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Abstract 
Statistical learning (SL) allows individuals to rapidly detect regularities in the sensory environment. 
We replicated previous findings showing that adult participants become sensitive to the implicit 
structure in a continuous speech stream of repeating tri-syllabic pseudowords within minutes, as 
measured by standard tests in the SL literature: a target detection task and a 2AFC word 
recognition task. Consistent with previous findings, we found only a weak correlation between 
these two measures of learning, leading us to question whether there is overlap between the 
information captured by these two tasks. Representational similarity analysis on reaction times 
measured during the target detection task revealed that reaction time data reflect sensitivity to 
transitional probability, triplet position, word grouping, and duplet pairings of syllables. However, 
individual performance on the word recognition task was not predicted by similarity measures 
derived for any of these four features. We conclude that online detection tasks provide richer and 
multi-faceted information about the SL process, as compared with 2AFC recognition tasks, and 
may be preferable for gaining insight into the dynamic aspects of SL. 

Introduction 
Statistical learning (SL) refers to the ability to extract statistical regularities from the sensory 
environment. SL is thought to be critical for the segmentation of continuous sensory information, 
and the discrimination and prediction of stimulus items. [1],[2] As such, it is considered a key 
mechanism in language acquisition, [3] and other high-level aspects of cognitive and motor 
learning. [4] In the language domain, SL is widely believed to play a pivotal role in learning to 
distinguish the boundaries of words in a continuous speech stream, by leveraging information 
about the transitional probabilities of individual syllables through repeated exposure. [5],[6] 

Since SL is cumulative in nature, a major challenge in the field has been to develop appropriate 
measures to quantify the time course of learning, as well as to determine which precise features 
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of the continuous speech stream have been learned. For example, whether regularities have been 
extracted merely at the level of transitional probabilities, the ordinal position of the syllables within 
word units, or whole words (“chunks”). [7] 

Current tools assessing learning rely primarily on explicit behavioral testing administered after the 
learning session. Typically, these “offline” tasks include a forced-choice task in which participants 
must discern which of two alternatives is the most familiar sequence of stimulus items: a sequence 
that is consistent with the learned regularities (e.g. a “pseudoword” in the artificial language of the 
speech stream) and a foil which violates the learned regularities, but consists of the same stimulus 
items (e.g. a non-word). SL has been demonstrated in both adults and infants in the auditory [8]–
[12] and visual [13],[14] modalities. Although many studies report that participants can 
successfully discriminate lawful sequences in these tasks after only a few minutes of exposure, 
performance is typically just barely above chance (~60%). [5],[10],[15],[16] In addition, some 
argue that the explicit testing by itself could introduce unwanted interference effects, as 
participants’ memory of the lawful structures is vulnerable to distortion through repeated exposure 
to foil sequences. Consequently, explicit offline tasks are often limited to 16 or 32 trials, and may 
suffer from confounding and lack of statistical power. [17]  

More recently, studies have examined SL through a combination of tasks, including some from of 
“online” task. These online tasks have the potential to provide a more sensitive measure of SL, 
important for understanding the dynamic aspects of extracting regularities from continuous input 
(e.g. how early SL occurs, how robust or stable it is over the course of the exposure phase, and 
whether it varies by stimulus). Typically, online SL tasks (“target detection tasks”) entail (1) asking 
participants to detect a target stimulus via keypress while being presented with a continuous 
stimulus stream, and (2) measuring reaction time (RT) to targets. Studies employing this task in 
both visual [13],[18],[19] and auditory [17],[20],[21] domains report that RTs to targets are 
modulated by the predictability of the target, suggesting that sensitivity to statistical regularities 
facilitates the speed of detection. Targets with lower transitional probabilities elicit longer RTs 
than targets with higher transitional probabilities. This RT effect can be observed as early as the 
second presentation of a target stimulus. [15] Similarly, in Gómez et al., participants detected click 
sounds embedded in continuous speech more rapidly when clicks occurred between rather than 
within pseudowords, suggesting that the stronger predictions generated by the learned 
pseudoword units interfered with click detection and thereby incurred longer RTs [22] (but see 
[23], for a non-replication). Though implicit online tasks tend not to suffer from the shortcomings 
of offline tasks mentioned in the previous paragraph, they can be more difficult to interpret, as 
distinct features of the stimulus stream (e.g. co-occurrence frequency and transitional probability) 
co-vary in many study designs but may differ in their contribution to the observed results. New 
evidence has called into question the validity of some previous findings that used RTs to measure 
SL. [13],[24] Specifically, Himberger et al. have demonstrated that RT facilitation could be 
observed independently of any regularity-learning if the task design confounds the position of the 
target within a triplet sequence with its position in the test stream. [25] The authors argued that 
RTs to targets in the first position of a triplet may be slower than those to targets in later positions 
due to trivial facilitation, as participants became more familiar with the task.  
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While there is ongoing debate as to whether SL is a unitary or multi-dimensional process, involving 
successive computational steps, numerous studies have tested participants on several learning 
tasks within the same experiment, to assess whether performance correlates among diverse 
measures. These studies have yielded conflicting empirical evidence as to whether detection-
type online SL tasks can predict performance in the canonical 2AFC task. Earlier studies have 
reported significant, but small correlations (e.g. 𝜌𝜌 = 0.42 [21], ρ = 0.46 [26]) between online 
(target detection or analogous tasks) and offline measures (2AFC discrimination or recognition 
tasks). Meanwhile, a larger number of studies report no correlation between these measures. 
[11],[18],[20],[23],[25] 

The weak to nonexistent correlation between these SL measures has been largely discussed on 
a theoretical level. [18],[22] (But see [20] for an empirical treatment of the subject.) Some authors 
note that the weak relationship could be due to the simple fact that the two tasks rely on distinct 
cognitive processes, as they purportedly engage a different types of memory (implicit vs. explicit). 
Specifically, the target detection tasks are thought to tap onto implicit knowledge of the 
regularities, while the recognition tasks demand that information gleaned from the stream be 
made explicit. [20]. Alternatively, the weak relationship may also be ascribed to the different 
psychometric sensitivity of the two tasks: target detection tasks typically test all stimulus items 
over a longer test period, resulting in a comparatively larger number of trials. Meanwhile, word 
recognition tasks are often designed to test memory for the higher-level units (e.g. tri-syllabic 
pseudowords), and rarely exceed 36 trials in total. [12] 

In this study, we addressed the question of why these two measures might be uncorrelated or 
weakly correlated, despite strong evidence that both tasks are indeed sensitive to the learning of 
embedded regularities. We hypothesized that the online and offline tasks might tap onto distinct 
features of the structured sequences presented during exposure, and that differences in task 
sensitivity to these features might explain the weak to non-existent correlation between the two 
tasks.  

We tested participants in an online target detection task during exposure to a continuous stream 
of speech syllables, followed by a standard 2AFC pseudoword vs. part-word recognition task, and 
compared individual performance across both tasks (Experiment 1). We then aimed to replicate 
the results of the target detection task, and additionally included a control condition in which 
participants performed the detection task during exposure to streams of randomly ordered 
syllables (Experiment 2). Finally, to better understand which features of the syllable stream 
(transitional probability, triplet position, word grouping, or duplet pairing) are captured by RT data, 
we performed a representational similarity analysis (RSA) on group-level and participant level 
data. By providing rich information about what information is contained in RTs, RSA is a powerful 
tool that can provide novel insight into the empirical disparity between implicit online and explicit 
offline tests of SL. Our results suggest RT data from the target detection task reflects learning of 
several sequence features, but similarity measures for these features fail to predict word 
recognition performance.  
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Results 

Experiment 1 
In Experiment 1, participants were exposed to streams of continuous speech syllables (consisting 
of four repeating tri-syllabic pseudowords, made up from a bank of 12 unique syllables). During 
exposure, participants were asked to detect via keypress a target syllable in the auditory stream. 
Before each of 24 (~1 minute long) trials they heard a different target syllable. After the exposure 
phase, participants performed a 2AFC word recognition task in which they heard each of the four 
pseudowords presented alongside four part-words, and reported which of each test pair they 
believed was a word in the “alien language” they just heard.  
 
Detection accuracy in the online target detection task (𝑀𝑀 =  0.70,𝑆𝑆𝑆𝑆 =  0.46, 𝑡𝑡(32)  =  10.19,𝑝𝑝 <
 0.001), and the true positive rate ((𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃)/(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃)  =  0.87) 
were high, indicating that participants (N = 33) paid attention to the stream and followed 
instructions. (See Supplementary Materials, Fig. S1, and Table S3 for further analysis of 
detection accuracy as a function of triplet position, pseudoword, and target syllable.) 

Triplet Position Modulates Reaction Time 

To investigate whether subjects exhibited sensitivity to the statistical regularities in the stream, 
we evaluated the effect of target syllables’ position (word-initial, word-medial, or word-final) within 
a pseudoword on RT. To this end, we used a generalized linear mixed effects model (GLMM) with 
triplet position as predictor and RT (in seconds) as outcome variable. We found that RTs were 
modulated by the triplet position of the target syllable within the pseudoword (𝑋𝑋2(2,𝑁𝑁 = 33) =
523.49,𝑝𝑝 <  0.0001, Type II Wald Chi-square test (hereafter "Type II")). (Fig. 1a-b). To explore 
the differences in RT across the three triplet positions, we performed post-hoc pairwise 
comparisons on estimated marginal means for each position, with Tukey adjustment. RTs to 
word-initial syllables (position 1) (𝑀𝑀 =  524 𝑚𝑚𝑚𝑚, 𝑆𝑆𝑆𝑆 =  179 𝑚𝑚𝑚𝑚) were notably slower than those 
to word-medial (position 2) (𝑀𝑀 =  452 𝑚𝑚𝑚𝑚, 𝑆𝑆𝑆𝑆 =  164 𝑚𝑚𝑚𝑚; 𝑧𝑧 = 15,𝑝𝑝 < 0.0001,𝐶𝐶𝐶𝐶ℎ𝑒𝑒𝑛𝑛′𝑠𝑠 𝑑𝑑 =  0.46) 
and word-final syllables (position 3) (𝑀𝑀 =  423 𝑚𝑚𝑚𝑚, 𝑆𝑆𝑆𝑆 =  161 𝑚𝑚𝑚𝑚, 𝑧𝑧 = 22.72,𝑝𝑝 < 0.0001,𝑑𝑑 =
0.67). The difference in mean RT between word-medial and word-final positions was small but 
still significant (𝑧𝑧 = 7.46,𝑝𝑝 < 0.0001,𝑑𝑑 = 0.2).  

Rapid Onset of Graded RT to Predictable Syllables 

Previous studies have found that a few minutes of exposure [27] or even a few occurrences of an 
embedded target syllable [15] were sufficient for participants to pick up the statistical structure, 
as measured by offline word recognition and RT, respectively, while longer exposures have been 
shown to provide little added benefit in the former task. [10] To relate to those findings we directly 
tested whether the graded RT effect emerged over the course of several blocks, or was present 
from the first block. We computed an ANOVA on our fuller model (see Table S1) with factors 
block (8) and triplet position (3) as predictors and RT (in seconds) as outcome variable. We found 
a significant interaction between block and triplet position (𝑋𝑋2(14,𝑁𝑁 = 33) = 28,𝑝𝑝 =
0.014, Type II). Previous studies have revealed differentiation of responses in the online SL task 
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as early as the second presentation of the pseudoword, [15], as well as above-chance offline 
word recognition after only five minutes of exposure in adults. [10] Since each of our blocks are ~ 
3 minutes long, we predicted on the basis of these prior results that participants would have 
extracted the embedded regularities of the stream within the first two blocks, and focused our 
follow-up analyses on the first two blocks only.  

 

 

Figure 1. Exp. 1: Online target detection reveals rapid and robust sensitivity to embedded regularities. A. 
Median reaction times (RT) to target syllables are modulated by the syllable’s triplet position in pseudowords. 
Participants responded more slowly to syllables in the word-initial (1st) position than to syllables in the word-medial (2nd) 
or word-final (3rd) position. Error bars represent 95% confidence intervals. B. Distribution of median RTs to each triplet 
position for each participant (black dots). (Jittered along x-axis for visibility.) Box plots indicate group median and 95% 
CI. C. RTs to targets in the 1st vs 2nd or 3rd position are somewhat distinct in the first block (first 3 minutes of exposure), 
and clearly differentiated thereafter. Points represents estimated marginal means from the GLMM, vertical lines 
represent 95% CI. D. The magnitude of the SL effect (log mean RT to 1st position – log mean RT to (2nd & 3rd) position 
syllables) was smallest in the first block, but rose dramatically in the second block, thereafter hovering around the 
overall mean. (No difference in mean RTs to the three positions would result in a value of 0.) We observed no significant 
effect of block on this metric, suggesting that the modulation of RT as a function of target syllable position in the 
pseudowords had already occurred in the first block.   

To specifically examine the change in the RT pattern between the first two blocks, we performed 
an ANOVA on a model identical in structure with that above, but using only data from blocks 1 
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and 2. Here, we observed no interaction, but significant main effects for both block 
(𝑋𝑋2(1,𝑁𝑁 = 33) = 8.95,𝑝𝑝 = 0.003, Type II) and triplet position (𝜒𝜒2(2,𝑁𝑁 = 33) = 92.67,𝑝𝑝 <
0.0001, Type II) factors. The effect of block was driven by a small, overall increase in RT between 
blocks 1 and 2 (𝑀𝑀𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 1 = 443 𝑚𝑚𝑚𝑚, 𝑆𝑆𝑆𝑆 = 159 𝑚𝑚𝑚𝑚;  𝑀𝑀𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 2 = 476 𝑚𝑚𝑚𝑚, 𝑆𝑆𝑆𝑆 = 170 𝑚𝑚𝑚𝑚; 𝑧𝑧 = −3.09,𝑝𝑝 =
0.002,𝑑𝑑 = −0.07), while contrasts between each position revealed a graded RT effect that was 
largest for position 1-2 (𝑀𝑀𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 1 = 506 𝑚𝑚𝑚𝑚, 𝑆𝑆𝑆𝑆 = 175 𝑚𝑚𝑚𝑚;  𝑀𝑀𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 2 = 458 𝑚𝑚𝑚𝑚, 𝑆𝑆𝑆𝑆 =
157 𝑚𝑚𝑚𝑚;  𝑧𝑧 = 6.24,𝑝𝑝 < 0.001,𝑑𝑑 = 0.19) and 1-3 mean differences (𝑀𝑀𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 3 = 429 𝑚𝑚𝑚𝑚, 𝑆𝑆𝑆𝑆 =
157 𝑚𝑚𝑚𝑚;  𝑧𝑧 = 9.01,𝑝𝑝 < 0.001,𝑑𝑑 = 0.27), but also significant for position 2-3 (𝑧𝑧 = 3.1,𝑝𝑝 = 0.006,𝑑𝑑 =
0.08). Since we did not find evidence that the RT effect was modulated by block (no interaction), 
we focused our next analysis on block 1 only. An ANOVA performed on a model using data only 
from block 1 and therefore only triplet position as predictor revealed again a main effect of triplet 
position (𝜒𝜒2(2,𝑁𝑁 = 33) = 27.93,𝑝𝑝 < 0.0001, Type II) and, between each level, the same graded 
RT effect (𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 1 − 2: 𝑧𝑧 = 2.89,𝑝𝑝 = 0.01,𝑑𝑑 = 0.12;𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 2 − 3: 𝑧𝑧 = 2.45,𝑝𝑝 = 0.039,𝑑𝑑 =
0.21;𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 1 − 3: 𝑧𝑧 = 5.09,𝑝𝑝 < 0.0001, 𝑑𝑑 = 0.08). This corroborates our previous finding that 
the factor block did not contribute significantly to model fit (𝜒𝜒2(1, 𝑁𝑁 =  33) =  2.12, 𝑝𝑝 = 0.15): 
reaction times differentiate early on and persist across the whole data set. (Fig. 1c) 

To relate to previous studies [26], we computed a measure of online statistical learning, borrowed 
from Siegelman and colleagues, as follows: 

(1) 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝑆𝑆𝑆𝑆 = 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(1𝑠𝑠𝑠𝑠 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝)−𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚( 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(2𝑛𝑛𝑛𝑛 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) & 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(3𝑟𝑟𝑟𝑟 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) ) 

A linear model with the SL measure as outcome variable and block as predictor failed to reveal 
any effect of block on this composite measure (𝑋𝑋2(7,𝑁𝑁 = 33) = 6.50,𝑝𝑝 = 0.48, Type II). (Fig. 1d) 
This is an additional piece of evidence in support of early emergence of differentiated reaction 
times and stable behavior thereafter.  

Lastly, we wanted to address a possible confound that could have helped generate the RT effect. 
As argued by Himberger et al. [25], the widely observed graded RT effect could be driven by a 
trivial, overall speeding-up of RTs combined with the fact that targets appear later in the stream 
as well as later in the pseudoword or triplet. To ensure that this confound is not present in our 
data, we ran a linear model with triplet position and stream position (1-216) within each trial as 
predictors. While we observed a main effect of triplet position (𝐹𝐹(2) = 362.44,𝑝𝑝 < 0.001), we 
observed no effect of stream position (𝐹𝐹(1) = 0.0029,𝑝𝑝 = 0.96). (See Supplementary Materials 
and Fig. S2.) We also tested to see if RTs decrease monotonically over single trials. A linear 
model with block and target number (number of occurrences of each target within each trial) 
revealed no interaction of the factors on RT (in seconds), but main effects of each. Given that we 
already addressed the effect of block, we re-ran the model with only target number as predictor, 
which again revealed a main effect (𝐹𝐹(17) = 3.2,𝑝𝑝 < 0.0001). However, we observed that the 
variation in RT between target numbers was not unidirectional, but wavered above and below the 
mean RT. (Fig. S2)  
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Pseudowords Can Be Distinguished From Part-words 

After the exposure phase, participants performed a 2AFC word recognition task in which they 
heard each of the four pseudowords presented alongside four part-words, and reported which of 
each test pair they believed was a word in the alien language they just heard. Participants 
correctly distinguished the pseudowords from the part-word foils significantly above chance 
(chance level = 50%, or 8 out of 16 trials) (𝑀𝑀 =  0.62,𝑆𝑆𝑆𝑆 =  0.2;  𝑡𝑡(37)  =  3.78, 𝑝𝑝 <  .001,𝑑𝑑 =
 0.61), indicating that participants were sensitive to the implicit regularities of the syllable stream 
and able to use this information to explicitly discriminate pseudowords from sequences of 
syllables that crossed word boundaries. (Fig. 2a) 71% of participants (27 out of 38) completed 
the task with a mean accuracy greater than chance (50%, 8 out of 16 trials). To rule out the 
possibility that above-chance word recognition was driven by any particular word, and thus 
potentially an artifact of the stimulus materials, we performed an exploratory analysis in which we 
calculated the proportion of correct responses for each pseudoword individually (out of 4 trials). 
We found that across participants, 3 out of the 4 pseudowords were discriminated above chance 
(2 out of 4 trials), indicating that the above-chance performance can be attributed to learning of 
the underlying structure (𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 (37)  =  3.24,𝑝𝑝 =  0.01, 𝑡𝑡𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 (37)  =  3.31,𝑝𝑝 =
 0.008, 𝑡𝑡𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 (37)  =  0.36,𝑝𝑝 =  1.0, 𝑡𝑡𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧 (37)  =  2.99,𝑝𝑝 =
 0.02, Bonferroni corrected for four comparisons). (Fig. S3) 

 

Figure 2. Exp. 1: Participants discriminated pseudowords from part-words, but online and offline SL was only 
weakly correlated. A. Word recognition performance was above the 0.5 chance level (dashed red line), suggesting 
participants were able to use implicitly learned regularities during the exposure phase to explicitly discriminate 
pseudowords from part-word foils. Red dot and error bars represent group mean (0.62) and SEM (0.2). Black dots 
represent percent correct trials (out of 16) for each individual. B. Pearson correlation of each individual’s word 
recognition performance (percent correct trials) and RT effect in the target detection task (online measure of SL). 
Performance in the two tasks was weakly correlated (𝜌𝜌 = 0.33,𝑝𝑝 = 0.03). Dashed grey line represents threshold at 
which there was no difference in mean RT to targets in the three positions: those with values above 0 showed faster 
responses to 2nd and 3rd position targets vs. 1st position targets, those with values below 0 showed the opposite effect. 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 20, 2021. ; https://doi.org/10.1101/2021.04.19.440449doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.19.440449


  Kiai & Melloni 2021 

8 
 

Online and Offline Measures Are Weakly Correlated 

Next, we calculated the measure of online SL (see equation 1 above) for each participant and 
correlated each individual’s online SL scores with their word recognition accuracy. Since we did 
not have complete data for all participants (see Methods), for this analysis we used data only from 
those participants with complete data in both tasks (N = 32). We found a weak but significant 
correlation between these two values at the 5% alpha level (𝜌𝜌 = 0.33, 𝑡𝑡(30) = 1.93,𝑝𝑝 =
0.03, Pearson’s product-moment correlation, one-sided). (Fig. 2b)  

To relate this finding to previous literature, we repeated this analysis using the procedure from 
[21] to compute the “RT score”: 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 (𝑅𝑅𝑅𝑅1𝑠𝑠𝑠𝑠 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) –𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 (𝑅𝑅𝑅𝑅3𝑟𝑟𝑟𝑟 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝). This analysis 
revealed an even weaker correlation, which did not reach statistical significance (𝜌𝜌 = 0.23, 𝑡𝑡(30) =
1.3,𝑝𝑝 = 0.1,  Pearson's product-moment correlation, one-sided). (Fig. S4) Finally, to see if certain 
syllable pairs might better predict word recognition accuracy, we considered the correlation 
between word recognition accuracy and the median difference between each triplet position 
pairing (i.e. 1-2, 2-3, and 1-3) in milliseconds. To obtain “RT scores” that are comparable between 
participants, we z-normalized RT values for each participant, computed median RTs to each triplet 
position, and computed the difference between the scaled median RTs for each position pairing 
for each participant. These values were correlated against the participant’s word recognition 
accuracy. We again found insignificant correlations between the two measures for all pairs (1 −
2: 𝜌𝜌 = 0.22, 𝑡𝑡(30) = 1.24,𝑝𝑝 = 0.1; 2 − 3: 𝜌𝜌 = 0.07, 𝑡𝑡(30) = 0.43,𝑝𝑝 = 0.33; 1 − 3:𝜌𝜌 = 0.23, 𝑡𝑡(30) =
1.3,𝑝𝑝 = 0.1, Pearson's product-moment correlation, one-sided ). (Fig. S4)  

Discussion 

Our study replicated two tasks that measure SL in distinct ways. Our offline word recognition task 
revealed a well-established effect of learning, where pseudowords marked by dips in transitional 
probability are discriminated from foil sequences of syllables that span across word. Likewise, our 
online target detection task revealed results consistent with previous literature: targets in 
predictable locations (i.e. word-medial and word-final positions, transitional probability = 1) elicited 
faster RTs than targets in less predictable locations (word-initial positions, transitional probability 
= 0.33). The rapid onset of this graded RT effect corroborates previous findings showing SL to be 
a fast and robust mechanism. Indeed, RTs differences by triplet position emerged during the first 
block, and remained relatively stable throughout the remainder of the experiment. Finally, this 
graded RT effect was not confounded by a trivial speeding-up of RT or the position of targets in 
the syllable sequence.  

Intriguingly, a tracking of transitional probability alone cannot account for the results. Indeed, if 
participants were sensitive only to transitional probability, we would expect to find a significant 
difference in RT to syllables in word-initial positions versus word-medial and word-final positions, 
but no difference between word-medial and word-final syllables, since the latter two have the 
same transitional probability (1). Rather, we find that RTs to word-final syllables are also 
significantly faster than RTs to word-medial syllables, suggesting that triplet position, duplet 
pairing, and/or an awareness of the pseudoword grouping provided an addition source of 
predictability to prepare the response to the final syllable. 
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We found that the two measures of SL were weakly correlated. This correlation reached 
significance in only one of the three methods we used to evaluate the relationship, despite the 
fact that we followed two methods from earlier papers that identified a significant relationship. 
[21],[26] The weak and variable correlation we observed, in combination with previous findings 
reporting variable to null results [11],[18],[20],[23],[25], calls into question whether these two 
measures of SL are in fact evaluating learning of the same or different features of the input.  

Each of the syllables in the stream can be characterized by its membership to a specific group for 
each of the following features: transitional probability (1 or 0.33), triplet position (word-
initial/position 1, word-medial/position 2, or word-final/position 3), word grouping (nugadi, rokise, 
mipola, or zabetu), and within-word duplet pairings (nu-ga, ga-di, ro-ki, ki-se, etc.). [7] Meanwhile, 
there is some ambiguity about which of these features is exploited to achieve each task. Indeed, 
both the RT effect (between word-initial and –medial syllables) and above-chance word 
recognition could be achieved by leveraging transitional probabilities alone. However, If these two 
tasks can be accomplished with distinct sources of information, and if RTs do not capture any 
information related to word or duplet pairing, this might explain the lack of correlation.  

To address this issue, we collected data in a second experiment in which participants performed 
only the online detection task. We aimed to replicate the graded RT effect found in the previous 
study, and to validate the online detection task as a genuine measure of learning. Experiment 2 
consisted of an exposure phase/target detection task with a random stream consisting of the 
same stimulus materials, but no statistical regularities. This manipulation would allow us to 
confirm that our reported effects were driven primarily by the statistical regularities in the stream 
and not by unwanted variation in the stimuli acoustics. We then combined data from Experiments 
1 and 2 to investigate feature coding in RTs though RSA; specifically, coding of transitional 
probability, triplet position, word grouping, and within-word duplet pairings. 

Experiment 2 

As in Experiment 1, participants performed a target detection task while being exposed to a 
continuous speech stream. Before each of 12 (~1 minute long) trials, participants heard a target 
syllable, which they had to detect via keypress each time it appeared in the following stream. 
Condition order (structure, random) was counter-balanced across subjects, such that one-half 
performed the target detection task first for the structured stream and then for the random stream, 
and one-half performed the task in the opposite order. Each of the 12 syllables was tested once 
in each condition. 

We first examined mean detection accuracy to ensure participants (N = 20) were engaged in the 
task. Overall detection accuracy (𝑀𝑀 = 0.82, 𝑠𝑠𝑠𝑠 =  0.38; 𝑡𝑡(19) = 13.48,𝑝𝑝 < 0.0001) and the true 
positive rate (𝑀𝑀 = 0.92) was high, confirming that participants adequately performed the task. 
Detection accuracy was numerically higher in the structured condition (𝑀𝑀 = 0.84, 𝑠𝑠𝑠𝑠 = 0.36) than 
in the random condition (𝑀𝑀 = 0.80, 𝑠𝑠𝑠𝑠 = 0.4), but this difference was not significant when tested 
through a one-sided test predicting the mean for the structured condition to be greater than 
random (𝑡𝑡(36.2) =  −1.37,𝑝𝑝 = 0.089). (See Supplementary Materials, Fig. S1, and Table S4 for 
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further analysis of detection accuracy as a function of triplet position, pseudoword, and target 
syllable.) 

Triplet Position in Structured Stream Modulates Reaction Time 

Using a GLMM with condition and target position as predictors, we observed an interaction 
between triplet position and condition (𝜒𝜒2(2, 𝑁𝑁 =  20) =  59.16, 𝑝𝑝 < 0.0001, Type II). (See Table 
S2 for regression results.) We then performed two planned contrasts. First, we evaluated the 
effect of triplet position within each level of condition to determine the modulation of RTs within 
each condition. As in Experiment 1, in the structured condition, we observed slower RTs to word-
initial syllables (𝑀𝑀 = 580 𝑚𝑚𝑚𝑚, 𝑆𝑆𝑆𝑆 = 140 𝑚𝑚𝑚𝑚) than to word-medial syllables (𝑀𝑀 = 509 𝑚𝑚𝑚𝑚, 𝑆𝑆𝑆𝑆 =
133 𝑚𝑚𝑚𝑚;  𝑧𝑧 = 12.69,𝑝𝑝 < 0.001,𝑑𝑑 = 0.56), and word-final syllables (𝑀𝑀 = 489 𝑚𝑚𝑚𝑚, 𝑆𝑆𝑆𝑆 = 128 𝑚𝑚𝑚𝑚; 𝑧𝑧 =
16.37,𝑝𝑝 < 0.001,𝑑𝑑 = 0.73). The drop in mean RT between word-medial and word-final syllables 
was smaller but also significant (𝑧𝑧 = 12.42,𝑝𝑝 = 0.0002,𝑑𝑑 =  0.17). (Fig. 3a-b).  

 

 

Figure 3. Exp. 2: RT to target syllables modulated by triplet position and the presence of structure. A. In the 
structured condition (dashed line), the triplet position of target syllables modulated RT, replicating Exp. 1. 
Surprisingly, a less pronounced RT modulation by position was also observed in the random condition (solid line). 
Error bars represent 95% confidence intervals. B. Distribution of median RTs to each triplet position for each 
participant (black dots) in the random condition (left, solid violin & boxplot outline) and structured condition (right, 
dashed violin & boxplot plot outline). (Jittered along x-axis for visibility.) Box plots indicate group median and 95% CI. 
C. Estimated marginal means from GLMM with triplet position and condition as predictors for RT. RTs to target 
syllables in the 1st position are equal between conditions, but RTs to those in 2nd and 3rd positions are significantly 
faster in the structured as compared with the random condition. This suggests the transitional probability structure 
was responsible for the RT effect, since less predictable syllables (1st position, TP = 0.33) were responded to equally 
quickly, but predictable syllables (2nd and 3rd position, TP = 1), which appeared only in the structured stream, elicited 
markedly faster responses. 

We observed a similar general RT pattern in the random condition, although with far smaller 
marginal differences. Here, mean RTs to word-initial (𝑀𝑀 = 579 𝑚𝑚𝑚𝑚, 𝑆𝑆𝑆𝑆 = 133 𝑚𝑚𝑚𝑚) were slower 
than those to word-medial (𝑀𝑀 = 563, 𝑆𝑆𝑆𝑆 = 132; 𝑧𝑧 = 2.45,𝑝𝑝 = 0.04,𝑑𝑑 = 0.11) and to word-final 
(𝑀𝑀 = 534 𝑚𝑚𝑚𝑚, 𝑆𝑆𝑆𝑆 = 133; 𝑧𝑧 = 7.86,𝑝𝑝 < 0.0001,𝑑𝑑 = 0.35) syllables as well. RTs to word-medial 
syllables were also slower than RTs to word-final syllables (𝑧𝑧 = 5.36,𝑝𝑝 < 0.0001,𝑑𝑑 = 0.24). (Fig. 
3a-b) Given that there were no regularities in the random stream that could bias reaction times to 
certain tokens more than others, we hypothesized that the modulation observed here is due to 
slight variations in the discriminability of some CV syllables [28] and/or a weak carry-over effect 
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of exposure to the structured stream before the random stream. (See Supplementary Materials, 
Fig. S5).  

In addition, we ran a linear model using condition and target number (as a factor) as predictors to 
confirm that the potential confound of linearly decreasing RTs (in seconds) over the course of 
each trial/stream did not drive this effect. We found an interaction between condition and target 
number (𝐹𝐹(17) = 2.39,𝑝𝑝 = 0.001). However, RTs in fact followed a quadratically-shaped pattern 
over the course of trials for both conditions, generally increasing until occurrence 12-14, and then 
decreasing. (Fig. S2d)  

In our second contrast, we evaluated the effect of condition for each level of triplet position, i.e. 
how much condition affected RT to targets in each triplet position. We observed that the presence 
of structure significantly decreased mean RT for word-medial (𝑧𝑧 =  5.32,𝑝𝑝 <  0.0001,𝑑𝑑 = 0.43) 
and word-final targets (𝑧𝑧 =  4.54,𝑝𝑝 <  0.0001,𝑑𝑑 = 0.37). However, RTs to word-initial targets did 
not significantly vary between conditions. (𝑧𝑧 =  −0.12,𝑝𝑝 =  0.90,𝑑𝑑 = −0.01) (Fig. 3c).  

Discussion 

In Experiment 2, we were able to replicate our main finding from Experiment 1 and establish that 
our observed RT effect reflects genuine learning of implicit structure. When a continuous speech 
stream featured implicit structure, RTs to predictable targets were significantly faster than those 
to less predictable targets. Importantly, RTs to word-initial syllables, which are unpredictable, 
were roughly equal between random and structured streams.  

Himberger and colleagues recently argued that the graded RT effect observed in numerous SL 
studies is an artifact unrelated to the regularities that experimenters expect participants to learn, 
but rather a consequence of general RT facilitation, combined with a design that confounds 
position in the triplet with position in the stream. [25] We demonstrate empirically that this 
confound is not present in our data. RTs in both experiments did not trend towards linearly faster 
responses over the course of a trial/stream; RTs in Experiment 1 hovered around the mean, while 
RTs in both conditions in Experiment 2 increased for a majority of the trial. In addition, our design 
makes it unlikely that the RT effect would be vulnerable to confounding, as target syllables 
occurred across all 216 positions with each trial/stream in both experiments, making all targets 
equally susceptible to longer-term RT trends, Furthermore, while the authors’ critique may apply 
to certain uses of the online detection task [13],[24], other studies have employed the task while 
successfully controlling for any effect of stream position. [15] 

Feature Sensitivity in Online Target Detection 

While we were able to show that exposure to structured streams resulted in a graded RT effect 
for target syllables in different triplet positions, the target detection task cannot directly tell us 
which feature of the target syllables (transitional probability, triplet position, word grouping, or 
duplet pairing) was “learned”, and responsible for the RT effect. To address this ambiguity, we 
performed a RSA on the RT data from the online target detection tasks to determine if the 
observed patterns of RTs could reveal sensitivity to any of the four specific features of the 
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structured streams outlined here. RSA entails computing similarity matrices for responses to 
different stimuli, and allows one to observe which distinctions are emphasized in participant 
responses. [29],[30]  

For this analysis, we combined the data from Experiments 1 (N = 33) and 2 (N = 20, structured 
condition only) for a total N of 53. Similarity matrices for each participant, obtained by correlating 
RTs to each syllable (12), were used to generate two subsets of the data for each of the four 
features outlined above. For each feature, we identified a within and an across group. Within 
groups consisted of the correlation values between all pairs of syllables characterized by that 
feature. Across groups consisted of correlations between pairs where the pairing violates the 
feature or represents the opposite feature type. (See Fig. S6 for a graphical representation of the 
correlation values that entered into each group for each analysis. In the examples given below, 
letters (representing pseudowords) and numbered subscripts (representing triplet position) 
provide examples of the syllable pairs used in each analysis.) Finally, we assessed whether within 
or across group similarity was greater using a Wilcoxon rank sum test for each feature. A 
significant difference between within and across similarity values would suggest that the feature 
in question is represented in the RT data. 

 

 
Figure 4. RTs reveal representational similarity for triplet position, transitional probability, word grouping, and 
duplet pairings. Representation similarity analysis showed that groups of RTs classified as belonging to the within 
category were more similar than groups of RTs classified as the across category for features transitional probability, 
word grouping and duplet pairings (within a given pseudoword). Across similarity was greater than within similarity for 
feature triplet position. (Wilcoxon’s rank sum test for paired groups, on bootstrapped z-transformed Pearson’s 
correlations between syllables for each participant.) *p<0.05, ***p<0.0001 
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RTs Track Transitional Probability, Triplet Position, Word Groupings and Duplets 

For the test of triplet position (N = 735), within values included the correlation between pairs of 
syllables with the same triplet position: all pairs word-initial syllables (e.g. A1-B1, B1-C1, etc.), all 
pairs of word-medial syllables (e.g. A2-B2, B2-C2, etc.), and all pairs of word-final syllables (e.g. 
A3-B3, B3-C3, etc.). Across values included correlations between all syllable pairs where each 
syllable of the pair had a different triplet position (e.g. A1-A2, A1-B2, C2-D3, etc.). Similarity within 
triplet positions was significantly lower than similarity across triplet positions 
(𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = −0.004,𝑉𝑉(53) =  5334842911,𝑝𝑝 = 0.027,𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝐶𝐶𝐶𝐶 =
[−0.007,−0.001], Wilcoxon rank sum test).  

For the test of transitional probability (N = 250), within values included the correlation between all 
pairs of word-medial and word-final syllables, as all these syllables had a transitional probability 
of 1 in the exposure stream and appeared “within” pseudowords (e.g. A2-A3, A2-B2, A2-B3, etc.). 
Across values consisted of the correlation between all pairs of word-initial syllables, which had a 
transitional probability of 0.33 and appeared at pseudoword boundaries (e.g. A1-B1, B1-C1, etc.). 
Similarity was significantly higher for the within as compared with the across group. 
(𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 0.07, 𝑉𝑉(53) =  721262654, 𝑝𝑝 <  0.0001,𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝐶𝐶𝐶𝐶 =
[0.07, 0.08], Wilcoxon rank sum test) 

For the test of word grouping (N = 496), within values included the correlation between all pairs 
of syllables within each pseudoword (e.g. A1-A2, A2-A3, A1-A3, etc.). Across values included 
“phantom” word pairs where each syllable in the pair is drawn from different pseudowords (e.g. 
A1-B2, B2-C3, C1-D2, etc.). Similarity values were significantly higher within versus across word 
groupings. (𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 =  0.015,𝑉𝑉(53) =  2516837351,𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑝𝑝 <
0.0001,𝐶𝐶𝐶𝐶 = [0.011, 0.019], Wilcoxon rank sum test).  

Finally, for the test of duplet pairing (N = 329), within values were correlations between all pairs 
of consecutive syllables within pseudowords (e.g. A1-A2, A2-A3, etc.), while across values were 
correlations between all other syllable pairs that were heard adjacent to each other (e.g. C3-A1, 
C3-B1, A3-D1, etc.). Within similarity was significantly higher than across similarity for duplet 
pairings. (𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 0.03,𝑉𝑉(53) =  1147261242,𝑝𝑝 <
 0.0001,𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝐶𝐶𝐶𝐶 = [0.03, 0.03], Wilcoxon rank sum test). (Fig. 4) 
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Figure 5. RT similarity measures do not correlate with word recognition performance. Word recognition 
performance (% correct trials) does not correlate strongly with similarity (measured as within-across median RT 
correlations) for any of the four features tested: triplet position, transitional probability, word grouping, or duplet pairing. 
(One-sided t-test on Pearson’s product-moment coefficient.)  

Sensitivity to Transitional Probability Weakly Predicts Word Recognition Performance 

Finally, we wished to test whether there exists a correlation between word recognition 
performance and the similarity measures derived from the RSA. We repeated the RSA at the 
subject level with only those participants from Experiment 1 who completed both online and offline 
tasks (N = 32). For each participant, we obtained a measure of similarity (within-across median 
correlations) for each of the four features. These similarity measures were then correlated with 
each participants’ word recognition performance. We observed virtually no relationship between 
word recognition accuracy and within-across median similarity for transitional probability (𝜌𝜌 =
0.02, 𝑡𝑡(30) = 0.12,𝑝𝑝 = 0.45), triplet position (𝜌𝜌 = 0.03, 𝑡𝑡(30) = 0.19,𝑝𝑝 = 0.43), word grouping (𝜌𝜌 =
−0.2, 𝑡𝑡(30) = −1.14,𝑝𝑝 = 0.87), or duplet pairing (𝜌𝜌 = 0.18, 𝑡𝑡(30) = 0.1,𝑝𝑝 =
0.46, Pearson's product-moment correlation, one-sided). (Fig. 5)  
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Discussion 

Using RSA, we aimed to identify the specific features of the speech stream for which target 
detection tasks evaluate learning. Our RSA revealed that RTs carry information about multiple 
features of the syllables: transitional probability, triplet position, word grouping, and duplet pairing 
of syllables. This result indicates that participants are specifically sensitive to pairwise 
relationships between syllables, as well as the triplet sequence.  

Within similarity values were higher than across similarity values for transitional probability, word 
grouping, and duplet pairing. For transitional probability, this may be due to the fact that the higher 
predictability of within-syllables led to more consistent RTs, as compared with RTs to the less 
predictable across or word-initial syllables. For word grouping, this result may suggest that the 
pattern of RTs for syllables comprising a pseudoword is somewhat unique to that particular 
sequence of syllables (i.e. the degree of facilitation of that specific word-initial syllable on the 
detection of the following word-medial syllable, and the latter’s facilitation of the word-final 
syllable). For duplet pairings, we also found that RTs are more similar for syllable pairs within 
pseudowords than for pairs that cross word boundaries. This is to be expected, as there exists no 
strong relationship between word-final syllables of one pseudoword and word-initial syllables of 
another.  

However, similarity across triplet positions was higher than similarity within triplet positions. At 
first, this may seem surprising, as within pairs share the same ordinal position within 
pseudowords. However, across pairs include many pairs that are within-word duplets, as well as 
phantom word pairs (e.g. C2-D3) that share the same transitional probability, whose similarity to 
each other may together override the similarity between syllables of the same position within a 
pseudoword. This finding underscores strong influence of pairwise relationships in driving RTs. 

Finally, by correlating subject-level similarity values for each feature with participants’ word 
recognition scores, we aimed to pinpoint whether sensitivity to these features is shared between 
these two tasks. However, we found there was virtually no correlation between word recognition 
and similarity values for any of the features tested. While we cannot infer that these features were 
not instrumental in helping participants complete the word recognition task, we might conclude 
that the word recognition task does not (in our instantiation) have sufficient granularity or power 
to predict performance on online SL tasks.  

General Discussion 

Statistical learning is an impressive cognitive tool: it is fast, flexible, and robust. It occurs 
automatically [13] and independent of input modality or stimulus type [31]. Yet, this seemingly 
simple mechanism can be challenging to evaluate accurately, as it encompasses several learning 
and memory components, including stimulus encoding, retention, and abstraction. [32],[33] As a 
field, we require sensitive and precise tools to discern (1) what information is being extracted by 
participants during exposure, (2) what of this information they are able to exploit in behavioral 
tasks, and (3) what processes or knowledge are being measured by our tasks. Given the richness 
of the SL process, an adequate evaluation of SL ability likely requires the use of multiple measures 
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within a given study, as well as a thorough understanding of how these measurements relate to 
one another, i.e. what they jointly or distinctly measure.  

We showed that online target detection tasks are highly sensitive, multi-faceted tasks, with the 
potential to provide insight into the contribution of distinct structural features to behavioral 
responses. We were also able to replicate above-chance word recognition performance, using a 
canonical 2AFC pseudoword vs. part-word task. Intriguingly, although we observed a weak 
correlation between performance in these two tasks, RT similarity measures derived using RSA 
were unable to predict word recognition performance for any of the four features tested.  

Previous proposals noting the lack of correlation between canonical online and offline tasks have 
pointed to the different demands the tasks make on memory, [20],[24], and the psychometric 
strength and weakness of the measures, respectively, [12] to explain the discrepancy. Indeed, in 
our study, above-chance performance was present in only 71% of participants (of 33) in the 2AFC 
task, while the graded RT effect was present in 89% of participants across both experiments (of 
53). (Fig. S7)  

As discussed above, the 2AFC task is a double-edged sword: too many trials risks reinforcing 
memory for non-words or part-words and obscuring the subtle contribution of implicit statistical 
learning, while too few trials provide a noisy and underpowered measure of learning. Consistent 
with previous studies [21],[34], we tested each pseudoword 4 times, in an attempt to minimize the 
former issue. However, the optimal tradeoff between these issues likely resides in a test where a 
larger number of test items (e.g. pseudowords) are tested with few repetitions (e.g. 4-8), yielding 
a minimum of 32 or 36 trials.  

In our study, the interpretability of our results are constrained by covariance among the features 
of interest, which disallows us from making firm assertions as to which features were more or less 
instrumental than others in completing the task. Future studies can make maximal use of the 
sensitivity of online tasks and RSA by incorporating designs that de-confound as many distinct 
properties as is reasonable or desired, to tease apart the relative contributions of e.g. transitional 
probability and word grouping or co-occurrence frequency [8]. 

Task sensitivity and its theoretical implications 

Saffran et al.’s seminal study concluded with the suggestion that infants exposed to the 
continuous syllable stream “succeeded in learning and remembering particular groupings of three-
syllable strings.” [5] Since this study, which catalyzed interest in SL reach in the domain of 
language, there has been debate over how participants accomplish the task. While there is 
evidence for numerous forms of sequence learning in general (such as rule-based learning that 
allows the learning of non-adjacent relationships [1],[35]), there are two accounts that seek to 
explain Saffran-type SL tasks.  

On what may be called the “chunking” or memory-based view, memory of the word chunk is what 
allows successful performance in the 2AFC pseudoword vs. part-word discrimination task. 
[33],[36],[37] In the PARSER model of chunking by Perruchet & Vinter (1998) [36], the perceptual 
system is thought to generate chunks of arbitrary length (1, 2 or 3 syllables) from the input, which 
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are then weighted (selected for or against as meaningful units) by repeated exposure to the same 
template. They propose that the chunk is subsequently operated upon as a single unit. Given the 
emphasis on the formation and processing of the chunk as a whole, this characterization does 
not appear to support the observation that predictability for elements within the chunk may vary.  

In contrast, the simpler process of tracking local transitions between items predicts the common 
observation that in, e.g. a syllable triplet, initial syllables predict medial syllables, which in turn 
predict final syllables. [38] We note however that these explanations are not mutually exclusive, 
as all different forms of sequence processing are available to the individual. In artificial languages 
with non-adjacent dependencies [39], or more enriched syntax [40], more complex, hierarchical 
tracking of inputs would be required. [41]  

Importantly, success in both the online and offline tasks does not require nor entail that an 
individual was able to generate a unified representation of the syllable triplets that formed the 
pseudowords. Sensitivity to transitional probabilities (mere segmentation) may be sufficient to 
achieve both the graded RT effect and above-chance word recognition. As discussed above, 
learning the pairwise transitions between syllables will facilitate responses to word-medial and 
word-final syllables.  

Likewise, in the word recognition task, the sum transitional probabilities for isolated pseudowords 
is 2 (TP = 1 between syllable 1 and 2, and also 1 between syllable 2 and 3), but only 1.33 for part-
words (TP=0.33 between syllable 1 and 2, and 1 between syllable 2 and 3). While we are agnostic 
as to how precisely participants complete the tasks, those used in this study can be minimally 
explained by learning of a single feature. 

The notion that tracking transitional probabilities alone would allow above-chance performance 
on the pseudoword vs. part-word recognition task, but not be sufficient for “chaining” or “chunking” 
more than two items is also supported by Endress & Mehler’s findings. [10] In their study, 5 
minutes of exposure was sufficient for participants to discern words from part-words, but even 
after 40 minutes of exposure, they still could not discern words from phantom words (tri-syllabic 
sequences where syllables are drawn from different words, but ordered so as to maintain each 
syllable’s original position in the word). Only with the introduction of linguistic cues (final syllable 
lengthening and pauses between words), did participants reject phantom words as often as they 
rejected part-words without additional cues.  

Another study found that correct judgments of whether a novel triplet belonged to an exposure 
stream of repeating visual shapes were improved by how closely the summed transitional 
probabilities within the new triplet matched that of the original triplet structure. [42] Finally, a recent 
study specifically compared participants’ ability to learn sequences of two versus three items, 
finding that learning triplet sequences required explicit instruction, while duplet sequences could 
be acquired implicitly. [43]  

Our study highlights the importance of implementing complementary measures of SL within the 
same experiment with adult participants. However, one implication of our results is that online 
tasks may in some cases and for some experimental questions be preferable to explicit, discrete 
2AFC tests. This is particularly relevant for SL studies on infant populations. Gaze detection tasks, 
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common in infant research, more closely approximate the 2AFC task. Indeed, for infants and 
young children it is more challenging to find an analogue to the online target detection task.  

However, studies in infants have found rich, complementary evidence for learning by utilizing 
frequency tagging techniques during exposure [44], as well as measuring ERP components 
[44],[45] or pupilometry [45] during the test phase. Frequency tagging [7], ERPs [21] and 
pupilometry [46] are all methods that have also revealed neural correlates of learning in adults.  

The rapid and implicit structure learning exhibited by humans and other non-human animals is 
impressive in its flexibility and domain generality, easily spanning vision, audition, and motor 
action. [47] What we call SL is therefore likely to be a complex collection of several learning 
systems for syntactic tracking, memory encoding and retrieval, and hierarchical processing. 
[31],[48] 

Conclusion 

Online measures of statistical learning, such as the target detection task, can reveal subtle, 
dynamic properties of implicit learning. Meanwhile, offline tasks that require explicit discrimination 
show that participants can use implicitly acquired knowledge to make explicit decisions, but are 
limited in their inferential power. We found evidence of learning using both tasks, but found a 
weak correlation between these measures. Using representational similarity analysis, we found 
that RTs to target syllables in a continuous syllable stream captured information about the 
syllable’s transitional probability, triplet position, word grouping and duplet pairing. Furthermore, 
RT similarity measures for these features were unable to predict word recognition performance. 
We conclude that online tasks appear to capture more subtle information than typical explicit 
recognition tasks, even in less-than-ideal experimental designs. We highlight the importance of 
using multiple methods to assess SL, developing thorough theoretical models, and subtle tasks 
to investigate this sophisticated and multi-component ability. 

Methods 

Stimuli 

Speech stimuli consisted of 12 consonant-vowel (CV) pairs. We selected 5 unique vowels that 
are maximally separated in their manner and place of articulation. We ensured that none of these 
vowels typically occurred in unstressed syllables in spoken German. We then selected 12 unique 
consonants, in order to render each syllable phonetically distinct from the others. We used the 
CELEX database [49] to calculate the frequency of occurrence of each of our syllables in spoken 
German, as well as the frequency of co-occurrence between each pair of syllables. We eliminated 
high-frequency CV pairings from our list of possible syllables and formed the final words by 
combining three syllables (each with distinct vowels) for which no transitions were frequent in 
spoken German. The syllabes were: be, di, ga, ki, la, mi, nu, po, ro, se, tu, za.  

A male native speaker of German was recorded pronouncing each syllable in our set separately 
and with a flat intonation. Each syllable was repeated several times to ensure we obtained a 
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quality token. The token which most closely followed the IPA pronunciation was selected as the 
final syllable. The syllables were then high-pass filtered at 50 Hz and silences before and after 
syllable were removed using a custom script in Matlab 2017b. The 12 syllables were normalized 
for pitch and intensity using Praat [50] to ensure relative homogeneity between tokens. Finally, 
syllables were temporally compressed to 240 ms in duration and a 10 ms silence was added at 
the end of each syllable, for a total duration of 250 ms. 

Syllables were combined into 4 tri-syllabic pseudowords such that each word featured no 
repeating consonants or vowels and similarity between any possible succeeding pairs of syllables 
was minimized. We also ensured that no pairs were phonotactically illegal or shared a 
resemblance with existing words in German, using CELEX. Pseudowords for our study were: 
nugadi, rokise, mipola, zabetu. Part-words, used in the word recognition task in Experiment 1, 
were of the form C’AB (word-final syllable from one word followed by word-initial and word-medial 
syllables from another): dizabe, semipo, lanuga, turoki. 

Experiment 1 

Continuous speech sequences (24) were created in Matlab by concatenating syllables comprising 
the four pseudowords such that no words repeated consecutively. Each stream was comprised 
of 216 syllables (72 words) and was 54 seconds long. As per the design in [5], standard in SL 
studies, the only cue to segmenting the sequence lay in the transitional probabilities between 
syllables. The transitional probability of word-medial and word-final syllables (relative to the 
preceding syllable) was 1, while the transitional probability of word-initial syllables was 0.33. The 
first syllable in each stream could be a word-initial, word-medial, or word-final syllable. If stream 
began with the word-medial (word-final) syllable of a word, the word-initial (word-initial and word-
medial) syllable of that word would be the last (two) syllable(s). Speech streams were ramped up 
and down in amplitude using a linear slope over a period of 1.5 seconds (6 syllables) so that onset 
and offset syllables were not clearly distinguishable and could not serve as cues to word 
segmentation.  

Experiment 2 

For this experiment we synthetized 12 “structured” streams and 12 “random” streams in Matlab. 
For structured streams, the procedure was identical to that mentioned above. For random 
streams, the 12 syllables were pseudo-randomly permuted out to the same length as the 
structured stream (216 syllables), with the sole constraint that a syllable could not be repeated 
consecutively. Thus, transitional probabilities between adjacent syllables were roughly 0.083. 
Speech streams were ramped up and down in amplitude over a period of 1.5 seconds so that 
onset and offset syllables were not clearly distinguishable and could not serve as cues to word 
boundaries.  

Procedure 

The experiment was designed using Presentation® (Version 20.1 Build 12.04.17) and delivered 
on two versions of the software (Version 20.0 Build 07.26.17 and Version 21.1 Build 09.05.19, 
Neurobehavioral Systems, Inc., Berkeley, CA, www.neurobs.com).  
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Experiment 1 

41 individuals participated in the study (27 female, mean age, 27.44 ± 5.78 sd). Participants 
provided written informed consent prior to the study. The study received approval from the local 
ethical committees (Ethics Council of the Max Planck Society) and adhered to the ethical 
standards of the Declaration of Helsinki. All participants reported having normal hearing and were 
paid for their participation. Two participants were removed from the data pool due to technical 
failure. Of the 39 remaining datasets, 33 were used in analyzing the target detection task (one 
participant failed to follow instructions, and technical issues caused partial data loss for the other 
five). Since the design of our experiment was modular, technical failure in one task did not 
necessarily affect data in another. Of the 39 datasets, we were able to use 38 for analyzing the 
word recognition task (data from one participant in this task was overwritten). For the correlation 
analysis comparing target detection task performance with word recognition performance, we 
included only participants for whom we had data for both tasks (32).  

A previous study by Batterink and colleagues [21] using similar online and offline tasks as us had 
observed a significant correlation coefficient of 0.51 with 24 participants. A power analysis 
revealed this analysis to have a power of 0.74, suggesting that this effect size is rather large 
based on Cohen’s effect sizes for 𝜌𝜌 values of 0.1, 0.3, and 0.5, respectively representing small, 
medium, and large effects. We calculated that in order to obtain a test with at least 80%, we would 
need 27 participants, and for 90% 36 participants. Our sample of 33 then was theoretically 
sufficient to observe a correlation effect as large as Batterink et al. reported.  

Participants were seated in a dimly-lit, sound-attenuated booth, approximately 52 cm from the 
monitor and listened to the stimuli via headphones connected to a headphone amplifier 
(Beyerdynamics-DT-770 80 Ohm; Lakepeople G103P1262). Stimulus intensity level was 
approximately 57 dB (LAF: min 44 dB, max 76 dB), as measured by a NTi Audio device connected 
to an artificial ear on which the experiment headphones were mounted. The experiment was 
conducted on a 64-bit Windows machine (Fujitsu Celsius M740B) running Windows 10. 

The experiment consisted of an exposure phase, during which participants performed the target 
detection task, followed by the word recognition task. Our experiment also included an additional 
task, designed to measure perceived speed of the speech stream before versus after the 
exposure phase. Results from this task will not be discussed here.  

During the exposure phase, participants listened to a total of approximately 24 minutes of 
continuous speech. Participants were told they would hear brief sequences of sounds from an 
alien language. Audio was presented binaurally. Before the start of each stream, one of the 12 
syllables was displayed orthographically on the screen and played aurally twice. Participants were 
instructed to press the spacebar as fast as they could during the subsequent stream whenever 
they heard this target syllable. Each of the 12 syllables served as a target syllable twice. The 
presentation order of syllables was pseudo-randomly shuffled for each participant with the 
constraint that a syllable from each triplet position in the pseudoword (word-initial, word-medial, 
or word-final) was tested before any were repeated. The 24 streams were organized into 8 blocks, 
where each block consisted of 3 streams with one target syllable from each triplet position tested. 
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Within each stream, target syllables appeared 17-18 times. Participants could take self-paced 
breaks between blocks.  

In the word recognition task, participants completed 16 trials of a two-alternative forced-choice 
task. In each trial, a pseudoword and a part-word were presented (counterbalanced across trials), 
and participants were prompted to determine which of the pair was a word in the alien language 
they had just heard in the previous section. The inter-stimulus-interval between words was 400 
ms, while inter-trial-interval was 1.2 seconds. Each pseudoword was paired with each part-word 
once (4 x 4 trials).  

Experiment 2 

21 individuals participated in the study (15 female, mean age 28.08 ± 6.82 sd). Participants 
provided written informed consent prior to the study. The study received approval from the local 
ethical committees (Ethics Council of the Max Planck Society) and adhered to the ethical 
standards of the Declaration of Helsinki. All participants reported having normal hearing and were 
paid for their participation. Inclusion criteria included the requirement to not have taken part in 
Experiment 1. One participant was excluded due to technical failure. Technical failure caused 
data loss in the random condition for one other participant, leaving data from 20 participants (19 
in the random condition, 20 in the structured condition).  

Participants were seated approximately 52 cm from the monitor and listened to the stimuli via 
headphones connected to the PC server. Stimulus intensity level was again measured by a NTi 
Audio device connected to an artificial ear. Volume levels were in the range reported for 
Experiment 1. The experiment was conducted on a 64-bit Windows machine running Windows 7. 

Participants completed two exposure phases, one with a continuous stream of random syllables 
and one with a continuous structured stream. During both phases, participants completed the 
target detection task, following the procedure described under Experiment 1. Each phase 
consisted of a total of approximately 12 minutes of continuous speech, divided into ~1 minute 
long streams. Participants could take self-paced breaks between streams. The instructions and 
task procedure for each phase was identical to that in Experiment 1, with the exception that 
participants only performed the task once for each syllable instead of twice. Each stream featured 
18-19 occurrences of the target syllable. Random and structured exposure orders were 
counterbalanced across participants. Our experiment also included an additional non-SL task, 
which was completed after each exposure phase. Results from this task will not be discussed 
here.  

Analysis 

All analyses were performed in RStudio (version 1.2.1335; RStudio Team 2018) using the R 
statistical programming language. [51] Primary analyses and modelling was performed using the 
packages tidyverse [52], lme4 [53], and emmeans. [54] Raw data was transformed into csv files 
for processing in R using Matlab R2017b (version 9.3.0.713579). Data and code is publicly 
available on Github: https://github.com/avakiai/statistical-learning. 
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Experiment 1 

Online Target Detection Task: We considered only those responses that occurred within a 
boundary of ± 3 times the median absolute deviation over all RT values. This procedure ensures 
that RT cutoffs would be based on the distribution of the raw data and not arbitrary limits [55]. At 
the same time, the use of the median as the centrality metric is arguably more appropriate, given 
that the mean can be a biased estimator of RT data, which typically follows a gamma, lognormal, 
or ex-Gaussian distribution. This procedure eliminated only 0.034% of the data and resulted in 
RT that ranged from 0 to 943 ms (versus the original 0 to 1298 ms). This procedure did not 
significantly change the overall mean accuracy (𝑀𝑀𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = 0.71,𝑆𝑆𝑆𝑆𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = 0.45, 𝑡𝑡(63.9) =
−0.39,𝑝𝑝 = 0.7, two-sided t-test against post-outlier removal accuracy). 

To replicate findings that showed graded reaction times in response to syllables in different triplet 
positions, we ran a generalized linear model with RT (in seconds) as outcome variable, fitted with 
a gamma distribution and log link function. Our fuller model included both triplet position and block 
as fixed effects factors, and subject as a random intercept-random effects factor. This model was 
compared with a lesser model in which only triplet position was used as a fixed effect. The lesser 
model provided a better fit of the data, with a lower AIC (-6389.2) value and significantly lower 
deviance (−6399.2,  𝑋𝑋2(21,𝑁𝑁 = 33) = 49.066,𝑝𝑝 < 0.001). (See Table S1 for regression results.) 
We also compared both the fuller and the lesser models with random slopes for levels of triplet 
position in the random effects term, but the lesser model with only varying random intercepts in 
the random effects term still proved a better fit for observed data (see Table S1; lesser vs. fuller 
random slopes models deviance was -6624.3 and -6678.3, respectively; 𝑋𝑋2(21,𝑁𝑁 = 33) =
 54.025,𝑝𝑝 < 0.0001). Thus, we conducted further analysis on results of the lesser model. 

Word Recognition Task: We computed each participant’s word recognition accuracy by dividing 
the number of correct discriminations by total trials (16) for each participant. Overall mean 
recognition accuracy was the overall number of correct divided by total trials. Recognition 
accuracy per word was calculated in the same manner, but for each word individually. Chance 
performance was set at 50% correct trials (8 out of 16 for overall accuracy, 2 out of 4 for word-
wise accuracy). 

Correlation between online and offline measures of SL: Three methods were used to evaluate the 
correlation between performance in the two tasks. For the analysis following Siegelman et al. [26], 
the online measure of SL was computed for each participant (see equation 1) and correlated with 
participants’ word recognition accuracy scores using Pearson’s correlation (one-tailed test). For 
the analysis following Batterink et al. [21], an RT score was created for each participant computing 
RT difference between word-initial and word-final position syllables. These scores were correlated 
with word recognition scores using Pearson’s correlation. Finally, we used a third method in which 
we z-normalized RT values for each participant, computed median RTs to each triplet position, 
and computed the difference between the scaled median RTs for each position pairing for each 
participant (1-2, 2-3 and 1-3). We then correlated each of the three RT scores with word 
recognition accuracy separately using Pearson’s correlation. 
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Experiment 2 

Online Target Detection Task: We used the same criterion to eliminate outliers as in Experiment 
1 (± 3 times the median absolute deviation). This procedure eliminated only 1.93% of the data 
and resulted in RT that ranged from 119 to 941 ms (originally, 0 to 1997 ms). This procedure did 
not affect the overall detection accuracy (𝑀𝑀𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = 0.83,  𝑆𝑆𝑆𝑆𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = 0.38, 𝑡𝑡(37.43) = −0.42,𝑝𝑝 =
0.68, two-sided test against post-outlier removal accuracy) 

To compare the reaction times between structured and random conditions, we dummy-coded the 
random streams with the same triplet positions as the structured streams. Thus, if the syllables in 
the structured stream 1 followed the order: 3,1,2,3,1,2,3…, we applied the same position coding 
to random stream 1, even though these position codes correspond to no meaningful property in 
the random stream. This procedure however, allowed us to compare RTs for the same variable 
(triplet position) between the two conditions.  

We performed a modelling procedure similar to that from Experiment 1. We included subject as 
a nested effect within condition order (whether participants completed the structured condition 
before the random condition, or vice versa), as condition order was our between-subjects variable. 
We further specified the random effects term by allowing random intercepts and uncorrelated 
random effects for each level of condition. This structure allows the graded RT curve for each 
participant to vary between conditions, as well as their baseline RT (intercept). (See Table S2 for 
regression results.)  

Representational Similarity Analysis 

For the group-level analysis, we first combined the preprocessed data (after outlier removal) from 
Experiment 1 (N = 33) with the data from the structured condition in Experiment 2 (N = 20) for a 
combined data set with greater power (N = 53). For each participant, we computed a similarity 
matrix (Pearson correlation) on RTs between each pair of syllables, thus generating a 12-x-12 
matrix of correlation values for each participant. We then applied a Fisher’s z-transformation to 
each matrix to normalize correlation values across participants. We tested for the coding of each 
of the four features by running four Wilcoxon ranked sum tests. For each test, we identified the 
cells in the 12-x-12 matrix whose values would comprise within and across groups, respectively. 
We performed a random sampling of correlation values from the cells in the matrices from all 
participants to generate within and across arrays. (See Results and Fig. S6.) The sampling 
procedure was repeated 200 times with replacement, with the final N for each test being equal to 
4/5 times the length of the shorter of the two arrays being compared. (Since arrays for paired 
ranked sum analyses must have the same length and not all tests entailed the same number of 
comparisons, we effectively subsampled from both arrays so they would have a common length.) 
We then computed a paired, two-sided Wilcoxon’s rank sum test on the resulting two arrays to 
determine whether similarity (as a proxy for feature coding) is higher within or across groups.  

For the subject-level analysis, we took the z-transformed correlation matrices from participants in 
Experiment 1 (N = 32) and for each participant individually, subset values from the matrix to 
generate within and across groups for each feature, using the same rubric as in the previous 
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analysis. (However, here we did not perform a bootstrapping procedure.) Next, for each feature, 
we computed mean of the correlation values in the within and across groups, and subtracted the 
across mean from the within mean, to obtain four measures of similarity for each participant – one 
for each feature. Finally, we correlated each participant’s word recognition score with their within-
across similarity for each feature individually, to determine if sensitivity in the RT task to any of 
these feature alone would predict word recognition performance. 
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