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Abstract: 51 
 52 
Background: Vancomycin is a first line antibiotic for many common infectious diseases and is the most 53 

commonly prescribed antibiotic in the United States hospital setting. Vancomycin is also well known to 54 

cause kidney injury; two recent prospective studies have identified that increasing vancomycin area 55 

under the concentration curve predicts vancomycin induced kidney injury (VIKI). However, outside of 56 

clinical trials, it is unclear if pre-clinical data can quantitatively describe VIKI in patients.  57 

 58 

Methods: Data were simultaneously analyzed from a pre-clinical rat model and two prospective clinical 59 

studies. Logged vancomycin area under the concentration curve (AUC) data for rats (n=48) and 60 

patients from PROVIDE (n=263) and CAMERA2 (n=291) were included. VIKI was defined as urinary 61 

KIM-1 concentrations ≥9.42 ng/mL in the rat and according to KDIGO stage 1 kidney injury for all 62 

human patients. Multiple generalized linear models were explored, and the order of magnitude was 63 

calculated between the probability of acute kidney injury (AKI) from the average obtained in the clinical 64 

studies (i.e. CAMERA2 and PROVIDE) and the rat for 0.1 increments in Log10AUC bounded common 65 

concentrations obtained in the therapeutic range (i.e. ~200 -800 mg*24h/L). 66 

 67 

Results: A logit link model best fit the data. When calculating the multiplicative factors between the 68 

studies therapeutic range AUCs, the rat was an average 2.7 to 4.2 times more sensitive to AKI between 69 

AUCs of 199.5 (i.e. log 10 AUC=2.3) and 794.3 mg*h/L (i.e. log 10 AUC=2.9), respectively. 70 

 71 

Conclusions: A pre-clinical rat model was quantitatively linked to toxicity data from two large human 72 

studies. The rat is an attractive pre-clinical model to explore exposure toxicity relationships with 73 

vancomycin. External validation is required. 74 

  75 
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Introduction: 76 

As a first line antibiotic in consensus guidelines for serious and life-threatening infections,(14, 17, 77 

19, 44, 49, 50) vancomycin is the single most commonly prescribed antibiotic in the United States 78 

hospital setting.(12, 18, 25, 36, 37) In addition to common use, vancomycin is a drug well known to 79 

increase the risk of AKI.(38)  A prospective study identified an excess 10% attributable AKI risk to 80 

vancomycin when compared to linezolid for treatment of methicillin-resistant Staphylococcus aureus 81 

(MRSA) pneumonia.(56) Based on 36.5 million hospital stays in the US annually(55) and vancomycin 82 

prevalence use of ~100 days of therapy/1000 patient days,(12, 18) even conservative estimates 83 

suggest that vancomycin causes kidney injury in over 300,000 people annually.  84 

Vancomycin induced kidney injury (VIKI) is a concentration-driven process, with area under the 85 

concentration curve (AUC) and maximum concentrations best correlating with the extent of kidney 86 

damage.(8-10) Studies indicate that rates of VIKI were approximately 5-7% when troughs were 87 

maintained between 5-10 mg/L as the standard of practice.(27, 43, 46) With the publication of the 2009 88 

consensus vancomycin guidelines that promoted more aggressive dosing (i.e. troughs of 15-20 mg/L) 89 

for serious MRSA infections such as pneumonia (5, 45), studies indicate that VIKI is now considerably 90 

higher, with rates upwards of 40% depending on the patient population, without any improvements in 91 

effectiveness.(46) In an effort to minimize VIKI while maintaining comparable effectiveness, the revised 92 

2020 vancomycin guidelines tempered targeted exposures and recommended AUC- rather than trough-93 

based dosing, with a daily AUC target of 400-600 mg*h/L for serious MRSA infections.(41) 94 

Support to transition from trough-only to AUC-guided dosing and monitoring was based, in part, on 95 

two recent prospective analyses that evaluated the efficacy and safety of vancomycin against MRSA 96 

bacteremia. In both the PROVIDE(23) and CAMERA2 (20, 51) studies, VIKI was found to increase as a 97 

function of the daily AUC, especially among patients with daily AUCs in excess of 600 mg*h/L. 98 

However, patients with vancomycin exposures within the newly recommended daily AUC therapeutic 99 

range of 400-600 mg*h/L were also found to be at increased risk of VIKI. (20, 23) The exact magnitude 100 

of AKI attributable to vancomycin in these studies is unclear as they lacked a control group who did not 101 
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receive vancomycin and many patients who received vancomycin had other risk factors for AKI. 102 

However, these data suggest that over half the cases were likely attributable to vancomycin.(47) Given 103 

the high frequency of vancomycin use and considerable potential for VIKI associated with maintaining 104 

daily AUCs within the newly recommended range of 400-600 mg*h/L, there is a critical need to identify 105 

vancomycin exposure profiles that minimize VIKI in clinical practice. Ideally, it would be preferred to 106 

identify optimal vancomycin dosing and monitoring practices that minimize VIKI in a clinical trial. 107 

However, the costs and time associated with execution of well-designed studies in patients greatly 108 

limits the ability to generate timely results. Therefore, a pre-clinical model is sorely needed that is 109 

reflective of the vancomycin exposure-VIKI experience in patients as it will surmount many of the 110 

aforementioned barriers associated with completion of clinical studies and provide quantitative 111 

information in a shorter timeframe. In particular, the availability of a reliable and accurate pre-clinical 112 

VIKI model will identify vancomycin dosing schemes associated with the lowest risk of VIKI, determine 113 

if ameliorating agents can minimize the risk of VIKI with vancomycin exposures required for efficacy, 114 

and assess populations in which vancomycin should be avoided (e.g., those receiving other 115 

nephrotoxic agents). Our group has utilized a pre-clinical rat model that describes the risk of VIKI as a 116 

function of the intensity of vancomycin exposure(9, 31, 34, 39). While our model demonstrates that 117 

there is a clear relationship between vancomycin AUC and VIKI in rats, we have yet to determine if our 118 

model bridges to humans. To this end, we sought to evaluate the relationship between vancomycin 119 

AUC and VIKI from our translational rat model and the clinical studies, PROVIDE and CAMERA2(23, 120 

51).   121 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 22, 2021. ; https://doi.org/10.1101/2021.04.22.437975doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.22.437975
http://creativecommons.org/licenses/by-nc-nd/4.0/


Methods: 122 

Data Sources 123 

Animal data 124 

The relationship between vancomycin exposure and VIKI were obtained from our previously 125 

published rat study.(10)  In brief, this pharmacokinetic/toxicodynamic PK/TD study (IACUC; Protocol 126 

#2295) was conducted at Midwestern University in Downers Grove, IL in compliance with the National 127 

Institutes of Health Guide for the Care and Use of Laboratory Animals.[(1)]. In this study, male 128 

Sprague-Dawley rats (n=48, approximately 8-10 weeks old, mean weight 310g) received intravenous 129 

saline (controls) or intravenous vancomycin (150 mg/kg/day to 400 mg/kg/day as once or twice daily 130 

dosing for a period of 24 hours). The dosing range was selected previous studies (10, 15, 30, 52) to 131 

ensure coverage of the clinical allometric range.  For example, the clinical kidney injury threshold of ≥ 4 132 

grams/day in a 70-kg patient (i.e., 57 mg/kg/day in humans) scales allometrically to 350 mg/kg in the 133 

rat. (4, 21) Plasma was sampled for vancomycin assay (completed by LC-MS/MS) with up to 8 samples 134 

per rat over the course of the study. Twenty-four-hour urine was collected and assayed for kidney injury 135 

molecule 1 (KIM-1). PK exposures were obtained from each individual animal, with area under the 136 

concentration curve for the 24-hour period calculated in Pmetrics for R.(29) The 90th percentile 137 

effective concentration, EC90, (i.e. vancomycin concentration required to achieve 90th percent maximum 138 

of KIM-1) was experimentally calculated from the fitted Hill model. Results were utilized as reported in 139 

the parent publication (10) with the exception that two errors were found in the calculation of KIM-1 140 

concentrations. These errors did not affect any of the published summary results or exposure response 141 

fits reported in the parent publication. 142 

 143 

Clinical Data: 144 

CAMERA2. 145 

CAMERA2 was an open-label, international, pragmatic, randomized clinical trial performed at 27 146 
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hospitals between 2015 and 2018. The trial enrolled 352 hospitalized adults with MRSA bacteremia. 147 

Patients randomly received either 1) vancomycin or daptomycin plus an anti-staphylococcal β-lactam 148 

(intravenous flucloxacillin, cloxacillin, or cefazolin) (n = 174) or vancomycin or daptomycin alone (n = 149 

178).(51) Among these patients, 291 patients had their individual vancomycin exposures [i.e. area 150 

under the concentration curve (AUC)] estimated with a best-fit Bayesian PK model in a post-hoc 151 

analysis.(20) AUCs were calculated over 24 hour periods, and day 2 AUC best correlated with acute 152 

kidney injury outcomes described by modified-Kidney Disease Improving Global Outcomes (m-KDIGO) 153 

criteria (6, 20, 51) as well as risk, injury, failure, loss, and end-stage kidney disease (RIFLE) 154 

criteria(16). AUC24-48h cut-points for prediction of m-KDIGO ≥1, m-KDIGO ≥2, and m-KDIGO =3 were 155 

470.1, 496.1, and 525.5.(20) 156 

 157 

PROVIDE.  158 

PROVIDE was a prospective, observational study performed at 14 hospitals between 2014 and 159 

2015.(23) The study enrolled 265 hospitalized adults treated with vancomycin for their MRSA 160 

bacteremia. Patients received vancomycin therapeutic drug monitoring, and day 2 AUCs were 161 

estimated from a Bayesian maximal a posteriori probability procedure approach. Patients were followed 162 

for treatment success and acute kidney injury. Kidney injury was defined by RIFLE criteria and 163 

vancomycin-induced nephrotoxicity (VINT) definition in the vancomycin consensus guideline statement 164 

(42). Outcomes were further classified using a desirability of outcome ranking (DOOR) analysis. 165 

Efficacy was defined by 30-day mortality and lack of persistent bacteremia. The five categories were: 166 

death, survival with treatment failure and AKI, survival with treatment failure and no AKI, survival with 167 

treatment success and AKI, and finally survival with treatment success and no AKI. Patients with a day 168 

2 AUC ≥793 had higher rates of AKI and VIN vs to those with an AUC ≤343. Patients in the 2 lowest 169 

AUC exposure quintiles (i.e. AUC ≤515), had the best global outcome (i.e. survival with treatment 170 
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success and no AKI) with rates >71% vs. <61% respectively.  171 

Definition of AKI event: 172 

In the rat studies, AKI events were evaluated with urinary KIM-1 (Figure 1). Urinary KIM-1 was 173 

chosen as the biomarker for linking as it has been demonstrated as the most sensitive and specific 174 

biomarker for predicting histopathologic damage in the 175 

rat.(33) For the rat, the vancomycin AUC EC90 was 482 176 

mg*h/L, corresponding to a urinary Log2 KIM equal to 177 

23.236=9.42 ng/mL. The Log2 transformation of KIM is prudent 178 

as KIM-1 elevations vs. control have been suggested to 179 

follow fold changes, and control animals display 180 

concentrations less than 21=2 ng/mL. Thus, the threshold 181 

for injury was experimentally defined as approximately two 182 

doubling fold changes, Figure 2.(10) Importantly, this value 183 

also classified rat kidney injury well by histopathology. In 184 

Figure 2.  Relationship between 
vancomycin AUC and urinary 
log2KIM 
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Figure 1. Overview of the primary data utilized in this manuscript. 
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this analysis, histopathology scores ranged from 0-3 using the Predictive Safety Testing Consortium 185 

criteria from a blinded veterinary pathologist,(48) and control animals universally scored 0 or 1. The 186 

KIM-1 threshold correctly classified histopathology scores of 2 with a sensitivity of 81.8% and 3 with a 187 

sensitivity of 100%. In a secondary and exploratory analysis, histopathology scores of 2 or greater were 188 

used to define AKI for the rat in this study. 189 

For the two clinical analyses, a common kidney injury endpoint was used; KDIGO stage 1 190 

criteria defined VIKI (20, 23, 51), and all patients that could be classified according to this endpoint 191 

were included (Figure 1). The KDIGO endpoint was chosen (i.e. serum creatinine [SCr] absolute 192 

increase of ≥0.3 mg/dL within 48 hours of baseline or 1.5x SCr increase from baseline within 7 days) to 193 

define VIKI as data shows that absolute changes in creatinine (vs. relative percentage changes) are 194 

more reliable for detection of renal insult when compared to measures that rely on relative changes (24, 195 

35, 53). In total, n=48, n=263, and n=291 subjects were included from the rat study,(10) PROVIDE (23), 196 

and CAMERA2 (20, 51) respectively. Five rats were controls and received no vancomycin.  197 

 198 

Statistical methods: 199 

Statistical analysis was performed in Stata/IC version 16.1 (College Station, TX) unless otherwise 200 

specified. All data were pooled, and subjects were categorized according to their parent study. VIKI 201 

was dichotomous in each dataset, and the probability of VIKI served as the endpoint. For the animal 202 

data, the day 1 AUC served as the primary exposure variable while the day 2 AUC was the primary 203 

vancomycin exposure variable in the clinical studies (23) (20). Day 2 was utilized for the human data as 204 

this has been the most consistent predictor of AKI from the prospective clinical studies.  Multiple 205 

generalized linear models with maximum likelihood optimization were explored, including binomial 206 

family with logit and probit link with VIKI as the dichotomous outcome and vancomycin AUC as the 207 

primary predictor variable. The exact study (i.e. rat, PROVIDE, CAMERA2) was included as a 208 

categorical covariate in the model.  Interactions were checked between AUCs and study group. Model 209 
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fits were compared with the Akaike information criterion (AIC) scores. Probabilities for AKI from each of 210 

the studies was predicted for incremental AUCs (mg/L*hr) as a log10 function between 0 and 6 with an 211 

increment of 0.1. Margins were calculated to estimate individual probabilities of AKI for each subject 212 

according to each study and across predicted log10 AUC from the final fitted model. The order of 213 

magnitude was calculated between the probability of AKI from the average obtained in the clinical 214 

studies (i.e. CAMERA2 and PROVIDE) and the rat for 0.1 increments in Log10AUCs in the therapeutic 215 

range (i.e. ~200 -800 mg*24h/L). 216 

 217 

Human and animal assurances. 218 

Clinical data were collected under parent IRBs (20, 23). Analysis of de-identified data was obtained 219 

under data use agreements and classified as not-human-subjects research by the Midwestern 220 

University IRB. Rat work was conducted under Institutional Animal Care and Use Committee (IACUC) 221 

Protocol #2295.   222 
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Results:  223 

AUCs from the rats receiving vancomycin ranged from 224 

226.74 to 19,239 mg*h/L, with a median of 643.1 and an 225 

interquartile range of 427.7 to 2769.4. AUCs in 226 

PROVIDE and CAMERA2 ranged from 94.3 to 1755 227 

mg*h/L and 159.3 to 1211.4 mg*h/L, respectively with a 228 

median of 578.1 and 398.7 and IQRs of 436.2 to 548.1 229 

and 300.9 to 526.6 mg*h/L, respectively. A total of 63% 230 

of rats experienced kidney injury based on KIM-1 threshold and 67.4% experienced kidney injury based 231 

on secondary outcome of a histopathology threshold.  AKI rates for PROVIDE and CAMERA2 patients 232 

were 17.5%, and 17.2%, respectively.  233 

 234 

Model fits for the binomial family with 235 

logit link (AIC 550.6) were slightly better 236 

than with probit link (AIC 551.6). Thus, 237 

logit models were used for application. 238 

Interactions were not present between study group and 239 

subject AUCs (p> 0.45). Log10AUC, as a continuous 240 

function, predicted VIKI across all three datasets well. 241 

Results from the logit link model, transformed to odds 242 

ratios for the primary outcome, can be found in Table 1. 243 

Probabilities of AKI were a function of AUC (P<0.001) as 244 

well as individual study (P<0.001 for both), Figure 3. 245 

Predicted probabilities did not significantly differ whether 246 

rat AKI was classified by urinary KIM-1 value (Figure 3) or histopathologic cut-point (Figure S1). The 247 

Figure 3.  Probability of AKI for each 
subject and across a span of 
vancomycin AUCs as calculated from 
the final fitted model.   
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Table 1. Independent odds of kidney injury with the rat 
model as the referent group. 
  Odds Ratio P value 95% CI 
log 10 
AUC 

8.97 P<0.001 3.23     24.87 

  Study 
   

  
Rat 1 [referent]    
PROVIDE 0.15 P<0.001 0.68 0.34 
CAMERA2 0.20 P<0.001 0.09 0.45 

 

Figure S1. Probability of AKI for each 
subject and across a span of 
vancomycin AUCs as calculated from 
the final fitted model.   Rat AKI was 
defined by histopathology. 
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95% confidence intervals for CAMERA2 and PROVIDE completely overlapped for the range of AUCs 248 

studied (data not shown).  When calculating the multiplicative factors between the studies for 249 

therapeutic AUCs, the rat was an average 2.1 to 3.1 times more sensitive to AKI across AUCs of 199.5 250 

(i.e. log 10 AUC=2.3) to 794.3 mg*h/L (i.e. log 10 AUC=2.9), respectively (Table 2).  251 

Table 2. Probabilities of AKI across commonly achieve AUCs within the vancomycin therapeutic range and 
linking factor between the studies. 

AUC 
(mg*h/L) 

log10 
AUC 

Probability 
of AKI, Rat 

Probability 
of AKI, 

PROVIDE 

Probability 
of AKI, 

CAMERA2   

Factor 
PROVIDE 

vs Rat 

Factor 
CAMERA2 

vs rat 

Average 
factor 

between 
human and 

rat 
199.5262315 2.3 0.3387 0.0720922 0.0920138   4.69815042 3.68096959 4.189560009 
251.1886432 2.4 0.3894231 0.0882147 0.1120534   4.41449214 3.47533497 3.944913558 
316.227766 2.5 0.4426576 0.1075249 0.1358047   4.11679155 3.25951606 3.688153804 

398.1071706 2.6 0.4972428 0.1304572 0.1636624   3.81153972 3.03822259 3.424881154 
501.1872336 2.7 0.551894 0.1574179 0.195939   3.50591642 2.81666233 3.161289373 
630.9573445 2.8 0.6053197 0.1887409 0.2328091   3.20714641 2.6000689 2.903607654 
794.3282347 2.9 0.6563422 0.2246349 0.2742507   2.92181758 2.39321978 2.65751868 

** KDIGO stage 1 criteria (i.e. serum creatinine [SCr] absolute increase of ≥0.3 mg/dL within 48 hours of 
baseline OR SCr increase of 1.5x within 7 days from baseline) was used to define VIKI in CAMERA2 and 
PROVIDE.  VIKI defined in rat as a urinary KIM-1 ≥ 9.42 ng/mL 
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Discussion:  252 
 Overall, we found that VIKI increased as a function of the daily Log10 AUC in a predictable 253 

fashion across the rat and two human studies.  Quantiatively, the rat model was 2.1 to 3.1 times more 254 

sensitive in detecting VIKI across therapeutic AUCs observed in PROVIDE and CAMERA2.  The 255 

quantitative link across the studies indicates that the rat model can be used to reliably forecast the 256 

expected rate of VIKI at a given AUC value in adult patients receiving vancomycin. Functionally, this 257 

can be interpreted with the plotted probabilities (e.g. Figure 3).  That is, for any given dose plotted on 258 

the x-axis, the expected probability of event (i.e. the rat achieving urinary KIM-1 concentrations ≥9.42 259 

ng/mL or histopathology ≥ 2 in a 24 hour model and humans achieving serum creatinine absolute 260 

increase of ≥0.3 mg/dL within 48 hours of baseline or 1.5x SCr increase from baseline within 7 days). 261 

Importantly, confirmation that our rat model is highly translatable to humans has important implications 262 

for clinical practice as our linked model provides an efficient way to identify optimal candidate 263 

vancomycin dosing strategies that minimize VIKI for potential use into clinical practice. Clinical trials will 264 

always be the gold standard for assessing exposure-response relationships but they are expensive 265 

(costs are a median of $41,000 per enrolled patient (28), are generally designed to answer a single 266 

question, and take many years to complete. Directly relevant, CAMERA2 cost ~ $US 2M and took 4 267 

years to complete whereas PROVIDE cost ~5 million dollars and required 3 years to complete. 268 

Translatable pre-clinical models can also be used to provide immediate insights into questions such as: 269 

“Can VIKI be minimized by altering the concentration-time curve?; Can VIKI be ameliorated with co-270 

administration of a prophylactic or rescue agent?; Does the therapeutic window change when common 271 

co-nephrotoxins are given?” All of these questions are commonly faced clinically, yet each question 272 

requires a clinical trial. With limited resources, pre-clinical models such as the one evaluated in this 273 

study provide a screening mechanism to ensure that only the most promising ideas are evaluated in a 274 

clinical trial.  275 

The demonstrable link between the rat and human studies are biologically plausible. The rat is a 276 

well-developed model for acute kidney injury, and newer biomarkers such as KIM-1 are highly relevant 277 
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as they are shared between humans and rats.(2, 3) KIM-1 is a specific marker of histopathologic 278 

proximal tubule injury in VIKI (11, 30) as well as is qualified by the FDA for drug induced acute kidney 279 

injury in both human and rat drug studies.(7) Our findings were isometric depending on whether we 280 

used a KIM-1 or a histopathological cut-point. For the VIKI model, we favored using KIM-1 as urinary 281 

samples are easy to obtain longitudinally (and do not require animal sacrifice). Further, KIM-1 is very 282 

sensitive for prediction of histopathologic damage (Figure 1) which is still considered by some as the 283 

gold standard for translational toxicological studies.  284 

Several points should be noted when evaluating the findings. The rat model relied on day 1 285 

estimates of vancomycin exposure in 24 hour experiments and used KIM-1 to define VIKI. We believe it 286 

was appropriate to use the AUC:KIM-1 data from the 24-hour rat studies in the exposure response 287 

analyses and link them to day 2 AUC:SCr VIKI endpoints in the human studies. We have observed in 288 

our model that KIM-1 increases on day 1 with vancomycin treatment and plateaus for several days in 289 

our more prolonged experiments (34). Thus, one day experiments appear sufficient to define the injury 290 

profile. In the translational pre-clinical model, the goal is to obtain a marker that is not in the causal 291 

pathway for injury and thus measure a predictor rather than an intermediate surrogate for toxicity that 292 

has already occurred (e.g. vancomycin AUC increases because glomerular filtration has already 293 

decreased).  294 

In CAMERA2 and PROVIDE, the vancomycin exposure-VIKI response curve was explained by the 295 

day 2 AUC(20, 23). We also believe it was appropriate to examine the day 2 AUC in patients relative to 296 

day 1 as it is more indicative of near steady-state conditions and the maintenance vancomycin regimen 297 

patients received during the early course of vancomycin therapy. In clinical patients, day 1 298 

concentration profiles are also potentially more variable than day 2, as varying renal function is more 299 

prevalent during the initial period when patients are being managed for sepsis. Day 2 was also selected 300 

for the clinical data because this is when vancomycin concentration-time data would be most likely 301 

obtained (22, 26, 56). Ultimately, the best approach for future human trials will be to see if early 302 

biomarkers such as KIM-1 can predict clinical toxicity before the more standard clinical markers such as 303 
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serum creatinine. This would enable clinicians to change therapy prior to more substantial damage, and 304 

once data for KIM-1 become available from human trials, the rat model can be re-calibrated. 305 

 In humans, SCr is the common clinical biomarker for defining acute kidney injury (6), but it is 306 

known to be a delayed indicator of renal injury and decline in renal function(57). Because of renal 307 

reserve, SCr only increases after a substantial amount of damage has occurred to the nephrons. It is 308 

estimated that greater than 40% reductions are needed in CrCL in order to observe creatinine changes 309 

within reasonable time frames such as within 48 hours (40, 54). Based on the amount of pre-existing 310 

kidney damage, the SCr may take 24–36 hours to rise after a definite renal insult (13, 32, 54). 311 

Therefore, we examined VIKI events downstream from the initial exposure as the injury process likely 312 

started several days prior to SCr elevation in human studies. In contrast, urinary KIM-1 rises are 313 

detectable within 9 hours of insult (52) and are sensitive and specific for proximal tubule damage 314 

specifically with VIKI (33). Thus, KIM-1 is an ideal maker for VIKI, allowing for the most proximal linking 315 

between antecedent vancomycin exposure and damage. This toxicologic model can be envisioned 316 

similar to other clinical PK/PD analyses in which the achieving of early exposure targets is linked to 317 

outcomes like clinical response at test of cure or 28-day mortality. In vivo or in vitro models utilized for 318 

prediction of outcomes are simplifications (by necessity) of the human condition and outcomes.  319 
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In PROVIDE, the unadjusted and 320 

adjusted risk ratio between AUC and 321 

VIKI endpoints were nearly identical, 322 

suggesting that the observed results 323 

were accurate on both the population 324 

and patient level and not modified 325 

significantly by covariates. In 326 

CAMERA2, receipt of flucloxacillin 327 

resulted in more kidney injury. In a 328 

sensitivity analysis in which we 329 

separated patients by their receipt of 330 

flucloxacillin, it was observed that patients who received flucloxacillin had rates of VIKI according to 331 

AUC that were similar to the whole population PROVIDE dataset (Figure S2), yet overall relationships 332 

from our primary analysis were highly explanatory (Figure2) so we more conservatively included all 333 

patients from CAMERA2 (as opposed to restricting analyses only to patients with flucloxacillin).   334 

This study has several limitations. First, these animal studies have been performed in one 335 

laboratory and appear to have good internal validity; however, external validation is required to confirm 336 

if others are able to replicate similar exposure response curves in the rat and determine if individual 337 

models require calibration. Second, we utilized all available data meeting inclusion criteria requirements 338 

from the clinical studies and did not make any adjustments for patient covariates (e.g. co-nephrotoxins) 339 

in our primary analysis. A sensitivity analysis identified that patients that received flucloxacillin in 340 

CAMERA2 demonstrated similar VIKI rates for matched AUCs in the patient population from PROVIDE. 341 

The current analyses demonstrate that linking rat data to human data at the population level is possible. 342 

Future work will need to test covariates in the rat and recalibrate a link with the stratified human data.    343 

Figure S2. VIKI probability by study, where 
CAMERA2 is divided into patients that received 
flucloxacillin and those that did not. 
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Conclusion: 344 

 We have demonstrated that a rat model links to kidney outcomes from the clinical studies, 345 

PROVIDE and CAMERA2. The rat is a useful model that has the potential to provide quantitative 346 

information on the shift of the vancomycin toxicity curve in humans. Rat models can be applied to focus 347 

on distinct questions of interest (such as combinatorial therapy) and can serve as an initial assessment 348 

before clinical trials are conducted, thus improving understanding in the setting of no clinical data and 349 

clinical data that suffers from confounding relationships. External validation and replication are needed 350 

to verify the translational nature of our animal model.  351 
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