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ABSTRACT. This paper presents a unified representation of the brain based on mathematical functional measures
integrating the molecular and cellular scale descriptions with continuum tissue scale descriptions. We present
a fine-to-coarse recipe for traversing the brain as a hierarchy of measures projecting functional description into
stable empirical probability laws that unifies scale-space aggregation. The representation uses measure norms
for mapping the brain across scales from different measurement technologies. Brainspace is constructed as a
metric space with metric comparison between brains provided by a hierarchy of Hamiltonian geodesic flows
of diffeomorphisms connecting the molecular and continuum tissue scales. The diffeomorphisms act on the
brain measures via the 3D varifold action representing "copy and paste" so that basic particle quantities that are
conserved biologically are combined with greater multiplicity and not geometrically distorted. Two applications
are examined, the first histological and tissue scale data in the human brain for studying Alzheimer’s disease,
and the second the RNA and cell signatures of dense spatial transcriptomics mapped to the meso-scales of brain
atlases. The representation unifies the classical formalism of computational anatomy for representing continuum
tissue scale with non-classical generalized functions appropriate for molecular particle scales.

1. INTRODUCTION

One of the striking aspects of the study of the brain in modern neurobiology is the fact that the distributions
of discrete structures that make up physical tissue, from neural cells to synapses to genes and molecules, exists
across nearly ten orders of magnitude in spatial scale. This paper focusses on the challenge of building multi-
scale representations that simultaneously connect the quantum nano-scales of modern molecular biology for
characterizing neural circuits architecture in the brain with the classical continuum representations at the
anatomical gross and meso scales.

We have been highly motivated by the Cell Census Network project (BICCN [10]) which brings the nano
and micron scales of single cell measures of RNA via spatial transcriptomics [38, 8, 48, 33, 35] coupled to
the tissue scales of mouse atlases. The recent emergence of spatial transcriptomics as method of the year [51]
highlights the importance and ascendence of such approaches for understanding the dense metric structure of
the brain at the cellular scales. In our Alzheimer’s BIOCARD study [36] we are examining pathological Tau
at both the micro histological and macro atlas scales of Tau particle detections, from 10-100 µm [45] and to
human magnetic resonance millimeter scales for examining entire circuits in the medial temporal lobe [53].
In the mouse cell counting project we are examining single-cell spatial transcriptomics using modern RNA
sequencing in dense tissue at the micron scale and its representations in the Allen atlas coordinates [46, 47].

Most noteworthy for any representation is that at the finest micro scales nothing is smooth; the distribu-
tions of cells and molecules are more well described as random quantum counting processes in space [39].
In contrast, information associated to atlasing methods at gross anatomical tissue and organ scales extend
smoothly [43, 12, 24, 32, 22, 23, 31, 9, 42, 11]. Cross-sectionally and even cross-species, gross anatomical
labelling is largely repeatable, implying information transfers and changes from one coordinate system to an-
other smoothly. This is built into the representation theory of diffeomorphisms and soft matter tissue models
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for which advection and transport hold [20, 44, 1, 4, 34, 28, 27], principles upon which continuum mechanics
and its analogues are based, but not directly applicable for particles.

The focus of this paper is to build a coherent representation theory across scales. For this we view the
micron to millimeter scales via the same representation theory called mathematical measures, building the
finest micron scales from discrete units termed particle measures which represent molecules, synapses and
cells. As they aggregate they form tissues. This measure representation allows us to understand subsets
of tissues that contain discretely positioned and placed functional objects at the finest quantized scales and
simultaneously pass smoothly to the classical continuum scales at which stable functional and anatomical
representations exist. Since the study of the function of the brain on its geometric submanifolds -the gyri,
sulci, subnuclei and laminae of cortex- are so important, we extend our general framework to exploit varifold
measures [14, 3, 16] arising in the modern discipline of geometric measure theory. To be able to compare
the brains we use diffeomorphisms as the comparator tool, with their action representing 3D varifold action
which we formulate as "copy and paste" so that basic particle quantities that are conserved biologically are
combined with greater multiplicity and not geometrically distorted as would be the case for measure transport.

The functional features are represented via singular delta-diracs at the finest micro structure scales. The
functional feature is abstracted into a function space rich enough to accomodate the molecular machinery
as represented by RNA or Tau particles, as well as electrophysiology associated to spiking neurons, or at
the tissue scales of medical imaging dense contrasts of magnetic resonance images (MRIs). We pass to
the classical function continuum via introduction of a scale-space that extends the descriptions of cortical
micro-circuits to the meso and anatomical scales. This passage from the quantized features to the stochastic
laws is in fact akin to the Boltzman program transferring the view from the Newtonian particles to the stable
distributions describing them. For this we introduce a scale-space of kernel density transformations which
allows us to retrieve the empirical averages represented by the determinism of the stochastic law consistent
with our views of the macro tissue scales.

The representation provides a recipe for scale traversal in terms of a cascade of linear space scaling com-
posed with non-linear functional feature mapping. Following the cascade implies every scale is a measure
so that a universal family of measure norms can be introduced which simultaneously measure the disparety
between brains in the orbit independent of the probing technology, RNA identities, Tau or amyloid histology,
spike trains, or dense MR imagery.

Our brain measure model implies the existence of a sequence . This scale-space of pairs, the measure
representation of the brain and the associated probing measurement technologies we call Brainspace. To
formulate a consistent measurement and comparison technology on Brainspace we construct a natural metric
upon it allowing us to study its geometry and connectedness. The metric between brains is constructed via
a Hamiltonian which defines the geodesic connections throughout scale space, providing for the first time a
hierarchical representation that unifies micro to millimeter representation in the brain and makes Brainspace
into a metric space. Examples of representation and comparision are given for Alzheimer’s histology inte-
grated to magnetic resonance imaging scales, and spatial transcriptomics.

2. RESULTS

2.1. Theoretical Results.

2.1.1. Measure representation of the particle and atomistic structures of the brain. To build a coherent theory
we view the micron to anatomical scales via the same representation theory building upon discrete units
termed particles or atoms. As they aggregate they form tissues. This is depicted in Figure 1. The left panel
shows mouse imaging of CUX1 labelling of the inner layers of mouse cortex (white) and CTP2 imaging
of the outer layers (green) at 2.5 micron in plane resolution. Notice the discrete nature of the cells clearly
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GENERALIZED FUNCTION REPRESENTATION OF THE BRAIN 3

resolved which form the layers of tissue which are the global macro scale features of layer 2,3,4 which stain
more prolificaly in white and the outer layers 5,6 which stain more prolifically in green.

µ` PMpRd � Fq T1ÝÑ ν PMpRd � Fq T2ÝÑµ`1 PMpRd � F 1q

Spatial reduction

MeasureTransformation

Feature Reduction

FIGURE 1. Left: Tissue from a NexCre+/-;Brn2fl/+ adult mouse mimicing a wild-type
mouse with CUX1 labelling of layer ii/iii,iv and CTIP2 in layers v,vi in green. Shows sections
at 2.52 � 50µm3 6 tile images, 1433� 1973 pixels; taken from Uli Mueller. Right: Showing
the abstraction of a coarse-to-fine hierarchy µ`�1, µ`, µ`�1 with fine molecular scales shown
at the bottom with colors depicting F function ascending scales. Bottom: Space and func-
tion transformation cascade µ` T1Ñ ν

T2Ñ µ`1 resampling the hierarchy of measures.

Our representation must exist simultaneously at both the micro and tissue millimeter scales. A key aspect
of anatomy is that at a micro or nano scale, information is encoded as a huge collection of pairs pxi, fiq where
xi P Rd (d � 2, 3) describes the position of a “particle” and fi is a functional state in a given set F attached
to it (protein or RNA signature or Tau tangle, or for single cell Neurophysiology the dynamics of neural
spiking.). Basically everything is deterministic, with every particle attached to its own functional state among
possible functional state in F . But zooming out, the tissue level, saymm scale, appears through the statistical
distribution of its constituents with two key quantities, the local density of particles ρc and the conditional
probability distribution of the functional features µxpdfq at any location x. At position x, we no longer have
a deterministic functional state fpxq but a probability distribution µx of functional states.

The integration of both descriptions into a common mathematical framework can be done quite naturally
in the setting of mathematical measures which are mathematical constructs that are able to represent both
the discrete and continuous worlds as well as natural level of approximation between both. Indeed the set
MpRd � Fq of finite positive measures on Rd � F contains discrete measures

(1) µ �
¸
iPI

wiδxi b δfi ,

where wi is a positive weight that can encode the collection pxi, fiq at micro scale.
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As in Boltzmann modelling we describe the features statistically at a fixed spatial scale transferring our
attention to their stochastic laws modelled as conditional probabilities in MP pFq with integral 1. For this we
factor the measures into their marginals ρ, ρpAq :� µpA � Fq for measurable A � Rd, and their family of
conditional probability distributions on f given x :

µpdx, dfq � ρpdxqµxpdfq , on Rd � F ,(2a)

with conditionals

x ÞÑ µx PMP pFq .(2b)

Continuous tissues we abstract as brain measures µ with marginal ρ having a tissue density ρpdxq � ρcpxqdx
with respect to the Lebesgue measure on Rd. A fundamental link between the molecular and continuum
tissue can be addressed through the law of large number since if pxi, fiqi¥0 is an independent and identically
distributed sample drawn from law µ{M of Rd � F where M � ³

Rd�F µpdx, dfq is the total mass of such µ,
then we have almost surely the weak convergence

µN :� M

N

Ņ

i�1

δxi b δfi Ñ µ .

2.1.2. Transforming scales via empirical laws. Passing from the tissue scales to the finest molecular and cel-
lular scales behooves us to introduce a scale-space so that empirical averages which govern it are repeatable.
As depicted in the right panel of Figure 1, our model becomes a sequence of measures:

(3) µ � pµ`q`�0,1,... .

The idealization descends from the the coarse tissue scale (top) to the finest particle representation (bottom),
with color representing function f P F , and radius space-scale.Throughout the range of scales is denoted
shorthand `   `max to mean 0 ¤ `   `max with lowest scale ` � 0 and upper `max not attained.

The idealization of each particle and feature as a generalized function, a measure, requires that it is paired
or dual to the measurement process or measurement probes δz : h ÞÑ hpzq. The scale space of the measure-
ment probes are introduced via kernel functions carrying the resolution scale σ or reciprocally a bandwidth,
something analogous to Planck’s scale. For this we introduce the abstract representation of our system as a
collection of descriptive elements z P Z made from spatial and functional features. We transform our math-
ematical measure µp�q on Z generating new measures µ1p�q on Z 1 by defining correspondences via kernels
z ÞÑ kpz, dz1q, with the kernel acting on the particles Krδzispdz1q � kpzi, dz1q; the measures transform as

(4) Krµspdz1q �
»
Z
kpz, dz1qµpdzq .

Depicted in bottom of Figure 1 is our construction of a composition of transformations crossing scales,
consisting of linear spatial smoothing followed by non-linear transformation of the feature laws. The first
operator transforms via a linear kernel k1ppx, fq, �q leaving the feature space unchanged Z � Rd � F :

T1 : µ` Ñν �
»
Rd�F

k1ppx, fq, �qµ`pdx, dfq .(5a)

The second transforms nonlinearly to the new features F 1 via the kernel k2ppx, αq, �q transforming any feature
probability α PMP pFq. Decomposing νpdx, dfq � ρpdxqνxpdfq into its marginal and conditional gives

T2 : ν Ñµ`1 �
»
Rd

k2ppx, νxq, �q ρpdxq .(5b)
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GENERALIZED FUNCTION REPRESENTATION OF THE BRAIN 5

We now examine crossing measure scales µ`, ` � 0, 1, . . . resampling into a hierarchy of lattices for
histology and spatial transcriptomics. At every scale µ` remains a measure allowing for the procedure of
(5a), (5b) for scale-space renormalization to be executed recursively.

2.1.3. Rescaling across Computational Lattices. Our hierarchy crosses scales by resampling the measures
µ` � °

iPI wiδxi b δfi across lattices or grids allowing us to interpolate between the continuum and our
discrete computational codes at different scales. Resampling projects one set of particles pxi P RdqiPI to the
resampling lattice of particles and tiles pyj P Yj � RdqjPJ , with YjYj � Rd forming a disjoint partition that
for regular lattces are a complete covering. We reweight with πpxi, Yjq, πpxi,Rdq � 1 which computes the
fraction that particle xi shares with the lattice site Yj for all particles xi and tiles Yj .

The kernel transformation k1 performs space reduction with the weights of π, and k2 feature transformation
via maps from machine learning φ : F Ñ F 1:

k1ppx, fq, p�, �qq �
¸

jPJ
πpx, Yjq δyjp�q b δf p�q

k2ppx, νxq, p�, �qq � δxp�q b δφpνxqp�q
.(6a)

This gives the resampled measure with new space density ρ1 � °
jPJ wjδyj :

µ1 �
¸

jPJ
wj δyj b δφpνyj q(6b)

with

#
wj �

°
iPI wi πpxi, Yjq

νyj � 1
wj

°
iPI wi πpxi, Yjq δfi

.

See Methods 4.1 for derivation. The indexing across scales is defined disjointly I X J � H.

2.1.4. Brainspace as a Hierarchy of Diffeomorphic Flows. We want to build correspondences at any scale,
each scale having different numbers of particles and resolutions. We do this by connecting the discrete
particles through the continuum using the diffeomorphism group. Connection between sample brains occurs
through diffeomorphic transport using the group of k-times continuously differentiable diffeomorphisms at
any layer ϕ P Gk with group operation function composition ϕ � ϕ1. For any brain µ � °

iPI wiδxi b δfi the
diffeomorphisms act pϕ, µq ÞÑ ϕ � µ according to

(7) ϕ � µ �
¸
iPI

wi|dϕpxiq|δϕpxiq b δfi .

The introduction of the |dϕpxq| term in the action enables the crucial property that when a tissue is extended
to a larger area, the total number of its basic constituents increase accordingly and are not conserved, in
contrast to classic measure or probability transport. We call this action the varifold action, and it corresponds
to "copy and paste".

To accomodate scales we take the product group of diffeomorphisms with elements ϕ � pϕ`q` `max P Gk

acting component-wise (Figure 2), with group action on the hierarchy given by

(8) ϕ � µ :� pϕ` � µ`q` `max .

Dynamics occurs through the group generated as a dynamical system in which the vector fields t ÞÑ u`t
control the diffeomorphisms:

(9) 9ϕ`t � u`t � ϕ`t .
As depicted in Figure 2 the controls are coupled across scales by successive refinements v`, `   `max:

(10) u` � u`�1 � v` ,
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6 M. I. MILLER, D. TWARD, AND A. TROUVÉ

FIGURE 2. Hierarchical system, controls u` � u`�1�v`, u0 � v0 and flows ϕ`, ` � 0, 1, . . . .

with our convention taking u�1 � 0. The controls are in reproducing kernel spaces (RKHS’s) V`, norm
} � }V` with the hierarchy u :� pu`q` `max in the product V �±

` `max
V`. The kernels are taken as diagonal

K`p�, �q � g`p�, �qidd, idd a d� d identity matrix (see [29] for non-diagonal kernels),The accumulation across
scale of Green’s functions becomes

(11) ḡ` :�
¸`

k�0
gk .

2.1.5. Geodesic structure of Brainspace. Dynamics translates into a navigation in the orbitGk �µ. Geodesic
mapping t ÞÑ ϕt � µ flows the control along minimum energy onto µobs encoded as a endpoint matching
condition. The matching condition measures when two brains are equal, defined using the measure norm.
Brains with 0 norm difference are equal; brains with small normed difference are similar. Every brain has a
variable number of particles, with no apriori correspondence between particle dimensions. Measure norms
accomodate these variabilities. The measure norm at each scale is denoted }µ}2

W�

`
; across scales it becomes

(12) }µ}2W� �
¸

` `max
}µ`}2W�

`
.

See the Methods section 4.4 for the construction of the measure norm.
Geodesic mapping solves for the optimal u. :� put, t P r0, 1sq with α ¡ 0:

(13)

$'&
'%

min
u.PL2pr0,1s,V q

1

2

`max�1¸
`�0

» 1

0

}u`t � u`�1
t }2V`dt�

α

2
}ϕ1 � µ� µobs}2W�

9ϕt � ut �ϕt, ϕ0 � Id

.

Hamiltonian control reparameterizes the flow via the state qt :� pq`tq` `max:

(14) q`t :� px`i,t � ϕ`tpx`iq, w`i,t � w`i |dϕ`t|px`iqqiPI` .
The state encodes the action of (8) as µpqtq :� ϕt � µ, allowing us to rewrite the endpoint in the state:

(15) Upq1q :� α

2
}µpq1q � µobs}2W� � α

2
}ϕ1 � µ� µobs}2W� .

Define ϕ`t,s � ϕ`s � pϕ`tq�1 at any scale. To write the optimal control explicitly, we require two smoothness
conditions: (i) the controls are in RKHS’s V` at least twice continuously differentiable Cm

0 , m ¥ 2, and (ii)
the endpoint function Upq1q as a function of the state q is smoothly differentiable C 1.
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Then the optimal control of (13) satisfies for every `   `max:

u`tp�q �
¸

`1 `max

¸
iPI`1

�
ḡ`^`

1px`1i,t, �qpx,`
1

i,t � pw,`
1

i,t w
`1

i,t∇1ḡ
`^`1px`1i,t, �q

	
,(16a)

with

$''''''&
''''''%

px,`i,t � pdϕ`t,1qT px`i,tqpx,`i,1 � pw,`i,1 w
`
i,1

» 1

t

pdϕ`t,sqT px`i,tq∇pdivu`sqpx`i,sqds
pw,`i,t � pw,`i,1 |dϕ`t,1|px`i,tq

b.c.’s
px,`i,1 � �∇x`i

Upq1q
pw,`i,1 � �∇w`

i
Upq1q

.(16b)

Here ḡ is from (11) and ∇1ḡpa, bq denotes the gradient with respect to the first variable. The optimal controls
couple the hierarchy across scales with the refininements given by v` � u` � u`�1, u�1 � 0. Classical
optimal control theory gives the gradient matching endpoints of (16b), p1 �∇qUpq1q � 0. Equation (26) of
the Methods section 4.4 gives the explicit calculation of the gradients of the endpoint conditions based on the
Hilbert space construction of the measure norm.

2.2. Experimental Results.

2.2.1. Gaussian Scale-Space Resampling of Tau Histology. Figure 3 shows the multi-scale data from the
clinical BIOCARD study [2] in which we are studying the spatio-temporal flow of pre-clinical biomarkers
of Alzheimer’s disease within the medial temporal lobe [26, 45, 21, 54]. The top row (left panel) shows
the clinical magnetic resonance imaging (MRI) collected for subjects longitudinally over the decades of the
study. The top row (middle) shows the high-field 200µm MRI scale depicting the medial temporal lobe
including the collateral sulcus and lateral bank of the entorhinal cortex for an Alzheimer’s subject along with
their histology (right) at µm scale associated to the high-field MRI section.

The molecular histology measure encodes the detected Tau and amyloid particles with the size and geomet-
ric variation µ � °

i δxibδfi ,F � R�. We take the weights as identically wi � 1 for fine scale particles with
the functional features fi P F either size and geometric variation of particles. Crossing from the histology
projects the Tau particles pxj P RdqiPI accumulating Tau on the resampling tissue lattice pyj P Yj � RdqjPJ
using Gaussian scale-spaces based on normal reweighting in R2. At the original scale the wi � 1 for all
particles. Resampling the feature space projects onto moments of Tau, shown are two:

πσpxi, Yjq � 1{p2πσ2q
»
Yj

e�|y�xi|
2{2σ2

dy .

µ1 �
¸

jPJ
wjδyj b δφpνyj q

with

#
wj �

°
iPI πσpxi, Yjq, νyj � 1

wj

°
iPI πσpxi, Yjq δfi

φpνyjq �
�³

F fνyjpdfq,
³
Fpfq2νyjpdfq

� P F 1
.

Figure 3 (bottom two rows) shows the detected Tau pathology from the output of a machine learning al-
gorithm depicting the Tau particles as red dots (left column) for two sections at 4µm scale. The right two
columns shows the first several moments of the whole sections at the tissue scale depicting the mean and
variance of the particle size. Feature reduction for matching brains across scales projects the conditional
feature distributions νy associated to the tissue lattice onto their moments. The measure representation and
measure norm in navigation takes these features as components in calculating distances.
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FIGURE 3. Top: Medial lobe at 1 mm and high-field 200µm MRI along with 4µm Tau
histology (right). Bottom rows: Panels from the Alzheimer brain (top row) showing the
4µm Tau histology section with the first moments of Tau particle size (columns 2,3) shown
at tissue scales; deepest red color bar denotes 80µm2 Tau particle area.

Shown in Figure 4 is the 4µm histology (rows 1,2, column 1) are several sections with the output of a
machine learning algorithm depicted as red dots showing the estimation of the positions of the Tau particles.
Columns 2 and 3 depict the mathematical measure representation of the perirhinal cortex constructed from the
positions and sizes at the 4µm scale (column 2) and the tissue scale (column 3) using Gaussian resampling
onto the tissue lattice. The color bar indicates the largest particle size as deep red at 80µm2. The gradients
in tau tangle area between superficial and deep layers is apparent with the deep red as high as 80µm2 for the
innermost layers of tissue.

The rightmost panel (top) shows the metric comparison of the perirhinal cortex mapping the two sections
in column 1. The vector fields shown in the right column encodes the geodesic transformation showing the
narrowing of the banks of the perirhinal cortex exhibiting tissue scale motions order 1000µm (brightness on
color bar).

The bottom three rows of Figure 4 shows these measures navigating through the orbit mapping one fold
onto the other in the collateral sulcus at the boundary of the trans entorhinal cortex region. Associated to the
motions are order 1000µm fold deformation. Notice the multiple scales of transformation depicted between
row 3 and rows 4 and 5. Rows 4 and 5 show the transformation based on the first two moments of the feature
size encoded in νy based on the measure norm distances.

2.2.2. Spatial Transcriptomics. Methods in spatial-transcriptomics which have emerged for localizing and
identifying cell-types via marker genes and across different cellular resolutions [37, 13, 41, 30, 48] presents
the opportunity of localizing in spatial coordinates the transcriptionally distinct cell-types.
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GENERALIZED FUNCTION REPRESENTATION OF THE BRAIN 9

FIGURE 4. Top: Showing detected Tau 4µm histology (column 1) and mathematical mea-
sures depicting molecular and tissue scales (column 2, 3) showing the first moments of Tau
particle size on the perirhinal cortex; saturated red color denotes 80µm2 Tau area; rows show
sections. Top right: Showing the metric size of the deformation via the vector field mapping
of the perirhinal sulcus narrowing with motions having maximal value 1000µm. Bottom:
Grids depicting geodesic navigation ϕt �µ, t P r0, 1s from collateral sulcus (left column, Fig-
ure 3) showing widening of folds order 1000 µm motion across molecular and tissue scales
depicting first two moments.

We now examine the molecular and tissue scale brain measures transferring from RNA molecules to cells
examining the building blocks at cellular scales of mixtures of RNA functional types measured with MER-
FISH [50]. We examine the spatial transcriptomics across two-scales going from the molecular RNA to
cellular and then tissue as depicted in Figure 5.
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10 M. I. MILLER, D. TWARD, AND A. TROUVÉ

FIGURE 5. Top: Showing the multi-scale renormalization from particle measure pδxiqiPI to
cells and cell-centers pδyj , yj P YjqjPJ to tissue tiling pδzk , zk P ZkqkPK . Bottom: MERFISH
[50] showing RNA molecules (left) shown as colored markers depicting locations of the 167
RNA gene species (bar scales 1, 10µm); middle shows 17 cell types as colored particles
clustered on cell centers with feature vectors eigen function reduction of 167 dimension
RNA; right shows k�means clustering to tissue type.

The molecular RNA measured at the sub micron scale is aggregated to represents the cells and tissue at the
micron scales. This is depicted in the cartoon idealization in the top row of Figure 5.

The molecular measures represent RNA locations with features sparse RNA vectors, µ � °
iPI δxi b δfi ,

F � R167. Crossing to cells pYj � R2qjPJ we partition I � YjPJIj into subsets of particles closest to the
cells:

Ij � ti P I : dpxi, Yjq   dpxi, Yj1q, j1 � ju , j P J .
The RNA particles pxi P RdqiPI are resampled to the cell centers pδyj , yj P Yj � RdqjPJ accumulating to
nonsparse mixtures of RNA with probabilities computed on the 17 cell-types F 1 � r0, 1s17:

πpxi, Yjq �
"

1 for xi, i P Ij

0 for xi, i R Ij
,

µ1 �
¸

jPJ
wj δyj b δφ1pνyj q

with

#
wj � |Ij|, νyj � 1

|Ij |

°
iPIj

δfi

φ1pνyjq � pf 1j,1, . . . , f 1j,17q P F 1 � r0, 1s17
,

To calculate probability vectors in F 1 we cluster the 167-dimensional RNA features into a statistical summary
of reduced dimension based on principle components (PCA), orthogonal PCA functions E1, E2, . . .. We
project the conditional feature laws, εyjpnq �

³
Enpfqνyjpdfq and compute the conditional probabilities

f 1j,c � PrtC � c|εyjp1q, εyjp2q, . . . u , c � 1, . . . , 17 .
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GENERALIZED FUNCTION REPRESENTATION OF THE BRAIN 11

Crossing to tissue resamples the cells to the lattice pδzk , zk P Zk � R2qkPK using Gaussian resampling:

πσpyj, Zkq � 1

2πσ2

»
Zk

e�|z�yj |
2{2σ2

dz .

µ2 �
¸

kPK
wkδzk b δφ2pνzk q

with

#
wk �

°
jPJ |Ij| πσpyj, Zkq, νzk � 1

wk

°
jPJ |Ij| πσpyj, Zkq δf 1j

φ2pνzkq �
�
f2k,1, . . . , f

2
k,10

� P F2 � r0, 1s10
.

The tissue scale conditional probabilities are modelled on 10 types with feature vectors computed using
K=10-means clustering on νzk . The output of K-means is a set of orthogonal indicator functionsE1, E2, . . . , E10,
where Enpfq � 1 if f is closer to the center of cluster n than the center of any other cluster, and 0 other-
wise. Cluster distance in K-means is computed using the Fisher-Rao metric computed as the angle between
the square root of pairs of probability mass functions νzk , νzk1 , each viewed as points on an 18 dimensional
sphere (17 cell types plus one backround). The projection onto the En, εzkpnq �

³
Enpfqνzkpdfq gives

conditional probabilities

f2k pcq � PrtC � c|εzkp1q, . . . , εzkp10qu .
In both scales depicted in Figure 5 the probabilities are modeled as concentrated on one class with prob-

ability 1 and the others 0. The bottom row of Figure 5 (left panels) shows the RNA measure µ depicted as
colored markers with different colored dots the features corresponding to the 100’s of different gene species
(bar scale 1, 10 microns). The middle panel µ1 shows the labels of the cell type feature space of 17 cell types
associated to the maximal probability in the PCA projection from a classifier on the PCA dimensions based
on the mixtures of RNA at each cell location, and the right panel shows the tissue type feature space of 10
tissue types associated to the K means procedure.

Shown in Figure 6 are results from Wang et. al. 2018 [48] depicting neuronal cell types classified via high
dimensional features vectors of as many as 20, 000 genes. Cell types depicted as colors include ecitatory

FIGURE 6. Top: Cells from Wang et. al. 2018 [48] depicting neuronal cell types; right
panels show cell size and entropy of the conditional distributions νx for the single section in
panel 1. Rows 2 and 3: Mapping ϕt � µ at the fine cell scales showing the cell types mapping
with the bottom row mapping the entropy measure of each particle.

cells yellow eL2/3, orange eL4, red eL5, and inhibitory cell green SST, light blue VIP, for example. Figure
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12 M. I. MILLER, D. TWARD, AND A. TROUVÉ

6 (top panels 1 and 2) shows the cell types in the cortical tissue coordinates [48]. The right two panels show
features from the mathematical measure

°
iwiδxi b δfi , F � tcell typesu. Panel 3 shows the tissue scale

with the conditional probabilities projected onto the features of mean cell type size with panel 4 showing
the conditional entropy of cell type. The entropy is a measure of dispersion across the cell identities given
by the expectation of the log probability function. An entropy of zero means that space location feature
disribution νx has all its mass on 1 cell type. The bottom two rows of Figure 6 show the mapping ϕt �µ of the
spatial transcriptome measure at the fine scale showing the particles (middle row); the bottom row depicts the
entropy of the measure of each particle.

2.2.3. Cellular Neurophysiology: Single unit neurophysiology uses space-time models of spiking neurons
as inhomogeneous Poisson counting processes [39]. Neurons xi are modelled as counting measures in time
Niptq, t ¥ 0 with intensity λptq, t ¥ 0, so that

PrpNiptq � nq � p³t
t0
λpsqdsqn
n!

e
�

³t
t0
λpsqds

.

We associate to each neuron the set of spike times fi � ptkq1¤k¤nfi
with feature space F � tf � ptkq1¤k¤nf

:

nf ¥ 1, t1   t2 � � �   tnf
u. A neural network becomes

µ �
¸
i

δxi b δfi , xi P Rd, fi P F .

Post-stimulus time (PST) [17] and interval histograms are used often in neurophysiology to examine the
instantaneous discharge rates and inter-spike interval statistics [6, 55], the first a linear dimension reduction
on feature space and the second non-linear. The interval histogram abandons the requirement of maintaining
the absolute phase of the signal for average empirical statistics measuring temporal periodicity and phase
locking [55, 40]. Synchronized discharge rates are computed using binning functions rbi, bi�1q, i � 1, � � � , B
and Fourier weighting j=

?�1, frequencies n � 0, 1, . . . :#
φpstn pνxq �

°
i e

jωni
³
F

1
nf

°nf

k�1 1rbi,bi�1qptkqνxpdfq ,
φintn pνxq �

°
i e

jωni
³
F

1
nf

°nf

k�1 1rbi,bi�1qptk � tk�1qνxpdfq .
The n � 0 frequency computes integrated rate; each phase-locked feature is complex φn P C. Interval
histograms provide an exponentially weighted representation of the autocorrelation function (see Appendix
??) and therefore an asymptotically biased estimator of the power-spectrum.

FIGURE 7. Left shows Mai-Paxino atlas of the high-field MRI section of the Medial Tem-
poral Lobe with hippocampus and entorhinal cortex compartments shown on the right.
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GENERALIZED FUNCTION REPRESENTATION OF THE BRAIN 13

2.2.4. Dense MRI images and Large Deformation Diffeomorphic Metric Mapping (LDDMM). The tissue
continuum has been studied extensively in MRI and Computational Anatomy as depicted in Figure 7. Take
as the dense tissue model ρpdxq � ρcpxqdx with

(17) µ �
»
Rd

ρcpxqδx b µxdx .

Lattice implementations on voxels in imagery has ρ � °
iPI δxi reducing the integrals to sums as in (1), (7).

For real-valued images such as for atlasing and 1 mm scale MRI (see Figure 7), the functional feature is
identified with the scalar image fpxq P R� � F , x P R3 with the feature value often taken as deterministic
µx � δfpxq with ρc � 1. The action becomes equivalent to the action for LDDMM [5]:

ϕt � µ :�
»
Rd

|dϕtpxq|δϕtpxq b δfpxqdx �
»
Rd

δx b δf�ϕ�1
t pxqdx .

3. DISCUSSION

Computational anatomy was originally formulated as a mathematical orbit model for representing medi-
cal images at the tissue scales. The model generalizes linear algebra to the group action on images by the
diffeomorphism group, a non-linear algebra, but one that inherits a metric structure from the group of diffeo-
morphisms [25]. The formulation relies on principles of continuity of medical images as classical functions,
generalizating optical flow and advection of material to diffeomorphic flow of material, the material rep-
resented by the contrast seen in the medical imaging modality such as fiber orientation for diffusion tensor
imaging, and or bold contrast for gray matter content. Unifying this representation to images built at the parti-
cle and molecular biological scale has required us to move away from classical functions, to the more modern
20th century theory of non-classical generalized functions. Mathematical measures are the proper represen-
tation as they generally reflect the property that probes from molecular biology associated to disjoints sets
are additive, the basic starting point of measure theory. Changing the model from a focus on groups acting
on functions to groups acting on measures allows for a unified representation that has both a metric structure
at the finest scales, as well as a unification with the tissue imaging scales.

The brain measure formulation, carries with it implicitly the notion of scale-space, i.e. the existence
of a sequence of pairs across scales, the measure representation of the brain and the associated scale-space
reproducing kernel Hilbert space of functions which correspond to the probing measurement technologies. As
such part of the prescription of the theory is a method for crossing scales and carrying information from one
scale to the other. Important to this approach is that at every scale we generate a new measure, therefore the
recipe of introducing "measure norms" built from RKHS’s for measuring brain disparity is universal across
the hierarchy allowing us to work simultaneously with common data structures and a common formalism.
Interestingly, the measure norms do not require identical particle numbers across brains in brain space at the
molecular scales.

The key modelling element of brain function is that the conditional feature probability is manipulated
from the quantized features to the stochastic laws. These are the analogues of the Boltzman distributions
generalized to the complex feature spaces representing function. As they correspond to arbitary feature
spaces not necesarily newtonian particles, we represent them simply as empirical distributions on the feature
space, with the empirical measure constructed from the collapse of the fine scale to the resampled coarse
scale. To model rescaling through scale-space explicitly, the two kernel transformation are used allowing us
to retrieve the empirical averages represented by the determinism of the stochastic law consistent with our
views of the macro tissue scales. This solves the dilemna that for the quantized atomic and micro scales
cell occurence will never repeat, i.e. there is zero probability of finding a particular cell at a particular
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location, and conditioned on finding it once it will never be found again in the exact same location in another
preparation. The properties that are stable are the probability laws with associated statistics that may transfer
across organisms and species.

Importantly, our introduction of the |dϕpxq| term in the action enables the crucial property that when a
tissue is extended to a larger area, the total number of its basic constituents should increase accordingly and
not be conserved. This is not traditional measure transport which is mass preserving which is not a desirable
feature for biological samples. Rather we have defined a new action on measures that is reminiscent of the
action on d-dimensonal varifolds [7]. We call this property "copy and paste", the notion being that the brain
is built on basic structuring elements that are conserved.

The use of feature reduction as a key step in crossing scales is commonly done in segmentation techniques
at tissue scales [49, 15]. Bayes classifiers are constructed for parcellating the brain for studying neurode-
velopmental and neurodegenerative disease. Feature reduction maps gray levels in F � r0, 255s to decision
regions θn � r0, 255s. Feature reduction maps to a probability vector on tissue types, φ : F Ñ F 1 � pR�qN
integrating over the decision regions, φnpνxq �

³
θn
νxpdfq � pn, n � 1, . . . , N .

The aggregation across scales from particle to tissue scales on lattices provides the essential link to in-
ference on graphs. It is natural for these aggregated features with associated conditional probability laws
to become the nodes in Markov random field modelling for spatial inference; see examples in spatial tran-
scriptomics [56] and tissue segmentation [52]. Building neighborhood relations as conditional probabilities
between lattice sites from which global probabilites laws are constructed with the Hammersley-Clifford the-
orem [18] links us to Grenander’s metric pattern theory [19] formalisms with the atoms and conditional laws
pxi, νxiqiPI at any scale playing the roles of the generators.

4. METHODS

4.1. Method of Resampling Across Scales of Lattices. Taking µ � °
iPI wiδxibδfi with kernels (6a) gives

our two-step transformation and (6b). Define wj �
°
iPI wiπpxi, Yjq , νyj �

°
iPI wiπpxi, Yjqδfi{wj , then the

calculation with µ � °
iPI wiδxi b δfi gives

T1 : µ ÞÑ ν �
»
Rd�F

k1ppx, fq, �qµpdx, dfq

�
»
Rd�F

¸
jPJ

πpx, Yjq δyj b δf
¸
iPI

wi δxi b δfi pdx, dfq

�
¸
jPJ

δyj b
�¸
iPI

wiπpxi, Yjqδfi
�
�
¸
jPJ

wjδyj b νyj .

The space density follows from

ρ �
»
F

¸
jPJ

wjδyj b νyjpdfq �
¸
jPJ

wjδyj .

The feature transformation φ : MP Ñ F 1 gives (6b):

T2 : ν ÞÑ µ1 �
»
Rd

k2ppx, νxq, �q ρpdxq

�
»
Rd

δx b δφpνxq

�¸
jPJ

wjδyjpdxq
�

�
¸
jPJ

wjδyj b δφpνyj q .
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GENERALIZED FUNCTION REPRESENTATION OF THE BRAIN 15

4.2. Method of Comparison via the Geodesic Metric. For any µ � °
iPI wiδxi b δfi , the diffeomorphisms

act pϕ, µq ÞÑ ϕ � µ according to (7). To accomodate scale the product group for the hierarchy becomes

Gk � Gk � � � � �Gklooooooomooooooon
`max times

,

with elements ϕ P Gk satisfying law of composition component-wise ϕ � ϕ1 � pϕ` � ϕ1`q` `max (Figure 2).
The group acts on the hierarchy componentwise according to (7), (8) ϕ � µ.

Dynamics occurs through the group action on the brain measures generated as a dynamical system in which
the hierarchical control t ÞÑ ut :� pu`tq` `max flows the hierarchy t ÞÑ ϕt with ODE of (9) 9ϕt � ut �ϕt.

Each control u` is constrained to be an element of a reproducing kernel Hilbert space (RKHS) V` with
inner-product x , yV` . The total u is in the product u P V � ±

` `max
V` with inner-product determining the

norm x , yV � °
` `max

x , yV` . The spaces are organised as a sequence of continous embeddings:

V 0
ãÑ � � � ãÑ V `max ,

where V `max is an additional layer containing the others. The hierarchy is connected via the continuous linear
operator A : V Ñ V with v � Au for u` � u`�1 � v`, u0 � v0. The control process u. � put, t P r0, 1sq P
L2pr0, 1s,V q has finite square-integral with total energy

EApu.q � 1

2

» 1

0

}Aut}2V dt .

Optimal curves which minimize the integrated energy EA between any two fixed boundary conditions (BC)
ϕ0 and ϕ1 where ϕ1 is accessible with a path of finite energy extends the LDDMM setting [5] to a hierarchy
of diffeomorphisms and describes a geodesic for an associated Riemannian metric [29] onGk:

(18) dGk
pϕ0,ϕ1q2 :� min

u.PL2pr0,1s,V q: 9ϕt�ut�ϕt

with BC ϕ0,ϕ1

EApu.q

The metric distance from µ0 to µ1 in the orbit Gk � µ0 is given by the shortest length paths of (18)
with boundary conditions ϕ1 � µ0 � µ1. Existence of solutions can be established for minimizers of (18).
Specifically, for the group Gk properly defined and V `max the space of m-times continuously differentiable
vector fields vanishing at infinity with m ¥ k ¥ 1, the metric holds. See A for technical statement.

4.3. Method via Hamiltonian Control. The Hamiltonian method reduces the parameterization of the vector
field to the essential dynamics of the particles that encode the flow. Towards this end, Hamiltonian control
introduces state processes of (14) qt � pxi,t � ϕtpxiq, wi,t � wi|dϕt|pxiqqiPI that reparameterize the controls.
State dynamics are linear in the control since 9ϕt � ut � ϕt gives

9qt � putpxi,tq, wi,t divutpxi,tqqiPI , q0 � pxi, wiqiPI ,(19a)

and rewriting the right hand side gives

ξqtputq � putpxi,tq, wi,t divutpxi,tqqiPI(19b)

with the hierarchy sastisfying 9qt � ξqtputq :� pξq`t pu`tqq` `max .
Measure evolution is encoded as µpqtq :� ϕt � µ0, with

µpq`tq :� ϕ`t � µ` �
¸

iPI`
w`i,tδx`i,t b δf`i .
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The optimal control problem satisfying (13) reparameterized in the states becomes, for α ¡ 0:

(20)

#
minu.PL2pr0,1s,V q EApu.q � α

2
}µpq1q � µobs}2W�

9qt � ξqtputq, µpq0q � µ0

.

The Hamiltonian controls the states via co-states p � ppx,pwq as Lagrange multipliers:

Hpq,p,uq � p p | ξqpuqq � EApu.q
with p p | ξqpuqq �

¸
` `max

�¸
iPI`

xpx,`i , u`px`iqyRd � pw,`i w`idivu`px`iq
	
.

The Pontryagin maximum [28] gives the optimum control Bu`Hpp, q,uq � 0, with dynamics for every `,

(21)

#
9q` � Bp`Hpp, q,uq
9p` � �Bq`Hpp, q,uq

. .

Statement 1. We assume that V `max � Cm
0 pRd,Rdq with m ¥ 2. If u. is a solution of the optimal control

problem (20) then there exists time-dependent co-state such that for every i P I` and `   `max:

(22)

$''''&
''''%

9q`i,t � putpx`i,tq, w`i,t div utpx`i,tqq
9px,`i,t � �pdutqT px`i,tqpx,`i,t � pw,`i,t w

`
i,t∇pdiv utqpx`i,tq

9pw,`i,t � �pw,`i,t div utpx`i,tq
u`tp�q �

¸
`1 `max

¸
iPI`1

�
ḡ`^`

1px`1i,t, �qpx,`
1

i,t � pw,`
1

i,t w
`1

i,t∇1ḡ
`^`1px`1i,t, �q

	 .

The Hamiltonian differential equations are derived in Appendix B using calculus of variations; the av-
eraged Green’s function ḡ is Eqn. (11). The endpoint condition Upq1q is added to the Hamiltonian with
smoothness of Upq1q in the state giving absolutely integrable solutions to the Hamitonian dynamics. We
omit the superscripts ` below since co-states and states and flows are at the same scale.

Statement 2. Assume q Ñ Upqq is C 1 in q, then the co-state integral equations (16b) flowing from the
endpoints t � 1 solve the Hamiltonian differential equations (22); the integral equations flowing from the
initial conditions t � 0 satisfy:

(23)

$&
%p

x
i,t � pdϕt,0qT pxi,tqpxi,0 � pwi,0wi,0

» t
0

pdϕt,sqT pxi,tq∇pdivusqpxi,sqds
pwi,t � pwi,0|dϕt,0|pxi,tq

.

Proof. For pwi,t � pwi,0|dϕt,0|pxi,tq, wi,t � wi|dϕt|pxiq, xi,t � ϕtpxiq which implies wi,tpwi,t � const:

d

dt
wi,tp

w
i,t � d

dt
wi,0|dϕt|pxiqpwi,0|dϕ�1

t |pxi,tq � 0

since pdϕ�1
t qpxi,tq � pdϕtq�1pxiq. Evaluating d

dt
wi,tp

w
i,t � 0 gives pwi,t � pwi,0|dϕt,0|pxi,tq satisfying (22):

9pwi,t � �p
w
i,t 9wi,t

wi,t
� �pwi,tdiv utpxi,tq .

Constancy pwi,twi,t � pwi,1wi,1 with |dϕt,1|pxi,tq � |dϕ1|pxiq|dϕ�1
t |pxi,tq gives the co-state in the endpoint

pwi,t �
pwi,1wi,1

wi,t
� pwi,1|dϕ1pxiq|

|dϕtpxiq| � pwi,1|dϕt,1|pxi,tq .
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GENERALIZED FUNCTION REPRESENTATION OF THE BRAIN 17

The pxi,t satisfies (22) since it is a linear inhomogeneous differential equation of the form:

9at � �pduqT pxi,tqat � bt .

Since d
dt
ppdϕtq�1 dϕtq � 0 gives d

dt
pdϕtq�1 � �pdϕtq�1pd 9ϕtqpdϕtq�1; we use d 9ϕt � dut � ϕtdϕt giving

d

dt
pdϕtq�1 � �pdϕtq�1pd 9ϕtqpdϕtq�1 � �pdϕtq�1pdutq � ϕt ,

which since pdϕtq�1 � pdϕ�1
t q � ϕt gives our result:

d

dt
pdϕ�1

t qT � ϕt � �pdutqT � ϕt pdϕ�1
t qT � ϕt .

Rewrite the integral solution in the initial condition using dϕt,s � dϕs � ϕ�1
t dϕ�1

t :

pxi,t � pdϕ�1
t qT � ϕtpxiqpxi,0 � pwi,0wi,0

» t
0

pdϕ�1
t qT � ϕtpxiqdϕTs pxiq∇pdiv usqpxi,sqdx ,

which using wi,tpwi,t � const shows pxt of (23) satisfies the Hamiltonian differential equation:

9pxi,t � �pdutqT pxi,tqpxi,t � pwi,0wi,0∇pdiv utqpxi,tq
� �pdutqT pxi,tqpxi,t � pwi,twi,t∇pdiv utqpxi,tq .

[\

4.4. Method of Geodesic Shooting Based on the Measure Norm Matching Condition. The px, pw are
termed the "co-state" variables as they control the velocities of the states in the Hamiltonian Method. As
long as the endpoint condition for the Hamiltonian controlUpq1q :� α

2
}µpq1q�µobs}2W� is smooth, then the

co-states satisfy the integral equations steered by the endpoint gradients ∇qU . To explicit the gradients we
construct the measure norm associating RKHSs W with smooth kernels KW (see Appendix A for technical
condition). The norm-square is defined by integrating the measure against the kernel function:

}µ}2W�

`
� pµ |KW`

rµsq �
»
Rd�F

KW`
rµspx, fqµpdx, dfq .

The notation p� | � q is called the duality bracket allowing the rewrite of the endpoint condition:

(24) Upq1q � 1

2

¸
` `max

�
µpq`1q � µ`obs

��αKW`
rµpq`1q � µ`obss

�
.

This highlights the role the smoothed measure mismatch plays for every scale `   `max defined as

(25) hq`px, fq :� αKW`
rµpq`q � µ`obsspx, fq, px, fq P Rd � F .

Assume hq is spatially smooth then the explicit formula for the gradients follow.

Statement 3. Take hq` for every scale `   `max as continuously differentiable in x and bounded C 1,0
b . For

endpoint U pq1q of (24) the gradients are given by,

(26)
∇x`i

Upq1q � w`i,1 ∇xihq`1px`i,1, f `i q
∇w`

i
Upq1q � hq`1px`i,1, f `i q

.
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Proof. The gradient requires the perturbation over all the scales simultaneously qpεq � pq`pεqq` `max , with
q`1pεq � px`i,1 � εξx,`i , w`i,1 � εξw,`i qiPI` . This breaks apart for each scale independently. The dependence on
scale ` is implied in the notation written as q1 � pxi,1, wi,1qiPI , µpq1q �

°
iPI wi,1δxi,1 b δfi:

d

dε

α

2
}µpq1pεqq � µobs}2W� |ε�0 � d

dε

α

2
pµpq1pεqq � µobs | KW rµpq1pεqq � µobssq|ε�0

� d

dε
pµpq1pεqq |αKW rµpq1q � µobssq|ε�0

� d

dε
pµpq1pεqq |hq1 q|ε�0

�
¸
iPI

d

dε
ppwi,1 � εξwi qhq1pxi,1 � εξxi , fiqq |ε�0 .

�
¸
iPI

pxwi,1∇xihq1pxi,1, fiq, ξxi y � hq1pxi,1, fiqξwi qq � 0 .

[\

4.4.1. The Dense Tissue Continuum. The tissue continuum has been studied extensively in MRI and Com-
putational Anatomy. This continuum representation for the endpoint gradient ∇qU is often used in image
matching in its discretized form on the computational lattices. The continuum measure has ρpdxq � ρcpxqdx
and is given according to (17). The measure is parameterized in the state qt :� pϕtpxq, wtpxqqxPRd , q0 �
pId, w0 � 1q with µpqtq :� ϕt � µ given as

µpϕt, wtq �
»
Rd

wtpxqρcpxqδϕtpxq b µxdx.

The average of hq over the feature space determines the boundary term variation in the dense setting.

Statement 4. Denote ∇ϕhq1pa, bq as the gradient of hq1 with respect to variable a, with

h̄∇q1pxq :� ³
F ∇ϕhq1pϕ1pxq, fqµxpdfq

h̄q1pxq :� ³
F hq1pϕ1pxq, fqµxpdfq

.

For endpoint Upq1q of (24), the gradients are given by

(27)
∇ϕ`Upϕ1,w1q � w`1ρ

`
ch̄

∇
q`1

∇w`Upϕ1,w1q � ρ`ch̄q`1
.

Proof. With q1 � pϕ1, w1q take the variation ϕ1 Ñ ϕ1pεq � ϕ1 � εδϕ:

d

dε

α

2
}µpϕ1pεq, w1q � µobs}2W� |ε�0 � d

dε

α

2
pµpϕ1pεq, w1q � µobs |KW rµpϕ1pεq, w1q � µobssq|ε�0 .

� d

dε
pµpϕ1pεq, w1q |hq1 q|ε�0

�
»
Rd�F

w1pxqρcpxq d
dε
hq1pϕ1pεqpxq, fq|ε�0µxpdfqdx

�
»
Rd

xw1pxq ρcpxqh̄∇q1pxq, δϕ1pxqydx � 0 .
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Take the variation w1 Ñ w1pεq � w1 � εδw:

d

dε

α

2
}µpϕ1, w1pεqq � µobs}2W� |ε�0 � d

dε

α

2
pµpϕ1, w1pεqq � µobs |KW rµpϕ1, w1pεqq � µobssq|ε�0

� d

dε
pµpϕ1, w1pεqq |hq1 q|ε�0

�
»
Rd�F

d

dε
w1pεqpxq|ε�0ρcpxqhq1pϕ1pxq, fqµxpdfqdx

�
»
Rd

ρcpxqh̄q1pϕ1pxq, fqδw1pxqdx .

We note that computing the variation d
dε
Upϕ1pεq, w1pεqq|ε�0 requires U as a function of ϕ is C 1 for ϕ P

Gk � DiffkidpRd,Rdq when k ¥ 2. [\
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APPENDIX A. TECHNICAL DESCRIPTIONS FOR GEODESICS AND SPACES

A.1. Technical statement for existence of solution for the geoedesic metric: Existence of solutions can
be established under a broad mathematical setting. Specifically, if C k

0 pRd,Rdq is a space of C k vector fields
vanishing at infinity as well all its partial derivatives of order p ¤ k, then for Gk � pid � C k

0 pRd,Rdqq X
Diff1pRd,Rdq and V `max � Cm

0 pRd,Rdq with m ¥ k the metric holds.

A.2. Technical statement for the measure norm: The technical condition to ensure the brain measures
are elements of W � is the kernels KW of the RKHS W are densely and continuously embedded in bounded
continuous functions CbpRd � F ,Rq so that the signed measure spaces MspRd � Fq of brain varifolds are
continuously embedded in the dual spaces CbpRd � F ,Rq�.

APPENDIX B. PROOF OF STATEMENT 1

Since the states pxt, wtq, co-states ppxt , pwt q controls ut, vt and flows ϕt are all functions of time in the
statement we suppress it in the notation.
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Appendix Statement 1. We assume that V `max � Cm
0 pRd,Rdq with m ¥ 2. If u. is a solution of the optimal

control problem (20) then there exists time-dependent co-state pt ÞÑ ptq such that for any i P I` for all `:$&
%

9q`i,t � pu`tpx`i,tq, w`i,t div u`tpx`i,tqq
9px,`i,t � �pdutqT px`i,tqpx,`i,t � pw,`i,t w

`
i,t∇pdiv utqpx`i,tq

9pw,`i,t � �pw,`i,t div utpx`i,tq
(28a)

The optimal control satisfies Bu`Hpp, q,uq � 0 and v � Au satisfies for any `0   `max (with convention
v`max � 0): $''&

''%
v`0pxq � u`0pxq � u`0�1pxq �

¸
`0¤` `max

¸
iPI`

�
g`0px`i , xqpx,`i � pw,`i w`i ∇1g

`0px`i , xq
	

u`0pxq �
¸

` `max

¸
iPI`

�
ḡ`0^`px`i , xqpx,`i � pw,`i w`i ∇1ḡ

`0^`px`i , xq
	
.

(28b)

where for any `   `max, L` : V` Ñ V`
� is the isometry such that xũ`, ṽ`yV` � pL`ũ` | ṽ`q for any ũ`, ṽ` P V`

with p� | � q the dual bracket and ∇1gpa, bq denotes the gradient of g` with respect to the first variable a.

B.1. Proof of Eqns. (28a), (28b).

Proof. Under the assumption V `max ãÑ C 2
0 pRd,Rdq then we have pu, qq ÞÑ ξqpuq is C 2 and standard results

of optimal control theory apply establishing that 9q � BpH, 9p � �BqH, BuH � 0. Taking the variation for
Bq`H of the Hamiltonian for scale ` varies x`ipεq � x`i � εξx,`i , w`i pεq � w`i � εξw,`i :
(29)
d

dε

�
p`

�� ξpq`pεq, u`q�
|ε�0

�
¸
iPI`

�
xpx,`i , du`px`iqξx,`i y � pw,`i w`ix∇pdiv u`qpx`iq, ξx,`i y � pw,`i pdiv u`qpx`iqξw,`i

	

so that we get the last two equations of (22). To calculate Bu`H � 0, define u`pεq � u` � εξ implying
v`�1pεq � v`�1 � εξ, v`pεq � v` � εξ for ξ P V`. We have

d

dε

��
p`
�� ξpq`, u`pεqq�� 1

2

`�1̧

j�`

�
Ljvjpεq �� vjpεq�

�
|ε�0

(30)

�
¸
iPI`

�
xpx,`i , ξpx`iqy � pw,`i w`i pdiv ξqpx`iq

	
� �L`v` � L`�1v`�1

�� ξu � � 0 .

After summation of (30) for ` ¥ `0, we get for any ξ P V `0 that

(31) pL`0v`0 | ξq �
¸
`¥`0

¸
iPI`

�
xpx,`i , ξpx`iqy � pw,`i w`i pdiv ξqpx`iq

	

Now, for any x, α P Rd, consider δαx P V `0� such that pδαx | ṽ`q � xṽ`pxq, αyRd for any ṽ`0 P V `0 . The
reproducing property on V `0 gives xK`0δαx , K

`0δβy yV `0 � g`0px, yqxα, βy. We get from (31) for ξ � K`0δαx �
g`0p., xqα that

xv`0pxq, αy � pL`0v`0 | K`0δαx q �
¸
`¥`0

¸
iPI`

�
g`0px`i , xqxpx,`i , αy � pw,`i w`ix∇1g

`0px`i , xq, αy
	

so that we get the first equality above of (28b) for v`0 .
Now since u`0 � °

k¤`0
vk we deduce the equality for u`0 given in (16a). [\
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[14] H. Federer. Geometric measure theory. Number 153. Springer, 1969.
[15] B. Fischl, D. Salat, E. Busa, M. Albert, M. Dieterich, C. Haselgrove, A. van der Kouwe, R. Killiany, D. Kennedy, S. Klaveness,

A. Montillo, N. Makris, B. Rosen, and A. Dale. Whole brain segmentation: automated labeling of neuroanatomical structures
in the human brain. Neuron, 33(3):341–55, January 2002.

[16] J. F.J. Almgren and J. Taylor. The geometry of soap bubbles and soap films. Scientific American, pages 82–93, July 1976.
[17] . K. N. Y. GERSTEIN, G. L. An approach to the quantitative analysis of electrophysiological data from single neurons.

Biophysical journal, 1(1):15âĂŞ28, 1960.
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