# Modelling effects of water regulation on the population viability of threatened amphibians 

Rupert Mathwin ${ }^{1}$, Skye Wassens ${ }^{2}$, Matthew S. Gibbs ${ }^{3,4}$, Jeanne Young ${ }^{5}$, Qifeng Ye ${ }^{5,6}$, Frédérik Saltré ${ }^{1,7}$, Corey J.A. Bradshaw ${ }^{1,7}$<br>1 Global Ecology Partuyarta Ngadluku Wardli Kuu, College of Science and Engineering, Flinders University, PO Box 2100, Tarndanya (Adelaide), South Australia 5001 2 School of Environmental Sciences, Charles Sturt University, PO Box 789, Albury, New South Wales 2640 3 School of Civil, Environmental and Mining Engineering, The University of Adelaide, Adelaide, South Australia 5005<br>4 Department for Environment and Water, GPO Box 2384, Adelaide, 5001 South Australia 5000 5 College of Science and Engineering, Flinders University, PO Box 2100, Adelaide, South Australia 5001, Australia<br>6 South Australian Research and Development Institute, 2 Hamra Ave, West Beach, South Australia 5024

7 ARC Centre of Excellence for Australian Biodiversity and Heritage, EpicAustralia.org.au

Corresponding Author: Rupert Mathwin
rupert.mathwin.ecology@ gmail.com
Global Ecology, College of Science and Engineering, Flinders University, PO Box 2100, Adelaide, South Australia 5001

## Abstract

1. The regulation of river systems alters hydrodynamics and often reduces lateral connectivity between river channels and floodplains. For taxa such as frogs that rely on floodplain wetlands to complete their lifecycle, decreasing inundation frequency can reduce recruitment and increase the probability of local extinction.
2. We virtually reconstructed the inundation patterns of wetlands under natural and regulated flow conditions and built stochastic population models to quantify the probability of local extinction under different inundation scenarios. Specifically, we explored the interplay of inundation frequency, habitat size, and successive dry years on the local extinction probability of the threatened southern bell frog Litoria raniformis in the Murray River floodplains of South Australia. We hypothesised that the changes in wetland inundation resulting from river regulation are driving the decline of $L$. raniformis in this system.
3. Since river regulation began in the 1920s, the inundation frequency of many reliable breeding habitats has decreased to a point where they no longer support local populations. Increasing successive dry years drives the probability of local extinction, particularly in smaller wetlands. Larger wetlands and those with more frequent average inundation are less susceptible to these effects.
4. Synthesis and Applications. Although the availability of suitable habitats has reduced, environmental water provision is a promising tool to mitigate the negative impacts of river regulation on amphibian populations. Our modelling approach can be used to prioritise the delivery of environmental water (through pumping or the operation of flowregulating structures) to minimise the probability of local extinction in L. raniformis and potentially many other frog species. By quantifying the extinction risk of amphibian populations, we can strategically manage environmental water to reduce successive catastrophic breeding failures and increase the probability of persistence.

## Keywords

amphibian, environmental water provision, frog, hydroperiod, Leslie matrix, Litoria raniformis, river regulation, stochastic population model

## Introduction

The global decline of amphibians (Blaustein \& Wake 1990; Stuart et al. 2004) is stark, with the most recent figures showing $41 \%$ of assessed species are threatened with extinction (IUCN 2020). Furthermore, extinctions and declines are projected to increase through the $21^{\text {st }}$ Century as the interactive drivers of extinction increase in intensity (Hof et al. 2011). Human modifications of wetland networks via river regulation can reduce lateral connectivity and the ecological function of wetland habitats (Castello \& Macedo 2016) that are essential breeding and nursery areas for many amphibian species. This can change amphibian community structure and cause local extinctions (Wassens \& Maher 2011).

The negative consequences of river regulation on amphibians are predicted to increase as climate change progressively overtakes land use (Narins \& Meenderink 2014) as the main driver of amphibian richness patterns and species loss (Newbold 2018). Aridification due to climate change can reduce the availability of breeding habitats resulting in reduced species richness (McMenamin, Hadly \& Wright 2008), and the combination of aridification and increasing water consumption are likely to reduce the availability of freshwater habitats further in some regions (Miller et al. 2018).

Manipulating water resources can help alleviate the effects of declining water availability and support amphibian recruitment (Shoo et al. 2011; Smith, Meredith \& Sutherland 2019; Mathwin et al. 2020). Techniques for manipulating water to benefit amphibians vary in their approach and success (Mathwin et al. 2020), but the best-supported approach is the provision of water to breeding habitats to match the larval requirements of the target species ('environmental water provision'). This is because enhancing survival through breeding and early life stages can stabilise populations (Griffiths \& Pavajeau 2008). The targeted delivery of environmental water is a common practice today (Kennen, Stein \& Webb 2018) and could become necessary to conserve some species (Greenwood et al. 2016),
especially those with limited phenotypic plasticity or those near the edge of their ecological niche (Grant, Miller \& Muths 2020).

Australia's Murray-Darling Basin provides a model system to examine this process. The catchment is heavily regulated and up to $61 \%$ of total flow is extracted for consumptive use (CSIRO 2008). This has reduced the number and function of wetlands (Gell \& Reid 2014), resulting in the decline of water-dependent taxa (including the southern bell frog, Litoria raniformis) (Clemann \& Gillespie 2012). In response to systemic environmental degradation, federal legislation mandates interventions aimed at restoring ecological function (Docker \& Robinson 2014), including environmental water provision for species recovery.

In this paper, we explore hydro-ecological thresholds and generate guidelines for environmental water provision to benefit amphibians by constructing stochastic, hydroecological population models. We hypothesise that the reduced frequency of wetland inundation resulting from river regulation is driving local extinction events of $L$. raniformis in the Murray River of South Australia. We hypothesise that larger wetlands and wetlands with higher average inundation are less susceptible to local extinction during successive dry years. We posit that the probability of local extinction can be reduced by environmental water provisions that decrease the number of successive years without recruitment. Based on these results, we argue that stochastic population models provide a sound approach for quantifying local extinction risk and hence, triaging environmental water provision to at-risk populations.

## Materials and Methods

## Study area

The Murray-Darling Basin contains Australia's longest river system and is heavily regulated to provide water for domestic and agricultural use. Regulating structures include a series of 14 main-channel weirs ('locks') that dissect the river. Our focus is 70 km of the Murray River
channel between Lock $3\left(34^{\circ} 11^{\prime} 16.95^{\prime \prime}\right.$ S, $140^{\circ} 21^{\prime} 29.65^{\prime \prime} \mathrm{E}$ ) and Lock $2\left(34^{\circ} 4^{\prime} 39.31^{\prime \prime}\right.$ S, $139^{\circ} 55^{\prime} 52.81^{\prime \prime} \mathrm{E}$ ) and the associated wetlands and floodplains along this reach (Figure 1). This region receives an annual rainfall between 160 and 240 mm (semi-arid/arid), which is insufficient to fill off-channel wetlands most years. As such, all naturally occurring wetland inundation results from elevated river level.


Figure 1 The reach between Locks 3 and 2 is at the downstream end of the Murray-Darling catchment (shaded grey). Flow is strongly influenced by regulation and extraction throughout
the upstream reaches. Australian states are: $\mathrm{SA}=$ South Australia, $\mathrm{Qld}=$ Queensland, NSW $=$ New South Wales, Vic $=$ Victoria and Tas $=$ Tasmania.

## Life history of southern bell frogs

There are many experimentally derived data describing the life history of $L$. raniformis, with relationships established for most vital rates (survival, growth, reproduction, and recruitment). Eggs hatch two to four days after laying (Anstis 2002). The likelihood of hatch (as a proxy for egg survival rate) is between 0.933 and 1.000. This species ranges from north of latitude $35^{\circ} \mathrm{S}$ to south of $45^{\circ} \mathrm{S}$, which spans a range of thermal conditions (from $32.9^{\circ} \mathrm{C}$ maximum daily summer temperatures in the north of their range to $20.5^{\circ} \mathrm{C}$ in the south). Being ectotherms, larval duration is strongly driven by temperature and as such, larval duration varies from 10-12 weeks in the north of their range to $12-15$ months in the south (Anstis 2002). We used the larval duration of 70-80 days calculated at a constant water temperature of $23^{\circ} \mathrm{C}$ (Cree 1984), approximately the average daily summer temperatures experienced in the study reach (which averages diurnal highs and nocturnal lows). We used the estimates of survival to metamorphosis generated for Crinia signifera ( $15-26 \%$ and $7-$ 56\%) (Williamson \& Bull 1999), in the absence of species-specific estimates, these are the most-relevant estimates available.

Both sexes reach maturity in their first year (Heard, Scroggie \& Malone 2012) and females breed annually (Anstis 2017) laying between 1885 and 3893 eggs each season (Humphries 1979). We used annual adult survival probability from the closely related Litoria aurea $($ mean $=0.2172$, standard deviation $=0.087)($ Pickett et al. 2016). These species are similar in size, appearance, and behaviour, although L. aurea occurs along a more northerly latitude than L. raniformis. Using lines of arrested growth in the shaft of the medial phalanx to determine age (skeletochronology), L. raniformis can survive into their fifth year (Mann et al. 2010) (G. Heard and A. Turner, Charles Sturt University, pers comm.).

## Demographic model



Figure 2 Litoria raniformis can live into the fifth year. Compensatory density-feedback reduction $(R)$ in annual survival probability $(S)$ and fertility $(f)$ are calculated from both population and wetland size.

We constructed the model based on a lifecycle graph (Figure 2) and an age-classified (Leslie) population model (Leslie 1945) that considers only females (Figure S1), where $f$ represents fertility and $S$ represents annual survival. Year 0 individuals do not breed and are not assigned a fertility. We randomly resampled fertilities $(f)$ for age classes one to five years from a normal distribution between 1885 and 3893 eggs (Humphries 1979), which we halved to reflect the $50: 50$ sex ratio in this species.

We calculated survival $S$ to the end of the first year as:

$$
\begin{equation*}
S_{0}=S_{e} * S_{t} *\left(\left(365-\left(D_{e}+D_{t}\right)\right) * S_{a d}\right) \tag{equation2}
\end{equation*}
$$

where $S_{0}$ is the probability of survival from 0 to 1 year old. $S_{e}$ is the probability of hatch (randomly resampled from a uniform distribution from $0.933-1.000$ ). $S_{t}$ is the probability of
survival to metamorphosis, which we randomly resampled from a $\beta$ distribution with a mean $=0.26$ and a standard deviation $=0.12$ (Williamson and Bull 1999). We calculated the shape parameters $\alpha$ and $\beta$ of this distribution using:

$$
\begin{gather*}
\alpha=m \frac{\mu(1-\mu)}{\sigma^{2}}  \tag{equation3}\\
\beta=(1-\mu)\left(\frac{m \mu(1-m \mu)}{\sigma^{2}}-1\right) \tag{equation4}
\end{gather*}
$$

where $\mu$ is the mean and $\sigma$ is the standard deviation of the $\beta$ distribution. $D_{e}$ is the duration of the egg stage (in days) resampled randomly from a uniform distribution between 2 and 4 , and $D_{t}$ is the duration of the tadpole stage (in days) resampled randomly from a Normal distribution between 70 and 80 days. $S_{\text {ad }}$ is the daily adult survival probability calculated as:

$$
\begin{equation*}
S_{a d}=\sqrt[365]{S_{a}} \tag{equation5}
\end{equation*}
$$

where $S_{\mathrm{a}}$ is the annual probability of survival of an adult frog sampled from a $\beta$ distribution with a mean $=0.2172$ and a standard deviation $=0.087$ (Pickett et al. 2016). We assigned frogs in their fifth year a survival $=0$, reflecting senescence and death during their fifth year (although the model permits breeding before death).

## Population sizes

We modelled $L$. raniformis populations at each of four wetland sizes (small, medium, large, very large). We derived these categories from typical wetlands in the region and the corresponding population size is an estimate of their respective carrying capacity. Small populations ( $\sim 40$ individuals) reflect the carrying capacity and population dynamics present in a wetland pool several metres in diameter. A medium population ( $\sim 130$ individuals) represents a wetland pool similar to 1-2 domestic swimming pools. A large population ( $\sim$ 300 individuals) represents a wetland pool similar to an Olympic swimming pool, and a very large population ( $\sim 1000$ individuals) reflects a wetland several hundred metres in diameter. The starting population of adult females was calculated as $50 \%$ of these values (as $L$.
raniformis has a $50: 50$ sex ratio), being $20,65,150$ and 500 female frogs, respectively. We assigned age classes for the starting female population by randomly resampling five adult survival values and then dividing the total number of females among the five age classes in these proportions. This created a more homogenous initial age structure than we might expect in a wild population. We managed this by ignoring the first 10 generations of each run as a 'burn-in' period, which allowed the model to stabilise to a stochastic expression of the stableage distribution before analysis.

We allocated the initial number of eggs using an a priori number of spawning masses for each wetland size ( $n=10,30,85,150$, respectively). We then stochastically resampled the number of eggs in each spawning mass (halved because the model only considers females). At these densities the a priori assignment of spawning masses did not impact population dynamics after burn-in.

## Compensatory density feedback

To stabilise long-term population growth, we incorporated three compensatory densityfeedback relationships. First, we corrected rates of egg laying to reflect the maximum carrying capacity ( $K_{\text {egg }}$ ) at each wetland. As the number of eggs approaches the wetland's carrying capacity, eggs are reduced following an exponential decay function of the form:

$$
y=1.01-\left(x^{2+\frac{9}{x}}\right)
$$

and the rate of egg reduction follows the equation:

$$
R_{\mathrm{egg}}=\int_{0}^{0.99} 1.01-\left(K^{2+\frac{9}{K}}\right) d_{K}
$$

[equation 7]
where $R_{\text {egg }}$ is the total reduction in eggs laid at the wetland, $K$ is the carrying capacity and $d_{K}$ is the differential $K$ (carrying capacity) (Figure S2). Carrying capacity is calculated for each wetland size category using the initial number of a priori spawning masses laid (10, 30, 85 or
150) at the maximum fecundity for the species ( 3893 eggs), which we halved to consider only females. In this way, frogs lay without inhibition until the total egg count approaches the carrying capacity. The highest inhibition rate corresponds to 0.99 of the wetland's carrying capacity and all subsequent egg-laying events are reduced at this value (corresponding to a reduction of 0.0078 ).

The second compensatory density-feedback function used the total number of tadpoles present to reduce survival probabilities during the first year of life. This reflects predation and competition during larval life stages, and in the first few months post-metamorphosis. We calculated density feedback on survival probability using the function:

$$
\left.R_{0-1}=(-0.241+1.54 K)\right)^{-0.855}
$$

where $R_{0-1}$ is the reduction factor in survival for age class 0 individuals (Figure S3). Here, we assigned carrying capacity a priori based on the size of the wetland, small $=200$ females, medium $=600$ females, large $=1800$ females and very large $=3000$ females. Density feedback on survival from 0- to 1-year age classes is applied when the total adult population $>0.3$ of the wetland's carrying capacity. We applied the highest reduction in survival at 2.1 times carrying capacity that reduces survival probability to 0.0101 (Figure S3).

The third compensatory density-feedback function applies the abundance of all adult frogs to reduce survival from the 1- to 2-year age class $\left(R_{1-2}\right)$ to reflect competition for resources. The form of the relationship followed the method applied for $\left(R_{0-1}\right)$ presented above (equation 8, Figure S3).

## Modelling hydrology

We considered two river-flow scenarios. The 'regulated flow' scenario is informed by the historical flow record immediately downstream of Lock 3 (A4260517; waterconnect.sa.gov.au). We used data starting in 1926, the year following the completion of

Lock 3. River levels above the operative range of this gauge 'drown out' the gauge, making measurements inaccurate. During these periods, we used data from station A4260528 (6.5 km downstream of Lock 3), which is unaffected by elevated river levels. This created a continuous daily record of flow rate between Locks 3 and 2 for 83 years. The second riverflow scenario is modelled 'natural flow', which covers the same time period, but in the absence of extraction or regulation in the catchment (see Murray-Darling Basin AuthorityMDBA 2012a).

A second-order polynomial derives river heights from mean daily flow rate ( $\mathrm{Ml} \mathrm{day}^{-1}$ ) for the two flow scenarios. Based on mean daily river height (metres with respect to Australian River Height Datum, mAHD) at site A4260517 and the flow records above, the following rating-curve equation:

$$
H=-2 f^{2} 10^{-10}+8 f 10^{-5}+6.0144
$$

estimates river height, where $H$ is river height (mAHD) and $f$ is river flow ( $\mathrm{Ml} \mathrm{day}^{-1}$ ). We used this to create a continuous daily river height for this reach over 83 years under natural and regulated flow.

Our model exposes wetland populations to one of two states each year. A 'wet' year is when the wetland received sufficient water to support frog reproduction and recruitment; conversely, during a 'dry' year, the wetland did not receive sufficient inputs to support frog recruitment (often filling and then drying prematurely - see definition below). There is a paucity of accurate sill-height (the river height at which a wetland begins to fill) data in the reach, so rather than modelling the inundation of specific wetlands, we calculated inundation of nine possible sill heights ( $7,7.5,8,8.5,9,9.5,10,10.5$ and 11 mAHD ). Following discussion with local wetland managers, we used the rule that if mean daily river height is $\geq$ 10 cm above sill height for $\geq 10$ days during winter and spring, then the wetland is 'wet' and can support frog recruitment that year (K. Mason - Department for Environment and Water,

Adelaide, pers comm.). It is not necessary that these ten days be consecutive to fulfil this criterion. By using this criterion, we determined which of the nine sill heights were wet, and which were dry for each of the 83 years under the natural and regulated scenarios.

## Modelling flow scenarios

We modelled 18 hydrological scenarios - these being sill heights of $7,7.5,8,8.5,9,9.5,10$, 10.5 and 11 mAHD each modelled under both natural- and regulated-flow conditions. To create stochastic expressions of these scenarios, we used the 83 years of daily river-height data for the flow scenario (natural or regulated flow) and classified each of those 83 years as either filling the nominated sill height ( $\geq 10$ non-consecutive days exceeding the sill height by $\geq 10 \mathrm{~cm}$ during the previous winter or spring) to create a wet year, or failing to fill the sill height sufficiently and creating a dry year (when recruitment is unsuccessful). Using this sequence of 83 wet and dry years (for each specific sill height and flow combination) we created a discrete-time Markov chain (e.g., Supporting Information 1) to resample unique, stochastic, 85-year wet/dry sequences for each model scenario run.

Finally, we modelled each of the four wetland sizes (small, medium, large, very large) at each of nine sill heights ( $7,7.5,8,8.5,9,9.5,10,10.5$ and 11 mAHD ) and each of two flow scenarios (natural and regulated flow). We ran each of these 72 wetland models stochastically 10,000 times, each for 85 consecutive generations or until the population went extinct (creating a combined total of 61.2 million stochastic generations). This was sufficient to account for wetland variability in the study reach. We disregarded the first ten burn-in generations of each model and used generations 11 to 85 (or to extinction) in our analyses.

For each model, we recorded the sequence of wet and dry years from generations 11 to 85 (or extinction). For each occurrence of two or more consecutive dry years, we recorded the number of consecutive dry years and whether it resulted in extinction. We organised these
data by the average frequency of dry years at the wetland and calculated the probability of extinction for two to five consecutive dry years, noting that six consecutive dry years exceeds the maximum reproductive lifespan of the species.

To examine the effect of maximum lifespan on the model, we ran a univariate sensitivity analysis on a single wetland model with senescence constrained to ages two, three, four and five years (Supplementary Information 1).

## Results



Figure 3. Proportion of the 83 years of observed river height (regulated) and modelled natural river height that potentially supported $L$. raniformis breeding (wet years) at sill heights from 7 to 11 mAHD .

## 'Wetness' of wetlands under natural- and regulated-flow conditions

River regulation reduced the frequency of wet years by $19-34 \%$ compared to the natural-flow scenario for the same 83-year period (Figure 3). This equates to a reduction of wet years by
$19.5 \%$ at 7 mAHD , up to $60 \%$ at 11 mAHD . This changed both the proportions and pattern of wet and dry years. Regulation increased the mean duration of successive dry years at all sill heights (Figure 4). Under natural conditions the mean duration of dry years did not exceed two years at any of the sill heights examined, whereas the regulated-flow scenario resulted in mean duration of dry events approaching the maximum lifespan of the species at sill heights $\geq 10 \mathrm{mAHD}$. Under natural conditions the maximum duration of dry events did not exceed the maximum reproductive lifespan of the species, except at a sill heights > 10 mAHD . The maximum duration of dry events observed under river regulation exceeded the maximum reproductive lifespan of this species at every sill height examined.


Figure 4 Comparison of wetland inundation pattern over 83 years of observed data under a) natural flow regime and b) river regulation. Sill heights are presented in metres with respect to Australian River Height Datum (mAHD). The maximum duration of dry years exceeds the maximum reproductive lifespan of Litoria raniformis under all regulated sill height wetlands.

## Extinction probability of each wetland scenario

Under the natural-flow scenario, the probability of extinction $-\operatorname{Pr}($ Ext $)$ - during the 85 modelled years was $\sim 0$ at sill heights $\leq 8.5 \mathrm{mAHD}$ (Figure 5). Conversely, all wetland sizes reached $\operatorname{Pr}(\operatorname{Ext})=1$ at sill heights $\geq 9 \mathrm{mAHD}$ when flows were regulated. Thus, wetlands that historically supported $L$. raniformis populations under natural-flow conditions (i.e., $\leq 8.5$
mAHD ) are unreliable under river regulation. Without intervention, wetlands with sill height of $\geq 9 \mathrm{mAHD}$ will not sustain $L$. raniformis populations under existing flow conditions.

The probabilities of extinction in very large wetlands were 0.25 to 0.70 lower than those in small wetlands (Figure 6). This effect was more pronounced in the regulated-flow scenario than under natural-flow conditions.


Figure 5 The probability of extinction at four wetland sizes under a) natural-flow and b) regulated-flow conditions. River regulation has increased the extinction probability of Litoria
raniformis populations through most of their former habitats. These effects are strongest at smaller wetlands.


Figure 6 Successive dry years increase the probability of extinction and this effect increases with: increasing dry duration, decreasing wetland size, and increased average frequency of dry years at the wetland. Plots are a) 2 successive dry years, b) 3 successive dry years, c) 4 successive dry years and d) 5 successive dry years.

Two consecutive dry years resulted in $\operatorname{Pr}(E x t)<0.25$ in all treatments, including wetlands with an $80 \%$ average frequency of dry years (Figure 6). Increasing the number of consecutive dry years increases $\operatorname{Pr}($ Ext $)$ up to five consecutive dry years, which gives $\operatorname{Pr}($ Ext $)$ $>0.5$ in all treatments except for very large populations with an average frequency of dry years $<20 \%$. Smaller wetlands had increased extinction probability in all instances and the
disparity between wetland sizes became more pronounced with increasing successive dry years. The average frequency of dry years at the wetland strongly influences the capacity to survive extended dry periods. Wetter sites have lower extinction probability than drier sites for each drought duration.

## Discussion

Regulation and abstraction of flow in the Murray-Darling catchment has resulted in wetlands that fill less often (Figure 3). The average duration of successive dry years has increased by up to three years compared to natural flow conditions (Figure 4) (Maheshwari, Walker \& McMahon 1995; Bice et al. 2017). For species that rely on floodplain inundation to complete their lifecycle, dry years result in reproductive failure. This is not uncommon in amphibians, especially in species that breed in ephemeral waterbodies (which can dry before completion of larval life stages). In isolation, reproductive failure causes population fluctuation, but do not always appreciably increase the probability of local extinction (Taylor, Scott \& Gibbons 2006), albeit with simplification of age structure and attrition of adult populations. However, successive failures increase extinction risk, especially in short-lived species (Semlitsch et al. 1996). Without the capacity to extend lifespan through unfavourable periods (i.e., aestivation), droughts equalling or exceeding the reproductive lifespan of a species result in local extinction, a process that is likely to have driven the local extinctions in $42 \%$ of breeding sites of Pseudophryne pengilleyi in Kosciuszko and Brindabella National Parks in New South Wales, Australia (Scheele et al. 2012).

Drought and the decline of Litoria raniformis
The flow record that informs our model includes a severe drought from 1996 to 2009. During this time, south-eastern Australia experienced a region-wide reduction in rainfall and runoff,
below-average streamflow, and critical water shortages (Heberger 2011; van Dijk et al. 2013). This event, coupled with ongoing water extraction, resulted in seven or more successive dry years at all sill heights $\geq 7 \mathrm{mAHD}$ in this reach (Figure 4). The persistence of some few $L$. raniformis through this period is probably a combination of breeding in the river channel, the maintenance of some wetlands with environmental water, and recolonisation with the return of flow in 2010 (Fonte, Mayer \& Lötters 2019). The drought devastated $L$. raniformis populations in the reach, but modelled natural flow for the same period indicates that the maximum number of successive dry years would not have exceeded four years in wetlands up to 10 mAHD (Figure 4). For $L$. raniformis that can breed in its fifth year, all wetlands < 10 mAHD could have survived this perturbation.

Litoria raniformis was common throughout south-eastern Australia (Pyke 2002), but is declining across its range (Osborne, Littlejohn \& Thomson 1996; Ashworth 1998; Wassens et al. 2010, Mason 2013). Proposed threatening processes are habitat loss, barriers to movement, disease, predation by exotic fishes, biocides, and increases in ultraviolet B radiation (Clemann \& Gillespie 2012). Our results support our hypothesis that reduced wetland inundation is driving population decline in this reach. Although this is reach-specific, similar reductions in inundation are present elsewhere in the catchment and in other catchments with declining $L$. raniformis populations. The link between river regulation and increased extinction probability could be applicable at wetlands outside of this reach.

## Model assumptions

Our model makes two main assumptions: that $L$. raniformis breed in their fifth year before senescence, and there is no population exchange between wetlands. Our single-parameter perturbation (sensitivity) analysis of maximum age (Supplementary Information 1) shows little influence of maximum age on extinction probability. This is likely because the
demography of this species favours younger age classes. Reducing the maximum age of the species does, however, reduce the maximum drought length before local extinction. If the lifespan of $L$. raniformis in this system is lower than five years, then our outputs can be used to triage environmental water provision to minimise the probability of local extinction. However, when successive breeding failures meet the local maximum age, the population will be lost regardless.

The second potential limitation of the model is that virtual wetlands exist in isolation without immigration or emigration. As such, modelled local extinctions are an endpoint after which recolonisation cannot occur. Amphibians are physiologically dependent on moist environments, have relatively poor dispersal capacity (compared to other tetrapods), and can show strong site fidelity, and these traits suggest limited capacity for recolonisation (Blaustein, Wake \& Sousa 1994). Despite limited dispersal, amphibians are frequently thought to exist in metapopulations (Levins 1969; Smith \& Green 2005). We propose that $L$. raniformis in this system meets the four characteristics of a metapopulation (Hanski et al. 1995): (i) habitat patches support local breeding populations, (ii) no single population is large enough to ensure long-term survival, (iii) patches are not too isolated to prevent recolonisation, and (iv) local dynamics are sufficiently asynchronous to make simultaneous extinction of all local populations unlikely. Despite the semi-arid/arid climate, L. raniformis can move hundreds of metres in a single night and can colonise over distances of 500 m (Herbert 2000; Department for Environment and Heritage, 2004; Wassens et al. 2008). We anticipate that movement between favourable patches is critical to the persistence of this species.

Nevertheless, our model informs the conservation of fragmented amphibian populations with high resistance to dispersal. As a cautionary approach, our model considers the population dynamics of isolated wetlands given that these have higher extinction probabilities
than wetlands within in a network. We anticipate that populations in close proximity will have lower extinction probabilities than we predict here due to the stabilising effects of metapopulation structure and the rescue effect (Brown \& Kodric-Brown, 1977), but we urge a cautionary approach to managing this species, triaging water delivery as though all wetland populations exist in isolation.

## Environmental water provision

In highly regulated catchments, restoring large-scale historic inundation patterns is neither possible nor desirable. However, providing specific reaches and wetlands with environmental water can recreate critical components of historic flow regimes. The assumption is that reconstructing specific components of 'natural' flow, can maintain key ecosystem processes through the timely, sequential ecological cues inherent in 'natural' flow (Poff et al. 1997). In highly modified and non-stationary conditions, a more mechanistic understanding of environmental water requirements is valuable (Poff 2018). An alternative approach uses thresholds of inundation frequency, and in turn extinction probability to prioritise the delivery of 'designer' flow. When well-designed, this approach generates efficiencies in the volumes of water delivered while still eliciting the desired ecological response (in this case, a reduction in the probability of extinction for target amphibian populations).

Our model shows that water deliveries maintaining no more than one sequential dry year will support $L$. raniformis (Figure 6). For wetlands with low extinction probability, or when environmental water budgets are limiting, water provision to ensure no more than two succussive dry years will maintain extinction risk < 0.25 in all wetland sizes. Using this approach, a rotating roster of wetlands could be watered to offset individual wetland risk, noting that local extinctions will likely rely on dispersal from neighbouring wetlands to reestablish. The highest priorities for intervention are wetlands that have experienced four or
five years without recruitment and where $L$. raniformis is still present (Figure 6). These populations should be watered during the next breeding season to reduce the probability of local extinction. These priorities are not intended to be cycled in perpetuity, especially in situations where extinction risk is high. For example, a wetland with a $50 \%$ extinction probability after five dry years could require several favourable years to recover before it could be expected to persist through a second five-year drought.

Our model also makes three main assumptions regarding wet years that will influence environmental water delivery: that 1 . wetlands support adult frogs between breeding seasons, 2. breeding occurs during each wet year, and 3 . wet years do not accumulate fish and crustacean predators. Water delivery should be tailored to meet these assumptions, including maintaining small summer pools to support adult frogs during dry years, watering to support components of the vegetation community that are important for breeding, and periodic drying to reduce predator densities.

Legality and morality of prioritisation notwithstanding, our approach informs thresholds for environmental water provision that could be applied where demographic data are available and where a clear relationship exists between intervention and recruitment for example, the delivery of water to extend hydroperiod in Rana sevosa (Seigel, Dinsmore \& Richter 2006) or P. pengilleyi (Scheele et al. 2012). This approach is not specific to amphibians, nor to environmental water provision, and can also be applied where episodic events are directly linked to reproductive outcomes, such as fire intermittency and germination in pyrophytic plants, or supraseasonal flooding events in arid-zone seed germination.

The protection of threatened amphibians is mandated under Australian law (Environment Protection and Biodiversity Conservation Act, 1999), but the primary legislation to manage environmental water in the Murray-Darling catchment considers fish, birds, and vegetation, but not amphibians (MDBA, 2012b). This is mirrored internationally where a review of 30 European environmental flow programmes does not mention amphibians (European Commission 2016). Given the worsening state of amphibian populations globally, we advocate for future legislative revisions to include provisions specifically for amphibians.

## Author contributions

R.M., C.J.A.B. and M.G. designed the modelling approach. All authors contributed to the manuscript.

## Acknowledgements

We thank the Murraylands and Riverland Landscapes Board and the Nature Foundation SA for their generous support and the Murray-Darling Basin Authority for providing time-series data of natural flow. We bring together land managers, conservation organisations, and scientists from the catchment and we have consulted with amphibian and environmental water specialists from across Australia.

## Data Availability Statement

Data and code available from: https://github.com/RupertLovesEcology/RiverRegulation_Frog_PopModel

## References

Anstis, M. (2002) Tadpoles of south-eastern Australia. New Holland.
Anstis, M. (2017) Tadpoles and frogs of Australia. New Holland Publishers Pty Limited.
Ashworth, J.M. (1998) An appraisal of the conservation status of Litoria raniformis (Kefferstein) in Tasmania. PhD Thesis, University of Tasmania.
Bice, C.M., Gibbs, M.S., Kilsby, N.N., Mallen-Cooper, M. \& Zampatti, B.P. (2017) Putting the "river" back into the Lower River Murray: quantifying the hydraulic impact of river
regulation to guide ecological restoration. Transactions of the Royal Society of South Australia, 141, 108-131.
Bishop-Taylor, R., Tulbure, M.G. \& Broich, M. (2015) Surface water network structure, landscape resistance to movement and flooding vital for maintaining ecological connectivity across Australia's largest river basin. Landscape Ecology, 30, 2045-2065.
Blaustein, A.R. \& Wake, D.B. (1990) Declining amphibian populations: a global phenomenon? Elsevier Current Trends.
Blaustein, A.R., Wake, D.B. \& Sousa, W.P. (1994) Amphibian declines: judging stability, persistence, and susceptibility of populations to local and global extinctions. Conservation Biology, 8, 6071.

Brown, J.H. \& Kodric-Brown, A. (1977) Turnover Rates in Insular Biogeography: Effect of Immigration on Extinction. Ecology, 58, 445-449.
Castello, L. \& Macedo, M.N. (2016) Large-scale degradation of Amazonian freshwater ecosystems. Global Change Biology, 22, 990-1007.
Clemann, N. \& Gillespie, G.R. (2012) National Recovery Plan for the Southern Bell Frog Litoria raniformis. Department of Sustainability and Environment, Melbourne.
European Commission D.-G.f.t.E.E. (2016) Ecological flows in the implementation of the Water Framework Directive Compilation of case studies referenced in CIS guidance document $\mathrm{n}^{\circ} 31$.
Cree, A. (1984) Breeding biology, respiration, and larval development of two introduced frogs (Litoria raniformis and L. ewingi). New Zealand Journal of Zoology, 11, 179-187.
CSIRO (2008) Water availability in the Murray-Darling Basin. Summary of a report to the Australian Government from the CSIRO Murray-Darling Basin Sustainable Yields Project. CSIRO, Australia.
Docker, B. \& Robinson, I. (2014) Environmental water management in Australia: experience from the Murray-Darling Basin. International Journal of Water Resources Development, 30, 164-177.
Fonte, L.F.M.d., Mayer, M. \& Lötters, S. (2019) Long-distance dispersal in amphibians. Frontiers of Biogeography, 11.
Gell, P. \& Reid, M. (2014) Assessing change in floodplain wetland condition in the Murray-Darling Basin, Australia. Anthropocene, 8, 39-45.
Grant, E.H.C., Miller, D.A. \& Muths, E. (2020) A Synthesis of Evidence of Drivers of Amphibian Declines. Herpetologica.
Greenwood, O., Mossman, H.L., Suggitt, A.J., Curtis, R.J. \& Maclean, I.M.D. (2016) Using in situ management to conserve biodiversity under climate change. Journal of Applied Ecology, 53, 885-894.
Griffiths, R.A. \& Pavajeau, L. (2008) Captive breeding, reintroduction, and the conservation of amphibians. Conservation Biology, 22, 852-861.
Hanski, I., Pakkala, T., Kuussaari, M. \& Lei, G. (1995) Metapopulation persistence of an endangered butterfly in a fragmented landscape. Oikos, 21-28.
Heard, G.W., Scroggie, M.P. \& Malone, B.S. (2012) The life history and decline of the threatened Australian frog, Litoria raniformis. Austral Ecology, 37, 276-284.
Heberger, M. (2011) Australia's Millennium Drought: Impacts and Responses. The World's Water: The Biennial Report on Freshwater Resources (ed. P.H. Gleick), pp. 97-125. Island Press/Center for Resource Economics, Washington, DC.
Herbert, T. (2000) Frogs of the Loveday Wetland Complex (River Murray, South Australia): Species Inventory and Observations on Abundance and Habitat Preferences. Final Report, prepared for the Barmera-Moorook Field and Game Association. Barmera, South Australia.
Department for Environment and Heritage (2004) Lake Littra Draft Management Plan. Department for Environment and Heritage, Berri, South Australia.
Hof, C., Araújo, M.B., Jetz, W. \& Rahbek, C. (2011) Additive threats from pathogens, climate and land-use change for global amphibian diversity. Nature, 480, 516.
Humphries, R.B. (1979) Dynamics of a breeding frog community. Ph.D, Australian National University.
IUCN (2020) The IUCN Red List of Threatened Species. Version 2020-3. https://www.iucnredlist.org. Downloaded on [13 March 2021].

Kennen, J.G., Stein, E.D. \& Webb, J.A. (2018) Evaluating and managing environmental water regimes in a water-scarce and uncertain future. Freshwater Biology, 63, 733-737.
Leslie, P.H. (1945) On the use of matrices in certain population mathematics. Biometrika, 33, 183212.

Levins, R. (1969) Some demographic and genetic consequences of environmental heterogeneity for biological control. American Entomologist, 15, 237-240.
Maheshwari, B.L., Walker, K.F. \& McMahon, T.A. (1995) Effects of regulation on the flow regime of the River Murray, Australia. Regulated Rivers: Research \& Management, 10, 15-38.
Mann, R.M., Hyne, R.V., Selvakumaraswamy, P. \& Barbosa, S.S. (2010) Longevity and larval development among southern bell frogs (Litoria raniformis) in the Coleambally Irrigation Area-implications for conservation of an endangered frog. Wildlife Research, 37, 447-455.
Mason, K. 2013, Frog Monitoring in the Coorong, Lower Lakes and Murray Mouth Region 2012/13, Department of Environment, Water and Natural Resources, Murray Bridge, South Australia.
Mathwin, R., Wassens, S., Young, J., Ye, Q. \& Bradshaw, C.J. (2021) Manipulating water for amphibian conservation. Conservation Biology 35, 24-34.
McMenamin, S.K., Hadly, E.A. \& Wright, C.K. (2008) Climatic change and wetland desiccation cause amphibian decline in Yellowstone National Park. Proceedings of the National Academy of Sciences, 105, 16988-16993.
Miller, D.A.W., Grant, E.H.C., Muths, E., Amburgey, S.M., Adams, M.J., Joseph, M.B., Waddle, J.H., Johnson, P.T.J., Ryan, M.E., Schmidt, B.R., Calhoun, D.L., Davis, C.L., Fisher, R.N., Green, D.M., Hossack, B.R., Rittenhouse, T.A.G., Walls, S.C., Bailey, L.L., Cruickshank, S.S., Fellers, G.M., Gorman, T.A., Haas, C.A., Hughson, W., Pilliod, D.S., Price, S.J., Ray, A.M., Sadinski, W., Saenz, D., Barichivich, W.J., Brand, A., Brehme, C.S., Dagit, R., Delaney, K.S., Glorioso, B.M., Kats, L.B., Kleeman, P.M., Pearl, C.A., Rochester, C.J., Riley, S.P.D., Roth, M. \& Sigafus, B.H. (2018) Quantifying climate sensitivity and climate-driven change in North American amphibian communities. Nature Communications, 9, 3926.
Murray-Darling Basin Authority (2012a) Hydrologic modelling to inform the proposed Basin Planmethods and results., MDBA publication no: 17/12, Murray-Darling Basin Authority, Canberra.
Murray-Darling Basin Authority (2012b) Murray-Darling Basin Plan Compilation No. 6. MurrayDarling Basin Authority, Canberra, Australia. Available at https://www.legislation.gov.au/Details/F2018C00451 [Accessed 13 March 2021].
Narins, P.M. \& Meenderink, S.W. (2014) Climate change and frog calls: long-term correlations along a tropical altitudinal gradient. Proceedings of the Royal Society B: Biological Sciences, 281, 20140401.

Newbold, T. (2018) Future effects of climate and land-use change on terrestrial vertebrate community diversity under different scenarios. Proceedings of the Royal Society B: Biological Sciences, 285, 20180792.
Osborne, W.S., Littlejohn, M.J. \& Thomson, S.A. (1996) Former distribution and apparent disappearance of the Litoria aurea complex from the Southern Tablelands of New South Wales and the Australian Capital Territory. Australian Zoologist, 30, 190-198.
Pickett, E.J., Stockwell, M.P., Clulow, J. \& Mahony, M.J. (2016) Modelling the population viability of a threatened amphibian with a fast life-history. Aquatic Conservation: Marine and Freshwater Ecosystems, 26, 9-19.
Poff, N.L. (2018) Beyond the natural flow regime? Broadening the hydro-ecological foundation to meet environmental flows challenges in a non-stationary world. Freshwater Biology, 63, 1011-1021.
Poff, N.L., Allan, J.D., Bain, M.B., Karr, J.R., Prestegaard, K.L., Richter, B.D., Sparks, R.E. \& Stromberg, J.C. (1997) The Natural Flow Regime. BioScience, 47, 769-784.
Pyke, G. (2002) A review of the biology of the Southern Bell Frog Litoria raniformis (Anura:Hylidae). Australian Zoologist, 32, 32-48.
Scheele, B., Driscoll, D., Fischer, J. \& Hunter, D. (2012) Decline of an endangered amphibian during an extreme climatic event. Ecosphere, 3, 1-15.

Seigel, R.A., Dinsmore, A. \& Richter, S.C. (2006) Using Well Water to Increase Hydroperiod as a Management Option for Pond-Breeding Amphibians. Wildlife Society Bulletin (1973-2006), 34, 1022-1027.
Semlitsch, R.D., Scott, D., Pechmann, J. \& Gibbons, J. (1996) Structure and dynamics of an amphibian community. Long-term studies of vertebrate communities, 217-248.
Shoo, L.P., Olson, D.H., McMenamin, S.K., Murray, K.A., Van Sluys, M., Donnelly, M.A., Stratford, D., Terhivuo, J., Merino-Viteri, A., Herbert, S.M., Bishop, P.J., Corn, P.S., Dovey, L., Griffiths, R.A., Lowe, K., Mahony, M., McCallum, H., Shuker, J.D., Simpkins, C., Skerratt, L.F., Williams, S.E. \& Hero, J.-M. (2011) Engineering a future for amphibians under climate change. Journal of Applied Ecology, 48, 487-492.
Smith, M.A. \& Green, D.M. (2005) Dispersal and the metapopulation paradigm in amphibian ecology and conservation: are all amphibian populations metapopulations? Ecography, 28, 110-128.
Smith R.K, Meredith H, \& Sutherland W.J. (2019) Amphibian conservation. Pages 9-66 in Sutherland WJ, Dicks LV, Ockenden N, Petrovan SO, Smith RK, editors. What works in conservation 2019. Open Book Publishers, Cambridge, United Kingdom
Stuart, S.N., Chanson, J.S., Cox, N.A., Young, B.E., Rodrigues, A.S., Fischman, D.L. \& Waller, R.W. (2004) Status and trends of amphibian declines and extinctions worldwide. Science, 306, 1783-1786.
Taylor, B.E., Scott, D.E. \& Gibbons, J.W. (2006) Catastrophic reproductive failure, terrestrial survival, and persistence of the marbled salamander. Conservation Biology, 20, 792-801.
van Dijk, A.I., Beck, H.E., Crosbie, R.S., de Jeu, R.A., Liu, Y.Y., Podger, G.M., Timbal, B. \& Viney, N.R. (2013) The Millennium Drought in southeast Australia (2001-2009): Natural and human causes and implications for water resources, ecosystems, economy, and society. Water Resources Research, 49, 1040-1057.
Wassens, S., Hall, A., Osbourne, W. \& Watts, R.J. (2010) Habitat characteristics predict occupancy patterns of the endangered amphibian Litoria raniformis in flow-regulated flood plain wetlands. Austral Ecology, 35, 944-955.
Wassens, S. \& Maher, M. (2011) River regulation influences the composition and distribution of inland frog communities. River Research and Applications, 27, 238-246.
Wassens, S., Watts, R.J., Jansen, A. \& Roshier, D. (2008) Movement patterns of southern bell frogs (Litoria raniformis) in response to flooding. Wildlife Research, 35, 50-58.
Williamson, I. \& Bull, C.M. (1999) Population ecology of the Australian frog Crinia signifera: larvae. Wildlife Research, 26, 81-99.

## Supporting Information

Additional Supporting Information may be found in the online version of this article.
Supporting Information 1. To examine the effects of maximum lifespan on the predicted probability of extinction, we applied a single-parameter perturbation (sensitivity) analysis on a single modelled scenario (a large wetland with a sill height of 7.5 metres with respect to the Australian Height Datum (mAHD) under a river regulation flow scenario).

Figure S1. The Leslie matrix (L1) assigns fertility to age classes $1-5$ in the top row and agespecific annual survival probability on the sub-diagonal.

Figure S2. Inhibition of egg laying at a wetland follows an exponential decay function. If the total number of eggs laid is greater than 0.8 of the wetland's carrying capacity, subsequent eggs are reduced at an increasing rate.

Figure S3. Compensatory density feedback on survival rate of eggs to the 1-year age class and survival of the 1-year age class to the 2 -year age class based on an exponential decay function. Reduction of survival probability starts when the population exceeds 0.3 of carrying capacity.

