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Abstract 

 

Providing standard definitions of what should be considered as a node in food webs is still an 

unsolved problem. Especially for comparative and predictive food web modelling, a more 

systematic understanding is needed for the effects of trophic aggregation procedures. 

Aggregation is unavoidable during data management. Therefore, it is crucial to know whether 

food web properties are conserved during this process. 

Here, we study how different aggregation methods change the positional importance 

of species in food webs. In particular, we investigated the effects of various aggregation 

algorithms on 24 indices of importance. Our work was carried out on 76 aquatic food webs 

coming from the Ecopath with Ecosim database (EcoBase). We considered six main types of 

aggregation, according to the way that the nodes were clustered. These were (i) hierarchical 

clustering based on the Jaccard index, (ii) hierarchical clustering based on the regular 

equivalence index (REGE), (iii) maximisation of directed modularity, (iv) maximisation of 

modularity according to modules in which species fed on the same preys, (v) maximisation of 

modularity according to modules in which species are fed upon by the same predators, and 

(vi) clustering through the group model.  

Hierarchical clustering based on the Jaccard index and REGE index outperformed the 

other four methods on maintaining the relative importance of species for all the indices of 
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importance (except for the contrastatus index (𝑠’) and betweenness centrality (BC)). The 

choice between these two methods should follow our research question and the importance 

index we are interested in studying. The other four aggregation methods change more the 

centrality of species, especially the one based on maximising directed modularity. When 

using these aggregation algorithms, one has to keep in mind that the network will not only be 

smaller but also provides different information. 

 

Keywords: keystone species, centrality indices, trophic role, ecological networks, data 

aggregation, trophospecies 
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Introduction 

 

Trophic data management is something that ecologists always must deal with when working 

with food webs. Trophic interactions can be described among individuals, life stages, species, 

higher taxa, functional groups, and several other, appropriately defined nodes of food webs. 

Some kind of aggregation is unavoidable, and even the most highly resolved food webs 

contain big aggregates (e.g., “cyanobacteria'', see D’Alelio, Libralato, Wyatt, & Ribera 

D’Alcalà (2016)). At the same time, even the least resolved food webs may contain species 

(e.g., “hake”, see Yodzis (1998)). Data aggregation can happen also at later stages, during 

data analysis, especially in large networks, where the study of hundreds of nodes would be 

unfeasible (Yodzis & Winemiller, 1999). 

Data aggregation methods are problem dependent. Not considering this can bias the 

way by which we interpret the results of food web models (Hall & Raffaelli, 1993; Paine, 

1988). For instance, various levels of aggregation at different trophic levels might bias our 

interpretation if we are trying to characterise the structure of a network (Yodzis & 

Winemiller, 1999). Both low- and high-resolution networks can be useful or useless, the key 

challenge is to properly match the problem, the data management, and the model 

construction. Even if this seems like a ubiquitous problem in food web ecology, standards for 

whether and how to aggregate data in a meaningful way does not exist yet. 

The process of data aggregation assumes that there are nodes in the network that are 

similar enough that we can consider them functionally equivalent. For example, two fishes 

from the same genus might be aggregated into a node of the genus (e.g., Poecilia sphenops 

and Poecilia reticulata could be aggregated into Poecilia). Similarity can be understood 

mathematically (equivalent network positions) and biologically (similar trophic habits). 

Yodzis & Winemiller (1999) and Luczkovich et al. (2003) tried to find nodes in equivalent 
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network positions by borrowing two definitions from social networks. Yodzis & Winemiller 

(1999) borrowed the concept of structural equivalence – where two nodes are similar when 

sharing a high number of neighbours – and called the aggregation of structurally equivalent 

species” tropho-species”. Luczkovich et al. (2003) borrowed the concept of regular 

equivalence – where two nodes are similar when sharing a high number of similar but not 

necessarily the same neighbours. Nodes belonging to the same equivalence class are said to 

be sharing the same trophic role. 

Groups of nodes that have different neighbours but form dense subgraphs are called 

modules. Species in food web modules can play different roles (e.g., predator and prey), but 

they maintain well-defined multispecies processes (e.g., connecting benthic and pelagic 

organisms). Aggregating the modules of a food web has been suggested already by Allesina 

& Pascual (2009). The two most reliable ways of finding modules in food webs are through 

the group model and modularity maximisation. The group model was firstly developed by 

Allesina & Pascual (2009) and then made more computationally efficient by Sander, 

Wootton, & Allesina (2015). Modularity maximisation was applied to food webs by Guimerà 

et al. (2010) following three definitions of modularity. The first one, which we will refer to as 

density-based modularity, is the degree to which nodes inside modules interact more among 

themselves than with nodes of other modules. The second one, which we call prey-based 

modularity, is the degree to which nodes inside modules tend to interact with the same 

predators. The third one, which we gave the name of predator-based modularity, is the degree 

to which nodes inside modules tend to interact with the same preys. 

The positional importance of species differs in both highly aggregated and highly 

resolved networks. Central positions may be a proxy for functional importance and the 

community-wide distribution of either centrality values (Bauer, Jordán, & Podani, 2010) or 

hypothetical importance values (Mills, Doak, & Soulé, 1993) provide macroscopic 
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descriptors of ecosystems. Here, we investigate how different aggregation methods maintain 

the relative importance of species according to 24 of the most used indices of importance in 

food web research. Our investigation was carried out on 76 Ecopath with Ecosim (EwE) food 

web models available on the EcoBase database (Colléter et al., 2013). By having been 

constructed with the same methodology (see Okey (2004)), they provided us with comparable 

results. See supporting information for a list of these food webs. 

 

Material and methods 

 

Clustering techniques 

 

To cluster similar nodes, we used the following six clustering techniques. 

 

Hierarchical clustering with Jaccard index 

 

As a first clustering method, we clustered structurally equivalent nodes as in Yodzis & 

Winemiller (1999). We used the Jaccard similarity index (Jaccard, 1912) as a measure of 

structural equivalence. See supporting information for the clustering algorithm. 

 

Hierarchical clustering with REGE index 

 

Our second clustering method consisted of clustering regularly equivalent nodes as in 

Luczkovich et al., (2003).  The measure of regular equivalence we used was the REGE index 

(Borgatti & Everett, 1993). See supporting information for the clustering algorithm. 
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Clustering of density-based modules 

 

As a third clustering method, we clustered the nodes inside the modules found by maximising 

the density modularity, as in Guimerà et al. (2010). This type of modularity is expressed as 

the number of extra links present within the modules compared to the ones expected by 

chance. For directed networks, it can be expressed through the following equation of Arenas, 

Duch, Fernández, & Gómez, (2007), which is a generalisation of the Newman-Girvan 

modularity (Newman, 2004)  

 

𝑄 =
1

𝐿
∑ [𝐴𝑖𝑗 −

𝑘𝑖
𝑖𝑛𝑘𝑗

𝑜𝑢𝑡

𝐿
] δ𝑚𝑖𝑚𝑗𝑖𝑗   (1) 

 

where 𝑄 is the modularity of the network, 𝐿 is the number of links in the network, 𝐴𝑖𝑗 is the 

element of the adjacency matrix of the directed binary network (links go from 𝑗 to 𝑖), 𝑘𝑖
𝑖𝑛 is 

the indegree of 𝑖, 𝑘𝑗
𝑜𝑢𝑡  is the outdegree of 𝑗, 𝑚𝑖 is the module of 𝑖, 𝑚𝑗 is the module of 𝑗 and 

δ is the Kronecker delta (Kozen & Timme, 2007). 

The number and composition of the modules were found by using the Leiden 

algorithm of Traag, Waltman, & van Eck (2019). This algorithm is an extension of the 

Louvain algorithm (Blondel, Guillaume, Lambiotte, & Lefebvre, 2008). The latter is one of 

the best performing and fastest for community detection (Traag et al., 2019). However, it 

tends to produce communities that are arbitrarily poorly connected to each other and 

sometimes even disconnected. The Leiden algorithm not only solves this problem by 

producing better connected communities, but it is also faster. The code that we used was 

implemented in the igraph package (Csardi & Nepusz, 2006) for the statistical software R (R 

Development Core Team, 2013). 
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Clustering of prey-based and predator-based modules  

 

As the fourth and fifth clustering methods, we clustered the nodes of every module that was 

found by maximising the prey modularity and the predator modularity of the food web, as in 

Guimerà et al. (2010). In this case, the modularity of the food web is expressed as to how 

much different nodes connect to the same predators (for prey modularity) or preys (for 

predator modularity) than expected by chance. Mathematically, it can be expressed by the 

following equation (Guimerà, Sales-Pardo, & Amaral, 2007) for prey modularity 

 

𝑄 = ∑ [
𝑐𝑖𝑗
𝑜𝑢𝑡

∑ 𝑘𝑙
𝑖𝑛(𝑘𝑙

𝑖𝑛−1)𝑙
−

𝑘𝑖
𝑜𝑢𝑡𝑘𝑗

𝑜𝑢𝑡

(∑ 𝑘𝑙
𝑖𝑛

𝑙 )
2] δ𝑚𝑖𝑚𝑗𝑖𝑗  (2) 

 

or in the following one for predator modularity 

 

𝑄 = ∑ [
𝑐𝑖𝑗
𝑖𝑛

∑ 𝑘𝑙
𝑜𝑢𝑡(𝑘𝑙

𝑜𝑢𝑡−1)𝑙
−

𝑘𝑖
𝑖𝑛𝑘𝑗

𝑖𝑛

(∑ 𝑘𝑙
𝑜𝑢𝑡

𝑙 )
2] δ𝑚𝑖𝑚𝑗𝑖𝑗  (3) 

 

where 𝑐𝑖𝑗
𝑜𝑢𝑡 is the number of outgoing links that i and j have in common and  𝑐𝑖𝑗

𝑖𝑛 is the 

number of incoming links that 𝑖 and 𝑗 have in common. We maximised these two types of 

modularity by using the rnetcarto package (Doulcier & Stouffer, 2015) implemented in R. 

This finds the community structure of the network by using the optimisation method of 

simulated annealing (Kirkpatrick, Gelatt, & Vecchi, 1983).  

 

Clustering of groups 
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As a sixth clustering method, we clustered the nodes inside the modules found by the group 

model of Allesina & Pascual (2009). This model finds the modules that maximise the 

probability of randomly retrieving the food web by generating a modular version of an Erdős-

Rényi random graph. For an arbitrary number of groups 𝑘, the probability of retrieving the 

food web is:  

 

𝑃(𝑁(𝑆, 𝐿)|𝑝 ⃗⃗  ) = ∏ ∏ 𝑝𝑖𝑗

𝐿𝑖𝑗𝑘
𝑗=1

𝑘
𝑖=1  (1 − 𝑝𝑖𝑗)

𝑆𝑖 𝑆𝑗 − 𝐿𝑖𝑗
 (4) 

 

where 𝑁(𝑆, 𝐿) is the food web 𝑁 with 𝑆 number of nodes and 𝐿 number of links,  𝑝 ⃗⃗   is the 

vector containing the probabilities of a connection between and within clusters, 𝑝𝑖𝑗is the 

probability that a node inside the group 𝑖 connects to another node inside the group 𝑗, 𝐿𝑖𝑗 is 

the number of links connecting nodes belonging to the group 𝑖 to nodes belonging to the 

group 𝑗, 𝑆𝑖 is the number of nodes in the cluster 𝑖,  and 𝑆𝑗 is the number of nodes in the 

cluster 𝑗. 

Because of the high number of possible module arrangements, it is not possible to 

explore them all. To find the best possible solution that our computation power allows us to 

find, we used the algorithm of Sander, Wootton, & Allesina, 2015. This relies on a 

Metropolis-Coupled Markov Chain Monte Carlo (𝑀𝐶3), also known as parallel tempering 

(Geyer, 1991), with a Gibbs sampler (Yildirim, 2012). 𝑀𝐶3 can be considered as a Markov 

chain Monte Carlo (MCMC) with multiple chains running all at once (Sander et al., 2015).  

 

Connecting the clusters and assigning interaction strength 

 

The connection of the clusters followed a similar approach to the one described in Martinez 

(1991). We used five methods to decide whether there was a link between two clusters. The 
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first one produces the maximum connectance and is known as maximum linkage method 

(NMAX). Here, a cluster has a connection to another cluster if it has at least one link going 

from one of its nodes to the nodes of the second cluster. The second one produces the 

minimum connectance and is known as minimum linkage method (NMIN). In this case, a 

cluster is connected to another only if all its nodes have a connection to all the nodes of the 

other cluster. The other three methods produce an intermediate connectance. They consider a 

link from a cluster to another only if at least 25%, 50%, or 75% of possible connections from 

the first cluster to the second are realised. 

The weight of the link was then calculated in four different ways: as the minimum 

weight, the maximum weight, the mean weight, and the sum of the weights of the links going 

from the members of the first cluster to the ones of the second cluster. 

 

Indices of importance 

 

For each food web, we calculated the indices of importance before and after the aggregation. 

The indices of importance of a node after the aggregation was defined as the one of its 

cluster. Let’s consider the following example. Before the aggregation, the node "hake" has a 

degree centrality of 5. The aggregation process clusters it with other fish nodes, creating a 

node in the aggregated food web called “fish”. The degree centrality of “fish” is 8. In this 

case, the degree centrality of “hake” is 5 in the original food web and 8 in the aggregated 

food web. The importance indices we used belonged to the following families.  

 

Degree centrality (DC)  
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The degree centrality (𝐷𝐶) of a node 𝑖 is the number of links it has (Wasserman & Faust, 

1994) 

 

𝐷𝐶𝑖 = ∑ 𝐴𝑖𝑗
𝑛
𝑗=1  (5) 

 

where 𝑛 is the number of nodes in the food web, and 𝐴𝑖𝑗 is the element of the adjacency 

matrix, after the network has been transformed in a binary undirected one. 

Another type of degree centrality that we considered was the weighted degree 

centrality (𝑤𝐷𝐶), often referred to as node strength. Its formula is the same as for the non-

weighted degree centrality. This time, however, the adjacency matrix is of an undirected 

weighted network (Fornito, Zalesky, & Bullmore, 2016)  

 

𝑤𝐷𝐶𝑖 = ∑ 𝐴𝑖𝑗
𝑛
𝑗=1  (6) 

 

Closeness centrality (CC)  

 

The closeness centrality (𝐶𝐶) of a node is the average distance of a node from all the others 

in the network (Wasserman & Faust, 1994) 

 

𝐶𝐶𝑖 =
1

∑ 𝑑(𝑖,𝑗)𝑛
𝑗=1

 (7) 

 

where 𝑑(𝑖, 𝑗) is the shortest path between node 𝑖 and 𝑗. 

 

Betweenness centrality (BC) 
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The betweenness centrality (𝐵𝐶) of a node is the average number of times that it acts as a 

bridge along the shortest path between two other nodes. It can be mathematically expressed 

as follows  (Wasserman & Faust, 1994) 

 

𝐵𝐶𝑖 = ∑
σ𝑚𝑛(𝑖)

σ𝑚𝑛
𝑖≠𝑚≠𝑛  (8) 

 

where 𝜎𝑚𝑛 is the total number of shortest paths going from 𝑚 to 𝑛 and 𝜎𝑚𝑛(𝑖) is the total 

number of these paths passing through 𝑖. 

 

Status index (s) 

 

The status index of a node is the sum of its distances from all the other nodes inside the 

network, calculated as their shortest paths following a bottom-up direction (Endrédi, 

Senánszky, Libralato, & Jordán, 2018) 

 

𝑠𝑖 = ∑ 𝑑(𝑖, 𝑗)𝑛
𝑗=1  (9) 

 

where 𝑑(𝑖, 𝑗) is the shortest path between node 𝑖 and 𝑗. It was first introduced to social 

networks, followed two years later by its application to food webs by Harary (1959, 1961). 

By following the same method but in a top-down direction we obtain the contrastatus (𝑠𝑖’) 

 

𝑠𝑖
′ = ∑ 𝑑(𝑖, 𝑗)𝑛

𝑗=1 . (10) 

 

The difference between the status and the contrastatus is called the net status (Δ𝑠𝑖)  
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Δ𝑠𝑖 = 𝑠𝑖 − 𝑠𝑖
′. (11) 

 

The computation of the status, contrastatus and net status needs to be performed on a network 

without cycles. See supporting information for the algorithm used to create a directed acyclic 

graph (DAG). 

 

Keystone index (K) 

 

The keystone index was firstly introduced by Jordán, Takacs-Santa, & Molnar (1999) and 

inspired by the status index. As in the status index family, the keystone index of a species is 

calculated by considering the bottom-up and the top-down effects separately (Jordán, Liu, & 

Davis, 2006). Unlike the status index, which only considers the distance between a node and 

all the other nodes, the keystone index takes into consideration how the size of a certain 

effect gets split between the different neighbours of a node. Every time the effect reaches a 

certain node connected to multiple nodes, the following nodes receive only a fraction of the 

total effect. For example, when considering the bottom-up effect, if the prey has two 

predators, the bottom-up effect received by each predator will be half. The computation of the 

keystone index, as the status index, also needs to be performed on a network without cycles. 

The keystone index of a species 𝑖 is equal to the sum of its bottom-up and top-down 

effects 

 

𝐾(𝑖) = 𝐾𝑏(𝑖) + 𝐾𝑡(𝑖) (12) 

 

where 𝐾(𝑖) is the keystone index, 𝐾𝑏(𝑖) is the bottom-up keystone index, and 𝐾𝑡(𝑖) is the 

top-down keystone index. The bottom-up keystone index is calculated as 
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𝐾𝑏(𝑖) = ∑
1

𝑚(𝑖)(𝑗)
𝑛
𝑗=1 +

𝐾𝑏(𝑗)

𝑚(𝑖)(𝑗)
 (13) 

 

where 𝑗 is a predator of 𝑖 and 𝑚(𝑖)(𝑗) is the number of preys of 𝑗. 
𝐾𝑏(𝑗)

𝑚(𝑖)(𝑗)
 is the fraction of 

bottom-up effects of 𝑗 that are caused by 𝑖. The 𝐾𝑏(𝑗) of top predators is set as 0. The top-

down keystone index is calculated exactly as the bottom-up keystone index, but with the 

direction of the links inverted. 

When calculating the keystone index, we might be also interested in how much of the 

effect of a species on the community depends upon its directed and undirected effects. To do 

this, we can split the keystone index of a species into its direct and indirect effect components 

 

𝐾(𝑖) = 𝐾𝑑𝑖𝑟(𝑖) + 𝐾𝑖𝑛𝑑𝑖𝑟(𝑖) (14) 

 

where 𝐾𝑑𝑖𝑟(𝑖) is its directed component, and  𝐾𝑖𝑛𝑑𝑖𝑟(𝑖) is its indirected component. To 

calculate them, we need to know that  

 

𝐾𝑑𝑖𝑟(𝑖) = 𝐾𝑏,𝑑𝑖𝑟 + 𝐾𝑡,𝑑𝑖𝑟 (15) 

 

𝐾𝑖𝑛𝑑𝑖𝑟(𝑖) = 𝐾𝑏,𝑖𝑛𝑑𝑖𝑟 + 𝐾𝑡,𝑖𝑛𝑑𝑖𝑟 (16) 

 

where 𝐾𝑏,𝑑𝑖𝑟 is the directed component of the bottom-up effect, 𝐾𝑡,𝑑𝑖𝑟 is the directed 

component of the top-down effect, 𝐾𝑏,𝑖𝑛𝑑𝑖𝑟 is the indirected component of the bottom-up 

effect, and 𝐾𝑡,𝑖𝑛𝑑𝑖𝑟 is the indirected component of the top-down effect. The directed and 

indirected components of the bottom-up index are calculated as  
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𝐾𝑏,𝑑𝑖𝑟(𝑖) = ∑
1

𝑚(𝑖)(𝑗)
𝑛
𝑗=1 +

1

𝑚(𝑖)(𝑗)
 (17) 

 

𝐾𝑏,𝑖𝑛𝑑𝑖𝑟(𝑖) = ∑
1

𝑚(𝑖)(𝑗)
𝑛
𝑗=1 +

𝐾𝑏(𝑗)

𝑚(𝑖)(𝑗)
 (18) 

 

The direct and indirect components of the top-down effect are calculated in the same way, but 

with the direction of the links inverted.  

 

Topological importance (TI) 

 

The topological importance (𝑇𝐼) of a node represents its potential to create bottom-up effects 

on other species, up to a certain number of steps that we can set. It was first introduced to 

host-parasitoid networks by Müller, Adriaanse, Belshaw, & Godfray (1999) and then to food 

webs by Jordán, Liu, & van Veen (2003). If topological importance takes interaction strength 

into consideration, we refer to it as weighted topological importance (𝑊𝐼). See supporting 

information for the algorithm for the computation of topological importance and weighted 

topological importance. 

 

Species uniqueness (STO) 

 

Species uniqueness (𝑆𝑇𝑂) represents how redundant the strong interactions of a node are. It 

was first introduced by Lai, Liu, & Jordán (2015) and can be considered as an extension of 

the trophic field overlap (𝑇𝑂) (see Jordán, Liu, & Mike (2009). The trophic field overlap of a 

node 𝑖 is the number of times that 𝑖 and another node interact strongly with the same 

predator. Interactions are considered strong when they exceed a certain threshold. To avoid 
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having to choose a single threshold, 𝑇𝑂 is calculated based on multiple thresholds. Each of 

these 𝑇𝑂 is then summed to give species uniqueness. If we calculate the topological overlap 

taking into consideration interaction strength, we can calculate weighted species uniqueness 

(𝑤𝑆𝑇𝑂). See supporting information for the algorithm for the computation of trophic field 

overlap. 

 

Statistical analysis 

 

The combination of the six clustering techniques, five linkage methods and four ways of 

determining interaction strength produced 120 ways of aggregating food webs. For each of 

these aggregation methods, we studied their effects on the indices of importance. In 

particular, we studied the correlation between the ranking of the nodes before and after the 

aggregation. This correlation was calculated by using Kendall's tau b (τ𝐵) - a version of 

Kendall's rank correlation coefficient that makes adjustments for ties (Agresti, 2012). For 

each combination of aggregation method and index of importance, we found the mean τ𝐵 

across all food webs. This required us to convert τ𝐵 using the Fisher z-transformation (Fisher, 

1915). For each fisher’s z mean, we found its 95% confidence interval by bootstrapping 

(DiCiccio & Efron, 1996). The fisher’s z means, and 95% confidence intervals were then 

back transformed to τ𝐵. τ𝐵 and bootstrapping were implemented in the Statistics and 

Machine Learning Toolbox for MATLAB (Mathworks Inc., 2019). 

 

Results 

 

Size of the clusters produced 
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The 76 food webs we used had a median of 25.5 nodes (IQR = 16.0), with a minimum of 14 

nodes and a maximum of 55 nodes (Figure 1). The median size of the aggregated food web 

compared to the original one was 74.5% (IQR=10.8%) for the Jaccard index, 73% 

(IQR=7.2%) for the REGE index, 12.8% (IQR=6.5) for the density-based modules, 35.8% 

(IQR=21.3%) for the prey-based modules, 72.1% (IQR=29.6%) for the predator-based 

modules and 15.8% (IQR=6.5%) for the group model (Figure 2 and 6). 

 

Correlation of indices of importance before and after the aggregation 

 

The correlation between the ranking before and after the aggregation can be seen in Figure 3. 

By focusing only on the clustering method and ignoring the linkage method and the 

interaction strength method, we can select the best clustering for each combination of 

centrality indices and clustering methods. This provides us with a clearer heat map. See 

Figure 4. Ranking the clustering algorithms in Figure 4 produces Table 1. Density modularity 

always ranked as the worst clustering algorithm. Prey-based modules and group model were 

always ranked as either fourth or fifth. Except for 𝐵𝐶 and 𝑠’, the clustering of predator 

modules ranked consistently as third. Excluding the results of contrastatus, the hierarchical 

clustering based on Jaccard index and REGE index were always ranked as the best clustering 

methods. Jaccard index was better than REGE for weighted and unweighted species 

uniqueness, unweighted topological importance, degree centrality, closeness centrality, and 

betweenness centrality. REGE was better for weighted topological importance and weighted 

degree centrality. Status index and keystone index were maintained better either by Jaccard or 

by REGE according to which index of those two families we considered. We can 

qualitatively say that the correlation between the ranking before and after the aggregation 

seems to increase with the size of the aggregated food web. 
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Discussion 

 

The aggregation of nodes in food webs is an old problem, dating back at least to the 

beginning of the 1980s (e.g., Pimm (1982)). Multiple studies investigated the effect of 

different types of aggregation on food web properties, such as connectance, food chain length 

and ratio between bottom, intermediate and top species (Hall & Raffaelli, 1991; Martinez, 

1991, 1993; Sugihara, Bersier, & Schoenly, 1997; Sugihara, Schoenly, & Trombla, 1989). 

Not much attention, however, has been given to the effects that aggregation has on our ability 

to find keystone species inside the food web. Essington & Plagányi, (2014) and Plagányi & 

Essington, (2014) tried to investigate this topic. The former by studying changes in degree 

centrality and in the ratio between the consumer species biomass and the total consumer 

biomass. The latter by the SURF index (an index used to find important forage fish species). 

These, however, focused on indices that are rarely used in keystone species research and did 

not compare the effect of different aggregation methods.  

In this paper, we study the effects of aggregation on several indices used in network 

ecology (Estrada, 2007; Olmo Gilabert et al., 2019). The aggregation methods that we 

compared were the widely used hierarchical clustering using Jaccard index and REGE index, 

as well as directed modularity maximisation, prey-based modularity maximisation, predator-

based modularity maximisation, and clustering through the group model. The latter four are 

normally used for community detection, but we explored the possibility of using them in the 

future for data aggregation. 

Our results show that different aggregation methods maintain the relative importance 

of species in different ways. Therefore, they have different potential of changing the keystone 

species of the food web (Figure 5). Except for the contrastatus index (𝑠’), hierarchical 
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clustering with the Jaccard index and hierarchical clustering with the REGE index 

outperformed the other methods. When choosing between these two methods, however, we 

need to consider that not all indices have the same power to predict keystone species. 

Gouveia, Móréh, & Jordán (2021) looked at topological indices and how their findings 

correlated with the findings of the dynamical index keystoneness (Libralato, Christensen, & 

Pauly, 2006). They found that the most reliable topological index was the weighted degree 

centrality (𝑤𝐷𝐶). This could predict the most important species for dynamic processes in 

70.1% of the cases. It was followed by a combination of 𝑤𝐷𝐶 and the 5-step weighted 

topological importance (𝑊𝐼5), which increased this percentage to 78.4%. In light of these 

findings, REGE might be considered the best clustering algorithm, as it maintains 𝑤𝐷𝐶 and 

𝑊𝐼5 the best. 

The choice of the aggregation algorithm, however, boils down to our research 

question. The particular index we are interested in might drive the choice between the Jaccard 

index and the REGE index. Another factor influencing our choice is the resulting network 

size. How much do we need to aggregate? In case we might want to have higher aggregation, 

we might consider using the group model, which produces high aggregation, but performs 

way better than density-based modularity (Figure 6). But also, we might be interest in a 

particular species role – in that case we should aggregate according to that specific role. Each 

method reveals some kind of biological similarities between nodes. The key point is to know 

the effects of these aggregation procedures and to keep them in mind when applying them 

and evaluating the properties of the aggregated network. 

In this paper, we focus on a well-defined set of food webs that are methodologically 

strictly comparable (all created by the EwE methodology). Studying aggregation would be 

more exciting for larger food webs but these are rarely comparable (lacking standards for 

their description). When data will be available, interaction networks representing various 
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interaction types will be very important to analyse from our present perspective: different 

interaction types may be differently sensitive to aggregation. A major advancement would be 

the analysis of aggregation effects on dynamical food web models. To see how dynamical 

properties can be altered or changed, as an effect of aggregation algorithms, would be a major 

step towards predictive food web modelling.  

In conclusion, we have shown that different aggregation methods maintain differently 

the relative importance of species in a food web. Hierarchical clustering with Jaccard index 

and hierarchical clustering with REGE index have been shown to be the best at doing this. 

The choice between these two algorithms should depend upon the type of importance index 

we are interested in maintaining. Future research should be carried out on larger food webs, 

dynamical indices and determining what the best linkage method and new interaction strength 

method are. 
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Supplementary material 

The code used for this analysis is available at https://github.com/Emanuele-

Giacomuzzo/Data_aggregation. This work resulted also in the MATLAB toolbox “Food Web 

Analysis Toolbox” available at https://uk.mathworks.com/matlabcentral/fileexchange/89907-

food-web-analysis-toolbox. 
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Figures & table 

 

 
Figure 1. Size of the food webs we used in our study. 
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Figure 2. Size of the clusters produced by the different clustering methods. (a) = hierarchical 

clustering with Jaccard index, (b) = hierarchical clustering with REGE index, (c) = 

maximisation of density-based modularity, (d) = maximisation of prey-based modularity, (e) 

= maximisation of predator-based modularity, (f) = group model. 

 

 
Figure 3. Kendall’s rank correlation (τ) between the ranking of the nodes in the original food 

web and in the aggregated food web. The x-axis describes the aggregation method, which is 

composed of three components: (i) clustering algorithm; (ii) linkage method; and (iii) and 

interaction strength method. Jaccard = hierarchical clustering using Jaccard index, REGE = 

Hierarchical clustering using REGE index, density = clustering of density-based modules, 

prey = clustering of prey-based modules, predator = clustering of predator-based modules, 

groups = clustering of groups. NMAX = maximum linkage method, 25% = at least 25% of 
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links realised to consider a connection, 50% = at least 25% of links realised to consider a 

connection, 75% = at least 75% of links realised to consider a connection, NMIN = minimum 

linkage method. min = minimum interaction strength, max = maximum interaction strength, 

sum = sum of interaction strengths, mean = mean interaction strength. The y-axis describes 

the importance indices. 𝐷𝐶 = degree centrality,  𝑤𝐷𝐶 = weighted degree centrality,  𝐶𝐶 = 

closeness centrality,  𝐵𝐶 = betweenness centrality,  𝑠 = status index,  𝑠’ = contrastatus index,  

Δ𝑠 = net status index,  𝑘 = keystone index,  𝑘𝑏𝑢 = bottom-up keystone index,  𝑘𝑡𝑑 = top-down 

keystone index,  𝑘𝑑𝑖𝑟 = directed keystone index,  𝑘𝑖𝑛𝑑𝑖𝑟 = indirected keystone index,  𝑇𝐼1 = 

1-step topological importance,  𝑇𝐼3 = 3-step topological importance,  𝑇𝐼5 = 5-step 

topological importance,  𝑊𝐼1 = 1-step weighted topological importance,  𝑊𝐼3 = 3-step 

weighted topological importance,  𝑊𝐼5 = 5-step weighted topological importance,  𝑆𝑇𝑂1 = 

1-step species uniqueness,  𝑆𝑇𝑂3 = 3-step species uniqueness,  𝑆𝑇𝑂5 = 5-step species 

uniqueness,  𝑤𝑆𝑇𝑂1 = 1-step weighted species uniqueness,  𝑤𝑆𝑇𝑂3 = 3-step weighted 

species uniqueness,  𝑤𝑆𝑇𝑂5 = 5-step weighted species uniqueness. 

 

 
Figure 4. Heat map of the best Kendall's rank correlation coefficient for each combination of 

clustering methods and centrality indices. The best correlation is selected across linkage 

methods and methods of determining interaction strength. Jaccard = hierarchical clustering 

using Jaccard index, REGE = Hierarchical clustering using REGE index, density = clustering 

of density-based modules, prey = clustering of prey-based modules, predator = clustering of 

predator-based modules, groups = clustering of groups. For the confidence intervals 

associated with these values and for the linkage method & interaction strength method used, 

see supporting information. 
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Figure 5. Effect of aggregation on most the most important nodes in a food web. Red: central 

before and central after. Orange: central before and not central after. Purple: not central 

before and central after. Blue: not central before and not central after. The self-loops are not 

included in the figure for clarity. (a) = hierarchical clustering using Jaccard index, (b) = 

hierarchical clustering using REGE index, (c) = clustering of density-based modules, (d) = 

clustering of prey-based modules, (e) = clustering of predator-based modules, (f) = clustering 

of groups. The food web here depicted is the one of the West Florida Shelf (Thomas A. Okey, 

2004). It is largest network used in this study (55 nodes). To make the figure clearer, we did 

not include the self-loops. 
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Figure 6. Aggregation of the food web of Figure 5 according to different clustering 

algorithms. (a) = hierarchical clustering using Jaccard index, (b) = hierarchical clustering 

using REGE index, (c) = clustering of density-based modules, (d) = clustering of prey-based 

modules, (e) = clustering of predator-based modules, (f) = clustering of groups. The linkage 

method and the interaction strength method used for each clustering were the ones that 

produced the highest Kendall’s rank correlation between the ranking before and after the 

aggregation. The size of the nodes is proportional to the number of nodes that have been 

aggregated into them. Also in this case, we did not include self-loops. 
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Table 1. Best Kendall’s correlation coefficients, as in Figure 4. This time, they are ranked 

from the clustering that produced the best correlation, to the clustering that produced the 

worst correlation. Green = hierarchical clustering with Jaccard index, red = hierarchical 

clustering with REGE index, grey = density-based modules, blue = predator-based modules, 

purple = groups produced by the group model. C1 = Best clustering, C2 = second best 

clustering, C3 = third best clustering, C4 = fourth best clustering, C5 = fifth best clustering, 

C6 = sixth best clustering. 
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