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Temporal environmental variations may promote diversity in communities of competing popula-

tions. Here we compare the effect of environmental stochasticity with the effect of periodic (e.g.,

seasonal) cycles, using analytic solutions and individual-based Monte-Carlo simulations. Even when

stochasticity facilitates coexistence it still allows for rare sequences of bad years that may drive

a population to extinction, therefore the stabilizing effect of periodic variations is stronger. Cor-

respondingly, the mean time to extinction grows exponentially with community size in periodic

environment and switch to power-law dependence under stochastic fluctuations. On the other hand,

the number of temporal niches in periodic environment is typically lower, so as diversity increases

stochastic temporal variations may support higher species richness.
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I. INTRODUCTION

Ecological and evolutionary processes take place in varying environments. As a result, demographic rates of pop-

ulations fluctuate and their abundances vary through time [1]. An increase in demographic variability increases the

chance of a population to reach the low-abundance region where extinction is plausible, so environmental variations

have the potential to reduce species richness. One of the most surprising and counter-intuitive observations in com-

munity ecology has to do with the opposite effect: the ability of temporal environmental variations to stabilize a

system of competing species and to increase the persistence time of diverse assemblages [2–6].

Diverse and even highly diverse communities of competing species are prevalent in nature [7–9], in apparent con-

tradiction with the competitive exclusion principle [10, 11] and/or with the severe limitations exposed by May in his

analysis of the complexity-diversity problem [12]. Therefore, the potential role of environmental variations in promot-

ing taxonomic and genetic diversity received a lot of interest. Recently a few theoretical works provided analytical

and numerical tools for a quantitative assessment of the stabilizing effect of environmental variations [5, 13, 14], and

in parallel some prominent studies were focused on its manifestation in empirical communities [15–19]. The potential

role of stochasticity-induced stabilization in protecting genetic polymorphism was considered as well [20–23].

An aspect that (as far as we know) did not receive an adequate attention is the distinction between periodic and

stochastic variations. Although many natural environmental fluctuations are stochastic, most of them have at least

some temporal periodicity or seasonality [24]. Quantities like yearly precipitation or the mean yearly temperature

indeed fluctuate stochastically, but the amplitude of these stochastic variations is usually much smaller than the

amplitude of the variations associated with the seasonal cycle during the year. Seasonal effects on demographic rates

and on abundance and frequency variations are well-documented, both for populations [25] and for genotypes [26].

Despite a few exceptions [27–29], most of the studies of the relationships between temporal variability and sta-

bility were focused on stochastic variations. Here we would like to examine the periodic case and to contrast the

outcomes with known results for stochastic environmental fluctuations. To do that, we will consider periodic and

stochastic variations with the same characteristics (same amplitude of environmental fluctuations, same mean dura-

tion of environment’s dwell time, same level of demographic stochasticity) and will compare their stability properties.

In two-species communities stability is quantified by the mean time to extinction, and in diverse communities with

extinction-speciation equilibrium we implement species richness as a metric for the strength of the mechanisms that

promote coexistence.

Following former works [30, 31], we consider individual-based version of the lottery model, which is the canonical

example of Chesson’s storage effect [2–4]. To solve these models we implement the diffusion approximation, assuming

that the characteristic timescales associated with environmental variations are much smaller that the time required for

a given population to reach fixation [the “annealed” regime of Mustonen and Lässig [32]]. In the opposite (“quenched”)

regime, the outcome of a competition is usually decided before an environmental shift occurs, so the role of the

environmental variations in protecting coexistence is negligible.

Our analysis yields two main insights. First, all other things being equal, a community is more stable under periodic

variations. Stochastic fluctuations, even when promoting coexistence, may drive a population to extinction through

rare sequences of bad years, while seasonal cycles contribute only to stabilization. Second, in diverse communities the

situation may change. Stabilization through temporal variations requires the number of temporal niches to be larger
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than the number of species, and seasonal cycles typically involve only a limited number of different states. Therefore,

if stochastic variations offer much larger number of temporal niches they will play the main role in stabilizing diverse

communities. The emerging picture and its relevance to practical implications are presented in the discussion section.

II. TWO-SPECIES COMPETITION

Two-species competition is the elementary building block of coexistence theory. Here we implement a set of

individual-based models, so our theoretical and numerical analyses take into account both demographic stochasticity

(stochastic effects that influence the reproductive success of individuals in an uncorrelated manner) and environmental

variability. All our models are simple continuous-time (Moran) generalizations of the classical lottery model (see [6]

for details).

In an individual-based models global competition allow environmental variations to facilitate coexistence, while

under dynamics with local competition those variations impede coexistence. Here we examine the differences between

stochastic and periodic variations in both cases, so overall we consider four scenarios: global-periodic, global-stochastic,

local-periodic and local-stochastic.

A. Model definitions

We consider a zero-sum competition so the total number of individuals is N . The dynamic takes place in elementary

birth-death events, and a generation is defined as N such elementary steps. Therefore, the duration of each elementary

step is 1/N . The (time-dependent) fitness of a given population (species) is es, so s is the log-fitness or the selection

parameter.

Due to environmental variations, s of each population is time dependent. In our models, the environment stays

fixed for a certain time, that we define as its dwell time δ, and then it switches. δ is measured in generations, so if

δ = 1, say, the typical dwell time of the environment is N elementary events.

• When the environmental variations are periodic or seasonal, the environment switches every Nδ elementary

steps.

• When the environmental variations are stochastic, the chance of the environment to flip after each elemen-

tary step is 1/(Nδ), therefore, the dwell times are picked from an exponential distribution whose mean is δ

generations.

Once the value of s for each individual is given, it determines its expected reproductive success. We study two

competition scenarios.

• Local competition is perhaps the generic scenario for a community of animals who wander around in a certain

spatial region, with an encounter between two individuals resulting in a struggle for a piece of food, territory

and so on. To model such an interaction we consider dynamics that take place via a series of duels between

two randomly-picked individuals, in which the loser dies and the winner reproduces. If the fitness of the first
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individual is exp(s1) and the fitness of the second is exp(s2), then the chance of the first to win the competition,

P1, is determined by the fitness ratio

P1 =
es1

es1 + es2
. (1)

Analogously, P2 = 1− P1.

• When the competition is global, one individual is chosen at random to die. The chance Pa of an individual a to

produce an offspring that recruits the resulting open gap is given by

Pa =
esa∑
b

esb
, (2)

where the sum ranges over all the individuals. As a result, in the case when all the individuals in a population

have the same fitness, the chance of species 1 (with n1 individuals) to capture the gap is

P1 =
n1e

s1

n1es1 + n2es2
, (3)

Since the fitness of each individual is either s1 or s2, Eqs. (1) and (3) imply that the outcome of the process depends

only on the relative fitness ∆s = s1 − s2.

If x = n1/N is the frequency of species 1 (that we consider, without loss of generality, as the focal species), then

the frequency of species 2 (rival species) is 1 − x. When species 1 wins, its frequency grows by 1/N . In the local

competition model, the chance of an interspecific duel is 2x(1− x), so the mean change in x after a single elementary

event is

E[xt+1/N − xt] = 2x(1− x)
1

N

(
es1

es1 + es2
− es2

es1 + es2

)
. (4)

so when |∆s| � 1,

dx

dt
= x(1− x)

[
(∆s)− (∆s)3/12 + (∆s)5/120− ...

]
(5)

Importantly, the full expansion of the dx/dt in terms of ∆s admits only odd powers of ∆s multiplied by x(1 − x).

When considering the logit parameter, z ≡ lnx/(1 − x), one notices that it satisfies dz/dt = (dx/dt)/[x(1 − x)].

Therefore, the changes in z when ∆s is positive are equal in magnitude and opposite in sign to the changes when ∆s

is negative. As a result, under local competition fitness fluctuations cannot contribute to stability [33–35], they only

lead to an unbiased random walk along the z axis.

The situation changes when competition is global. Now an increase (decrease) in the frequency x can happen if

one of the rival (focal) species dies with probability 1 − x (x), and the slot is captured by the focal (rival) species.

Therefore,

E[xt+1/N − xt] =
x(1− x)

N

(
es1

xes1 + (1− x)es2
− es2

xes1 + (1− x)es2

)
. (6)

and,

dx

dt
= (∆s)x(1− x) +

(∆s)2

2
x(1− x)(1− 2x) + ... (7)
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TABLE I. Glossary

Term Description

N number of individuals in the community (both species).

n number of individuals belonging to the mutant population.

x = n/N frequency of focal species (1− x is the fraction of rival species).

s0 time-independent component of the fitness.

γ the amplitude of fitness fluctuations.

δ dwell time of the environment (measured in generations)

g ≡ δγ2/2 the strength of environmental fluctuations.

z = ln
(

x
1−x

)
logit parameter.

ν per-death chance of colonization by new type via speciation, mutation or migration.

Under global competition, one finds in the expansion even terms, like (∆s)2, that do not change sign when the relative

fitness (∆s) flips. The coefficient of (∆s)2, the term x(1−x)(1−2x), is positive at x < 1/2 and negative when x > 1/2,

so it supports an attractive fixed point at x = 1/2. Therefore, under global competition variations in ∆s facilitate

the invasion of rare species and stabilize the coexistence state, a phenomenon known as the storage effect.

To complete the picture, we have to quantify the effect of environmental variations, i.e., to specify how the selection

parameter varies through time. In our models fitness variations are dichotomous, so (in case of two species) ∆s is

either s0 +γ or s0−γ. s0 is the mean fitness difference between the focal and the rival species (i.e., when s0 is positive

the focal species is, on average, superior and vice versa), whereas γ is the amplitude of fitness variations. A glossary

for all parameters is provided in Table I.

B. Analytic solutions

The main metric for persistence of a community is T , the mean time until one of the species is lost. We will refer

to T as the time to extinction (of either species).

In our two-species community the state of the system at a given time is fully characterized by the frequency of the

focal species x and the state of the environment. Since we consider only the annealed dynamics where x variations

are much slower than environmental variations, we characterize the initial state of the community by x alone, so T (x)

is the mean time until extinction, averaged over all initial states of the environment and over all histories [34].

Implementing the diffusion approximation one finds that T satisfies [34, 36, 37],

σ2(x)

2
T ′′(x) + µ(x)T ′(x) = −1, (8)

where µ(x) is the mean velocity, σ2(x) is the associated variance (see Methods, subsection V A) and prime represent

a derivative with respect to x. Note that in Eq. (8) time is measured in elementary steps, to translate that into

generations T must be divided by N .

In the Methods section (subsection V A) we calculate the values of µ(x) and σ2(x) for four combinations of global

(G) and local (L) competition with stochastic (S) and periodic (P ) environmental variations.
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As shown in the previous section, when the competition is local the frequency preforms a random walk in the

logit (z) space, where the right and the left moves are proportional to the fitness differences between the species.

Therefore, when environmental variations are periodic the total displacement during a full cycle is independent of

these variations, so γ and δ have no effect on σ2(x) and µ(x), which are simply those obtained in the standard case

of a fixed environment,

µL,P (x) =
s0x(1− x)

N
σ2
L,P (x) =

2x(1− x)

N2
(9)

On the other hand, when the competition is global Eq. (7) suggests a bias towards the coexistence point. This bias

is independent of the sign of ∆s and its strength is proportional to (∆s)2, which when the diffusion approximation

holds may be approximated by γ2. In the corresponding expression one finds an additional term in the expression for

µ(x). This new term is proportional to γ2 and represents a bias towards x = 1/2.

µG,P (x) =
x(1− x)

N

[
s0 +

γ2

2
(1− 2x)

]
σ2
G,P (x) =

2x(1− x)

N2
. (10)

Since the variations are periodic, they do not contribute to the diffusion term σ(x).

When the environmental variations are stochastic abundance variability increases due to the chance of the focal

species, say, to pick a sequence of good or bad years. In the local stochastic case the resulting parameters are,

µL,S(x) =
x(1− x)

N
[s0 + g(1− 2x)] σ2

L,S(x) =
2x(1− x)

N2
[1 + gNx(1− x)] . (11)

As before, the µ(x) has a term that support a stable fixed point at x = 1/2. However, the diffusivity σ2(x) is maximal

at x = 1/2 and vanishes close to the extinction point x = 0 and x = 1. The system tends to stick to the regions where

its diffusion constant is small [6], and this “diffusive trapping” acts against the stabilizing effect of the µ term. These

two contradicting tendencies cancel each other [6, 38], since in the logit space the dynamics is a simple random walk.

The only net effect of stochastic environmental variations is an increase in the amplitude of abundance variations,

which decreases extinction times [31, 34].

Finally, when competition is global the (∆s)2 term of Eq. (7) breaks the tie in favor of stabilization and the storage

effect manifests itself [34, 35],

µG,S(x) =
x(1− x)

N

[
s0 +

γ2

2
(1 + δ)(1− 2x)

]
σ2
G,S(x) =

2x(1− x)

N2
[1 + gNx(1− x)] . (12)

Eq. (8), with the relevant µ(x) and σ2(x), is an inhomogeneous and linear first order differential equation for T ′,

so one may solve it via an integration factor and then find T by an additional integration. When this procedure is

implemented numerically, as detailed in the Methods section (subsection V B), the results fit perfectly the outcomes

of our Monte-Carlo simulations, as demonstrated in Figure 1.

Figure 1 reveals the hierarchy of stability properties. The local-stochastic case has the shortest time to extinction,

as the role of environmental variations is purely destabilizing. In the local-periodic case this destabilizing effect of

environmental variations averages out over each cycle, so its T is larger. Under global competition temporal variations

facilitate coexistence, so their T is larger than in the local cases. Finally, time to extinction in the global-stochastic

scenario is shorter than in its global-periodic counterpart: a sequence of bad years may cause extinction in the former,

but not in the latter case.
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FIG. 1. Mean time to extinction, T , is plotted against the initial frequency of the focal species x. Black circles are the outcomes

of a Monte-Carlo simulation, and the colored lines are the theoretical predictions for the corresponding case (see legend) as

obtained from numerical solutions of Eq. (8) with the µ(x) and σ2(x) from Eqs. (9-12). Details of the solution are presented in

the Methods section. The hierarchy TGP > TGS > TLP > TLS is evident. In panel (a), both species have the same mean fitness

(s0 = 0) and therefore all the lines are symmetric around x = 1/2. Other parameters in panel (a) are N = 600, γ = 0.25 and

δ = 0.55. In panel (b) the focal species is slightly advantageous, with s0 = 0.01, so the maximum time to extinction appears

at x < 1/2. Other parameters in panel (b) are N = 500, γ = 0.2 and δ = 0.1.

More quantitatively, the mean time to extinction in the local-stochastic and in the global-stochastic cases, and

in addition T in fixed environment (which, as explained, is equivalent to the local-periodic case), were calculated

by Danino et al. [34]. Let us quote some of their result, and contrast them with the new results obtained in the

global-periodic case.

When s0 = 0, or otherwise in the weak selection regime where the effect of s0 is negligible, the maximum value of

T (max over all values of initial state x) is,

• In the local-stochastic case, T ∼ ln2N .

• In the fixed environment or local-periodic case, the maximum value of T is linear in N . This is an old result,

first obtained in Kimura [39]. Interestingly, Murray and Young [40] obtained this neutral-like results, for both

the chace of ultimate fixation and the persistence time, using a model with global competition. They consider

the parameter regime in which γ2 is negligible, so the expressions in (10) reduce to those of (9). Deviations

from the neutral predictions are then observed only in the quenched regime of Mustonen and Lässig [32].

• In the global-stochastic case, T ∼ N1/δ.

To understand these different dependencies on N , one notices that, as explained above, in the local-stochastic case

with s0 = 0 the abundance preforms an unbiased random walk along the logit (z) axis. By taking demographic

stochasticity into account only as an absorbing boundary at single individual (z ≈ ± lnN), one finds exit times that
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FIG. 2. The relationships between the mean time to extinction T and the size of the community, N , in different scenarios. Filled

red circles were obtained from Monte-Carlo simulations, Blue circles are theoretical predictions based on numerical integration

of Eq. (8) with the µ(x) and σ2(x) from Eqs. (9-12), and the dashed black line is a linear fit to these blue circles, presented

to guide the eye. As expected, in the global-periodic case the mean time to extinction grows exponentially with N , in the

global-periodic the grows satisfies a power-law, the local-periodic case behaves like the neutral model (T is linear in N), whereas

the local-stochastic dynamics yields log2N growth. In all cases s0 = 0 (so the T shown here is the mean time to extinction

starting from x = 1/2), δ = 0.2 and γ = 0.4.

scale with ln2N [37]. When competition is global and the environment stochastic the µ(x) term support an attractive

fixed point in x = 1/2, and extinction occurs through improbable sequences of bad years. During such a sequence

abundance decreases exponentially, so the number of bad years required to cross the one individual threshold is

proportional to lnN . Since the chance of such a sequence decreases exponentially with its length, the mean time to

extinction scales like a power-law in N .

At last, in the global-periodic case (that was not discussed by Danino et al. [34]) there are no such rare sequences

of bad years. Therefore, extinction may take place only due to demographic stochasticity (note that the σ2(x) term

in Eq. (10) is the same as in Eq. (9), reflecting only demographic variations). This requires a highly improbable

sequence of death events that may take a population with order N individuals to extinction, and such a sequence

is exponentially rare in N . Therefore, one expects T in the global-periodic scenario to grow exponentially with N .

These four behaviors: ln2N , linear, power-law and exponential, are shown in Figure 2.

When one cannot neglect s0 the situation is quantitatively different, but the qualitative hierarchy is preserved z[34]).

In that case under local competition T ∼ lnN (in both periodic and stochastic cases). When competition is global,

as long as |s0| is not too large and µ(x) still posses an attractive fixed point at some 0 < x < 1, extinction takes

place via accumulation of bad years (in the stochastic case) or random death events (in the periodic case) so T has

the same scaling with N , although the actual time to extinction for a given set of N , γ and δ become shorter as |s0|

grows.
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III. STOCHASTIC AND PERIODIC VARIATIONS IN DIVERSE COMMUNITIES

In the former sections we dealt with a two-species community. When environmental variations promote coexistence

(global competition), seasonal cycles contribute only to the stabilizing mechanism. In contrast, when the fluctuations

are stochastic a given population may pick a sequence of bad years that will take it to the brink of extinction.

Therefore, all other things being equal, coexistence times under seasonal cycles were found to be longer than T under

stochastic fluctuations.

In diverse communities this observation may change. Environmental variations facilitate coexistence only when

different species in the community respond to the environment in distinctive manners, i.e., the stabilizing effect

requires species-specific temporal niche. On the other hand, when a group of species has the same environmental

response (fitness of different species changes coherently) the within-group relative fitness is kept fixed, so at least

within this group there is no stabilizing effect.

Accordingly, the “species” that environmental variations promote their coexistence are not, or not necessarily,

taxonomic species. More accurately, temporal fluctuations facilitate the coexistence of functional groups, i.e., of

collections of organisms with similar traits that respond coherently to changes in temperature, precipitation and so

on. Although the total abundance of each functional varies through time, variations in total abundance (like N

variations) do not protect coexistence [41–44].

How many distinct temporal niches are allowed in a realistic system? The answer may reflect an essential difference

between stochastic fluctuations and seasonal cycles. When the variations are stochastic a system may support, in

principle, a large number of species, each with a specific temporal niche. Environmental stochasticity reflects erratic

variations of a wide variety of factors that affect demographic rates - climate, predation pressure, resource availability,

diseases and so on - and the different combinations of these factors suggest, potentially, many temporal niches.

Seasonality, in contrast, is usually associated with only a few environmental states. There is one profile of tem-

perature and precipitation that characterises the summer, and another profile appears during the winter. Of course

winters and summers properties varies among years, but these variations are not periodic; when winter-to-winter

fluctuations are important, one has to include stochasticity in the model. Therefore, with respect to seasonal cycles

one expects only a few temporal niches. Here we consider an extreme situation where only two temporal niches are

available. These niches may stabilize two functional groups, species who are doing better during the summer and

species that perform better during the winter. Environmental variations will stabilize the coexistence of these two

groups, but will not promote coexistence within each group. Therefore, their overall effect on biodiversity turns out

to be quite limited.

We stress that the comparison presented below, between the stabilizing effect of periodic cycles and stochastic

temporal variations, is not a “fair” comparison. We compare systems with many temporal niches in the stochastic

case, with systems with only two temporal niches in the periodic case. We would like demonstrate how periodic

variations may lose their ability to promote coexistence when the number of temporal niches is small.
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A. Models

In our simulations we implement the same set of competition models defined in Section II A for the two species

case. We add to these models a new parameter, ν, that reflects the rate in which new types (species, phenotypes) are

added to the system via mutation, speciation or migration from a regional pool.

When an individual dies, in the two-species model the gap it leaves is recruited by an offspring of another individual,

with probability that depends on fitness and other details of the dynamic. In the diverse community model this

happens with probability 1− ν, and with probability ν the gap is recruited by an originator of a new species.

Starting from a homogenous community (only one population) the number of species will increase until the rate in

which new species are added to the system will be balanced by the rate of extinction. The equilibrium species richness

SR serves as a metric of biodiversity. One expects SR to grow with the strength of the mechanisms that facilitate

coexistence.

In stochastic environment, we assume that every new species is a new functional group, i.e., its response to en-

vironmental variations is uncorrelated with other species. Therefore after each environmental shift every species i

picks its log-fitness si at random and independently from a uniform distribution between −1/2 and 1/2 . In periodic

environments there are only two functional groups. When the environment shifts (transition from summer to winter

and vice versa, si → −si for all the species in the system. Accordingly, species are divided into two general functional

groups, those with higher s in summer and those with higher s in winter.

B. Results

As explained, all our simulations are initiated with a homogenous community with only one species. When the

speciation rate ν is very small, one has to wait for a long time until a new species appears. The global-periodic

dynamic facilitates two-species coexistence better than the global-stochastic one. Accordingly, the invasion of the new

species happens faster and the abundance variations are smaller in the periodic case. This behavior is demonstrated

in Figure 3. As a result, when νN → 0 (which is analogous to the successive-fixation phase of [45], where one of the

species goes extinct before the next speciation event happens) SR under periodic variations is larger, though its value

is somewhere between one and two.

As the fundamental biodiversity parameter νN increases, the situation changes. Now many species try to invade.

While in the stochastic case each species may find a time window in which it is fitter than all other species, in the

seasonal system, as explained, there are only two type of populations and the fitness within each group is correlated.

As exemplifies in Figure 4, as νN grows the richness of a stochastic system is higher than the richness of a periodic

one.

The dependency of species richness on N when νN is large is summarized in Figure 5. Our baseline is the neutral

model, where fitness variations vanishes and all species are demographically equivalent. Under local competition

stochasticity destabilizes coexistence and diversity drops below the predictions of the neutral theory, whereas under

global competition stochasticity promotes coexistence the species diversity increases (see [46] for a detailed comparison

between stochastic systems). In contrast, in the periodic cases (both local and global) the species richness is more or

less equal to the one obtained under neutral dynamics.
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FIG. 3. Community dynamics under global-periodic (panel a) and global-stochastic (panel b) competition. The abundance

of different species in a community of N = 3000 individuals is shown for 40000 generations, where δ = 0.2 and νN = 0.001.

The speciation rate is very small, so the resident species (blue) dominate the system for many generations before the first new

species (red) invades. After invasion, periodic variations stabilize coexistence much better than stochastic fluctuations. In panel

(b) abundance variations are larger, extinction events occur after long sequences of bad years and are followed by periods of

monodominance. In contrast, in panel (a) the amplitude of abundance variations is much smaller and no extinction happens.

Due to these stability properties, periodic systems are more diverse when νN is vanishingly small.

To understand the convergence of the two periodic scenarios to the purely neutral limit, let us remaind ourselves

that the species richness in a neutral system scales linearly with the size of the community N [47]. As explained, in a

seasonal system species are divided into two functional groups, where the dynamics within each group is more or less

neutral. Therefore, the whole community is made of two competing functional groups with neutral dynamic. Within

each group SR is linear in its abundance, so overall the total richness will be the same. The actual abundance of each

functional group fluctuates around N/2, but the effect of these fluctuations (unless they are extremely large and lead

to bottlenecks that reduces diversity) is quite marginal.

IV. DISCUSSION

Seasonality, and the temporal population variability associated with it, were observed in a wide variety of empirical

systems [24–26]. Through this paper we provided a survey of its potential role in the maintenance of biodiversity in

ecological communities.

We showed that periodic variations promote coexistence better than stochastic fluctuations, since in a periodic

environment one cannot find rare sequences of bad years that drive populations to extinction. More quantitatively,

whereas facilitation of two-species coexistence state by stochastic abundance fluctuations yields persistence times that

grow like a power-law in N , under periodic variations yields T grows exponentially with N .

These results were demonstrated only for a two-species community, but one expects it to hold even when the number

of species is larger, provided that each species admits its own temporal niche. In diverse communities this requires a

set of narrow width niches that preserve a rigid temporal order. As species richness grows, these conditions become
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FIG. 4. Same as Figure 3 except that ν is larger by a factor of 10 so νN = 0.01. In the global periodic system (a), since there

are only two temporal niches, every invasion attempt is readily followed by extinction of other species at the same functional

group (note that colors are allocated to existing species only and when the red undergoes extinction, the yellow becomes red).

In global-stochastic environment (panel b) abundance variations are larger, still more species coexist because the system admits

an unlimited number of temporal niches.

less and less plausible.

To examine the case where the number of temporal niches is smaller that the number of species, we consider the

richness at an extinction-speciation equilibrium. Stochastic fluctuations (where the number of temporal niches is

assumed to be unlimited) are compared to seasonal variations with only two distinct temporal niches (summer and

winter, say), where the baseline is the equilibrium richness of Hubbell-Kimura neutral model [47, 48].

We discovered that a system with only two niches may stabilize only two functional groups, where within each

group the dynamics is more or less neutral. Accordingly, when the typical richness of the system (roughly measured

by the fundamental biodiversity parameter νN) is larger than the number of temporal niches, the diversity of the

community sticks to its neutral value. Again, although we have examined numerically this case only in a community

with two temporal niches, the main insights seem to be generic.

As always, typical natural scenarios are likely to be more complicated. For example, most systems are affected by

both stochastic and periodic variations, although the amplitude of periodic variations (in temperature or precipitation

between summer and winter, say) is usually much larger that the year to year stochastic fluctuations. The number

of temporal niches under seasonal forcing may be larger than two: phenological differences may allow for a wide

variety of temperature niches, as described by Mellard et al. [25]. Still, we believe that the results presented in this

work provide the essential insights required in assessing the relative importance of these effects and their potential

contribution to the richness of life forms in our world.
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FIG. 5. ln SR vs. ln νN in different scenarios of environmental variations. A community with global competition in stochastic

environment, (GS), yields the highest species richness, while the cases of local competition in stochastic environment (LS),

where temporal variations only impede coexistence, have the smallest diversity. Periodic variations with only two temporal

niches, in either local (PL) or global (PG) competition modes, have essentially the species richness predicted by the neutral

model, since within each functional group the dynamic is neutral. All results were obtained by averaging over long Monte-

Carlo simulations with N = 5000 and δ = 0.2, where γ was picked from a uniform distribution between −1/2 and 1/2. The

fundamental biodiversity parameter νN ∈ [0.05..5].

V. METHODS

A. Derivation of µ(x) and σ(x) in various cases - the diffusion approximation

As explained in the main text, in case of local competition, the deterministic change in x per unit time of a single

step 1/N (its instantaneous velocity) is,

fi,local(x) ≡ ẋlocal =
2x(1− x)

N

([
1

2
+
si
4

]
−
[

1

2
− si

4

])
=
six(1− x)

N
, (13)

while for global competition,

fi,global(x) ≡ ẋglobal =
x(1− x)

N

esi − 1

esi + 1− x
≈ six(1− x)

N
+

s2i
2N

x(1− x)(1− 2x). (14)

In addition, every single birth-death event is associated with a variance (demographic fluctuation) of 2x(1− x).

In both cases, after k steps the mean change in x (for a given history of the selection parameter s(t)) will be,

x0 → x0 +
k∑
i=1

fi(xi), (15)

where fi is the velocity in a given i environmental situation (global or local). Expanding this sum to first order around
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x0, one gets,

k∑
i=1

fi(xi) ≈
k∑
i=1

fi(x0) +
k∑
i=1

f ′i(x0)(xi − x0)

≈
k∑
i=1

fi(x0) +
k∑
i=1

f ′i(x0)
i∑

j=1

fj(x0). (16)

When the environmental fluctuations are periodic, every positive period is followed by a negative one of the same am-

plitude and duration and the internal summation is reduced to order s0. Once multiplied by the external summation,

this term is negligible. Therefore, the mean displacement over several periods is,

µ(x) =
x− x0
k

= f(x0). (17)

Plugging in (13) and (14) yields,

µglobal,periodic(x) =
x(1− x)

N

[
s0 +

γ2

2
(1− 2x)

]
µlocal,periodic(x) =

s0x(1− x)

N
. (18)

The square of the displacement is, (
k∑
i=1

fi(x0)

)2

=
k∑
i=1

fi(x0) ·
k∑
j=1

fj(x0), (19)

and this quantity vanishes, as before, over an integer number of periods. Therefore, the only contribution to σ2(x)

comes from demographic stochasticity:

σ2
global,periodic(x) = σ2

local,periodic(x) =
2x(1− x)

N2
(20)

For the stochastic cases we can use the assumption that the environmental states are uncorrelated over periods

that are longer than the dwell time, and simplify (16) by grouping together elementary steps into periods in which

the environment is fixed,

k∑
i=1

fi(xi) ≈
∑
p

τp∑
q=1

fp(x0) +
∑
p

τp∑
q=1

f ′p(x0)

q∑
j=1

fp(x0) (21)

In this expression, the environment is stable during periods of τp, and we sum over all environmental states indexed

p during the k-th step. Since the fp of different p are uncorrelated, the internal summation of Eq. (16) is reduced to

the sum over steps of the same state. Therefore,

k∑
i=1

fi(xi) ≈
∑
p

τpfp(x0) +
∑
p

f ′p(x0)fp(x0)
τ2p
2

(22)

When the values of τp are drawn from an exponential distribution whose mean is τ , τ2p = τp
2 + σ2

τ = 2τ2, where σ2
τ

is the variance of τp. Using,

f ′(x)f(x) =
1

2

d

dx
f2(x) =

1

2

d

dx
f2(x) =

1

2

d

dx
σ2
f (x) = σ′

f (x)σf (x). (23)

since in the local case, and approximately in the global case,

σf (x) ≈ γx(1− x)

N
, (24)
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one can write

µlocal,stochastic(x) =
x(1− x)

N

[
s0 +

γ2τ

2N
(1− 2x)

]
, (25)

and

µglobal,stochastic(x) =
x(1− x)

N

[
s0 +

γ2

2
(1− 2x) +

γ2τ

2N
(1− 2x)

]
. (26)

Finally, the variance in the stochastic cases is:

σ2
global,stochastic(x) = σ2

local,stochastic(x) =
2x(1− x)

N2

[
1 +

γ2τ

2
x(1− x)

]
. (27)

At this point we define δ, which is the environmental correlation time measured in generation. If a generation is

defined as N elementary birth-death events, and on average every τ elementary birth-death steps the environment

changes, then δ=τ/N . Correspondingly we define g = γ2δ/2 as the strength of the environmental variations.

B. Solutions for T using integration factor

Eq. (8) of the main text reads,

σ2(x)

2
T ′′(x) + µ(x)T ′(x) = −1. (28)

We solve it by using an integrating factor, such that[
T ′(x)e

∫ x 2µ(t)

σ2(t)
dt
]′

= − 2

σ2(x)
e
∫ x 2µ(t)

σ2(t)
dt

(29)

Integrating on both sides yields

T ′(x)e
∫ x 2µ(t)

σ2(t)dt = −
∫ x 2

σ2(t)
e
∫ t 2µ(q)

σ2(q)
dq
dt+ C1

T ′(x) = −

∫ x 2
σ2(t)e

∫ t 2µ(q)

σ2(q)
dq
dt+ C1

e
∫ x 2µ(t)

σ2(t)dt

. (30)

Finally,

T (x) = −
∫ x

∫ k 2
σ2(t)e

∫ t 2µ(q)

σ2(q)
dq
dt+ C1

e
∫ k 2µ(t)

σ2(t)dt

dk + C2 (31)

All that is left is to find the constants using the boundary conditions T (0) = T (1) = 0.
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