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During development, morphogen gradients provide spatial information for tissue patterning. Gradients and readout
mechanisms are inevitably variable, yet the resulting patterns are strikingly precise. Measurement limitations currently
preclude precise detection of morphogen gradients over long distances. Here, we develop a new formalism to estimate
gradient precision along the entire patterning axis from measurements close to the source. Using numerical simulations,
we infer gradient variability from measured molecular noise levels in morphogen production, decay, and diffusion. The
predicted precision is much higher than previously measured—precise enough to allow even single gradients to define
the central progenitor boundaries during neural tube development. Finally, we show that the patterning mechanism is
optimized for precise progenitor cell numbers, rather than precise boundary positions, as the progenitor domain size is
particularly robust to gradient alterations. We conclude that single gradients can yield the observed developmental
precision, which provides new prospects for tissue engineering.
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1 Introduction

During development, morphogen gradients convey positional in-
formation for tissue patterning. Measured morphogen gradients
are typically approximated well by exponential functions,

C(x) = C0 exp
[
−x
λ

]
(1)

with amplitude C0 and decay length λ [3]. The length of the
gradient, λ, specifies the distance over which the morphogen
concentration decays by exp(1) ≈ 2.7-fold. The patterning do-
main is typically much larger than λ such that the concentration
gradient declines substantially within. For instance, the Bicoid
gradient length is a fifth of the length of early Drosophila em-
bryos (λ/L = 0.2) [4]. The Decapentaplegic (Dpp) gradient
in the Drosophila wing disc is even shorter (λ/L = 0.11) [5],
and the relative lengths of the Sonic hedgehog (SHH) and Bone
morphogenetic protein (BMP) gradients decline from about
λ/L = 0.2 to λ/L = 0.05 during mouse neural tube (NT) de-
velopment [2, 6]. In the developing vertebrate NT, positional
information is provided by opposing SHH and BMP gradients [7]
(Fig. 1A). Even if each morphogen patterns only one half of the
domain, the morphogen concentration in the center of the final
domain will be about 104-fold lower than at the source. It is an
open question whether morphogens can be sensed by cells over
such distances, and how precise such patterning information
would be.

In the bacterial chemotaxis response, adaptation allows cells
to sense concentration gradients spanning at least five orders
of magnitude, and cooperativity in receptor clusters enables a
high gain such that the occupancy of one or two receptors can
be sensed [8]. Whether similar effects are at work also in the
NT is unclear, but adaptation in the SHH responsiveness has
been noted [6, 9], and the PTCH1 receptor organizes as dimer
of dimers, and each dimer binds one SHH [10]. Accordingly, it
is, in principle, possible that morphogens can be sensed by cells
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over a 105-fold concentration range (11.5λ), which corresponds
to about 220 µm in the mouse NT—enough to cover the entire
NT domain with opposing gradients (Fig. 1B). But even if
the gradients can be sensed over 11.5λ, how precise would the
conveyed positional information be?

According to the French flag model [11], the readout position
xθ is defined by a concentration threshold Cθ (Fig. 1C). By
rearranging Eq. 1, one obtains

xθ = λ ln

[
C0

Cθ

]
. (2)

As a result of molecular noise, the gradient length λ and the
ratio between gradient amplitude and readout threshold, C0/Cθ,
differ between embryos [2, 6, 12]. This difference translates into
shifts in the readout positions xθ (Fig. 1D). The overall readout
position is typically calculated as the mean of the individual
positions xθ,i in the different embryos i, and the positional error
is typically quantified by the standard deviation,

σx = SD {xθ,i} . (3)

Following this definition, the readout position and accuracy of
two centrally located progenitor domain boundaries have been
quantified in the mouse NT [2]. The positional error of both
the dorsal NKX6.1 boundary and the ventral PAX3 boundary
was found to be about 1–3 cell diameters. In parallel, also
the gradient variability was measured. Given the challenges
in measuring morphogen gradients directly [6, 13], GBS-GFP
was used as transcriptional reporter of SHH signaling, and
phosphorylated Smad1/3/5 (pSMAD) as a readout of BMP
signaling. Close to the source, the positional error increased from
a single cell diameter (4.9 µm [6]) to about 3 cell diameters over
time. In the center of the neural tube, however, the positional
error was reported to increase from 3 cell diameters in early
stages to more than 30 cell diameters later on. Combined
readout of the imprecise SHH and BMP gradients was proposed
to yield the higher precision of the central progenitor boundaries.
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Figure 1: Positional error of gradients in the NT. A
Schematic cross section of the mouse neural tube with noisy
anti-parallel SHH and BMP gradients and emergent gene expres-
sion domains. The patterning domain of length L is confined
ventrally by the floor plate (FP) and dorsally by the roof plate
(RP). B NT length (purple) and position of domain limits over
developmental time. At later stages, the dorsal NKX6.1 (blue)
and ventral PAX3 (black) domain boundaries lie at the edge or
outside the 5.5λ = 107 µm detection limit of 8-bit microscopy
(shadowed). The pink and cyan lines mark the limit of the
BMP-secreting RP and SHH-secreting FP respectively. The
RP length was assumed to be equal to the FP length. Data
points reproduced from [1, 2]. Error bars are standard errors.
C According to the French flag model, the limits xθ of distinct
tissue domains are defined by concentration thresholds Cθ. D
Illustration of gradient variability between embryos. Different
amplitudes and decay lengths yield different gradients (shades
of blue), which translates to different positions xθ,i where they
attain a threshold Cθ. This results in a distribution of readout
positions with inter-embryonic mean µx and a positional error
given by the standard deviation σx.

However, even a combined readout fails after 15 somite stages
(SS), i.e., after about 30 hours of spinal cord development, and
it remains unclear how the precise patterning of the central
progenitor domains is achieved.

The detection of morphogens poses a challenge not only to
cellular tissues, but also to microscopes. Standard protocols
recommend the use of 8-bit images [14], which limits the maximal
detection range to 28 = 256-fold. For exponential gradients,
this corresponds to an upper bound of about 5.5λ, which is
107 µm ≈ 22 cell diameters in the mouse NT (Fig. 1B, shaded
region). In practice, the usable range will even be shorter, if
technical noise occupies a few percent of the 8-bit channel. As
the same settings are used in all measurements, the decline of the
GBS-GFP and pSMAD gradient amplitudes over developmental
time [2] further restricts the detection range at later times such
that also the dorsal NKX6.1 boundary will lie outside the GBS-
GFP detection range. While 16-bit imaging would be possible,
at least the GBS-GFP reporter poses further limits. The GLI
binding site that drives GBS-GFP expression stems from the
FoxA2 enhancer [15]. FoxA2 is restricted to the ventral-most

part of the neural tube (FP and p3 domain) because it requires
very high SHH levels and depends on the activator form of GLI
proteins [16]. Other SHH-dependent genes are well known to be
expressed dorsally of the dorsal-most limit of the FoxA2 domain
(Fig. 1A). Accordingly, failure to express FoxA2 more dorsally
does not indicate absence of SHH, but too low SHH levels to
drive its expression. While FoxA2 expression is controlled by
further regulatory interactions that will not impact on GBS-
GFP, GBS-GFP is unlikely to report very low levels of SHH
signaling that may still be sufficient to drive SHH-sensitive
genes.

These difficulties in imaging morphogen gradients call for an
alternative way to estimate gradient precision from measured
data. We develop a theoretical framework and combine it with
a computational approach here. Based on the measured vari-
abilities in morphogen production, turnover and diffusion, we
infer the variability of morphogen gradients and thus their po-
sitional error as it results from molecular noise. The resulting
positional accuracy is consistent with the observed precision of
the readout boundaries in the mouse NT. The gradients are
thus, in principle, sufficiently precise to yield the observed pat-
terning precision. Furthermore, we show that the size of gene
expression domains is independent of the activity and variability
thereof when defined by the threshold-based readout of a single
morphogen gradient. This results in a very robust mechanism
to produce precise numbers of progenitor cells.

2 Results

2.1 Estimation of positional error from statistical
gradient properties

Close to the source, the measured gradients can be approximated
well by exponential functions [2], and the positional error of
the fitted exponentials is similar to that of the raw gradients
[17]. In the following, we show how the positional error can
be calculated from the summary statistics of the exponential
gradients rather than by evaluating the standard deviation of
individual gradients. This then allows to predict the positional
error of the gradients at a distance from the source based on
the observed variability closer to the source, assuming that the
exponential gradient shape is maintained. With this formalism
we can then infer the maximal gradient variability that would
be consistent with the observed readout precision in the mouse
NT.

The reported λ values for SHH in the mouse NT (Fig. 2A)
are consistent with a (truncated) normal distribution (Fig. 2B).
We therefore consider λ as a Gaussian random variable with
mean µλ and standard deviation σλ. While the mean value
remains roughly constant at about 20 µm over developmental
time (Fig. 2A), the deviation from the mean, as measured by
the coefficient of variation CVλ = σλ/µλ, has been reported to
drop as the NT grows (Fig. 2C). At a given point in time (i.e.,
at a given size of the NT), the available data (Fig. 2D) suggests
that the amplitude C0 is log-normally distributed (Fig. 2E).
While the mean amplitude µ0 increases over developmental time
(Fig. 2D), the deviation from the mean, as measured by the
coefficient of variation CV0 = σ0/µ0, reportedly drops as the
NT grows (Fig. 2F). The inferred statistical parameters are
summarized in Tab. 1. Similar data for the opposing BMP
gradient is not available, but once it so becomes, our formalism
is likely to apply analogously to BMP, as it also diffuses into
the NT.

Since morphogen concentrations are measurable only in arbi-
trary units (Fig. 2D) and since exponentials remain exponential
independent of the chosen absolute scale, we can normalize the
gradients by an arbitrary reference concentration without loss
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Table 1: Fitted statistical gradient parameters for the mouse neural tube.

Gene/signal Mean length µλ Coeff. of variation CVλ = σλ/µλ Coeff. of variation CV0 = σ0/µ0 Source

SHH 19.26 µm −
(

L

547.9 µm

)2

+
L

1341 µm
+ 0.410 − L

644.1 µm
+ 0.769 [6]

GBS-GFP 19.43 µm −
(

L

819.6 µm

)2

+
L

861.0 µm
+ 0.128

(
L

790.8 µm

)2

− L

3437 µm
+ 0.313 [2]

pSMAD 22.67 µm −
(

L

820.3 µm

)2

+
L

800.0 µm
+ 0.072

(
L

573.1 µm

)2

− L

722.2 µm
+ 0.401 [2]
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Figure 2: Statistical properties of the SHH gradient in the developing mouse neural tube. A,B λ is constant over
developmental time, consistent with a truncated normal distribution. C Binning the data into 40 µm bins reveals that the relative
variability in the data drops over time for SHH. D C0 increases as the neural tube expands. The solid line shows an exponential fit
exp[α+ L/β]. E Relative to the growing mean, the variability in the amplitude data is consistent with a log-normal distribution.
F Also the relative amplitude variability of SHH declines over time. Error bars in C,F are bootstrapped standard errors. G SHH
gradient length and amplitude are uncorrelated (Pearson correlation coefficient R ≈ 0). Data points reproduced from [6].

of generality. In the absence of precise knowledge about the
readout threshold Cθ, we choose the concentration scale such
that Cθ = 1 in the following, which simplifies the notation. Our
results retain their validity for general Cθ. Hence, we assume
that also the ratio C0/Cθ follows a log-normal distribution:

C0

Cθ
∼ Logn(µ̂0, σ̂

2
0) ⇔ ln

[
C0

Cθ

]
∼ N (µ̂0, σ̂

2
0).

Here, µ̂0 and σ̂0 are the mean and standard deviation of the
Gaussian random variable ln[C0/Cθ]. We can use the properties
of log-normal distributions [18] to express µ̂0 and σ̂0 in terms
of the mean µ0 and standard deviation σ0 of C0/Cθ:

µ̂0 = lnµ0 −
σ̂2

0

2
and σ̂2

0 = ln

[
1 +

σ2
0

µ2
0

]
(4)

where

µ0 = E
[
C0

Cθ

]
and σ2

0 = Var

[
C0

Cθ

]
.

To estimate how domain boundaries behave under variability
in the morphogen gradient, we seek to express the expected
boundary position µx = E [xθ] and its standard deviation
σx = SD [xθ] as functions of the four gradient parameters µλ, σλ,
µ0, σ0. The data for the SHH gradient in the mouse NT suggests
that the gradient’s decay length and amplitude are uncorrelated
(Pearson correlation coefficient R = −0.0061, Fig. 2G). This

allows us to exploit the multiplicative properties of two inde-
pendent random variables X and Y ,

E [XY ] = E [X]E [Y ] (5)

and

Var [XY ] = Var [X] Var [Y ] + Var [X]E [Y ]2 + Var [Y ]E [X]2 .
(6)

Putting Eqs. 2, 4 and 5 together, the mean boundary position
is given by

µx = µλµ̂0 = µλ ln

[
µ0√

1 + σ2
0/µ

2
0

]
. (7)

If there is no variability in C0/Cθ (i.e., σ0 = σ̂0 = 0), then Eq. 7
reduces to the deterministic case, Eq. 2.

The squared positional error follows from combining Eqs. 2,
4 and 6:

σ2
x = σ2

λσ̂
2
0 + σ2

λµ̂
2
0 + σ̂2

0µ
2
λ

=
(
µ2
λ + σ2

λ

)
ln

[
1 +

σ2
0

µ2
0

]
+

(
σλ ln

[
µ0√

1 + σ2
0/µ

2
0

])2

.
(8)

Notably, σ0 enters the position and positional error of a domain
boundary only through the coefficient of variation CV0 = σ0/µ0.
Eqs. 7 and 8 provide direct insight into how the statistical dis-
tributions of the gradient length and amplitude impact on the
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Figure 3: Effect of concentration gradient parameters
on domain boundary position and positional error.
Eqs. 7 (blue) and 8 (gray) are plotted. Each panel shows the
variation of one parameter, with the other three fixed at mea-
sured early SHH values in mouse: µλ = 19.26 µm, σλ = 9 µm,
µ0 = 15, σ0 = 9 (indicated by dashed lines).

Table 2: Summary of the effect of concentration gradient pa-
rameters on domain boundary position and positional error.

Parameter Effect on µx Effect on σx

µλ positive weak to positive
σλ none positive
µ0 positive negative or weakly positive
σ0 weak to negative weak to positive

location and variability of the readout position. The larger σ0,
the smaller µx, i.e., the further the domain boundary shifts up-
ward the concentration gradient, toward the morphogen source.
Variability in the decay length λ, on the other hand, leaves the
mean boundary position unaffected, as Eq. 7 is independent
of σλ. A larger mean gradient length or amplitude shifts the
boundary downhill, away from the source. The positional er-
ror, on the other hand, depends on both gradient parameters
and their scatter in a complicated nonlinear fashion that can
even be non-monotonic. Tab. 2 and Fig. 3 summarize these
relationships.

We can further substitute Eq. 7 into Eq. 8 to obtain the
positional error as an explicit function of the boundary position:

σ2
x = µ2

λ

(
1 + CV2

λ

)
ln
[
1 + CV2

0

]
+ CV2

λµ
2
x. (9)

Eq. 9 is by construction identical to the direct way of computing
the positional error via Eq. 3 [17] from infinitely many gradients.

It is worth noting that the positional error as a function of
its readout position µx, as given by Eq. 9, is independent of the
mean gradient amplitude µ0. Precise knowledge of the change of
µ0 over time (or as a function of L) is therefore not required to
predict the positional accuracy in a noisy morphogen gradient.
All that is needed is the variation of the amplitude relative to
its mean, CV0. This has several beneficial consequences. A
practical one is that no absolute measurement of the gradient
amplitude is needed from experiments—relative values are suf-
ficient to quantify positional accuracy. Another convenience

is that the exact functional relationship used to fit or model
the change of µ0 over time or length, be it exponential as in
Fig. 2D, linear as in [6], or any other form, has no effect on the
positional accuracy, as long as CV0 is given. Third, the fact that
the absolute scale of the gradient amplitude is irrelevant implies
that positional accuracy is unaffected by temporal changes in
morphogen abundance, as long as CV0 remains sufficiently low.

2.2 Precision of gradient readout boundaries in
the NT

With Eq. 9, the precision of a domain boundary is fully de-
termined by its relative location in the patterning domain,
ξ = µx/L, the domain length L, the mean decay length µλ,
and the coefficients of variation of the gradient length and am-
plitude, CVλ and CV0. As estimates for the latter three are
known from measurements (Fig. 2, Tab. 1), we can predict the
boundary precision in the growing NT at any point in devel-
opment, anywhere in the patterning domain. For the reported
gradient variabilities, the positional error in the center of the NT
becomes as high as 15 cell diameters over time (Fig. 4A,B). The
reported precision of the PAX3 and NKX6.1 domain boundaries
(1–3 cell diameters) is more likely to be correct than that of the
gradients as the steep boundaries and the concomitant change
in the fluorescent signal are much easier to detect. We used
Eq. 9 and numerical optimization to determine the variability
at which the positional accuracy of the SSH and BMP gradients
together, or one of them alone, would be consistent with the
reported positional accuracy of the NKX6.1 and PAX3 domain
boundaries. Assuming that the boundary position is always
defined by the more precise gradient, we can reproduce the
boundary precision with CVλ = 0.08± 0.04, CV0 = 0.23± 0.33
for SHH and CVλ = 0.06±0.04, CV0 = 0.26±0.16, 95% C.I. for
BMP (Fig. 4C,E). Remarkably, fitting the reported boundary
precision to the SHH gradient alone yields similar CV values,
CVλ = 0.05 ± 0.03, CV0 = 0.30 ± 0.20, 95% C.I. (Fig. 4D,E),
challenging the previously proposed idea that opposing gradients
serve to increase positional accuracy [2].

The inferred CV values for the gradients lie near the lowest
measured SHH gradient variability (Fig. 2C,F). Visual inspection
shows that the reported variability corresponds to gradient
profiles with some very short and some very long gradients that
are difficult to reconcile with a successful patterning process
(Fig. 4F). The variability inferred by us, while still resulting
in highly variable gradients, does not result in such outliers
(Fig. 4G). This raises the question whether the reported outliers
reflect biological variation or technical problems in reliably
measuring the morphogen gradients. Or differently put, how
accurate are the reported gradient variabilities?

2.3 Technical limitations in measuring morphogen
gradient variability

According to the reported gradient properties (Tab. 1), the SHH
gradient is only about half as precise as the GBS-GFP gradient
(Fig. 5A), even though GBS-GFP is a direct SHH reporter [15].
We emphasize that this difference is observed already at the
earliest developmental timepoint, long before adaptation results
in the down-regulation of the SHH-dependent response [9]. Ac-
cordingly, this points to a higher technical variation for the SHH
antibody staining than for the GBS-GFP reporter. The anti-
body staining for SHH in the NT patterning domain is very weak
compared to that in the notochord, and gradient measurements
are therefore challenging. Detection problems can be expected
also with the GBS-GFP reporter as the FoxA2 enhancer, that
it is based on, responds only to the highest SHH concentra-
tions [16]. In support of technical limitations in determining
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Figure 4: Gradient and readout imprecision in the developing neural tube. A,B With the reported gradient variability,
the positional error of the opposing SHH and BMP gradients are in the order of several cell diameters. Eq. 9 is plotted using
reported GBS-GFP and pSMAD (A) and SHH (B) parameters from Tab. 1. C,D Inferred positional error along the DV axis
and over developmental time if the reported boundary precision in the dorsal NKX6.1 (blue) and ventral PAX3 (black) domain
boundaries is matched, either by using always the more accurate of the SHH and BMP gradients (C), or if the SHH gradient
alone determines the boundary positions (D). The dotted line in C divides the NT into two parts in which either SHH or BMP
provide higher accuracy. Contour lines in A–D trace specified cell diameter values. E Reported (symbols) and predicted boundary
precision if the domain boundaries are either set by SHH and BMP (solid lines, C) or by SHH alone (dashed lines, D). Domain
boundary locations and errors in C–E are reproduced from [2]. Error bars were calculated as detailed in Methods. F,G The
exponential SHH gradients with {λi, C0,i} as reported in [2] are widely scattered in early NT development. The SHH gradients
that match the measured positional error of the readouts (C,E) are still variable, but do not contain outliers. Shaded areas show
standard deviations σC . All error bars are standard errors.

gradient variability, the coefficients of variation are strongly
negatively correlated with the intensity of the signal for SHH
and GBS-GFP (Fig. 5B,C), even though the gradient amplitude
increases for SHH and decreases for GBS-GFP and pSMAD over
developmental time due to adaptation [9, 19] (Fig. 5D), while
the coefficients of variation show the opposite trend (Fig. 5E,F).
This suggests that technical limitations at low concentrations
artificially increase the reported variability, precluding an accu-
rate measurement of the true gradient variability. We therefore
turned to simulations to infer the expected variability based on
the reported variability of morphogen production, degradation
and transport rates.

2.4 Gradient variability as a result of molecular
noise

In a cellular tissue, the morphogen production, degradation, and
transport rates vary from cell to cell. This variability ultimately
generates the variability in the steady state morphogen gradient
profiles. We can estimate this variability by simulating a simple
reaction-diffusion model on a continuous 1D domain where
these parameter values differ randomly from segment to segment
(Fig. 6A). To describe the steady-state morphogen profiles, we
solve the steady-state reaction-diffusion equation

pH(−x)− dC(x) = −D∂2C

∂x2
(x), x ∈ [−LS, L]

on a one-dimensional domain that was split into two subdomains,
a morphogen source (−LS ≤ x ≤ 0) and a patterning region
(0 ≤ x ≤ L). The Heaviside step function H ensures that
morphogen is produced at rate p only in the source, whereas it
degrades at a linear rate d everywhere. Morphogen transport is
driven by Fickian diffusion with diffusivity D. With zero-flux

boundary conditions

∂C

∂x
(−LS) = 0 =

∂C

∂x
(L),

the deterministic solution is given by a concentration profile
that follows hyperbolic cosines:

C(x) =
p

d

(
H(−x)

(
1− cosh

[x
λ

])
+

sinh [LS/λ]

sinh [(LS + L)/λ]
cosh

[
L− x
λ

])
.

The decay length λ =
√
D/d depends on the morphogen diffu-

sivity D and the turnover rate d. The cosh is nearly exponential
in the patterning domain except for a small deviation in the far
end x ≈ L due to the zero-flux boundary. In the infinite size
limit L→∞, a pure exponential emerges for x ≥ 0:

C(x) = C0 exp
[
−x
λ

]
with C0 =

p

2d

(
1− exp

[
−2LS

λ

])
.

In our simulations, we divided both subdomains into cells of
length 4.9 µm, the average cell diameter in the mouse NT [6]
(Fig. 6A), and assigned each cell its own value of the three
kinetic parameters k = p, d,D, drawn independently from log-
normal distributions with prescribed means µk and coefficients
of variation CVk (Fig. 6B). Repeating the simulations many
times for various CVk values yielded independent noisy gradients
spanning many orders of magnitude (Fig. 6C), from which we
extracted λ and C0 by log-fitting hyperbolic cosines (Fig. 6D).
We set µp = µd = µD/µ

2
λ such that the deterministic decay

length is the reported one of SHH, µλ = 19.26 µm [6]. The exact
values of the parameters do not affect the steady state result
as long as the relationship is maintained; we chose as mean
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Figure 5: Technical limitations in measuring mor-
phogen gradients. A With the reported variability, the SHH
gradients would be about twice as imprecise as its readout
GBS-GFP. The first developmental timepoint (0–10 h) of the
GBS-GFP data (symbols) was reproduced from [2]; solid lines
represent Eq. 9 with GBS-GFP and SHH parameters inferred
from [2, 6] (Tab. 1). B,C Gradient variability is anti-correlated
with the amplitude (Pearson correlation coefficient R � 0),
hinting at a potential technical limitation in the fluorescence
intensity measurements. D The reported amplitudes of the
SHH gradient increases, while the amplitudes of the GBS-GFP
and pSMAD gradients decrease as the NT expands. E,F The
reported gradient variabilities show the opposite trend. Solid
lines are polynomial least-squares fits as listed in Tab. 1. Data in
panels B–F was reproduced from [2, 6]; error bars are standard
errors.

parameter µD = 0.033 µm2/s as measured for Hedgehog (Hh)
in the Drosophila wing disc [20] and fixed µp, µd accordingly.
The default setup consisted of 5 cells in the source, and 50 cells
in the patterning domain.

This procedure yields the two gradient parameters and their
variability as they result from molecular noise and NT expansion.
We observe a linear increase of CVλ as the cell variabilities
CVd,D are increased individually (keeping all others at zero), or
all of them together, up to CVd,D ≈ 1 (Fig. 6E). The production
rate p affects only C0, not λ. This relationship can be understood
theoretically. Since any product of powers of log-normal random
variables is itself log-normal, so is λ =

√
D/d:

d ∼ Logn(µ̂d, σ̂
2
d), D ∼ Logn(µ̂D, σ̂

2
D) ⇒ λ ∼ Logn(µ̂λ, σ̂

2
λ)

with

µ̂λ =
µ̂D − µ̂d

2
, σ̂2

λ =
σ̂2
D + σ̂2

d

4
and

µ̂k = ln

[
µk√

1 + CV2
k

]
, σ̂2

k = ln
[
1 + CV2

k

]
, k = d,D.

Using the expectation value and variance of log-normal distri-
butions [18],

µλ = exp

[
µ̂λ +

σ̂2
λ

2

]
, σ2

λ = µ2
λ

(
exp

[
σ̂2
λ

]
− 1
)
,

we find, for single cells,

CV2
λ = (1 + CV2

d)
1/4(1 + CV2

D)1/4 − 1 (10)

In patterning domains with many cells, CVλ is lower due to
cell averaging. The data from our simulations with L = 50 cell
diameters precisely follows Eq. 10 up to CVd,D ≈ 1, and in the
case of d also beyond (Fig. 6E, lines), with a small proportionality
constant shared by all curves. When all parameters are varied,
though, CVλ saturates at about 0.24. Larger values, such as the
published CVλ ≈ 0.4 for SHH (Fig. 2C), are unattainable even
with extreme molecular variability, suggesting that the reported
gradient variability [2, 6] is more technical than biological.

To examine the effect of the domain length L, we also var-
ied the number of cells in the patterning domain from 20 to
200. As expected from the law of large numbers, log-fitting a
variable exponential gradient over a longer domain leads to a
more robustly fitted slope, such that CVλ ∼ 1/

√
L (Fig. 6F).

This allows us to determine the size-dependent proportionality
prefactor, resulting in

CV2
λ =

L0

L

(
(1 + CV2

d)
1/4(1 + CV2

D)1/4 − 1
)

for CVD . 1, with fit parameter L0 = 6.13± 0.03 µm (mean ±
SEM). Note that a declining CVλ with increasing L is observed
for the measured SHH gradient, but not for the GBS-GFP and
pSMAD gradients (Fig. 5E), suggesting that amplitude effects
perturbed the latter.

We further find that the fitted decay length starts to drift at
moderate CVd,D (Fig. 6G). If the morphogen diffusivity D or all
parameters are noisy, λ is underestimated, whereas variability
in the degradation rate d alone leads to overestimation of λ.
This further attests to the difficulty in determining morphogen
gradient parameters reliably from fitting noisy concentration
profiles.

Unlike the decay length variability CVλ, the amplitude vari-
ability CV0 does not saturate as all cell variabilities are increased,
but continues to grow linearly (Fig. 6H). We find CV0 to also
grow mildly as the patterning domain lengthens (Fig. 6I). Fi-
nally, also the fitted amplitude is found to drift as molecular
noise increases, proportionally to CV2

p,d,D (Fig. 6J).
With these results, we can infer the physiological range of mor-

phogen gradient variability by plugging in measured CV values.
Quantitative data for the two morphogens are only available
from measurements in the Drosophila wing disc. For Decapen-
taplegic (Dpp), the ortholog of mouse BMP4, CVd = 0.5 has
been reported for the degradation rate, CVp = 0.59 for the
production rate, and CVD = 0.5 for the diffusion coefficient [21].
For Hh, quantitative data is available only for the diffusion co-
efficient, CVD = 0.18 [20]. Measurements of other morphogens
and in other species yield similar CV values [22, 23]. Single cell
data is available only from cell cultures. The single-cell turnover
rate variability of various proteins and transcription factors in
mouse embryonic stem cells has been reported to be in the range
CVd = 0.16–0.45 [24]. For neural stem cell cultures only bulk
measurements are available. Proteome half-life measurements
yielded CVd = 0.21 in mouse and 0.13–0.27 in human [25]. From
protein half-life measurements in mouse neurons [26], one can
infer a similar degradation rate variability of CVd = 0.35–0.5.

Overall, the physiological range of inter-cell CV values appears
to be 0.1–1, but most studies report CV < 0.6, and all these
values likely include some technical noise. At an intermediate
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Figure 6: Numerical model predicts gradient variability from molecular noise. A Schematic of the simulated 1D
domain. B Kinetic parameters k = p, d,D were drawn randomly and independently for each cell from log-normal distributions
with specified mean µk and coefficient of variation CVk. C Solving the reaction-diffusion equation repeatedly yields noisy
morphogen gradients, from which the decay length λ and amplitude C0 can be extracted by fitting hyperbolic cosines in the
patterning domain (0 ≤ x ≤ L, D). E The resulting variability in λ grows linearly with the variability in the kinetic parameters
as long as CVk . 1, and saturates as CVk increases further. F The size of the domain length over which noisy gradients are
fitted affects the variability of λ according to the law of large numbers, CVλ ∼ 1/

√
L. G Increasing molecular noise leads to a

bias in the resulting fitted λ. H The amplitude variability also increases linearly with CVk, but does not saturate if all three
parameters have a variability exceeding one. I The variability of the fitted amplitude moderately grows with increasing patterning
domain length. G Noisy parameters also induce an overestimation of the amplitude deduced from fitting, proportional to CV2

k.
K Gaussian white noise ∼ N (0, η2) added to the solution in all cells limits the range over which a line can be fitted to lnC. L
Lin-fitting always (also at η = 0) leads to increased decay length variability, in particular with white noise stronger than one
percent of the amplitude. Log-fitting is insusceptible to white noise as long as η . 10−5µ0, and increases variability according to
a power law with stronger white noise. If η exceeds a few percent of the amplitude, both fitting methods yield increased gradient
length variability. M Amplitude variability is constant with lin-fitting for η . 0.1µ0, whereas log-fitting yields larger CV0 values.
L = 50 cells in all panels except F,I. All error bars are standard errors from 103 independent simulations for each data point.
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value of CVp,d,D = 0.3, the biological gradient variability is
CVλ = 0.053, CV0 = 0.19 at L = 100 µm (CVλ = 0.027,
CV0 = 0.20 at L = 400 µm), which is precise enough to explain
the NKX6.1 and PAX3 domain boundary errors by opposing
SHH and BMP gradients, or even by SHH alone (cf. Fig. 4C–E).
Even when we use a conservative CV value of 0.6 for all three
kinetic parameters, the precision of a single morphogen gradient
(CVλ = 0.062, CV0 = 0.39) is consistent with the NKX6.1 and
PAX3 domain boundary errors (1–3 cells).

We can further use the simulations to estimate the impact of
technical limitations on the measured gradient variability. The
measured gradients become noisy at about 5% of the maximal
value [17]. We can represent this limitation by adding Gaussian
white noise ∼ N (0, η2) with uniform strength η to our simulated
gradients in all cells, prior to fitting (Fig. 6K). The observed
gradient variability strongly depends on the fitting method
(Fig. 6L,M). Fitting the gradients in linear space (lin-fitting)
always leads to elevated decay length variability, in particular
for white noise exceeding 1%, but even at η = 0. Fitting the
logarithmized gradients (log-fitting) yields significantly lower
CVλ, but is insusceptible to white noise only as long as η .
10−5µ0. At stronger white noise levels, we observe a power-law
increase CVλ ∼ ηγ with exponent γ = 0.188± 0.002 (SEM) and
a cross-over with lin-fitting (Fig. 6L). If η exceeds a few percent
of the amplitude, both methods yield significantly increased
CVλ. Amplitude variability remains stable with lin-fitting for
less than 10% white noise, whereas log-fitting yields mostly
larger CV0 values (Fig. 6M).

In summary, our analysis suggests that natural noise in expo-
nential morphogen gradients in the developing NT is sufficiently
low to explain the previously reported progenitor domain bound-
ary precision. Thus, both SHH and BMP gradients together—
but even a single one of them alone—provide the spatial precision
required to define the boundaries lying in the center of the NT
with an error of only 1–3 cells. But can morphogen gradients
provide even higher patterning accuracy for robust development?

2.5 Precision of progenitor domain size and
progenitor number

In the vertebrate NT, the domain boundaries define the size of
the different progenitor domains, which are formed as a result
of different readout thresholds, as stipulated by the French
flag model [11] (Fig. 7). Two domain boundaries located at
x1 and x2 are the result of a morphogen readout at thresholds
C1 = C(x1) and C2 = C(x2). As noted in [27], the length of a
domain is given by

∆x = x2 − x1 = λ ln

[
C0

C2

]
− λ ln

[
C0

C1

]
= λ ln

[
C1

C2

]
.

Notably, it is independent of the location in the entire pattern-
ing domain, and also independent of the gradient amplitude
C0. Assuming that the domain width perpendicular to the x
axis remains roughly constant along x, this paradigm provides
a very robust mechanism to preserve the gene expression do-
main volume (and thus, the number of progenitor cells) during
development. A change in the gradient amplitude C0 shifts
both domain boundaries by the same distance, such that its size
remains unchanged. The domain length is determined only by
λ, which is stable over developmental time (Fig. 2A), and by
the readout threshold ratio C1/C2. Only the very first and last
progenitor domains in the pattern are affected by a transient
amplitude C0, as one of their boundaries is given by the end
points of the entire patterning domain, x = 0 and x = L.

Even in a probabilistic setting with variable gradients, the
expected domain length µ∆x is unaffected by a change in ampli-
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Figure 7: Robustness of patterning domain sizes to am-
plitude changes in the French flag model. The domain
length ∆x = x2 − x1 is independent of the amplitude C0 of an
exponential gradient. Amplitude changes therefore shift interior
domain boundaries equally.

tude, if C1, C2 and CV0 are constants:

µ∆x = E[∆x] = µλ ln

[
C1

C2

]
. (11)

To quantify the variability of ∆x in a noisy gradient, we can
calculate the variance

σ2
∆x = Var[∆x] = Var[x1] + Var[x2]− 2 Cov[x1, x2]

= σ2
x1 + σ2

x2 + 2µx1µx2 − 2E
[
x1(x1 + ∆x)

]
.

After some elementary algebra, assuming again independence
of λ and C0 and using Eqs. 7, 8 and 11, all terms involving the
amplitude cancel out, and we find the remarkably simple form

σ∆x = CVλµ∆x = σλ ln

[
C1

C2

]
.

The inaccuracy of the size of a progenitor domain therefore scales
with its size itself, with CV∆x = CVλ as the proportionality
constant. For an exemplary domain size of µ∆x = 50 µm and a
coefficient of variation CVλ ≈ 0.05, this results in a domain size
error σ∆x as low as half a cell diameter, regardless of how far
away from the source the domain lies. Strikingly, unlike their
spatial boundary positions, the length of the gene expression
domains is completely independent of variability in the gradient
amplitude. The patterning mechanism thus appears optimized
to generate precise progenitor cell numbers, rather than precise
boundary locations. We emphasize that only a single morphogen
gradient is required to achieve this high patterning precision.

3 Discussion

High patterning precision is pivotal for robust development.
Given present technical limitations, the gradients can be reliably
measured only within few λ from the source. We have now
developed a formalism (Eq. 9) to estimate the positional error
along the entire patterning axis from the gradient variability
close to the source. We confirm previous reports that the
experimentally determined gradient variability is too large to
explain the high precision of the central domain boundaries in the
mouse NT. Using computer simulations based on the reported
variability in morphogen production, degradation, and diffusion,
we find that the reported high variability of the gradient length
λ cannot arise from natural noise in these parameters alone,
as it saturates at lower values than previously measured for
SHH, GBS-GFP and pSMAD, at high noise levels. With the
gradient variability we inferred, the observed precision of the
central progenitor boundaries is achieved even with a single
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gradient for the entire duration of the developmental process.
Considering that the reported molecular noise levels are likely
also elevated by technical errors, an even higher precision of the
domain boundaries is still plausible. Finally, we show that the
size of the morphogen-dependent tissue subdomains, that are not
bordering the patterning domain edges, is even more precise than
the individual boundary positions, because inaccuracies from
amplitude variability cancel out. As a result, progenitors are
produced in more accurate numbers than previously anticipated.

These insights provide novel perspectives on gradient-based
patterning and on neural tube development in particular. Oppos-
ing morphogen gradients have been conjectured to be responsible
for high patterning precision in a number of developing systems
[2, 28, 29]. We now find that patterning in the NT can be
controlled by a single gradient over the entire patterning period.
Our simulations imply that the morphogen gradients remain
exponential over a wide patterning distance. This will be the
case if the same reactions and transport processes apply along
the entire patterning axis. Measurements to confirm this are
currently not available, and will require the development of more
sensitive measurement technology. An important question is
how cells can reliably detect very low morphogen concentrations,
and what role adaptation plays in this [6, 8, 9].

Gradient variabilities have been reported also for other pat-
terning systems, including Dpp and Wg in the Drosophila imag-
inal discs [5], and our formalism (Eq. 9) could thus be applied
also in other developmental systems. We emphasize, however,
that the accuracy of our formalism hinges on the accuracy of
the measured gradient variabilities. Given how challenging it
is to visualize morphogen gradients, technical errors are to be
expected from such measurements. Based on the molecular
noise simulations, we expect higher gradient precision also in
other developmental systems.

Measuring the morphogen production, decay and transport
rates is challenging, but is still easier than the detection of low
morphogen concentrations, and thus offers a complementary
approach to estimating gradient variability (Fig. 6). Current
measurements of the morphogen production, decay and trans-
port rates represent bulk measurements at the tissue level. Going
forward, it will be valuable to obtain data on the single-cell
variability of morphogen production and degradation rates. Cur-
rently, such data is available only from cell culture systems, but
yields similar variabilities as bulk data. The reported CV values
are in the range 0.1–1 across all species analyzed, including
mice, flies, zebrafish, and humans. As this variability includes
technical errors, these values present upper bounds. Even for a
relatively pessimistic value of 0.6 for production, degradation
and diffusion, we find that the gradient imprecision is 1–3 cells
over several hundreds of micrometers, providing sufficiently ac-
curate positional information to pattern a large domain. Local
fluctuations can be reduced further through spatial and tem-
poral averaging [30–32]. Moreover, in zebrafish, NT progenitor
boundaries are sharpened by cell sorting [33, 34].

More than 50 years since the publication of the French flag
model [11], it remains a matter of debate how morphogen gradi-
ents are read out [35]. Recent experiments support a threshold-
based readout of the BMP gradient along the zebrafish dorsal-
ventral axis [36]. Our finding that single noisy gradients provide
a much more robust positional patterning mechanism than previ-
ously appreciated resolves the long-standing conundrum of how
the observed patterning precision can be achieved with a simple
threshold-based readout of a single gradient. This opens new
avenues for tissue engineering, which simplifies substantially if
single gradients suffice to do the job. The presented formalism
is not limited to vertebrates or flies, but applies directly also
to all other morphogen-dependent patterning systems in which
morphogen transport is essentially diffusive.

Methods

Gradient data

The individual λi and C0,i for SHH, as well as the sample
means and standard deviations µλ, σλ, µ0, σ0 for GBS-GFP
and pSMAD were extracted from the respective publications
[2, 6].

Numerical optimization of gradient variability

We determined the gradient parameter variabilities CVλ and
CV0 in Fig. 4 by fitting Eq. 9 to the progenitor domain boundary
errors with MATLAB’s nonlinear least-squares curve fitting
routine lsqcurvefit.

Inference of error bars for the positional
boundary error

In Fig. 4E, we inferred the uncertainties (error bars) associated
with the positional error of the domain boundaries assuming
that the boundary positions are normally distributed. In this
case, the standard error of the standard deviation σx is given
by SE[σx] ≈ σx/

√
2(n− 1) where n is the sample number [37].

Simulation of gradient variability from molecular
noise

The reaction-diffusion equation was solved with MATLAB’s
boundary value problem solver bvp4c with absolute and relative
error tolerances of 10−10. At each interface between two adjacent
cells, continuity of the morphogen concentration C and its flux
−D∂C/∂x was imposed.

Code Availability

The complete source code for Fig. 6 is publicly re-
leased under the 3-clause BSD license. It is available
as a git repository at https://git.bsse.ethz.ch/iber/

Publications/2021_vetter_gradient_variability.
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