory networks with other signals involved may also prevent cell 619 

switching or sorting by regulating hoxb1a or krox20. For example, Fgf8 is 620 

expressed at the MHB in zebrafish embryos starting at 10 hpf, and likely 621 

important for the patterning of more anterior rhombomeres, r1-3, which will be 622 
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interesting to consider in future models [47, 66]. Wnt is another morphogen that 623 

controls early anterior rhombomeres and MHB formation [47, 78]. 624 

Many other features of tissue morphogenesis also need to be considered 625 

for a comprehensive three-dimensional model of hindbrain segmentation. During 626 

the patterning period considered here, cells divide and the NP thickens along the 627 

D-V axis [58]. While cells divide in this period, the NP thickens and cell number in 628 

the two-dimensional plane (A-P and L-R plane) changes very little [58]. We also 629 

studied a two-dimensional model that incorporates cell proliferation and growth 630 

and while this led to tighter cell distributions and higher variations in rhombomere 631 

length than in other models, overall it confirmed that rapid initial convergence 632 

improves pattern robustness (Supplementary Material S10). The two-633 

dimensional nature of our models, which do not consider the complicated 634 

dynamics associated with proliferation and thickening along the D-V axis, likely 635 

explains why the computed rhombomere lengths in our model do not perfectly fit 636 

the experimental measurements (Fig 2H). More realistic, three-dimensional 637 

models that incorporate these components pose an exciting challenge and 638 

opportunity for the future.  639 

 640 
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guidelines of the Institutional Animal Care and Use Committee at University of 665 
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California, Irvine. AB strain embryos were collected from natural crosses, raised 666 

at 28.5 °C in embryo medium (EM), and staged as previously described [79]. 667 

 668 

Whole-mount in situ hybridization 669 

In situ hybridization was performed on whole embryos as previously described 670 

[80]. Digoxygenin- and fluorescein-labelled riboprobes for aldh1a2 [81], krox20 671 

[82], otx2 [83] were synthesized using an RNA labelling kit (Roche) from cDNA 672 

that had been previously cloned into PCS2+ plasmids and linearized. 673 

 674 

Imaging and measurement of hindbrain 675 

Embryos were flat mounted in glycerol as previously described [84] and imaged 676 

on a Zeiss Axioplan 2 compound microscope equipped with a Micropublisher 5.0 677 

RTV camera with Zeiss ZEN 3.1 (blue edition) software. Hindbrain 678 

measurements were performed using ImageJ/Fiji software.  679 

 680 

Computational domains of the model 681 

The entire hindbrain along with the RA production region, modeled as the 682 

“morphogen domain”, is used to model the diffusion and distribution of 683 

morphogens (Fig 1B). In the two-dimensional model, the morphogen domain is 684 

assumed as a rectangle with the anterior-posterior (A-P) axis as its length and 685 

the left-right (L-R) axis as its width. We take the posterior end of the MHB, 686 

defined by otx2 expression, as the anterior limit of the domain,   x(1) = 0  and the 687 

posterior end of the RA production region, defined by aldh1a2 expression, as its 688 
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posterior limit,  x
(1) = L1(t) . The L-R width of the hindbrain is   L2(t) . The morphogen 689 

domain has a rectangular structure with dynamic sizes:    690 

 
  
M(t) = x(1),x(2)( )∈H :H = 0,L1(t)⎡⎣ ⎤⎦ x − 1

2
L2(t),

1
2

L2(t)
⎡

⎣
⎢

⎤

⎦
⎥

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
  (1) 691 

The RA production region is modeled as:  692 

 
  
P(t) = x(1),x(2)( ) : x(1),x(2)( )∈[p(t),L1(t)]x[− 1

2
L2(t),

1
2

L2(t)]
⎧
⎨
⎩

⎫
⎬
⎭
,   (2) 693 

where p(t) is the A-P position of the anterior boundary of the RA production 694 

region at time t. L1(t), L2(t) and p(t) are obtained from experimental 695 

measurements made in zebrafish embryos at 11, 12, 13 and 14 hours 696 

postfertilization (hpf). A cubic interpolation is used to obtain the smooth curves 697 

(Fig 2A, B).  698 

 Individual cells are modeled in a “tissue domain” that is contained within 699 

the morphogen domain. The tissue domain shares the same L-R axis with of the 700 

morphogen domain and its A-P range is proportional to the range of morphogen:  701 

 
  
T(t) = x(1),x(2)( ) : x(1),x(2)( )∈[r1L1(t),r2L1(t)]x[− 1

2
L2(t),

1
2

L2(t)]
⎧
⎨
⎩

⎫
⎬
⎭

  (3) 702 

where r1 and r2 are constants given in the Table S1. At    x = (x1,x2) , the growth 703 

velocity of the tissue is given by  704 

 
   
V (x,t) = L1 '(t) x(1)

L1(t)
,L2 '(t) x(2)

L2(t)
⎛

⎝⎜
⎞

⎠⎟
.     (4) 705 

 706 

Stochastic dynamics of morphogens 707 

To model morphogen dynamics in the growing hindbrain, we use stochastic 708 

convection-reaction-diffusion equations. The equations for RA are given by  709 
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∂[RA]out

∂t
+∇ ⋅ V [RA]out( )

convection! "## $##
= DrΔ[RA]out

diffusion! "# $#
+ A(x,t)

production!"$

                                     + kr [RA]in − (1+ βr )kr [RA]out

f1! "#### $####
+ µr1

dwr1(t)
dt

noise! "# $#

,

∂[RA]in

∂t
+∇ ⋅ V [RA]in( ) = kr [RA]out − kr [RA]in − dr (x

(1))[RA]in

f2! "###### $######

                                     + µr 2

dwr 2(t)
dt

,

  (5) 710 

where [RA]out and [RA]in are extracellular and intracellular forms of RA, 711 

respectively. 
  
µr1

dwr1(t)
dt

 and 
  
µr 2

dwr 2(t)
dt

 are additive white noise. The convection 712 

term describes the dilution and advection of RA caused by convergence 713 

extension. The production is confined to the RA production region and modeled 714 

by a Hill function of AP position x(1) with a large Hill coefficient: 715 

 

   

A(x,t) =
vr

1+
x1

p(t)
⎛
⎝⎜

⎞
⎠⎟

−20 .   (6) 716 

In f1 and f2, kr is the rate of exchange of morphogen between intracellular and 717 

extracellular forms. The rate of extracellular morphogen degradation is taken as 718 

a constant βrkr and the degradation of intracellular morphogen rate dr is a 719 

piecewise function with 720 

 
  
dr (x

(1)) =
kmax, if x

(1) > p(t),

k0,    otherwise.

⎧
⎨
⎪

⎩⎪
  (7) 721 

The degradation rate in the RA production region has a large value kmax, since 722 

the RA degrading enzyme cyp26a1 is expressed in the RA production region 723 

[28]. We use an absorbed boundary condition of x(1)=0 since cyp26a1 is highly 724 

expressed in the forebrain and MHB, providing a sink for RA. No-flux boundary 725 

conditions are used for the other three boundaries. 726 
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Similarly, we model both free diffusible FGF ([Fgf]free) and FGF ([Fgf]signal) 727 

signaling as the following: 728 

   

∂[Fgf ]free

∂t
+∇ ⋅ V [Fgf ]free( ) = DfΔ[Fgf ]free + Af ([H ],x )+ krf [Fgf ]signal

                                       − (df1 + kf )[Fgf ]free + µf1
dwf1(t)

dt
,

∂[Fgf ]signal

∂t
+∇ ⋅ V [Fgf ]signal( ) = kf [Fgf ]free − krf [Fgf ]signal

                                        − df 2[Fgf ]signal + µf 2
dwf 2(t)

dt
.

  (8) 729 

The free diffusible FGF binds with its receptor to form a complex with rate 730 

kf[Fgf]free. The complex between FGF and its receptor represents the FGF signal 731 

([Fgf]signal) for simplification. The term krf[Fgf]signal describes the dissociation rate 732 

of the complex. df1 and df2 are degradation rates of free diffusible FGF and FGF 733 

signaling, respectively. The production of FGF is upregulated by hoxb1a and the 734 

production rate is modelled by a Hill function for hoxb1a: 735 

 
   
Af ([H ],x ) = vf

[H ](x )2

1+ ahf [H ](x )2 .   (9) 736 

The hoxb1a level [H] is defined at the center of each cell. In Eq. (9), the term 737 

   [H ](x ) , defined at arbitrary location x, is obtained by interpolating [H] values with 738 

locations in cell centers (Supplementary Materials S1). No-flux boundary 739 

conditions are used for FGF at all four boundaries. 740 

 741 

Stochastic dynamics of downstream genes  742 

We model the dynamics of gene expression with a system of stochastic 743 

differential equations based on the gene network (Fig 1C). For the i-th cell 744 

centered at   ci , the equations for the gene expression are given by 745 
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d[H ]i

dt
= vh

ahh[H ]i
2 + arh[RA]in

2

1+ ahh[H ]i
2 + arh[RA]in

2 + bkh[K ]i
2 + bvh[V ]i

2 − dh[H ]i + µh

dwh

dt
,

d[K ]i

dt
= vk

akk [K ]i
2 + afk [Fgf ]signal

2

1+ akk [K ]i
2 + afk [Fgf ]signal

2 + bhk [H ]i
2 − dk [K ]i + µk

dwk

dt
,

d[V ]i

dt
= vv

arv [RA]in
2

1+ arv [RA]in
2 + biv [I]i

2 − dv [V ]i + µv

dwv

dt
,

d[I]i

dt
= vi

1
1+ bvi [V ]i

2 − di [I]i + µi

dwi

dt
,

 (10) 746 

where [H], [K], [V] and [I] are gene expression of hoxb1a, krox20, vhnf1 and irx3, 747 

respectively.  and  refer to the RA and 748 

FGF signaling levels at the center of i-th cell  to provide spatial signals for 749 

cells.  750 

 751 

Models for individual cells and their interactions 752 

 753 

Following our previous study [16], we use the subcellular element method 754 

(SCEM) to model individual cells [56]. A total of Ncell=345 cells are modeled in 755 

each simulation, where 23 rows and 15 columns of cells align uniformly in the 756 

rectangular tissue region at the initial stage (11 hpf). Each cell consists of sub-757 

cellular elements (nodes) and interacts according to a prescribed intercellular 758 

force potential. A cell consists of 2Nnode (Nnode=6) nodes and those nodes form 759 

two hexagonal layers (Fig S6A). The radius of the outer layer is Rout and the 760 

radius of the inner layer is Rin. Initially cells are uniformly distributed in the tissue 761 

domain (Fig 4B). For a system with  cells and  nodes per cell, the 762 

location of i-th node in n-th cell  is determined by the equation 763 

   
[RA]in = [RA]in x=ci    

[Fgf ]signal = [Fgf ]signal x=ci

  ci

 Ncell   2Nnode

   xn,i
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d
dt

xn,i = vn,i
ext +vn,i

inter +vn,i
inner .   (11) 764 

On the right hand side, the first term represents cell migration due to convergent-765 

extension [85, 86]. It is given by 766 

 

   

vn, j
ext =V (cn,t),

cn =
1

2Nnode

xn,i
i=1

2Nnode

∑ .

⎧

⎨
⎪

⎩
⎪

  (12) 767 

The second term represents the forces between cells while the third term 768 

represents forces between nodes within the same cell to maintain stable cell 769 

morphologies [56] (see Supplementary Materials S2).  770 

 771 

Definition of boundary location (m), sharpness index (SI) and 772 

number of dislocated cells (DC)  773 

 774 

To study boundary locations and sharpness quantitatively, we define three 775 

quantities: boundary location (m), boundary sharpness index (SI) and number of 776 

dislocated cells (DCs). For example, the A-P position of the r3/r4 boundary is 777 

denoted by   m(r3 r 4)  and its boundary SI is denoted by   SI(r3 r 4) . A cell is 778 

called a DC if: a) its identity is different from the segment in which it is located; b) 779 

its distance to the boundary of its correct segment is over three cell-diameters.  780 

In a region with A-P coordinates in the range of (a,b), we split the index 781 

set of all cells into two sets SL and SR based on cell identities, where cells in SL or 782 

SR have segmental identities located anterior or posterior to this region. We 783 

define the distance function from the i-th cell centered at   ci  to an arbitrary 784 

straight line with A-P position k (the potential location of boundary): 785 
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dis(ci ,k) =

ReLU(ci
(1) + r − k),    if i ∈SL,

ReLU(−ci
(1) + r + k),  if i ∈SR,

⎧
⎨
⎪

⎩⎪
  (13) 786 

where r is the radius of the cell, and  787 

 
  
ReLU(x) =

x, if x > 0,
0, if x ≤ 0,
⎧
⎨
⎩

  788 

is the rectified linear unit function. For a cell in SL or SR with non-zero distance, 789 

this distance function calculates the Euclidean distance between the anterior or 790 

posterior distal ends of this cell to the potential location of boundary k. This 791 

distance function is illustrated in Fig S6B.  792 

We quantify the boundary location (m), SI and number of DCs in this 793 

region, called K, by solving an optimization problem: 794 

 

   

mK = argmin
k∈(a,b)

dis(ci ,k)( )2

dis(ci ,k )≤6r
∑

⎛

⎝
⎜

⎞

⎠
⎟

1
2

,

SIK = min
k∈(a,b)

dis(ci ,k)( )2

dis(ci ,k )≤6r
∑

⎛

⎝
⎜

⎞

⎠
⎟

1
2

,

DCK = # k : dis(ci ,mR ) > 6R0{ }.

  (14) 795 

Particularly if the distance from a cell to the boundary is within three cell-796 

diameters, the cell contributes to the boundary location and boundary SI. 797 

Otherwise, it is regarded as a DC and it does not contribute to the calculation of 798 

either boundary location or sharpness.  799 

Next, we split all cells in the responding tissue domain with index set S 800 

into three sets with distinct cell types at time t. There are hoxb1a cells (Sh), 801 

krox20 cells (Sk) and non-expressing cells (Sn) based on their expression level of 802 

hoxb1a and krox20.  803 
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Sh = i ∈S : [H ]i (t) ≥1.2{ },

Sk = i ∈S : [K ]i (t) ≥1.2{ },

Sn = i ∈S : i ∉Sh Sk∪{ }.

  (15) 804 

Now, we calculate those quantities for four boundaries in the tissue domain one-805 

by-one by utilizing Eq. (14) and Eq. (15) as shown in the flow below: 806 

 807 

Algorithm 1: Calculate m, SI and DC for cells in domain with AP range   [r1L1(t),r2L1(t)]   

Step 1 
   
C = mean

i∈Sh

(ci
(1))   Find a point to split the 

tissue domain 

Step 2 

    

K1 = [r1L1(t),C],

SL = i ∈S : i ∈Sk Sn  and ci
(1) ∈K1∪{ },

SR = i ∈S : i ∈Sh  and ci
(1) ∈K1{ },

 

  

m(r3 r 4) = mK1
,

SI(r3 r 4) = SIK1
,

DC(r3 r 4) = DCK1
.

 

Quantify r3/r4 boundary: 

hoxb1a cells are on the 

right and other cells are on 

the left.  

Step 3 

    

K2 = [C,r2L1(t)],

SL = i ∈S : i ∈Sh  and ci
(1) ∈K2{ },

SR = i ∈S : i ∈Sk Sn  and ci
(1) ∈K2∪{ },

 

  

m(r 4 r5) = mK2
,

SI(r 4 r5) = SIK2
,

DC(r 4 r5) = DCK2
.

 

Quantify r4/r5 boundary 

Step 4 

   

K3 = [r1L1(t),m(r3 r 4)],

SL = i ∈S : i ∈Sn  and ci
(1) ∈K3{ },

SR = i ∈S : i ∈Sk  and ci
(1) ∈K3{ },

 

Quantify r2/r3 boundary 
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m(r 2 r3) = mK3
,

SI(r 2 r3) = SIK3
,

DC(r 2 r3) = DCK3
.

 

Step 5 

   

K4 = [m(r 4 r5),r2L1(t)],

SL = i ∈S : i ∈Sk  and ci
(1) ∈K4{ },

SR = i ∈S : i ∈Sn  and ci
(1) ∈K4{ },

 

  

m(r5 r 6) = mK4
,

SI(r5 r 6) = SIK4
,

DC(r5 r 6) = DCK4
.

 

Quantify r5/r6 boundary 

Step 6 

  

DC = DC(r 2 r3)+DC(r3 r 4)
     +DC(r 4 r5)+DC(r5 r 6).

  
 

808 
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Figure Legends 809 

 810 

Fig 1. Model schematic and zebrafish hindbrain morphology.  811 

(A) Two-color whole mount in situ hybridization of embryonic zebrafish 812 

hindbrains for otx2 (purple, anterior region, far left), krox20 (purple segments, 813 

center) and aldh1a2 (red, far right) transcripts from 11 to 14 hpf. otx2 marks the 814 

midbrain-hindbrain boundary (MHB), krox20 marks r3 and r5 and aldh1a2 marks 815 

the RA production region. Embryos are flat-mounted and shown in dorsal view 816 

with anterior to the left. Scale bars: 100 µm. (B) Illustration depicting convergent-817 

extension of the hindbrain. The entire rectangular region, including r1-7 and the 818 

RA production region, constitutes the morphogen domain. The hindbrain narrows 819 

in the L-R direction (width) and elongates in the A-P direction. (C) Gene 820 

regulatory network used to model hindbrain patterning in r2-6. Genes and 821 

morphogens with black font were previously used for modeling the r3-r5 pattern 822 

[17], while additional factors considered in this model are shown in orange font. 823 

Pointed arrows depict up-regulation/activation and blunt arrows depict down-824 

regulation/inhibition. Two morphogens, retinoic acid (RA) and Fibroblast Growth 825 

Factor (FGF) diffuse and form two distinct gradients to govern downstream gene 826 

expression. (D) Illustration depicting r2-6 and distinct identities (i.e. gene 827 

expression signatures) underlying selective cell sorting. Cells in r3 and r5 (blue) 828 

express krox20 and cells in r4 (red) express hoxb1a, while both krox20 and 829 

hoxb1a levels are low in r2 and r6. Cells in r6 (purple) have high vhnf1 830 

expression. Cells with the same segmental identity attract each other and cells 831 

with different identities repulse each other.  832 

 833 
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Fig 2. A baseline simulation mimics rhombomere boundary sharpening.  834 

(A,B) Experimental measurements of hindbrain dimensions along the A-P (A) 835 

and L-R (B) axes at 11, 12, 13 and 14 hpf. Error bars represent standard 836 

deviation. Cubic interpolation is used to obtain the smooth curves used in the 837 

model. (A) A-P hindbrain length was measured from the posterior edge of the 838 

mid-hindbrain boundary (MHB) to the anterior edge of the RA production region. 839 

A-P length of the RA production region was based on measurements of the 840 

aldh1a2 expression domain. (B) L-R hindbrain width was measured at the A-P 841 

position of r4. (C,D) Predicted noisy distributions of morphogen signaling at 14 842 

hpf (C) RA ([RA]in). (D) FGF ([FGF]signal). (E-G) Time series of gene expression in 843 

r2-6 (the hindbrain is represented as a rectangle for simplification): (E) hoxb1a 844 

(red) and krox20 (blue), (F) vhnf1 (purple), (G) irx3 (yellow). (H) Quantifications 845 

of rhombomere length, number of dislocated cells (DCs) and sharpness indices 846 

(SIs) versus time. Rhombomere lengths (r3-5), and SIs for four boundaries 847 

(SI(r2/r3), SI(r3/r4), SI(r4/r5), SI(r5/r6)) and DC number in multiple simulations 848 

(n=100): ‘solid line’: quantities for the simulation shown in (E); ‘brown dashed 849 

line’ indicates the average and the width of ‘brown shade” indicates standard 850 

deviation; ‘black dashed line’ represents rhombomere lengths from experimental 851 

measurements and the error bars represent standard deviation. 852 

 853 

Fig 3. Comparing two-morphogen (RA, FGF) and one-morphogen (RA) 854 

models. (A-C) One-dimensional simulations for the two-morphogen model. (A) 855 

The upper panel shows spatial distributions of RA, krox20, hoxb1a, vhnf1, irx3 856 

and FGF. The initial hoxb1a level is modeled as a constant 0.21 over the space. 857 

In the lower panel, the initial hoxb1a level is randomly sampled over the space 858 

independent of the location. The value is randomly uniformly distributed at a level 859 
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of [0,0.3]. Solid line represents one simulation. Dashed line represents average 860 

values and the width of the shading around each line represents the standard 861 

deviation (n=100).  Since fluctuations over multiple simulations are small, solid 862 

lines overlap with dashed lines and the small standard deviations result in 863 

shadings of negligible width around the dashed lines. X-axis, microns; Y-axis, 864 

arbitrary units. (B) Phase diagram of hoxb1a and krox20 distributions with 865 

different initial hoxb1a levels. (C) Rhombomere lengths with different initial 866 

hoxb1a levels. (D-F) Similar one-dimensional simulations for the one-morphogen 867 

model. For (D), in the upper panel, the constant initial hoxb1a level is taken as 868 

0.21; in the lower panel, the initial hoxb1a level is randomly sampled with levels 869 

in the range [0.19,0.23] with uniform distribution. Corresponding (E) phase 870 

diagram  and (F) graph of rhombomere lengths  with the one-morphogen model. 871 

 872 

Fig 4. Simulations of full models combining gene regulation and cell 873 

sorting with different convergence rates.  (A) Three convergence rates during 874 

the 11-14 hpf period are considered in the model, rapid (from experimental 875 

measurements, Fig 2B), medium and slow. All start and terminate with the same 876 

L-R width. The curve of medium convergence is depicted as a linear function. 877 

The curve of slow initial convergence is symmetric to the curve of rapid initial 878 

convergence with respect to the curve of linear function. (B-E) Time series of cell 879 

distributions with different convergence rates from 11-14 hpf. hoxb1a (red) and 880 

krox20 (blue) expression. Dislocated cells (DCs) are highlighted by yellow edges. 881 

(B) Three simulations start with the same initial cell distribution (11 hpf) 882 

generated by the gene expression model (see Methods). Cell distributions with 883 

(C) rapid, (D) medium and (E) slow initial convergence rates from 12-14 hpf. (F) 884 

The boundary sharpness index (SI) for four boundaries (SI(r2/r3), SI(r3/r4), 885 
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SI(r4/r5) and SI(r5/r6)) and DC number versus time. (G-I) Histograms depicting 886 

three convergence rates analyzed for (G) rhombomere lengths of r3-5, (H) SI and 887 

(I) DC number. Each represents 100 independent stochastic simulations for each 888 

convergence rate based on the same parameters. Error bars represent standard 889 

deviation.  890 

 891 

Fig 5. Simulations with selective cell-cell adhesion/sorting alone with 892 

different convergence rates. (A-D) Time series of cell distributions with 893 

different convergence rates from 11 to 14 hpf. hoxb1a (red) and krox20 (blue) 894 

expression. Dislocated cells (DCs) are highlighted by yellow edges. (A) Three 895 

simulations start with the same initial cell distribution (11 hpf) generated by the 896 

Gaussian mixture distribution. Cell distributions with (B) rapid, (C) medium and 897 

(D) slow initial convergence from 12-14 hpf. (E) The boundary sharpness index 898 

(SI) for four boundaries (SI(r2/r3), SI(r3/r4), SI(r4/r5) and SI(r5/r6)) and number of 899 

DCs versus time. (F-H) Histograms depicted three convergence rates analyzed 900 

for their (F) rhombomere lengths of r3-5, (G) SI and (H) the DC number. Each 901 

represents 100 independent stochastic simulations for each convergence rate 902 

are based on the same parameters. Error bars represent standard deviation. 903 

 904 

Fig 6. Dynamics of morphogens and cell commitment time with different 905 

convergence rates. The statistics of the dynamics of (A) intracellular RA [RA]in, 906 

(B) vhnf1, and (C) FGF signaling [FGF]signal at different A-P lengths of the tissue 907 

domain: 50 µm, 100 µm, 150 µm and 200 µm. Lines represent average values 908 

and the width of the shading around each line represents the standard deviation. 909 

(D) The temporal dynamics of total percentages of cells that have committed in 910 

each rhombomere (r2-r6). Each panel shows the dynamics of the percentages of 911 
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cells that have committed in each rhombomere. Data are collected from the full 912 

models, see Fig 4. 913 

 914 

Fig 7. Boundary sharpness and rhombomere lengths based on simulations 915 

with random parameters in gene regulation.  916 

Parameters for gene regulation were randomly perturbed and a total of n=1000 917 

simulations are displayed for each convergence rate. There are 513, 563 and 918 

452 simulations for rapid, medium and slow initial convergence, respectively, 919 

which successfully generate the r2-6 pattern with four boundaries. (A-F) Dot plots 920 

showing the relationship between rhombomere length and boundary sharpness. 921 

Each point represents the corresponding quantities for each simulation. (A-C) 922 

Length of r4 versus sharpness index (SI) of the r4/r5 boundary with: (A) rapid 923 

initial convergence, (B) slow initial convergence and (C) a comparison between 924 

rapid and slow initial convergence. (D-F) Length of r5 versus SI of r5/r6 boundary 925 

with: (D) rapid initial convergence, (E) slow initial convergence and (F) a 926 

comparison between rapid and slow initial convergence. (G) Fractions of 927 

simulations achieving roughly equal rhombomere lengths versus the deviation 928 

d%. With a deviation d, a simulation has roughly equal rhombomere lengths if the 929 

length of each rhombomere is deviated at most d% from its average 930 

experimental length (i.e. r3, r4 and r5 are in the ranges of 42*(100%±d%) µm, 931 

34*(100%±d%) µm and 37*(100%±d%) µm, respectively).   932 

Fig 8. Schematic illustrating how rapid initial convergence improves 933 

pattern robustness. (A) Cell sorting: rapid initial convergence increases cell-cell 934 

contacts to enhance strength of cell sorting, leading to sharper boundaries. 935 

Number of green lines represent strength of cell sorting. (B) Synergy between 936 
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cell sorting and gene regulation: rapid initial convergence induces an early peak 937 

of morphogens for both RA and FGF, leading to an early commitment of cell 938 

fates. Cell sorting mechanisms fully function to sharpen boundaries with sufficient 939 

time without disrupting cell fate switching. (C) Gene regulation/cell fate: rapid 940 

initial convergence produces a steeper RA distribution to induce more cells 941 

switching from r4 (red) to r5 (blue) identity. Consequently, r5 has similar size with 942 

r3, consistent with the experimental measurements.  943 

  944 

Supporting information 945 

S1 Text. This file contains Supplementary Material including modeling 946 

details, parameter values, and experimental data. 947 

S1 Figure. This file contains Supplementary Figures. 948 
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Fig. 1. Model schematic and zebrafish hindbrain morphology. 
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Fig. 2. A baseline simulation mimics rhombomere boundary sharpening 
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Fig. 3. Comparing two-morphogen (RA, FGF) and one-morphogen (RA) models. 
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Fig. 4. Simulations of full models combining gene regulation and cell sorting with 
different convergence rates. 
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Fig. 5. Simulations with selective cell-cell adhesion/sorting alone with 
different convergence rates. 
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Fig. 6. Dynamics of morphogens and cell commitment time with different 
convergence rates. 
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Fig. 7. Boundary sharpness and rhombomere lengths performed in simulations 
with random parameters in gene regulation. 
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Fig 8. Schematic graph on rapid initial convergence improve pattern robustness. 
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