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Bacteriophages rely almost exclusively on host-cell machinery to produce their
proteins, and their mRNAs must therefore compete with host mRNAs for valuable
translational resources. In many bacterial species, highly translated mRNAs are
characterized by the presence of a Shine-Dalgarno sequence motif upstream of
the start codon and weak secondary structure within the start codon region. How-
ever, the general constraints and principles underlying the translation of phage mR-
NAs are largely unknown. Here, we show that phage mRNAs are highly enriched
in strong Shine-Dalgarno sequences and have comparatively weaker secondary
structures in the start codon region than host-cell mRNAs. Phage mRNAs appear
statistically similar to the most highly expressed host genes in E. coli according to
both features, strongly suggesting that they initiate translation at particularly high
rates. Interestingly, we find that these observations are driven largely by virulent
phages and that temperate phages encode mRNAs with similar start codon features
to their host genes. These findings apply broadly across a wide-diversity of host-
species and phage genomes. Further study of phage translational regulation—with
a particular emphasis on virulent phages—may provide new strategies for engi-
neering phage genomes and recombinant expression systems more generally.

Introduction 1

Protein translation consumes a large amount of cellular resources, and the genomes of mi- 2

crobial species show strong evidence of selection for rapid and efficient translation [1–8]. The 3

statistical analysis of genome sequence features has provided important insights into many 4

of the basic mechanisms of gene expression, particularly by contrasting sequence patterns 5

within genes that have high- and low-expression demands [9–14] . Over-representation of 6

a purine-rich motif upstream of bacterial start codons, for instance, ultimately lead to the 7

discovery of the Shine-Dalgarno sequence mechanism—a direct binding interaction between 8

the 30S ribosomal sub-unit and mRNA that governs start codon recognition and facilitates 9

translation initiation [15–21]. Collectively, gene sequence analyses have facilitated advances 10

in recombinant protein engineering by deciphering the sequence rules for optimal expression, 11

which have subsequently been validated, refined, and expanded upon in numerous exper- 12

imental and evolutionary studies [22–32]. However, the amount of available information 13

contained within individual bacterial genomes is limited both in terms of the overall number 14

of proteins and the sequence-level diversity that is present across closely related strains. 15

Bacteriophage genomes, by contrast, contain a large pool of untapped sequence diver- 16

sity that metagenomic techniques have only recently begun to characterize in depth [33–39]. 17

Phage mRNAs must be expressed in host cells—in most cases, entirely by existing host cell 18

1

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 21, 2021. ; https://doi.org/10.1101/2021.04.21.440840doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.21.440840
http://creativecommons.org/licenses/by/4.0/


machinery—and the statistical patterns and constraints that are encoded in these sequences 19

may thus help to further elucidate host-cell transcriptional and translational constraints 20

and mechanisms [40, 41]. While several model phage species are well-characterized [42– 21

46], there have been comparatively few investigations into larger-scale statistical patterns 22

present within phage genomes [47–53]. Deciphering the coding sequence rules governing 23

phage genome evolution is additionally critical for engineering phages as well as for deter- 24

mining the utility of this knowledge for host-cell engineering applications [54, 55]. 25

Here, we analyze thousands of complete, high-quality phage genomes from 33 different 26

bacterial hosts to determine whether the constraints shaping translation-initiation regions 27

in phage mRNAs differ from host-cell genomes. We first present an in depth analysis of E. 28

coli -infecting phages and find that phage genomes are predicted to have translation-initiation 29

rates that are on-par with host-cell genes encoding only the mostly highly abundant proteins. 30

Next, we show how translation initiation-related features co-vary and associate strongly with 31

phage lifestyle. Finally, we extend our findings across a broad phylogenetic range of host 32

species, suggesting that phage mRNAs—and virulent phages in particular—are subject to 33

strong evolutionary pressure to ensure rapid translation initiation. 34

Results 35

Phage mRNAs are predicted to have rapid translation-initiation 36

rates. 37

We focused our study on two sequence features that are robustly linked to translation- 38

initiation rates across a wide-range of bacterial species. For a given gene, we first measured 39

the strength of anti-Shine-Dalgarno (aSD) sequence binding interaction (5′-CCUCCU-3′) 40

by selecting the strongest binding hexamer sequence within a narrow window upstream of 41

the annotated start codon (Fig. 1A). Stronger aSD sequence binding (more negative ∆G) 42

is associated with start codon recognition and rapid translation initiation [56]. Next, we 43

calculated the structural accessibility of the start codon by predicting the stability of the 44

secondary structure for a 90 nucleotide fragment surrounding each start codon (30 bases 45

upstream and 60 bases downstream, Fig. 1B). Weaker secondary structure within this region 46

(more positive ∆G) is robustly associated with higher translation-initiation rates [57]. 47

We measured aSD sequence binding and secondary structure strengths for all protein 48

coding genes in phage T7—a well-studied, model phage–and its bacterial host, E. coli. We 49

observed a clear distinction whereby the aSD sequence binding strengths of T7 genes are 50

narrower and highly skewed towards stronger binding relative to E. coli genes (Fig. 1C, mean 51

of -7.61 vs -4.77 kcal/mol, Welch’s t-test p < 0.001). The distribution of secondary structure 52

strengths within the start codon region are slightly (but insignificantly) shifted towards 53

weaker secondary structure, which is also associated with higher translation-initiation rates 54

(Fig. 1D, mean of -18.3 vs -19.5 kcal/mol, p = 0.07). Given that aSD sequence binding 55

strengths are substantially stronger and that the strength of mRNA secondary structures 56

are statistically similar in phage T7 relative to E. coli, this analysis shows that overall 57

translation-initiation rates (TIR) are predicted to be higher for phage T7 mRNAs relative 58
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to host mRNAs. 59

To determine the generality of these findings, we extended this analysis to a set of 254 60

diverse E. coli -infecting phage genomes (see Materials and Methods). Similar to phage T7, 61

we found that 202 of these 254 phage genomes had a stronger mean aSD sequence binding 62

strength when compared to the E. coli genome and 82 of these comparisons were significant 63

(Fig. 1E, Welch’s t-test with FDR-correction, p < 0.01). By contrast, only 10 of the phage 64

genomes displayed significantly weaker aSD binding strengths when compared with E. coli 65

(according to the same significance criteria). 66

When we considered mRNA secondary structure surrounding the start codon, we found 67

that 152 out of 254 tested phage genomes had weaker mRNA secondary structure in the 68

start codon region compared with E. coli genes and 99 of these comparisons were statistically 69

significant (Welch’s t-test with FDR-correction, p < 0.01, Fig. 1F). As with aSD sequence 70

binding, this result indicates that phage mRNAs are likely to initiate translation more rapidly 71

than host-cell mRNAs. Only 13 phage genomes had significantly stronger predicted mRNA 72

secondary structures within the start codon region compared to host genome mRNAs (and 73

thus lower predicted translation-initiation rates). 74

One possible explanation for why phage mRNAs appear to have higher translation- 75

initiation rates than hosts is that phage genomes are highly compact and may be devoid 76

of genes that are rarely expressed or under weak selective pressures—as may be the case for 77

much of the > 4, 000 protein coding genes within the E. coli genome. We therefore repeated 78

the above analyses, comparing phage genomes to subsets of the E. coli genome with pro- 79

gressively more stringent cutoffs in terms of their average protein abundances (see Materials 80

and Methods). As expected, we found that E. coli mRNAs that encode highly abundant 81

proteins have both substantially stronger aSD sequence binding strengths and weaker mRNA 82

secondary structure in the start codon regions. Achieving parity in terms of roughly bal- 83

ancing the number of phage genomes with significantly stronger (and weaker) aSD sequence 84

binding strengths required considering only the top 10–25% E. coli genes with the highest 85

protein abundances (Supplementary Fig. S1A). The results when assessing mRNA secondary 86

structure in the start codon region are similar: overall the translation-initiation region of 87

phage mRNAs appear to be under strong selection that is on par with only the most highly 88

expressed host genes (Supplementary Fig. S1B). We additionally considered essential and 89

non-essential host gene categories separately under the expectation that phage genes might 90

more closely resemble essential host-cell genes. However, we found that phage translation- 91

initiation regions are significantly distinct from both essential and non-essential gene subsets 92

(Supplementary Fig. S1A,B). 93

Sequence features in translation-initiation regions differ between 94

virulent and temperate phages. 95

Our findings thus far show that phage mRNAs are predicted to bind strongly to ribosomes 96

and thus are predicted to have increased translation-initiation rates relative to host mRNAs. 97

Additionally, phage mRNAs also appear to have generally weaker secondary structures sur- 98

rounding the start codon, a feature that is itself associated with rapid recruitment of ribo- 99
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Figure 1. Translation-initiation metrics in phage and host genomes. (A) Illus-
tration of the aSD binding strength, where stronger ribosomal binding is associated with
a higher predicted translation-initiation rate (TIR). (B) Illustration of mRNA secondary
structure around the start codon, where weak structure is associated with higher predicted
TIRs. (C) Histogram of aSD sequence binding strengths upstream of phage T7 and E. coli
start codons (dashed lines indicate group means). (D) As in (C), showing mRNA secondary
structure strength surrounding the start codon. (E) Histogram of mean aSD sequence bind-
ing energy across 254 phage genomes. ‘n. sig’ denotes the number of phage genomes with
significant differences compared to E. coli (dashed line). (F) As in (E), comparing mean
mRNA secondary structure around the start codon.

somes and high translation-initiation rates. However, we have investigated these features in 100

isolation and it is unclear whether these two sequence features represent competing strate- 101
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gies that different phages use to ensure rapid translation initiation or whether these features 102

co-occur within the same genomes. 103

To investigate the possible differences between phage and host mRNAs along several 104

dimensions, we used a logistic regression framework that attempts to predict the genome of 105

origin (host or phage) based on knowledge of both the aSD sequence binding strength and 106

the strength of mRNA secondary structure surrounding the start codon for each phage-host 107

pairing. Using only a single predictor variable, this procedure is equivalent to a Student’s 108

t-test but the flexible nature of the model allows us to analyze both variables simultaneously 109

and to further account for potentially confounding variables. The reported effect size is 110

simply the model coefficient for each variable (a standardized conditional log-odds ratio), 111

the magnitude of which can be directly compared for various predictor variables to assess 112

their overall contribution. We decided to control for two potentially confounding variables: 113

coding sequence GC content and codon usage biases. The GC content of coding sequences 114

can directly influence the strength of mRNA secondary structure (and this feature may vary 115

between phage and host genomes). Additionally, codon usage biases are a general indicator 116

of translational selection—particularly on translation elongation. We found that GC content 117

and codon usage biases do indeed vary between host and phages when these variables are 118

considered in isolation (Supplementary Fig. S2). Our logistic regression model thus contains 119

two features of direct interest related to translation initiation and two features that we treat 120

as potentially confounding variables. 121

Using the same dataset of 254 E. coli infecting phages, we found that strong aSD sequence 122

binding strength and weak mRNA secondary structure co-occur in a large subset of phages 123

(upper-left quadrant, Fig. 2A). The number of significant phages indicated in the figure (37 124

in the upper-left quadrant) refers to to phages where both variables are significantly different 125

from the host (after separately applying a FDR-correction to each variable, p < 0.01). How- 126

ever, numerous phage genomes reside in the lower-left quadrant where they display slightly 127

stronger aSD binding strengths than the host genome but also slightly stronger mRNA sec- 128

ondary structure in the start codon region. Only two of these genomes are significant for both 129

quantities, however. Finally, a comparatively small number of genomes occupy quadrants 130

on the right side of this scatter plot (displaying weaker aSD sequence binding strengths) 131

and only a single phage genome is statistically different from the host for both features—in 132

this case, having significantly weaker aSD sequence binding and stronger mRNA secondary 133

structure in the start codon region. 134

All of the results that we have presented thus far treat phage genomes uniformly. How- 135

ever, this approach may obscure important differences in how natural selection operates on 136

the translation-initiation regions of different phages. We thus predicted the lifestyle of each 137

phage genome in the dataset using BACPHLIP [58] and noticed a striking difference between 138

phages that are confidently predicted (≥ 0.95% probability) to be either temperate or viru- 139

lent (n=143, of which 39 are temperate and 104 are virulent, Fig. 2B). While both categories 140

of phages have strong aSD sequence binding energies (most data points remain to the left of 141

zero in Fig. 2B), the virulent phages reside in the upper-left quadrant and almost exclusively 142

have high predicted translation-initiation rates (Fig. 3B). By contrast, the vast majority of 143

temperate phages reside in the lower-left quadrant where they display signatures of strong 144
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aSD sequence binding strengths but also stronger mRNA secondary structures as compared 145

to the host. Repeating the full analysis from Fig. 2 without including the coding sequence 146

GC percent and iCUB covariates reveals similar findings, with virulent phages preferentially 147

residing in the top left quadrant, which is indicative of storng predicted translation initiation 148

rates (Supplementary Fig. S3). 149

We further confirmed this stark separation between temperate and virulent phage genomes 150

by looking at each of the features independently within the temperate and virulent phage 151

genome sets (Supplementary Fig. S4). The clearest and most significant differences emerged 152

when considering mRNA secondary structure around the start codon and codon usage bi- 153

ases. In both cases, virulent phages are predicted to have stronger translation initiation rates 154

and translation efficiency when compared with temperate phages (Welch’s t-test, p < 0.001). 155

The strength of aSD sequence binding also differs slightly (p = 0.011) between these two 156

sets of phages: of the 143 genomes with confident lifestyle predictions, the top 35 phages 157

with the strongest mean aSD sequence binding energies are all virulent phages. Finally, 158

coding sequence GC content also varied, virulent phages displaying a generally lower coding 159

sequence GC percent (p < 0.001) but the link between this feature and translation efficiency 160

is less well studied. 161

Finally, to better understand how these two translation initiation-related features con- 162

tribute to translation efficiency—a metric that is roughly akin to the amount of protein 163

produced from a given level of mRNA over a given time period and is often calculated using 164

ribosome profiling. We built multi-variate regression models to predict gene-specific transla- 165

tion efficiencies based off of two previously published, empirically determined values [59, 60]. 166

Both translation initiation features were highly significant, and the resulting models had 167

Adjusted-R2 values between 0.11–0.17 (Supplementary Fig. S5). We applied the best fitting 168

model to predict translation efficiency values for phage genomes, and observed that a large 169

number had significantly greater predicted mean translation efficiency when compared with 170

the predictions for the entire E. coli genome. Confirming our lifestyle-based findings, this ef- 171

fect was driven almost entirely by virulent phage genomes—many of which had significantly 172

greater predicted translation efficiency whereas no temperate phage genomes showed this 173

effect (Supplementary Fig. S5). 174

High translation-initiation rates are a general feature of phage 175

genomes. 176

We have thus far presented an in depth analysis of E. coli infecting phage genomes, but the 177

generality of these findings to other host-cell bacterial species is unclear. To determine if 178

phage mRNAs display evidence of rapid translation initiation in general, and whether this 179

effect is particularly pronounced in virulent phages, we repeated our analyses from Fig. 1E,F 180

on 32 additional taxonomically diverse bacterial host organisms for which we have at least 181

10 (dereplicated) complete phage genomes for comparison. 182

For nearly all host species, we found that a substantial fraction of phage genomes had sig- 183

nificantly different aSD sequence binding strengths and mRNA secondary structure strengths 184

compared to their hosts (Fig. 3, the fraction of significant genomes depicted in the bar chart 185
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Figure 2. Multi-variable modeling of translation-initiation differences between
phage and host genomes. (A) Model coefficients (standardized conditional log-odds ratio)
from logistic regression comparing sequence features in translation-initiation regions between
individual phage and E. coli genomes. Coefficients for aSD binding energies and mRNA
secondary structure in the start codon region are depicted on the x- and y-axes, respectively,
while coefficients for confounding variables (GC content and codon usage biases) are not
shown. (B) As in (A), with phages colored according to their predicted lifestyle for the
subset of phages with high-confidence lifestyle predictions (≥ 0.95 probability of correct
assignment using BACPHLIP).

is calculated via Welch’s t-test with FDR-correction, p < 0.01). In nearly all cases, the 186

effect was heavily biased in the direction of increased predicted translation-initiation rates 187

for phage mRNAs: stronger aSD sequence binding strengths and weaker mRNA secondary 188

structure in the start codon region. There were, however, a few scattered host species for 189

whom there appeared to be no significant difference for one or both of the translation- 190

initiation features. In Cellulophaga baltica, for instance, we note that it has previously been 191

shown that many members of the Bacteroidetes phylum do not use the aSD sequence bind- 192

ing mechanism and it is thus unsurprising to see that phages infecting this species are also 193

devoid of this feature [6, 61, 62]. Additionally, we observed generally weaker effects for both 194

translation initation-related features across members of the Firmicutes phylum (excepting 195

the Bacillus genus) but note that the translation-initiation regions in many of these host-cell 196

genomes have particularly strong features compared with species like E. coli. 197

We additionally wished to assess differences between temperate and virulent phages for 198

this diverse set of species. However, most phages with known, annotated lifestyles come from 199

a biased set of host species and this bias also affects the accuracy of phage lifestyle prediction 200

for different host-cell species. We predicted the lifestyle of all phages infecting the host-cell 201

species depicted in Fig. 3 and (as in Fig 2) required a 95% probability of correct lifestyle 202

assignment. This procedure yielded 9 host species for which we could confidently identify a 203

minimum of 5 temperate and 5 virulent phage genomes. For these hosts, we split the phage 204

genomes into temperate and virulent categories and repeated the analysis from Fig. 3 while 205
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Figure 3. Phage genomes show evidence of high translation-initiation rates across
a range of taxa. (A) The distribution of mean aSD binding strengths across all phages
that infect an individual host is depicted as a violin plot with the host genome average
shown as a blue vertical line. The fraction of phage genomes that are significantly different
for each host are depicted in the vertical bar plot on the right, with red bars extending
to the left of 0 indicating genomes with significantly stronger aSD binding strengths and
brown bars to the right indicating significantly weaker aSD binding strengths (significance
was defined via Welch’s t-test with FDR-correction, p < 0.01)(B) Similar to (A), results for
mRNA secondary structure in the start codon region. For both panels, results for E. coli
are identical to those depicted in Fig. 1E,F.

considering temperate and virulent phages independently. 206

Similar to our findings across E. coli infecting phages, a substantial number of both 207

virulent and temperate phages displayed stronger aSD sequence binding strengths relative 208

to host-cell genomes and we observed comparatively minor differences in the magnitude of 209

this feature across lifestyle classes Fig. 4A. Also confirming our results seen in E. coli, we 210

observed very few cases where temperate phages were predicted to have significantly different 211

mRNA secondary structure in the start codon region in either direction. By contrast, large 212

numbers of virulent phages have weaker mRNA secondary structure in the start codon region 213

Fig. 4B. Virulent phages, across nearly all of the 9 species studied, have strong sequence 214
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signatures that are indicative of rapid translation initiation. As with E. coli, the picture 215

is more nuanced for temperate phages, which tend to have strong aSD sequence binding 216

strengths (Fig. 4, left) but little or no significant difference in mRNA secondary structure 217

strengths in the start codon region compared to host genes (Fig. 4, left). 218

A

B

Temperate Virulent
stronger ... weaker

Phage aSD sequence
binding energy is:

stronger ... weaker

Phage aSD sequence
binding energy is:

stronger ... weaker

Phage secondary
structure is:

stronger ... weaker

Phage secondary
structure is:

Low TIRHigh TIR Low TIRHigh TIR

Temperate Virulent
High TIRLow TIR High TIRLow TIR

Figure 4. Phage lifestyle and translation initiation sequence feature variation
across diverse bacterial species. (A) Comparing mean host-genome aSD sequence bind-
ing energies independently with values from temperate (left, purple) and virulent (right,
green) phage genomes. Most virulent and temperate phage genomes across all host-cell
species display strong aSD sequence binding. (B) Comparing mean host-genome secondary
structure energies in the start codon region with values from temperate (left, purple) and
virulent (right, green) phage genomes. Virulent phages, but not temperate phages, have
weaker mRNA secondary structure in the start codon region across a range of host-species.
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Discussion 219

Translation initiation region sequence preferences provide bacteria with a means to differen- 220

tiate start codons from background sequences and to modulate the protein production rate 221

for individual mRNAs. By analyzing the sequence patterns contained within thousands of 222

complete bacteriophage genomes, we have shown these sequence preferences are particularly 223

strong in phages and indicative of rapid translation-initiation rates that are on par with 224

only the most highly expressed host-cell genes. Most strikingly, we find that virulent phage 225

genomes differ from temperate phage genomes in this regard: mRNAs from both types of 226

phages appear to be enriched in strong anti-Shine-Dalgarno sequence binding sites, but only 227

virulent phages couple this ribosomal capture mechanism with particularly weak mRNA 228

secondary structure that helps to facilitate ribosomal recruitment. 229

Within temperate phage genomes, the net result of partially contradictory observations— 230

stronger aSD sequence binding and slightly stronger mRNA secondary structure relative 231

to host genes—is unclear. To date, there have been a limited number of genome-wide 232

transcriptomic and proteomic studies specifically targeting phage infections [42–46]. As 233

techniques such as RNA-seq and ribosome profiling become more widespread and applied to 234

diverse phage and host species, we expect that the details of ribosomal competition during 235

phage infection will become more clear. However, based on regression models that were fit to 236

empirically determined E. coli translation efficiency values, it appears that temperate phages 237

are likely to have slightly lower translation efficiency (Supplementary Fig. S5). By contrast, 238

virulent phage genomes appear to have unequivocally increased rates of translation initiation 239

according to all of our best knowledge about this detailed molecular process. Our study thus 240

joins a growing body of literature highlighting important differences in evolutionary processes 241

between temperate and virulent phage genomes [63–68]. 242

While we are unable to say precisely why temperate and virulent phages should differ 243

so starkly in regards to their translational initiation regions, we speculate that the life- 244

history of these different virus types results in unique translational pressures. Temperate 245

phage genomes, for instance, may accumulate numerous point mutations that are likely to 246

be under weak selection pressure during extended periods of dormancy. It is possible that 247

excision of temperate phages from the host-cell genome (and subsequent entry into the lytic 248

cycle) is preceded by other steps that limit competition between phage and host-cell mRNAs. 249

By contrast, virulent phage genomes must rapidly produce protein in a race against host-cell 250

detection mechanisms in order to reproduce at every generation. While not the focus of our 251

study, we observed that codon usage biases also differ significantly between temperate and 252

virulent phages, with temperate phages having generally weaker biases than we observed 253

for virulent phage genomes. This again points in the direction of stronger overall levels 254

of translational selection on virulent phages. However, the precise consequences of these 255

different evolutionary modes as it relates to optimizing translation initiation remains an 256

intriguing area of further theoretical and empirical study. 257

Prior work has shown that viral mRNAs (including phage) tend to have weak mRNA 258

secondary structure surrounding the start codon, but limits in the number of available phage 259

genomes made it difficult to explicitly study phage-host pairings [69]. Other studies have 260
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looked at differences in codon usage biases and higher-order sequence effects within bacterio- 261

phage genomes and have generally found strong signatures of translational selection in phage 262

genomes [47–53]. Our findings thus build on existing research and suggest that a distinct an 263

important comparison is between host and phage mRNAs, which are likely to be in direct 264

competition for the same pool of ribosomes and translational resources during periods of 265

active infection. The growing abundance of complete, host-linked phage genomes presents 266

exciting opportunities for further study in this area. 267

A potential limitation of our work is that phylogenetic relatedness presents numerous sta- 268

tistical challenges. Two randomly chosen phages may share either close or distant sequence 269

identity and common ancestry [70]. While phylogenetic comparative methods can be applied 270

to correct for non-independence, these methods require an underlying phylogenetic tree that 271

can be particularly challenging to assemble for phage genomes [39, 71, 72]. In lieu of this 272

approach, we have opted for a simpler method that should partially mitigate phylogenetic 273

biases: clustering genomes and selecting single representative genomes per cluster to ensure 274

that the data points are more independent than they might otherwise be. Additionally, 275

while we present multi-species comparisons between various host-cell species (Figs. 3 & 4), 276

we again have not accounted for any confounding effects that could arise due to phylogenetic 277

relatedness between host-cell species. However, we do not perform any explicit statistical 278

analyses on the entire set of data, and rather include these figures to graphically show that 279

our findings appear to apply across numerous species. 280

Analysis of protein coding sequences, as well as up- and down-stream regulatory se- 281

quences, has enhanced our understanding of several transcriptional and translational mech- 282

anisms, including the role of codon usage biases and higher-order sequence features in the 283

rate of protein production [73–78]. In a sense, phages are the original synthetic biologists— 284

exploiting host cells to produce a set of macromolecules that decrease host fitness. The 285

precise details of how individual phages manipulate their hosts is highly varied, but higher- 286

order genome features such as we have studied here may provide important insight into 287

translational regulation, which may further enhance our ability to engineer both phage and 288

host-cell genomes. 289

Materials and Methods 290

Virus data compilation, genome annotation, and host prediction 291

The core of our study relies on access to numerous and distinct bacteriophage genomes 292

with consistent annotations and trustworthy predictions of primary host species. On-going 293

research in each of these areas is continuing to expand the availability of phage genomes that 294

are suitable for genome-linked analyses such as we performed here [39, 79–83]. To maintain 295

consistency and to ensure access to the highest-quality genomes, we used the NCBI Virus 296

genome database (last accessed: November 2020) and selected only “complete” genomes to 297

include in our study. An advantage of this choice is that we additionally relied on previously 298

existing genome annotations for all phages included in this study. Only a small subset of 299

phage genomes have host annotations, so we limited our selection of host-cell species to 300
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those with at least 50 annotated phage genomes and 10 annotated phage genomes after 301

dereplication (see below). 302

To ensure that the selected phage genomes were not severely biased by a small number 303

of over-represented and closely related genomes, we used FastANI to measure the average 304

nucleotide identity (ANI) between all phages that infect a single host, requiring that the 305

alignment span a minimum of 80% the length of the shortest genome [84]. We constructed a 306

unique all-to-all distance matrix, and used the cd-hit-est greedy algorithm to cluster phages 307

at 95% sequence identity [85]. From each cluster, we subsequently selected the longest Ref- 308

Seq genome as a cluster representative. In the event that there were no RefSeq genomes 309

in a cluster, we simply selected the longest genome. Finally, we removed poorly annotated 310

phage genomes from the analysis, which we conservatively defined as those with an anno- 311

tated coding sequence density <50%. For E. coli, our processing began with a set of 1,473 312

genomes and our final dataset encompassed 254 genomes, which were analyzed throughout 313

this manuscript. 314

Definitions of sequence features related to translation initiation. 315

The Shine-Dalgarno sequence is a collection of related mRNA sequence motifs that are de- 316

fined by their ability to bind strongly to the highly conserved anti-Shine-Dalgarno sequence— 317

located on the 30S subunit of the bacterial ribosome. Here, we define the aSD binding 318

strength of a given coding sequence as the strongest possible binding affinity between the 319

anti-SD sequence (defined via the core sequence of 5′-CCUCCU-3′) and hexamer sequences 320

upstream of the start codon, restricting the upstream range to have a minimum gap of 4 321

nucleotides and a maximum gap of 10 nucleotides between the 3′ most base in the hex- 322

amer and the first nucleotide of the start codon. Binding energies were calculated using the 323

“RNAcofold” program, part of the ViennaRNA (v2.4.14) suite [86]. 324

We determined the strength of mRNA secondary structure surrounding all start codons 325

by assessing a 90 nucleotide long sequence fragment (30 nts upstream of the start codon and 326

60 nts downstream) using the “RNAfold” program from ViennaRNA (v2.4.14) [86]. While 327

we expect this to be a rough approximation of the true secondary structure present in the 328

start codon region for each mRNA, numerous prior studies have showed that similar window 329

sizes roughly capture the relevant feature of mRNA secondary structure strength [22, 56, 57]. 330

More complicated models of translation initiation may include explicit penalties for SD 331

sequence spacing relative to the start codon [23], the identity of the start codon itself [87], 332

kinetics of secondary structure unfolding and refolding [88], penalties for binding too strongly 333

to the aSD sequence [56], as well as a number of other possible features [89–91]. However, 334

it is unknown how transferable these other mechanisms are across diverse organisms given 335

that the vast majority of existing work has been performed in E. coli. To keep our model 336

simple, we focused on the two most consistent and frequently cited modifiers of translation- 337

initiation rates. Additionally, we found that a simple multi-variable linear regression model 338

consisting of only aSD binding strength and the strength of secondary structure around 339

the start codon is capable of significantly predicting translation efficiencies derived from two 340

separate genome-wide E. coli datasets [59, 60] (Supplementary Fig. S5). In these models, R2
341
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values ranged from 0.11–0.17 and predictions of both models were highly correlated. Further, 342

in both cases, start codons with weak mRNA secondary structure and strong aSD sequence 343

binding have the highest empirically measured translation efficiency values and both sequence 344

features were highly significant in the regression models (p < 0.001). We did not apply these 345

models to predict translation efficiencies for phages or hosts outside of E. coli, reasoning that 346

doing so would make a dangerous assumption that the mechanisms of translational regulation 347

remain similar across phylogenetically diverse species. Our current approach does, however, 348

assume that the mechanisms of translation efficiency and translational regulation remain 349

similar between normal E. coli growth and during phage infection. 350

Other CDS-level feature definitions and inclusion criteria 351

Codon usage bias is frequently considered an indicator of translational selection due to the 352

potential for synonymous codons to modulate the rate of translation elongation. We thus 353

wanted to ensure that our findings were robust to variation in codon usage bias differences 354

between host and phage genomes, as well as GC content variation (which has a direct impact 355

on mRNA secondary structure strength). Coding sequence GC content was simply calculated 356

for each CDS as the number of G+C nucleotides divided by the total coding sequence length. 357

Codon usage bias was measured using iCUB [92]. There are many possible metrics of codon 358

usage bias, but a benchmark study showed that iCUB outperformed other metrics that rely 359

solely on coding sequence information (as opposed to a priori defined reference sets of genes 360

or other external information such as tRNA abundances or a reference set of highly expressed 361

genes). The iCUB metric is similar to the more commonly cited effective number of codons: 362

lower values indicate fewer codons and thus more bias. However, iCUB explicitly controls 363

for GC content variation and produces better estimates of protein abundance across diverse 364

microbial taxa. We observed that both of these features (GC-content and iCUB) differ 365

significantly between phage and host species (Supplementary Fig. S2), providing validation 366

that our results are likely to be more robust and conservative by controlling for these effects. 367

For all studied coding sequences (either phage or host-derived), we only considered an- 368

notated genes whose length was at least 90 nucleotides (30 amino acids) and for which the 369

length was a multiple of three (potentially removing a small number of genes with pro- 370

grammed frame-shifts). Additionally, all of our results for host genomes excluded coding 371

sequences whose “product” feature annotation contained the word “phage”. This filter was 372

performed to ideally exclude prophage-associated coding sequences from being included in 373

the host genome when drawing comparisons. 374

Compilation of E. coli -specific empirical data 375

We leveraged several existing genome-scale, empirical data sources to thoroughly contrast 376

E. coli infecting phages with various subsets of E. coli genes as well as to ensure that 377

our translation-initiation metrics were associated with empirically derived translation effi- 378

ciency measurements. Specifically, we relied on PAXdb for protein abundance data [93], 379

two separate datasets of gene essentiality [94, 95], and two separate datasets of ribosome- 380

profiling derived translation efficiency measurements (briefly referenced in the preceding 381
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section) [59, 60]. 382

For protein abundance data, we simply drew various percentile-based thresholds to con- 383

sider increasingly stringent sets of “highly-expressed” genes. PAXdb aggregates protein 384

abundance measurements from numerous studies and growth conditions, and while these 385

abundance values are estimates from only a small snap-shot of possible studies and possible 386

growth conditions, these values are well-established (if rough) indicators of overall protein 387

abundance [93]. For gene essentiality, we used a consensus approach where we only considered 388

genes that were considered either “essential” or “non-essential” in two separate datasets (to 389

increase robustness) and did not consider genes with conflicting annotations for this portion 390

of the analysis. 391

Phage lifestyle prediction 392

We used the BACPHLIP software [58] to categorize all phage genomes in our dataset into 393

temperate and virulent lifestyles. BACPHLIP uses genome-sequence input, determines the 394

presence/absence of several hundred lysogeny-associated protein domains, and uses a random 395

forest classifier return a probability of the given phage being either temperate or virulent. 396

Here, we limited our analyses of both E. coli infecting phages and phages that infect other 397

species to those with a predicted lifestyle probability ≥ 0.95. Additionally, when assessing 398

differences between temperate and virulent phages, we removed any host species from our 399

analysis that did not have at least 5 phage genomes (after dereplication) in each lifestyle 400

category. 401

Statistical tests 402

Single-variable comparisons were performed in Python using the scipy package implementa- 403

tion of Welch’s T-test. Multiple comparisons were corrected for by using the applying the 404

statsmodels implementation of FDR correction (Benjamini/Hochberg) to the list of p−values 405

with alpha set to 0.01. Multivariate analyses were performed using the logit function in 406

statsmodels with zscore normalization to all predictor variables in order to standardize ef- 407

fect sizes. Correction for multiple comparisons in these models was again accomplished by 408

filtering the p−values from individual model coefficients through the FDR correction proce- 409

dure with the alpha value set to 0.01. Thus, we ensured that all of our results were highly 410

significant and robust to artifacts arising from multiple comparisons. 411

Host taxonomy assignment 412

We did not explicitly model any effects across a phylogenetic tree and instead present analyses 413

of multiple species independently in Figs. 3 & 4. We do, however, note that no phage genomes 414

were shared across host species for any part of this analysis, but individual host species 415

nevertheless have their own complicated and non-independent phylogenetic histories. We 416

arranged species taxonomically for easier visual comparison by querying the NCBI taxonomy 417

database and used the ete3 package to roughly order species according to their taxonomic 418

grouping. All statistical results were performed for each species independently. 419
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Code and data availability. 420

All code and data necessary to re-create the analyses in this manuscript are available at 421

https://github.com/adamhockenberry/phage-translation and https://doi.org/10. 422

5281/zenodo.4708008, respectively. 423
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Supplementary Figure S1. Comparing translation-initiation features in phage
genomes to host genome subsets. (A) The distribution of mean aSD binding energy
across phage genomes compared with indicated subsets of host genes (error bars depict
standard errors for host genome subset means, orange square indicates the median phage
genome value). The number of phage genomes that are significantly different from gene
categories are shown on the right, with red bars extending to the left of 0 indicating genomes
with significantly stronger aSD binding strengths and brown bars to the right indicating
significantly weaker aSD binding strengths (significance was defined via Welch’s t-test with
FDR-correction, p < 0.01). (B) As in (A), depicting mean start codon secondary structure
around the start codon.
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Supplementary Figure S2. GC content and codon usage bias variation in E. coli
infecting phage genomes. (A) GC content of all phage T7 and E. coli coding sequences.
(B) As in (A), showing codon usage bias variation (measured with iCUB). (C) Distribution
of mean GC contents across all phage genomes, with the host genome mean depicted as
a dashed blue line and the number of significant comparisons on either side annotated as
‘n. sig’. (D) As in (C), showing the mean iCUB values for each phage genome contrasted
with the E. coli. In panels (B) and (D) the abbreviation TE refers to translation efficiency,
indicating that lower iCUB values are associated with stronger translational selection. A
similar correspondence GC content and translation efficiency or translational selection is not
known.

27

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 21, 2021. ; https://doi.org/10.1101/2021.04.21.440840doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.21.440840
http://creativecommons.org/licenses/by/4.0/


High TIR

Low TIR

Unclear TIR

Unclear TIR

High TIR

Low TIR

Unclear TIR

Unclear TIR

A B

n sig. = 2 n sig. = 1

n sig. = 2

n sig. = 74

Supplementary Figure S3. Multi-variable modeling of translation-initiation dif-
ferences between phage and host genomes without covariates. (A) Model coeffi-
cients (standardized conditional log-odds ratio) from logistic regression comparing sequence
features in translation-initiation regions between individual phage and E. coli genomes. Co-
efficients for aSD binding energies and mRNA secondary structure in the start codon region
are depicted on the x- and y-axes, respectively. (B) As in (A), with phages colored according
to their predicted lifestyle for the subset of phages with high-confidence lifestyle predictions
(≥ 0.95 probability of correct assignment using BACPHLIP).
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Supplementary Figure S4. Single variable distributions for 143 E. coli -infecting
phages with confident lifestyle predictions. (A) Mean aSD sequence binding energy,
with virulent phages shown in green and temperate phages in purple. In both cases the
dashed colored lines show distribution means, and the dashed blue line indicates the E. coli
genome-wide mean. Further subplots show: (B) mean start codon region secondary structure
(C) mean coding sequence GC percentage and (D) mean iCUB values (akin to the effective
number of codons with lower values representing stronger codon usage biases and increased
predicted translation initiation rates. In all cases, indicated p-values represent Welch’s t-test
comparing temperate and virulent phage distributions (with the host mean shown only as a
reference).
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Supplementary Figure S5. Differences in translation efficiency across phage
lifestyles. (A) Scatter plot of predicted vs observed translation efficiency (log-scaled) using
translation efficiency data from Li et al. (2014) [59] and a multi-variable linear regression
model that includes only aSD sequence binding strength and mRNA secondary structure
around the start codon. (B) Comparing model predictions across the entire E. coli genome
when fit to two separate translation efficiency datasets (2014 refers to Li et al. (2014) [59]
while 2019 refers to Gorochowski et al. (2019) [60]. (C) Differences in mean predicted trans-
lation efficiency (using the 2014 model) between phage genomes and the host E. coli genome.
‘n. sig’ denotes the number of phage genomes that are significantly differenent from E. coli
in either direction (Welch’s t-test with FDR-correction, p < 0.01). (D) As in panel (C),
splitting phage genomes according to lifestyle (including only genomes with high-confidence
lifestyle predictions: 39 temperate and 104 virulent). Among virulent phage genomes, 73
(0) have significantly higher (and lower) predicted translation efficiency compared to E. coli.
By contrast, 0 (3) temperate phage genomes have significantly higher (and lower) predicted
levels of translation efficiency.
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