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Abstract
Background: Biomolecular condensates are non-stoichiometric assemblies that are
characterized by their capacity to spatially concentrate biomolecules and play a key role in
cellular organization. Proteins that drive the formation of biomolecular condensates frequently
contain oligomerization domains and intrinsically disordered regions (IDRs), both of which can
contribute multivalent interactions that drive higher-order assembly. Our understanding of the
relative and temporal contribution of oligomerization domains and IDRs to the material
properties of in vivo biomolecular condensates is limited. Similarly, the spatial and temporal
dependence of protein oligomeric state inside condensates has been largely unexplored in vivo.
Methods: In this study, we combined quantitative microscopy with number and brightness
analysis to investigate the aging, material properties, and protein oligomeric state of
biomolecular condensates in vivo. Our work is focused on condensates formed by AUXIN
RESPONSE FACTOR 19 (ARF19), which is a transcription factor integral to the signaling
pathway for the plant hormone auxin. ARF19 contains a large central glutamine-rich IDR and a
C-terminal Phox Bem1 (PB1) oligomerization domain and forms cytoplasmic condensates.
Results: Our results reveal that the IDR amino acid composition can influence the morphology
and material properties of ARF19 condensates. In contrast the distribution of oligomeric species
within condensates appears insensitive to the IDR composition. In addition, we identified a
relationship between the abundance of higher- and lower-order oligomers within individual
condensates and their apparent fluidity.
Conclusions: IDR amino acid composition affects condensate morphology and material
properties. In ARF condensates, altering the amino acid composition of the IDR did not greatly
affect the oligomeric state of proteins within the condensate.
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Background
Across all kingdoms of life, cells must accomplish the difficult task of organizing their

intracellular environment. Cells can accomplish this through two primary mechanisms;
compartmentalization through use of membrane-bound organelles or through the formation of
biomolecular condensates [1–4]. Biomolecular condensates are non-stoichiometric assemblies
of biomolecules that are defined by their common feature of spatially concentrating cellular
components [3]. Growing evidence suggests that in many cases, biomolecular condensates
form through the process of phase separation [4–8]. Of fundamental importance to this process
is the multivalency of the molecules that undergo phase separation [8–10]. Multivalency refers
to the capacity of a molecule to simultaneously engage in multiple intermolecular interactions.
The ability of multivalent biomolecules to undergo coordinated and regulatable assembly is at
the heart of biomolecular condensate formation, regardless of if the underlying mechanism is
phase separation or some other process.

Many proteins that are capable of undergoing phase separation contain intrinsically
disordered regions (IDRs) [7,11–14]. IDRs are protein regions that do not adopt a fixed
three-dimensional structure but instead exist as an ensemble of conformations that interconvert
between one another [15–17]. While IDRs are not strictly necessary for phase separation, in a
number of specific biological systems IDRs have been found to be necessary and/or sufficient
for phase separation and condensate formation [12,18–21]. However, folded domains often play
key roles in facilitating initial oligomerization that licenses subsequent phase separation and can
in their own right undergo phase separation absent IDRs [10,22–34]. Taken together, it should
be clear that the molecular basis for multivalency is not constrained to a specific class of
biomolecule.

The observation that IDRs can drive phase separation is often taken as evidence that
they have evolved to facilitate biomolecular condensate formation. An alternative interpretation
is that even if condensate formation is driven by folded domains, multivalent IDRs may be
essential for the formation of dynamic, labile, and functionally responsive biomolecular
assemblies [35,36]. Under this model, IDRs offer a means to encode locally tethered molecular
lubricants that prevent aberrant assembly of folded domains and to tune the material state of
biomolecular condensates [20,27,36–39]. With this in mind, understanding how structurally or
chemically orthogonal multivalent interactions can tune condensate material properties
represents an emerging set of questions.

Condensates are frequently well-described as viscoelastic materials, meaning they have
an elastic response upon deformation and will also drip, flow, or wet like a viscous fluid [6]. The
apparent viscosity of a condensate can range from liquids that rearrange in milliseconds to
viscous solid-like assemblies that fuse on the order of hours or longer [40,41]. A growing body
of literature supports an emerging view that condensate material state can be a key determinant
of biological function [38–40,42–44]. With this in mind, a molecular understanding of interactions
that determine material state represents an important next step in our ultimate goal of relating
protein sequence and structure to cellular function. The viscosity of a condensate depends on
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the lifetime and the number of cohesive multivalent interactions that are responsible for
assembly [7,9,45]. Previous work focused on IDRs has shown that amino acid composition and
patterning can influence condensate dynamics in a manner that alters these parameters
[20,46–48]. However, many phase separating proteins possess a modular protein architecture
that include (at a minimum) an oligomerization domain and an IDR [10]. For these modular
proteins, the relative impact of folded vs. disordered domains on the emergent material
properties of a condensate is less well studied.

A final confounding factor when considering how IDRs tune the material properties of
condensates emerges from the observation that IDRs are inherently sensitive to their solution
environment [49–54]. Given the crowded and complex milieu of macromolecules, osmolytes,
and ions in vivo, one may expect that the material properties for a condensate measured in vitro
to be substantially different, an expectation supported by numerous studies. As such, to
understand physiologically relevant determinants of condensate material state, ideally
measurements of condensate dynamics and protein oligomeric state would be made in live
cells.

Here we leverage the previously characterized modular transcription factor AUXIN
RESPONSE FACTOR 19 (ARF19) from Arabidopsis thaliana as a model system to probe the
determinants of condensate properties and protein oligomeric state in cells. Auxin is a plant
hormone that is involved in essentially all plant growth and developmental processes [55].
ARF19 condensate formation has been proposed to be a mechanism by which signaling
through the auxin signaling pathway is attenuated [22]. Notably, disruption of ARF19
condensate formation has a dramatic impact on the expression of auxin-responsive genes,
implicating ARF19 condensates as global remodellers of auxin-dependent transcription [22].
ARF19 is composed of a DNA-binding domain followed by a large glutamine-rich IDR and a
C-terminal Phox Bem1 (PB1) oligomerization domain. Importantly, in vivo, we have previously
shown that the oligomerization domain and the IDR are essential for condensate formation [22].
As such, ARF19 is a convenient model system to examine the contribution of the IDR to
material properties of condensates formed by proteins containing both IDRs and oligomerization
domains.
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Methods

Plant Growth
Seeds were surface sterilized [56] and then suspended in 0.1% agar. Suspended seeds were
then kept at 4°C for 2 days for stratification. After stratification, seeds were plated on plant
nutrient (PN) medium [57] + 0.5% (w/v) sucrose solidified with 0.6% agar. Seeds were then
grown for 1 week at 22°C under continuous light before being transplanted to soil. Once
transplanted to soil, seedlings were grown under long day (16 hours light : 8 hours of dark)
conditions for 2-3 more weeks before being used for protoplast generation.

Protoplast Isolation
For all protoplast transfections, an arf19, arf7 double mutant in the Col-0 background was used
to minimize the risk of native ARF19 or ARF7 interactions impacting condensate formation.
Protoplasts were isolated from 3-4 week-old-plants via the tape-method as described in [58]
with slight modifications. Briefly, after the upper epidermal surfaces of the leaves were peeled,
peeled leaves were incubated in enzyme solution (1% cellulase, 0.25% macerozyme, 0.4 M
mannitol, 20 mM KCl, 20 mM MES, 10 mM CaCl2, 0.1% BSA) in 6-well plates as opposed to
Petri dishes. In addition, peeled leaves were incubated with the enzyme solution for 60-90
minutes. Lastly, leaves were shaken at 60 RPM during incubation with the enzyme solution.

Protoplast Transfection
Protoplast transfection followed methods as described in [58] with slight modifications. After
resuspension in the MMg solution, 150 μl of protoplasts were mixed with 10-12 μg of plasmid
DNA. Next, protoplasts were mixed with an equal volume of the PEG solution and rocked back
and forth gently to mix the protoplasts with the PEG solution. Once mixed, protoplasts were
incubated for 10-12 minutes before 660 μl of W5 solution was added. After protoplast
transfection, protoplasts were immediately suspended in 2 ml of W1 buffer [58] and then
dispensed onto 50 x 7 mm round bottom glass dishes (Ted Pella Inc, product number
14035-120). All expressions in protoplasts utilized the UBQ10 promoter, and ARF19 as well as
the two ARF19 variants contained an N-terminal mVenus tag.

Vector Construction
The transient protoplast expression vectors for ARF19 and ARF19 QtoS were made through
recombination from a pENTR vector into pUBQ10:mVenus-GW and have been described
previously [22]. For the ARF19 QtoG variant, the ARF19 QtoG IDR was synthesized with 8 base
pairs of overhangs to the region immediately upstream of the ARF19 IDR at the 5′ end and 20
base pairs of overhang to the region immediately downstream of the ARF19 IDR at the 3′ end
as a gBlock by Integrated DNA Technologies. Then a pENTR-ARF19 vector was linearized via
PCR amplification using Pfx Platinum polymerase (Life Technologies) such that it no longer
contained the wild-type IDR, and a 12 base pair overhang with the 5′ end of the QtoG IDR
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gBlock was added at this step using the primers 5′-AACTAGACTTAAACCAGGGAACATC-3′ and
5′-AACTTGGTTCCCAACTATGGC-3′. The resultant PCR product and the QtoG IDR gBlock
were used in an In-Fusion cloning reaction (Takara) to generate pENTR-ARF19 QtoG IDR. After
sequence confirmation, pENTR-ARF19 QtoG IDR was recombined into the
pUBQ10:mVenus-GW vector using LR Clonase II (ThermoFisher) to generate
pUBQ10:mVenus-ARF19 QtoG, which was subsequently sequence confirmed.

Microscopy Imaging
Immediately after transfection, protoplasts suspended in 2 ml of W1 were dispensed onto Ted
Pella Inc 50x7 mm PELCO Round Bottom Dishes (glass, 40 mm) (product number 14035-120).
The protoplasts were then incubated for approximately 16 hours in the round bottom dish with a
vacuum grease sealed lid enclosing the dish such that the dish did not dry out and alter the
concentrations of solutes prior imaging. After approximately 16 hours, the lid was removed from
the dish and the protoplasts were placed on the confocal stage for imaging. Imaging was carried
out using the Leica SP8 confocal microscope. All images of condensates used the HyD detector
and a 40x water immersion lens. All images in Figure 1C used the Leica Lightning Imaging
module and Lightning deconvolution. For the time lapses of condensate fusion events in figure
4A, images were obtained from time lapses of individual whole protoplasts. Unlike the images
presented in Figure 1C, the images in figure 4A did not use the Leica Lightning module and
used the 20x, dry-immersion objective.

Number and Brightness Imaging and Analysis
All imaging for N&B was taken on a Leica SP8 using a HyD detector in photon counting mode
using a 40x water immersion objective. Prior to imaging, slight adjustments to the correction
collar on the objective were made as needed to minimize differences in acquired signal due to
differences in glass thickness of the round bottom dishes. The laser used was a 514 nm set at
0.01% power, and the range of wavelengths used for capturing the images were those between
519 nm and 550 nm. The pinhole was set at 1 AU, the scan speed was 310 Hz, and the zoom
was set at 11.5. One hundred consecutive frames were captured for each data point, and the
interval between each frame was 0.839 seconds (1 minute, 23.871 seconds total acquisition
time). Pixel dwell time was 8.19 μsec. Images were captured at a 256 x 256 format. For
analysis, we used the SimFCS software [59]. We used protoplasts expressing mVenus under
the UBQ10 promoter in order to calibrate software parameters such as the S-factor. Specifically,
the region that quantified monomer brightness was determined using protoplasts expressing
mVenus by selecting the fluorescence-positive pixels with a cursor. Using the assumption that
anything twice the brightness of the calibrated monomer would be a dimer, three times the
brightness would be a trimer, and so forth, the amount of higher order oligomers was quantified.
For our analyses, monomers, dimers, 3-10mers, and 10+-mers were quantified with the
exception of Figure 5A. For Figure 5A, analysis of the different oligomeric species in the
condensates was carried out similar to as before with the exception that individual species from
monomers to decamers and 10+-mers were individually analyzed in order to obtain images
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showing their distribution within each condensate. Then, the images were uploaded to Adobe
Illustrator and overlaid with one another. Finally, each pixel was false colored such that each
pixel corresponded to the oligomeric species identified in the N&B analysis.

FRAP Imaging and Analysis
FRAP imaging was carried out on a Leica SP8 using a PMT detector and a 40x water
immersion objective using the Leica FRAP module. All FRAP imaging was carried out
immediately after N&B imaging. Pre- and post-photobleaching image acquisition used a 514 nm
laser at 0.06% power with a range of acquisition of 519 nm to 550 nm. All imaging used a
512x512 format and a scan speed of 1400 hz. One pre-bleach image was acquired followed by
the photobleaching and then 120 post-bleach images were captured at 1 second intervals. The
duration per acquisition of each image was 0.371 seconds. For FRAP imaging, the zoom was
adjusted as needed depending on the size of the condensate. All optional SP8-specific FRAP
module settings were set as follows: fly mode - off, zoom in - on, change bleach format - off, set
background to zero - off, delete bleach images after scan - off. For photobleaching, the 448 nm,
488 nm, 514 nm, and 552 nm lasers were set to 100% power and targeted to approximately one
half of the condensate for a total of 1.8762 seconds. Following image acquisition, data was
imported into FIJI (FIJI Is Just ImageJ) [60] in the original .lif file format for analysis. The percent
recovery was determined by quantifying the amount of recovery observed in the photobleached
region post-photobleaching.
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Results

Altering IDR composition dramatically impacts intracellular condensate morphology and
dynamics

ARF19 contains a ~500-residue glutamine-rich IDR that includes a large prion-like
domain (PLD), a class of low-complexity IDR enriched in polar amino acids [61,62]. The ARF19
IDR lies between an N-terminal DNA binding domain and a C-terminal PB1 oligomerization
domain (Figure 1A). Given its large size and strong sequence bias, we wondered if changing
the amino acid composition (while maintaining the natural enrichment for polar amino acids)
would alter condensate properties.

To explore how IDR composition impacts condensates formed by ARF19 in vivo, we took
advantage of a transient expression protoplast system. Protoplasts are individual spherical cells
in which the cell wall has been removed through enzymatic degradation. For our studies, we
used protoplasts derived from leaf mesophyll cells isolated from three-week-old A. thaliana.
Importantly, using protoplasts allowed us to examine the behavior of the ARF19 condensates
within the cellular environment. In addition to offering an in vivo environment, protoplasts
provide a convenient system to examine condensates for several reasons. The large size of
protoplasts makes it easy to image the condensates, their ease of transfection makes it easy to
examine many different condensate-forming proteins, and the ability to detect protein
expression after transfection in as little as 90 minutes allows one to quickly examine the events
leading up to condensate formation. In addition, due to the tight temporal control that transient
expression affords, it is possible to estimate condensate age. This enables us to examine
condensate formation at a single time point after transfection, an important feature given some
condensate properties can change dramatically in a time-dependent manner.

We examined the morphology of condensates in protoplasts formed by full-length ARF19
with a wild-type IDR, an IDR where all glutamines were changed to glycines (QtoG) or an IDR
where all glutamines were changed to serines (QtoS) (Figure 1B). Glycine and serine were
chosen here as amino acids frequently found in condensate-forming IDRs that retain the polar
chemistry of glutamine sidechains yet alter steric and physicochemical properties [21].
Condensates formed by our three constructs displayed striking differences in morphology
(Figure 1C). Condensates formed by the WT IDR were in general large, amorphous multilobed
assemblies in line with our previous work [22]. In contrast, QtoS condensates were smaller and
more spherical, whereas QtoG condensates were intermediate in terms of morphology. Given
the oligomerization domain is necessary for condensate formation in plants when expressed at
physiological levels, these results reveal that condensate formation and condensate morphology
can be uncoupled from one another [22].
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Figure 1. Altering composition of the ARF19 IDR impacts the morphology of ARF19 condensates.
(A) Schematic of the ARF19 protein showing the location of the DBD and PB1 domains. The graph below
shows predicted prion-like domains within the ARF19 IDR, which were predicted using PLAAC [61]. (B)
Schematic showing a subsection of the ARF19 IDR highlighting differences in IDR composition for the
QtoS (middle) or QtoG (bottom) variants. While this schematic only shows a subsection of the IDR, for the
QtoG or QtoS variants, all glutamines were changed to glycine or serine, respectively. (C) Images
showing the range of condensate morphologies formed by wild-type ARF19 or ARF19 with the altered
IDR compositions. Images were chosen to represent the breadth of condensate morphology and sizes
that are frequently observed across protoplasts when expressing the various constructs. All images were
taken in different protoplasts approximately 16 hours after transfection. Scale bars represent 5 microns.
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Condensate morphology is inherently linked to condensate dynamics. For condensates
with liquid-like properties, condensate morphology favors spherical assemblies that minimize the
interface between the dense and dilute phases. In contrast, for solid-like condensates,
morphology is dictated by intramolecular interactions that are inherently anisotropic, giving rise
to amorphous assemblies, networked solids, sheets, cross-linked polymers, or any number of
non-spherical assemblies [14,25,39,63–66]. However, spherical condensates that rapidly
mature from liquid to solids have been observed in many systems, with a ‘bunch of grapes’ type
architecture typifying systems in which arrested spherical assemblies adsorb onto one another
[27,67]. As such, we suspected that the dynamics of the three variants were likely impacted by
the differing IDR compositions. For example, the more spherical morphology of the QtoS
condensates may imply enhanced dynamics compared to the more irregular WT condensates.

To assess this, we examined the dynamics of the different ARF19 variants using
half-condensate Fluorescence Recovery After Photobleaching (FRAP). Importantly, because in
many cases condensate undergo a time-dependent loss in dynamics [41,44], all FRAP
measurements were carried out approximately sixteen hours after protoplast transfection.

Condensates formed from all three IDR variants showed relatively low levels of
fluorescence recovery. Consistent with prior in planta, wild-type ARF19 condensates exhibited
minimal recovery after photobleaching in protoplasts with an average percentage recovery of
just ~7% after two minutes (Figure 2). In contrast, we found that the QtoS and QtoG IDR
variants exhibited slightly more liquid-like properties, both having ~9.6% recovery after two
minutes. Despite previous examples where changing glutamine to glycine resulted in more
liquid-like condensate dynamics, we found that the QtoG variant was only slightly more
liquid-like than wild-type (Figure 2A, 2B) [20]. Nonetheless, this demonstrates that the IDR can
influence the morphology and dynamics of ARF19 condensates despite the essential role of the
oligomerization domain in their assembly.
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Figure 2. IDR composition impacts the fluidity of ARF19 condensates. (A) Average fluorescence
recovery curves for the three ARF19 variants. Error bars report standard error of the mean. (B) Each
point represents the percent recovery 2 minutes post-photobleaching of an individual condensate. For all
FRAP experiments, only one half of the condensate was photobleached. N=17 (WT), N=14 (QtoS), N=20
(QtoG). (C) A table summarizing data from panel A. P-values were calculated using a two-sided t-test
comparing the values from wild-type to each of the two IDR variants.

Number and Brightness analysis reveals oligomeric state of ARF19 condensates
As a means of interrogating the impact that IDR composition has on the oligomeric state

of the ARF19 condensates, we utilized number and brightness (N&B) analysis. N&B is a
fluorescence microscopy method that uses a series of images taken over time to measure the
average number of molecules and their oligomeric state in each pixel [68]. In this context, the
term oligomeric state describes whether a given molecule behaves as a single unit (i.e. a
monomer) or as a higher order assembly (i.e., dimers, trimers etc.).

As with the FRAP measurements, the N&B measurements were taken approximately
sixteen hours after protoplast transfection. For each condensate, we quantified the percentage
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of monomers and dimers (termed ‘lower order’ oligomers) and the percentage of oligomers
equal to ten or higher (termed ‘higher order’ oligomers).

To our surprise, regardless of whether the percentage of monomers and dimers or the
percentage of 10+-mers were examined, there was very little difference in the average
oligomeric state between the three variants (Figure 3A, 3B, 3C). This is in contrast to our FRAP
measurements where we saw an increase in the average fluorescence recovery of condensates
formed by the QtoS and QtoG variants. These results support a model whereby IDR
composition has the capacity to influence the morphology and dynamics of the ARF19
condensates but not the oligomeric state.

Figure 3. IDR composition has little impact on the oligomeric state of ARF19 condensates. (A)
Each point represents the percent of monomers and dimers out of the total number of measured
oligomers for an individual condensate. (B) Each point represents the percent of 10+-mers out of the total
number of measured oligomers for an individual condensate. (C) A table summarizing the data from figure
panel A. (D) A table summarizing the data from figure panel B. Statistical testing is not shown because
none of the comparisons were statistically significant.
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Biomolecular condensates frequently undergo a time-dependent maturation in their
material state. Condensates often form with liquid-like properties but may undergo a persistent
loss of dynamics over time in a process referred to as aging, maturation, or as a liquid-to-solid
transition [41,44,69,70]. In investigating the relationship between oligomeric state and
condensate dynamics in ARF19, we found that the ARF19 condensates also exhibit a decrease
in apparent fluidity over time. Time lapses of protoplasts immediately after transfection show
that the condensates initially readily fuse with one another suggesting they are liquid-like in
nature (Figure 4A). In contrast, over time the condensates become more solid and are unable to
fully fuse resulting in the formation of condensates with apparent substructure (Figure 4A). With
this observation, we sought to determine if the oligomeric state of ARF19 inside condensates
showed an analogous time-dependent maturation. Unlike condensates measured after sixteen
hours, we found that newly formed ARF19 condensates contain few, if any, higher-order
oligomers (Figure 4B, C). This suggests that there may be a relationship between the apparent
fluidity and the accumulation of higher order oligomers within individual condensates.

Apart from imparting information with respect to the quantity of different oligomeric
species within condensates, N&B analysis can also reveal information with respect to the spatial
distribution of oligomers within a condensate. N&B analysis has previously revealed the
distribution of oligomers within ARF19 condensates, finding that the higher order oligomers tend
to be towards the center of the condensates and the monomers and dimers can be found
towards the periphery [22]. After we found that the abundance of lower order and higher order
oligomers is dramatically different between the early and late ARF19 condensates, we sought to
examine whether the spatial distribution of lower and higher order oligomers was different
between the early and late condensates. We found that the distribution of oligomers in early
condensates was similar to that seen in the later condensates (Figure 5A). Therefore, while the
relative abundance of different oligomeric species differs significantly between the early and late
ARF19 condensates (Figure 5B), the general pattern where higher order oligomers tend to exist
towards the center of the condensates and the lower order oligomers towards the periphery
appears to be consistent over time.
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Figure 4. ARF19 condensates are initially liquid-like and lack higher-order oligomers. (A) Time
lapse images of wild-type ARF19 condensates in protoplasts. The top images are from the beginning of a
time-lapse series started shortly after protoplast transfection (early ARF19 condensates) and show an
example where the condensates have liquid-like behavior. The bottom images are from a later time point
in a time lapse series (late ARF19 condensates) and show an example where the condensates appear to
partially fuse but ultimately are unable to fully fuse resulting in a ‘grape-bunch’ like morphology. Note, time
intervals between the bottom panels are not equal from panel to panel. (B) Each point shows the percent
values for either lower order oligomers (left) or higher order oligomers (right) for individual ARF19
condensates approximately two or sixteen hours after protoplast transfection N=16 (3 hours) and N=17
(16 hours). (C) Table summarizing the data from figure panel B.
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Figure 5. Distribution of oligomeric species in ARF19 condensates over space and time. (A) N&B
analysis showing the spatial distribution of various oligomeric species in early (left) and late (right) ARF19
condensates. Each oligomeric species corresponds to a different color. The size of the early condensate
relative to the late condensate can be seen in the box towards the top left of the late condensate. (B) N&B
analysis showing the average percentage of higher-order and lower-order oligomers in ARF19
condensates in early condensates (left) and late condensates (right).

Examining the relationship between oligomeric state and fluorescence recovery of
individual condensates

Finally, we examined the relationship between condensate fluidity and oligomeric state.
During data acquisition we carried out N&B followed by FRAP measurements on the same
individual condensates, allowing us to directly correlate oligomeric state with condensate
dynamics on a per-condensate basis. We found that the condensates formed by wild-type
ARF19 showed a weak but positive correlation between the percent of lower order oligomers or
of higher order oligomers and the percent recovery of individual condensates (Figure 6A, B). In
contrast, the QtoS and QtoG variants showed very little correlation between either the percent
of lower or higher order oligomers and fluorescence recovery for individual condensates.
(Figures 6C-F).
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Figure 6. IDR composition-dependent relationship between condensate oligomeric state and
fluidity. (A-F) Each point shows N&B and FRAP data for an individual condensate. Panels on the left
show the relationship between the percent of lower order oligomers and the fluorescence recovery two
minutes post-photobleaching for individual condensates whereas panels on the right show the
relationship between higher order oligomers and percent recovery for individual condensates. Dashed
lines are linear fit lines. R2 values are shown near the linear fit lines. N=17 (WT), N=14 (QtoS), and N=20
(QtoG). (G) Equations for linear fit lines shown for each graph.
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Discussion
Biomolecular condensates have emerged as key organizers of cellular matter, whereby

multivalent interactions underlie the assembly, recruitment, and regulation of a wide array of
cellular bodies. The perspective that condensate formation is driven by intrinsically disordered
regions has given way to a broader appreciation for distributed multivalency, whereby both
disordered regions and folded oligomerization domains can make key contributions to the
assembly of condensates [9]. Furthermore, condensate material state is increasingly being
recognized as an important contributor to cellular function, either directly or indirectly [38–40].

In this study, we utilized ARF19 as a system to examine the role that IDR composition
has on the emergent material properties of ARF19 condensates. Importantly, because of the
inherent sensitivity that IDRs and more generally phase separation have to the surrounding
solution environment, we carried out this work inside of protoplasts, which are plant cells that
lack an external cell wall [11,21]. This allowed us to examine the effect that IDR composition has
on condensate material properties within the cellular environment. In the context of material
properties, this is of particular importance as there are known examples where condensates that
exhibit liquid-like dynamics in vivo form non-dynamic, solid assemblies in vitro, suggesting that
the solution environment has a direct influence on the material properties of condensates
[20,44]. By first quantifying oligomeric state using Number and Brightness (N&B) analysis and
then examining fluidity using Fluorescence Recovery After Photobleaching (FRAP) for ARF19
variants with differing IDR compositions, we were able to assess the relationship between IDR
composition and the apparent solidity and oligomeric state of ARF19 condensates. In addition,
because we carried out these analyses sequentially for individual condensates, we were able to
examine the relationship between the oligomeric state of the condensates and condensate
fluidity, in an effective “single-condensate spectroscopy” type experiment.

Whereas the oligomerization domain of ARF19 promotes condensate formation through
a well-defined binding interface, the mechanism by which the glutamine-rich IDR of ARF19
contributes is less obvious [22,71]. Extant work on polyglutamine has demonstrated its robust
tendency to undergo self assembly, and previous studies have shown that the glutamine content
in an IDR can impact the propensity of condensates to undergo time-dependent maturation and
loss of dynamics [20,72–76]. In addition, prion-like domains, which are generally associated with
aggregate or condensate formation, are frequently glutamine-rich [61,62,77–79]. In regards to
the underlying mechanism by which glutamine contributes to material properties of
condensates, glutamine-rich IDRs can form coiled-coils that have the capacity to facilitate
protein-protein interactions and multimerization [76,79,80]. Therefore, in the context of ARF19,
which has a glutamine-rich IDR with multiple polyglutamine stretches, the glutamine content
may underlie the material properties of ARF19 condensates.

IDRs are frequently found to be both necessary and sufficient for biomolecular
condensate formation. Despite their clear importance in condensate formation, little is known
about the impact that IDR composition has on the emergent material properties of condensates
in vivo. In addition, while multiple examples of proteins requiring both their IDR and
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oligomerization domain to form condensates have emerged, how IDR composition impacts
condensate dynamics in this context is poorly understood. Here, through use of FRAP and
Number and Brightness analysis (N&B) coupled with altering the composition of the IDR in
ARF19, we have begun to shed light on this question.

IDR composition influences condensate dynamics
From our FRAP analysis of condensates formed from wild-type ARF19 or our ARF19

variants, we found that the QtoS and QtoG variants resulted in condensates with slightly
increased fluidity. While the IDR can tune condensate properties, it is worth noting that in all
three cases ARF19 condensates were relatively solid at 16 hours post-transfection, reaching a
maximum average fluorescence recovery after two minutes of ~9.6% (QtoS and QtoG variants,
Figure 2).

The behavior of the QtoG variant is in contrast to a previous study which found that
changing glutamine to glycine in the FUS PLD resulted in the formation of more dynamic
condensates that did not undergo time-dependent maturation [20]. There are numerous
possible explanations for this discrepancy. First, the previous study assessed condensate
fluidity in vitro whereas our QtoG variant was examined within the cellular environment.
Secondly, FUS and ARF19 differ in more than just their IDRs, and multivalent interactions
facilitated by other protein regions that differ between the two proteins may also contribute to the
differing results. Finally, the composition and patterning of amino acids in the FUS PLD and the
ARF19 PLD are substantially different, with the FUS PLD containing an abundance of tyrosine
residues that are absent in the ARF19 PLD. As such, the differences between the two outcomes
may simply be due to the different IDR compositions. Moreover, while both are glutamine rich,
unlike the ARF19 PLD, the FUS PLD lacks contiguous glutamine tracts. Prior work has
established that polyglycine shows poor solubility in water and exists in compact, collapsed
conformations that can undergo self-assembly [81–84]. As such, the acquisition of polyglycine
tracts in the QtoG variant may be an additional determinant that contributes to differences in
assembly behavior compared to the FUS PLD variant.

Glutamine rich sequences have been shown to form coiled-coiled domains that drive
oligomerization through a conditionally-structured interface [80,85,86]. Moreover, analysis of the
ARF19 sequence with the COILS webserver predicts a coiled-coil domain in line with one of the
glutamine-rich subregions in the IDR (Figure S1) [87]. However, we can largely exclude
coiled-coils as a key determinant of protein oligomeric state given that glycine strongly impedes
helix formation [88,89]. With this in mind, the QtoG variant should fundamentally prevent any
possible coiled-coil association, yet no different in intra-condensate oligomeric state is observed
across our three variants (Figure 3). While we cannot rule out the possibility that coiled-coil
domains may influence condensate morphology, it is conceptually challenging to envisage a
model in which the presence or absence of a coiled-coil domain does not influence oligomeric
state yet alters higher-order assembly. As such, we interpret our results to mean the
glutamine-rich IDR functions in a largely unstructured manner.
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The increased recovery dynamics observed in the QtoS variant may reflect various
possible molecular origins. This result could report on a reduction in IDR-mediated interactions
due to the replacement of a secondary amide sidechain (glutamine) for a hydroxyl group
(serine). Alternatively it may reflect a change in residual structure, as implicated by work that
suggests poly-serine might adopt a more expanded, rigid conformation [90]. Nevertheless, more
work is needed to extrapolate results from simple homopolymeric peptides to observations in
the context of full-length proteins.

ARF19 is part of a family of 23 ARFs in Arabidopsis that is broken into three separate
clades [55]. The only ARFs currently known to form condensates in plants belong to clade A.
These ARFs have characteristic glutamine-rich IDRs and are thought to act as transcriptional
activators [91,92]. In contrast, there is currently no evidence that clade B ARFs form
condensates in plants. Clade B ARFs are thought to be transcriptional repressors and contain
serine-rich IDRs [91,92]. Our initial decision to alter the ARF19 IDR to become serine rich was
based on the observation that none of the clade B ARFs, which contain serine-rich IDRs, are
known to form condensates in plants. However, the minimal differences in solidity seen in our
QtoS variant when compared to wild type ARF19 may suggest that the serine-rich nature of the
clade B ARFs is not the inherent reason why these ARFs do not form condensates in plants.

Oligomeric state is insensitive to IDR composition
In contrast to our FRAP data, we were unable to identify significant differences in the

oligomeric state between any of the ARF19 variants. We interpret this to mean that while the
IDR has the capacity to modulate the material properties of ARF19 condensates, the oligomeric
state may be less impacted or all together independent of IDR composition. However, we
cannot unambiguously conclude this due to the limited number of variants we analyzed, and the
resulting limited statistical power.

Given that in planta both the IDR and the PB1 oligomerization domain are necessary for
condensate formation, it is almost certain that the IDR contributes to the multivalent interactions
that are essential for condensate formation. In support of this notion, when we expressed the
PB1 domain of ARF19 alone in protoplasts, even among the protoplasts with the highest
apparent accumulation of the protein, we did not observe any condensates, nor did we detect
higher order oligomers through our N&B analysis (Table S1). In contrast, the PB1 domain forms
multimers in vitro even in the absence of the IDR [71]. As such, our results support a model in
which IDRs enhance the driving force for lower-order oligomers in vivo, but that this effect is
sufficiently subtle that the QtoS and QtoG variants do not significantly perturb the effect vis-à-vis
wild type. These results do not exclude the possibility that IDRs also stabilize higher order
oligomers, a behavior we would expect to hold true. Future studies examining the oligomeric
state of protein variants where IDRs are more dramatically altered, ideally in a way that
minimizes the likelihood of the IDR contributing to multivalent interactions, should shed light on
this question.
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Oligomeric populations change during condensate maturation in living cells
Given the observation that many condensates undergo time-dependent changes in

dynamics and organization, we applied N&B analysis to assess how the oligomeric state of
molecules inside condensates changes as a function of time. While condensates measured
immediately after assembly were composed predominantly of monomers, after 16 hours we
found a much larger population of higher order oligomers. These results are consistent with a
model in which the high local concentration of molecules within a condensate drives
concentration-dependent higher-order assembly, which in turn offers a structural explanation for
changes in condensate dynamics. As larger oligomers form, their internal re-arrangement will
become increasingly constrained due to molecular entanglement such that a jamming transition
may ultimately occur, leading to a kinetically arrested assembly.

While our results here are readily interpretable in the context of oligomerization driven by
the PB1 domain, the same principle is applicable to other systems in which distinct modes of
assembly, such as the assembly of liquid-like condensates driven by distributed aromatic motifs,
followed by a liquid-to-solid transition driven by the acquisition of structured cross-beta
interactions [46,93–97]. Our previous work demonstrated that oligomeric state in condensates
varies as a function of spatial position across the condensate, with more lower-order species on
the surface and higher-order species in the interior [22]. Taken together, N&B analysis reveals
that, at least for ARF19, oligomeric state varies in both space and time, revealing a rich and
perhaps surprisingly complex oligomeric landscape of intra-condensate molecules.

Oligomeric state can influence condensate dynamics
By carrying out N&B analysis followed by FRAP on individual condensates, we were

able to establish a weak but clear correlation between the oligomeric state and the fluidity of
condensates. This relationship is consistent with our finding that liquid-like ARF19 condensates
examined shortly after formation do not contain substantial accumulations of higher order
oligomers.

In contrast to wild-type ARF19 condensates, we did not observe a strong correlation
between oligomeric state and condensate dynamics for condensates formed by either the QtoS
or QtoG ARF19 variants. While it is possible that altering the IDR composition disrupted this
relationship in some non-obvious way, it is also possible that the N&B data simply had too much
noise for the QtoS and QtoG variants for us to see a clear relationship in this instance. Studying
the behavior of biomolecular condensates in vivo is extremely challenging due to the inherent
dynamic nature of the intracellular environment. In anecdotal support of this, in our protoplast
system the ARF19 (or ARF19 variant) condensates were frequently highly mobile making
capturing high-quality microscopy data challenging. Approximately 95% of the data acquired for
this study had to be discarded prior to analysis simply due to the condensate moving out of view
during the ~4 minutes of data acquisition. Furthermore, given the substantially reduced size of
condensates formed by the QtoS and QtoG variants, the likelihood of the variant condensates
moving out of the Z-plane during acquisition was much higher than for wild-type condensates.
This is not to say that in vivo studies of this type should not be attempted; rather, results such as
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the discrepancy between the presence of a relationship between the oligomeric state and the
apparent fluidity of condensates formed by wild-type ARF19 and the lack of such a relationship
in condensates formed by the QtoS and QtoG should be carefully considered. However, the
prospect of ever-improving technologies that allow for more rapid and accurate acquisition of in
vivo data will inevitably allow for a more accurate assessment of this relationship.

Conclusions
In all, our work here offers direct insight into the relationships between IDR composition,

condensate dynamics, and oligomeric state for a condensate-forming protein containing both an
IDR and an oligomerization domain. Our results support an emerging consensus in which IDR
composition impacts the emergent physical properties of biomolecular condensates both in vitro
and in vivo. In contrast, our work suggests that, at least in the ARF19 system, IDR composition
has a more limited role in governing the oligomeric state of in vivo condensates. Taken together,
these results support a general model in which structurally and chemically orthogonal
multivalent interactions can contribute distinct attributes to the emergent properties of
biomolecular condensates.
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