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Abstract  
 
Brain signatures of functional activity have shown promising results in both decoding brain 
states; i.e., determining whether a subject is at rest or performing a given task, and 
fingerprinting, that is identifying individuals within a large group. Importantly, these brain 
signatures do not account for the underlying brain anatomy on which brain function takes 
place. Here, we leveraged brain structure-function coupling as a new imaging-based 
biomarker to characterize tasks and individuals. We used multimodal magnetic resonance 
imaging and the recently introduced Structural-Decoupling Index (SDI) to quantify regional 
structure-function interplay in 100 healthy volunteers from the Human Connectome Project, 
both during rest and seven different tasks. SDI allowed accurate classifications for both 
decoding and fingerprinting, outperforming functional signatures. Further, SDI profiles in 
resting-state correlated with individual cognitive traits. These results show that brain structure-
function interplay contains unique information which provides a new class of signatures of 
brain organization and cognition. 
 
 
Introduction 
 
The existence of brain signatures based on functional magnetic resonance imaging (fMRI), 
meaning specific features uniquely characterizing one’s brain or a specific task-related state, 
has emerged in the last two decades. On the one hand, the application of pattern recognition 
techniques to neuroimaging data proved the capability of fMRI to decode task-specific brain 
activity 1–5. Significant progress in this direction was made by the recent advent of deep 
learning 1,3,5, even if it remains nontrivial to interpret the biological meaning of the learned 
features. On the other hand, similarly to a fingerprint, fMRI-based features can accurately 
identify individuals from a large group 6–9. In a seminal paper from Finn and colleagues 8, 
functional connectivity (FC) profiles were used to successfully classify subjects across resting-
state test-retest sessions, and even between task and rest conditions. The fronto-parietal 
network emerged as the main contributor to subject discrimination, and was shown to predict 
individual cognitive behavior (level of fluid intelligence). In addition to functional activity, brain 
anatomical features, such as cortical morphology and white-matter structural connectivity, 
were also proven useful for brain fingerprinting 10–14. 
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In this context, a still unexplored brain feature, which could offer new insights into brain 
decoding and fingerprinting, is the structure-function interplay; i.e., how brain functional activity 
relates to the underlying structural connectivity architecture, measured with diffusion-weighted 
MRI. Early attempts to investigate structure-function relationships in the brain spanned from 
simple approaches, such as linear analyses 15–18, to more complex ones like whole brain 
computational and communication models 19–22. More recently, graph signal processing 
provided a novel framework for a combined structure-function analysis 23–25. Within this setting, 
Preti et al. quantified the degree of structure-function dependency for each brain region, by 
means of the newly introduced structural decoupling index (SDI) 25. During resting-state in 
healthy subjects, structure-function dependencies showed a very characteristic and 
behaviorally relevant spatial distribution, spanning from lower-order functional areas such as 
visual and somatosensory cortices, with function highly aligned to the structure underneath, 
to higher-order ones, with function more independent from the structure. However, the extent 
to which this configuration changes in different task-related states, or in different subjects, still 
remains unexplored. In particular: do structure-function dependency patterns represent a 
signature of a particular task-related state? And can they act as a brain fingerprint uniquely 
identifying individuals?  
 
To answer these open questions, we analyzed 100 unrelated healthy subjects from the Human 
Connectome Project (HCP) 26, and assessed their structure-function interplay profile through 
SDI, during resting-state and while engaged in seven different tasks. By only using structure-
function dependency values, we then attempted to classify different tasks and individuals, and 
in both cases, the classification showed a very high accuracy in various cross-validation 
settings, and a better performance than the one obtained with functional connectivity. Two 
specific networks including regions that are key to either brain decoding or brain fingerprinting 
emerged. Structure-function dependencies in resting-state were then shown to correlate with 
individual cognitive traits (fluid intelligence, spatial orientation, sustained visual attention and 
episodic memory). 
 
 
Results 
 
Brain decoding and fingerprinting networks 
The structure-function interplay assessed with structural-decoupling index yielded a brain 
pattern of regional values (360 cortical regions of Glasser parcellation and 19 subcortical 
areas) for each subject and acquisition (Resting-state and 7 tasks: Emotion, Gambling, 
Language, Motor, Relational, Social, Working-Memory; each acquired with 2 phase encoding 
directions). Average SDI profiles across subjects for each state are reported in Supplementary 
Fig. 1. 
A two-factor analysis of variance (ANOVA) assessing differences of nodal SDIs across 
subjects and tasks yielded two very distinct and spatially specific brain patterns (Fig. 1), 
characterized by a significant effect for either decoding (task-effect) or fingerprinting (subject-
effect), respectively (F-test, only nodes with significant F-values are visualized as non-zeros 
in Fig. 1, with p<.05, Bonferroni-corrected for the number of brain regions). The brain decoding 
pattern (Fig. 1A) clearly involves more prominently regions of task-related networks, in 
particular visual and somatomotor networks. On the contrary, the brain fingerprinting pattern 
(Fig. 1B) was spatially more spread, but concerned mainly the posterior parietal cortex, 
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including fronto-parietal regions, consistently with what was found previously 8, but also visual, 
somatomotor and dorsal attention networks. 
 
  

 
  
FIG. 1 – Brain networks of task (brain decoding) and subject (brain fingerprinting) main 
effects on structure-function dependency. Two-Factors ANOVA, significant F-values, 
p<.05 Bonferroni corrected.  
  
  
Structure-function interplay for brain decoding 
A Linear Discriminant Analysis (LDA) was used to classify different task-related states (resting-
state and seven tasks) based on SDI values. Prior to SDI computation for this classification, 
task paradigms were regressed out from functional time courses to cancel out any paradigm-
imposed effect, aiming at keeping only differences due to the specific task-related states, and 
not directly driven by the paradigm characteristics. The same operation was performed in an 
alternative fashion by cutting and concatenating only the portions of functional time courses 
corresponding to the task blocks, and the classification analysis yielded similar results.  
An accuracy of 0.75 (against a chance-level accuracy of 0.125) was obtained with a leave-
one-subject-out cross-validation setting. The same classification performed on FC nodal 
strength values led to a lower accuracy of 0.52, showing that structure-function dependencies 
alone are able to well characterize both resting-state and the different task conditions and 
outperform a nodal measure based on functional data only.  
The LDA outputs seven meaningful discriminant directions, ordered by their discriminative 
power, and Fig. 2A shows the projection of the data onto the first four (i.e., the LDA scores, 
also shown in Supplementary Fig. 2). Notably, SDI values allow to separate very well not only 
resting-state from task, but also among different tasks, while this separation is less obvious 
when LDA is performed on FC nodal strength values (Fig. 2B).  
By observing the LDA weights or coefficients, we can derive which brain regions are key for 
the classification. Task-specific decoding networks were obtained by linear combination of the 
original LDA weights through task-specific modeling of the LDA scores (see Methods), such that 
the final maps reflect the SDI nodal decoding coefficient for a specific task of interest compared 
to all other tasks. These task-specific maps, shown in Fig. 3, detect the structure-function 
signature of each task-related state; i.e., the brain regions that mostly characterize a specific 
task with respect to the others, in terms of structure-function interplay. In these maps, regions 
with opposite signs indicate an opposite trend of the SDI towards more structure-function 
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coupling (negative sign) or more structure-function decoupling (positive sign) in the task of 
interest, when controlling for all other regions’ effects.  
The bar plots in Fig. 3 indicate the percentage of each task-specific SDI signature pattern that is 
involved in each functional network (7 Yeo networks 27). Different brain networks contribute to 
the classification of the different task-related states, and appear consistent with previous 
knowledge about brain functional organization. 
 

 
  
  
FIG. 2 – Brain decoding – Projection of the data onto the first 4 LDA discriminant directions, 
for (A) Structural-Decoupling Index and (B) Functional Connectivity node strength values. The 
higher performance of brain decoding based on structure-function interplay (accuracy=0.75) 
vs. functional connectivity (accuracy=0.52) is visually remarkable by the data projection in the 
LDA reduced space: different tasks are much better separated in (A) with respect to (B), which 
discriminates more successfully only resting-state from all other tasks. RS=resting-state; 
Working Mem=Working Memory. 
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FIG. 3 – Task-specific decoding networks – For each task-related state, a brain map of 
most discriminative nodes is created. Regions with highest absolute value are the ones 
contributing the most to the classification of the specific task of interest. In a region with 
positive (negative) weight, we will have an increase (decrease) of the SDI during the 
considered task, when controlling for all other regions’ effect. For each map, the bar plot on 
the right shows the percentage of the SDI signature pattern (i.e., of the regions with absolute 
value higher than the 95th percentile) belonging to known functional networks (seven Yeo 
functional networks and subcortical regions), distinguishing between positive (red) and 
negative (blue) contributions. VIS=visual; SM=somatomotor; DA=dorsal attention; VA=ventral 
attention; LIM=limbic; FPN=fronto-parietal; DMN=default mode; SUB=subcortical networks.       
  
  
 
Structure-function interplay for brain fingerprinting 
In addition to characterizing different task-related states, structure-function dependencies 
revealed to be highly specific to different individuals, allowing for the identification of subjects 
with an accuracy of 1 (both in a leave-one-subject’s-task-out and in an 8-fold cross-validation 
setting), slightly higher than the performance of FC nodal strength values for the same 
classifications (0.98, for both settings). Subject identification was more difficult, but still 
successful, when attempting to identify individuals based on SDI patterns of only one task 
from SDI patterns of another (all task combinations explored). Results are reported in Table 
1a, compared to the same classifications performed on FC nodal strengths (Table 1b). In most 
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cases, the SDI capability of classifying subjects was higher than FC, and in particular when 
predicting from resting-state SDI values (used as training set) to each of the other tasks’ (used 
as test set, one by one). 
  
 

 
Table 1 – Brain fingerprinting – Subject classification accuracies when using only one 
condition (task or resting-state) for training and one for testing (all pairwise combinations), for 
(a) SDI and (b) FC nodal strengths. In (a), the accuracies that are found to be higher for SDI 
with respect to FC are highlighted in green. 
  
 
 
Correlation between structure-function interplay and individual cognitive traits 
Finally, structure-function interactions during resting-state appear to explain inter-individual 
variations of cognitive traits. Multivariate correlations between subject-specific resting-state 
SDI values and 10 scores measuring cognitive subdomains were assessed with Partial Least 
Squares Correlation (PLSC) analysis. PLSC identifies linear combinations of SDI values that 
maximally covary with linear combinations of cognitive scores. This analysis revealed a 
significant multivariate pattern (p<.05 Bonferroni-corrected), with resting-state SDI values 
explaining 18% of the inter-individual variance of cognitive scores. In particular, SDI values in 
regions belonging to lower-order networks as well as to the default mode and fronto-parietal 
networks specifically related to fluid intelligence, spatial orientation, sustained visual attention 
and verbal episodic memory performances, as shown by the SDI and cognitive saliences that 
weigh the contribution of individual variables to the overall multivariate pattern (Fig. 4a,b). The 
SDI spatial pattern relating to cognitive traits (Fig. 4a) share similarities both with the SDI 
fingerprinting pattern (Fig. 1b), in fronto-parietal and default mode regions (rank correlation 𝝆 
= 0.23, p<10-5), and with the SDI decoding pattern (Fig. 1a), particularly in somatomotor areas 
(𝝆 = 0.50, p<10-5) (Fig. 4c), but not with the SDI maps specific to the single tasks (shown in 
Fig. 3; results detailed in Supplementary Table 1). No significant multivariate correlation 
pattern was found between structure-function dependencies during tasks and cognitive traits 
(Supplementary Table 2). 
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FIG. 4 – Correlation between structure-function interplay during rest and cognitive traits 
– Cross-subject multivariate correlation pattern between resting-state nodal SDI values 
(structure-function dependency salience shown in (a)) and cognitive traits (cognitive salience, 
average (bars) and dispersion (single dots) over 1000 bootstraps with replacement, shown in 
(b); cognitive subdomains with reliable nonzero salience weights are highlighted in yellow). (c) 
Percentage of the top 75-percentile regions in the SDI salience, SDI fingerprinting and SDI 
decoding patterns belonging to the seven Yeo functional networks. The cortical plots of the 
SDI fingerprinting and decoding patterns are shown in Fig. 1.    
               
 
 
Discussion 
 
Functional neuroimaging data provided measures of activity and connectivity with the ability 
to identify individual subjects in a group, as well as to predict brain states in relation to task 
execution 2,4,8. In parallel, brain morphology 12 and structural connectivity 10,13 revealed as well 
the capability of uniquely identifying individuals. However, brain function and structure are 
conventionally considered separately and the potential of structure-function interplay in 
subject identification (brain fingerprinting) and state prediction (brain decoding) remains 
unexplored.  
 
In relation to the first, given the high reliability of both structural and functional brain features 
in brain fingerprinting, we could expect structure-function dependency profiles to also uniquely 
characterize individuals. In line with this hypothesis, a recent study showed that the extent of 
alignment between structure and function correlates with individual differences in cognitive 
flexibility 24. Instead, concerning the latter, even if we can assume brain structure will not 
change across different task-related states in the same individual, the way brain function 
couples to the underlying structure is likely to adapt to the demands of the task. In line with 
this, task-related functional activity was shown to be well predicted from structure only in 
selected brain regions, different for each task 28. However, how does this structure-function 
relationship depend on external stimulation, cognitive engagement, and affective state and if 
this can be useful to decode different brain-states is still an open question 29. 
 
With these premises, we expanded here previous research by identifying the fingerprinting 
and decoding potential of structure-function dependencies. Specifically, the structural 
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decoupling index revealed able to identify individual subjects in a group with near-perfect 
accuracy, indicating that the pattern of structure-function coupling is an intrinsic feature (or 
fingerprint) of an individual’s brain organization. Further, this fingerprint appears robust to brain 
state changes, since even a stringent cross-validation setting with pairwise cross-task 
predictions delivers high fingerprinting accuracies. Nonetheless, our work also proves for the 
first time that structure-function interplay can predict brain states with high accuracy. 
Therefore, while it is true that a strong structure-function brain fingerprint exists independently 
from the task during which brain function is measured, structure-function dependencies are 
also sufficiently different across tasks to allow a reliable decoding of brain states.  
 
The idea of a ‘deep’ functional fingerprint independent from brain state configuration is 
consistent with recent works reporting good cross-task subject identification from FC data 6,8,30 
and moderate state-dependency  (compared to high subject-dependency) of functional 
networks 31. Here, we demonstrate that the way brain function aligns (or disaligns) with the 
underlying structural connectivity provides additional clues on this functional brain fingerprint. 
We show that regional structure-function dependencies outperform a nodal measure based 
on FC alone in subject identification, which highlights the importance of including structural 
information for better fingerprinting. While brain fingerprinting does in general benefit from 
multimodal data integration 32, structure-function interplay constitutes an interpretable and 
informative brain dimension delivering a compact fingerprint of brain functional organization, 
when compared to less parsimonious representations based on single voxels or connections 
9,32. 
 
SDI also outperformed FC nodal strength when decoding task-related states with accuracies 
of 0.75 and 0.52, respectively. It is important to remark here that, having regressed out task 
paradigms, brain decoding is based on differences in brain states driven by the task, but not 
“artificially” induced by the paradigm. This prevents from including any bias related to the 
paradigm timing that could amplify the variability between tasks and facilitate the decoding. 
Recent studies have shown that the cortical macro-scale gradient of structure-function 
coupling found at rest, opposing primary sensory and association cortices 25,33,  can be 
retrieved from task data as well 28,34, suggesting similar coupling patterns both in intrinsic (rest) 
and extrinsic brain states. We can indeed observe the same, when comparing average SDI 
patterns (across subjects) among task conditions. Nonetheless, specific and non-trivial 
differences across tasks, captured by the brain maps shown in Fig. 3, and not clearly visible 
at the population level, exist and allow very accurate task-decoding. 
 
Contributions of brain regions to subject and task identification are in fact not uniformly 
distributed across the cortex: two clearly distinct networks were highlighted, one for brain 
fingerprinting and one for task decoding (see Fig. 1).  
The decoding pattern mainly involved lower-level primary sensory regions, such as 
somatomotor and visual networks, where structure-function coupling appears stronger both in 
rest and task. However, the changes in SDI that relate to the discrimination of single tasks are 
not obvious and show involvement of complex patterns of increase/decrease in structure-
function alignment, characterizing different tasks (Figure 3a).  Notably, these SDI signature 
profiles suggested larger variations in structure-function interplay in functional networks known 
to be relevant for the considered task, for example an increased involvement of somatomotor 
networks during motor task, or of left temporal areas during language task (Figure 3b). 
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The fingerprinting pattern, instead, shows that individual uniqueness of structure-function 
dependencies is mainly expressed in parietal, dorsolateral prefrontal and association cortices 
including the visual association and supplementary motor areas. This involves transmodal 
association cortices including the fronto-parietal network, which have been reported to 
contribute to subject identification from functional connectivity 8. However, this pattern is 
broader and includes both regions that are coupled and regions that are decoupled with 
structure.       
 
Differently from previous work that mainly focused on individual cognitive domains, here we 
explored multivariate correlations between structure-function dependencies and multiple 
cognitive traits. We show that inter-individual variations of resting-state structure-function 
interplay explain traits of complex cognition (fluid intelligence, spatial orientation), executive 
function (sustained attention) and episodic memory 35, resembling descriptions of a general 
intelligence g factor previously associated with functional connectivity of the default mode 
network 36. In particular, a relatively stronger structure-function dependency was associated 
with better complex cognition, recalling previous works demonstrating a link between less 
liberal structure-function alignment during task switching and concomitant cognitive flexibility 
performances 24. Nonetheless, in our analyses the relationship between structure-function 
dependency and cognitive traits was specific to resting condition, suggesting that intrinsic 
rather than extrinsic brain states might better reflect general cognitive abilities. Meanwhile, this 
observation does not exclude that the assessment of structure-function dynamics during tasks 
tapping specific cognitive-behavioral subdomains may enhance the prediction of related 
individual traits, which may be further investigated in future research. 
During rest, relatively weaker structure-function dependencies were associated with better 
executive and memory abilities. It might be that certain brain functions, such as immediate 
memory, benefit from a less constrained structure-function alignment, a configuration that 
might predispose the individual to the integration of new information. Other functions, such as 
complex reasoning, may conversely benefit from more reliable and consolidated brain 
communication pathways, possibly expressed in a stronger structure-function alignment 
24,29,37. While speculative, these considerations and research in this direction may offer a new 
understanding of cognitive control mechanisms 38. 
The spatial pattern of structure-function dependencies relating to cognition presented 
similarities both with the decoding network in lower-order somatomotor and association 
cortices, intrinsically characterized by strong structure-function coupling 25, as well as with the 
fingerprinting network in fronto-parietal regions, characterized by weak structure-function 
interplay 25. Recent work showed that structural and functional connectivities present distinct 
patterns of inter-individual variance as they relate to cognition 39,40. Intriguingly, our results 
extend these findings identifying in the structure-function dependency a possible link between 
(divergent) structural and functional connectivity patterns in predicting behavior. 
 
This study has a number of limitations. The usage of a grey matter parcellation as opposed to 
a voxel-based analysis impedes a fine-grained characterization of functional territories that 
can vary across subjects and tasks 41–43, with possible impact on the quantification of the SDI. 
Nevertheless, a parcellation-based approach facilitates inter-subject comparisons, improves 
the signal-to-noise ratio of the estimated structural and functional measures, and enables a 
compact representation of brain fingerprints and decoding patterns. Finally, this study does 
not consider time-varying aspects of structure-function dependency 44,45, which are expected 
to provide insight particularly in relation to task decoding and cognitive control mechanisms. 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 19, 2021. ; https://doi.org/10.1101/2021.04.19.440314doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.19.440314
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Finally, our analyses are limited to slow temporal scales accessible with fMRI. Previous 
studies had attempted brain fingerprinting using electrophysiological recordings 46–48, but the 
link between faster brain dynamics and structural topology remains poorly understood 49,50. 
Future research may address how the hierarchy of structure-function dependencies vary at 
faster temporal scales, possibly carrying distinct fingerprinting and decoding information. 
 
In conclusion, this work demonstrates that the structure-function dependencies represent a 
prominent signature of individual brains’ organization with cognitive and behavioral 
consequences, while preserving task-dependent information key for brain decoding.    
 
 
Methods 
 
Data & preprocessing. 𝑁! 	= 	100 unrelated healthy subjects from the HCP were included in 
the study (ethical approval was obtained within the HCP). fMRI acquired with 𝑁" = 8	different 
task conditions (resting-state and 7 tasks: emotion, gambling, language, motor, relation, 
social, working memory), each recorded with 𝑁# = 2  phase encoding directions (right-left and 
left-right), as well as diffusion-weighted (DW)-MRI sequences, were pre-processed with 
standard pipelines, in order to obtain regional functional time courses and their structural 
connections, based on a parcellation with 𝑁$%& = 379 regions (360 cortical areas 51 and 19 
subcortical ones 52). In particular, minimally preprocessed data from the HCP were selected 
26,52 and the following additional preprocessing steps were performed. Nuisance signals were 
removed from voxel fMRI time courses (linear and quadratic trends, six motion parameters 
and their first derivatives, average white matter and cerebrospinal fluid signal and their first 
derivatives) and average time courses were computed in each region of the parcellation, 
previously resampled to the functional resolution, and z-scored. To remove the effect of the 
paradigm on task data, only for task classification, paradigms were regressed out trial by trial 
from functional time courses. Functional connectomes were obtained as Pearson’s correlation 
between pairwise time courses and FC nodal strength was computed for each region as the 
sum of absolute values of all region’s connections. 
The same DW-MRI processing pipeline detailed in 25 was used to reconstruct whole brain 
tractograms including 2 million fibers, using a spherical deconvolution approach and the 
Spherical-deconvolution Informed Filtering of Tractograms 2 (SIFT2 53) 
(https://www.mrtrix.org/). Structural connectomes were then obtained, after resampling of the 
same parcellation to diffusion space, as the number of tracts connecting two regions, 
normalized by the sum of the two regions’ volumes. 
 
SDI computation. The graph signal processing framework detailed in 25 was used to obtain 
the SDI, for each subject and acquisition. In brief, the average SC across the population is 
decomposed into structural harmonics 𝑢' by eigendecomposition of the SC Laplacian 𝐿 = 	𝐼 −
𝐴()** (given the identity matrix 𝐼 and the symmetrically normalized adjacency matrix 𝐴()** 
of the SC): 
 

𝐿𝑈 = 𝑈𝛬,  
 

where each eigenvalue [𝛬]',' = 𝜆'can be interpreted as spatial frequency of the 
corresponding structural harmonic (eigenvector) 𝑢' . Functional data at each timepoint 𝑠,	is 
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then projected onto the structural harmonics by assessing spectral coefficients 𝑠,8 = 𝑈"𝑠,, and 
filtered into two components with ideal low- and high-pass filters, where the cut-off was set to 
𝑐 = 50 spectral components for all acquisitions, to avoid task-biases. This yielded a low-
frequency functional activity component 𝑠,	. = 𝑈(012)𝑈"𝑠,, which is coupled to the structure, 
and a high-frequency one 𝑠,	4 = 𝑈(5675)𝑈"𝑠,, more decoupled (where 𝑈(012)and 𝑈(5675)are 
𝑁$%& × 𝑁$%&matrices with the 𝑐 first eigenvectors complemented by zeros, and with 𝑐 first 
columns of zeros followed by the 𝑁$%& − 𝑐	last eigenvectors, respectively). The norm across 
time of 𝑠,	. and 𝑠,	4 yields a general measure of coupling and decoupling for each node, and 
the ratio between the two corresponds to the structural-decoupling index.  
 
Brain decoding and fingerprinting networks.  A two-factors (subject and task) ANOVA on 
regional SDI values was performed to identify brain patterns of task and subject main effects 
(decoding and fingerprinting patterns, respectively; significant F-values with 𝑝 < .05, 
accounting for Bonferroni correction across regions).  
 
Brain decoding: task classification. A linear discriminant analysis with 𝑁8! = 8 classes was 
performed to classify a brain state 𝑏𝑠 (𝑏𝑠 = 1, . . . , 𝑁8!, i.e. resting-state or one of the 7 tasks) 
based on the 𝑁$%&	 ×	𝑁# ⋅ 𝑁8! ⋅ 𝑁! feature matrix 𝑋 of  SDI patterns for all subjects and 
acquisitions. LDA identifies 𝑁8! − 1 meaningful discriminative directions, each associated to 
a 𝑁$%&- dimensional vector of weights, which identifies brain regions mostly contributing to the 
classification in that LDA direction. The projection of original data 𝑋 onto the 𝑁$%&	 × 𝑁8! − 1 
matrix 𝑊 of weights leads to the 𝑁# ⋅ 𝑁8! ⋅ 𝑁! 	× 	𝑁8! − 1 LDA scores 𝐿𝐷: 
 

𝐿𝐷	 = 	𝑋	 ⋅ 𝑊, 
 
which maximize the inter-class variability while minimizing the intra-class one, and are used 
for the classification. A leave-one-subject-out (100-fold) cross-validation was implemented, 
where the 𝑁# ⋅ 𝑁8! acquisitions from one subject were excluded for each fold. 
 
Task-specific decoding networks. In order to identify which brain regions mostly contribute 
to the specific classification of one particular task, the 𝑁8! − 1 vectors of LDA scores were 
considered as regressors of a linear model to predict a boxcar function 𝒚𝒃𝒔 representing the 
specific task-related brain state 𝑏𝑠 (𝒚𝒃𝒔= 1 in the 𝑁# ⋅ 𝑁! occurrences related to task 𝑏𝑠, and 
𝒚𝒃𝒔	 = 	𝟎 elsewhere): 
 

𝑦;( = 𝐴	 ⋅ 𝛽;( 	+ 𝜖;( 
 
where the 𝑁# ⋅ 𝑁8! ⋅ 𝑁! 	× 	𝑁8! design matrix 𝐴 contains the 𝑁8! − 1	 vectors of 𝐿𝐷 in addition 
to a baseline vector, and 𝜖;(	represents the model error. The linear model weights 𝛽;( were 
then used as coefficients in a linear combination of LDA weights 𝑊: 
 

𝑤;(	 = 𝑊 ⋅ 𝛽;( 
 
yielding the task-specific weights 𝑤;(, which represent SDI regional contribution to the 
classification of task 𝑏𝑠 vs. all others. A non-parametric null distribution of 99`999 surrogates 
for 𝑤;(was obtained through permutation of the LDA task labelings. Standardized scores for 
𝑤;(	with respect to the null distribution were computed and used for visualization. The whole 
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procedure was repeated for each task 𝑏𝑠. To identify which functional networks are involved 
in SDI task-specific patterns, the percentage of the top 95-percentile regions in the 
standardized weights 𝑤;( belonging to the seven Yeo functional networks was computed. 
 
 
Brain fingerprinting: subject classification. A second LDA with 𝑁! 	= 	100 classes was 
performed to classify individuals, based on SDI values of all acquisitions. Different 
classification settings were explored: (1) classification of a subject 𝑠 doing a specific task 𝑏𝑠, 
based on all other tasks/individuals. This was implemented with a leave-one-subject’s-task-
out (800-fold) cross-validation, where the 𝑁# entries (two different encoding directions) of 
subject 𝑠 doing task 𝑏𝑠 were excluded for each fold; (2) classification of a subject 𝑠 doing a 
specific task 𝑏𝑠, based on the entries related to all subjects during the remaining 𝑁8! − 1 tasks; 
i.e., a leave-one-task-out (8-fold) cross-validation where all entries from task 𝑏𝑠 are excluded 
at every fold; (3) classification of a subject 𝑠 doing a specific task 𝑏𝑠, from entries related to 
only one other task (all combinations explored). 
 
SDI correlation with cognition. A Partial Least Squares Correlation analysis 54 was 
performed to assess the presence of multivariate correlation patterns between 𝑁$%& nodal SDI 
values and 10 cognitive scores across subjects. For the cognitive scores, the 10 cognitive 
subdomains tested in the HCP were considered, namely, episodic memory, executive 
functions, fluid intelligence, language, processing speed, self-regulation/impulsivity, spatial 
orientation, sustained visual attention, verbal episodic memory and working memory 55. For 
subdomains for which more than one unadjusted raw score was available, a single score was 
obtained by data projection onto the first component from a principal component analysis 
(Supplementary Fig. 3). PLSC was repeated 𝑁8! times, each time considering only SDI values 
obtained during one task 𝑏𝑠. Given the dimensionality of the data, each PLSC analysis output 
10 pairs of SDI-cognitive saliences (left and right singular vectors of the data covariance 
matrix), 10 singular values (indicating the amount of explained covariance), and 10 SDI and 
cognitive latent scores (data projections onto the SDI and cognitive saliences, respectively). 
Statistical significance of multivariate correlations was assessed with permutation testing 
(1000 permutations) and applying Bonferroni correction for testing 10 singular values (deemed 
significant for p<.05/10) 56,57. Reliability of nonzero salience values was assessed with 
bootstrapping procedure (1000 random samples with replacement) and computing standard 
scores with respect to the bootstrap distributions (salience values were considered reliable for 
absolute standard score > 3) 56,57. The r-squared between latent scores was used to quantify 
the amount of cognitive traits’ variance explained by the SDI values.       
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