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Abstract 
 
The establishment of distinct transcriptional programs in response to developmental or 
environmental cues is central to all life. This entails the concordant and discordant 
transcriptional regulation of several distinct biological processes (BP) often involving 
thousands of genes. Genomic clustering of genes in a BP is one strategy by which 
transcriptional coregulation of a BP’s genes is achieved. However, whether gene 
clustering also plays a role in transcriptional coherence of several distinct BPs, often 
involving thousands of genes, remains unexplored. Here, by analyzing the genomes of 
eukaryotes ranging from yeast to human, we report the identification of thousands of 
conserved and species-specific discrete clustered BP pairs, many of which in normal 
human tissues are transcriptionally correlated. Strikingly, our results reveal that system-
level transcriptional coordination is achieved in part by the genic proximity of regulatory 
nodes of disparate BPs whose coregulation drives the transcriptional coherence of their 
respective pathways. This, we hypothesize, is one strategy for creating coregulated, 
tunable modulons in eukaryotes. 
 
Keywords: Genome clustering, Transcriptional coregulation, Transcription factor 
clustering, Transcriptional Ripple, Modulons, Genome evolution, Eukaryotic genomes, 
Genomics 
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Background 

 

To survive stress or deploy developmental programs, cells establish a spectrum of 
distinct transcriptional states. This involves the rapid, robust and reproducible 
transcriptional coordination of hundreds or thousands of genes dispersed throughout 
the genome, governing dozens of disparate biological processes (BPs). To study this 
type of system-level change in biological outputs, gene regulatory networks (GRNs) 
were developed to link functionally and temporally the regulatory genes and signaling 
components of a multitude of BPs [1–6]. These networks are modular and hierarchical 
[7,8], within which several overrepresented network motifs or sub-circuits [9,10], create 
positive and/or negative regulatory loops through which biological outputs of up to 
thousands of genes are coordinated. Redundancies, stratifications and amplifications of 
motifs within GRNs not only allow the incorporation of signals from a variety of cellular 
and environmental stimuli [7], but also together produce robust, timely, fine-tuned and 
stable biological responses. Indeed, the system-level coregulation achieved within 
GRNs plays a central role in adaptation and development and thus is under strong 
evolutionary selection [11–13]. Organizationally, GRNs are made up of lower-level sub-
circuits such as regulons - a set of genes that are transcriptionally coregulated as a unit 
- and higher-level sub-circuits, such as modulons, often comprised of several regulons 
that become transcriptionally linked in response to the same stimuli.  Mechanistically, 
these sub-circuits are interconnected by the combinatorial activities of trans-acting 
factors, such as transcription factors (TF), and chromatin regulatory proteins, targeted to 
a given set of cis-regulatory DNA sequences [12,14]. How the biological outputs of 
these sub-circuits are organized in time and space is an active area of research. 

     
Gene clustering is one means by which the transcription of large groups of genes can 
be coordinated. This was first described in prokaryotes where functionally interrelated 
genes cluster into operons from which poly-cistronic messenger RNAs (mRNAs) are 
transcribed, ensuring their co-expression [15]. Even though poly- or di-cistronic mRNAs 
of protein coding genes are rarely found in metazoans except for nematodes [16–18] 
and flies [19–21], genomic clustering of interrelated genes is a prevalent and conserved 
feature of eukaryotic genomes in organisms such as yeast [22–24], fly [25–27], worm 
[28–30], zebrafish [31,32], mouse [33,34] and human [34–41]. In fact, eukaryotic 
genomes are shaped by multiple domains of transcriptional coregulation [25,27,40], 
within which a shared chromatin state and cis-regulatory elements establish the 
transcriptional activities of these regions [42–44]. Functionally, gene clustering helps the 
transcriptional coordination (e.g. housekeeping and highly expressed genes) and 
temporal regulation (e.g. HOX family of TFs) of interrelated genes [27,35,45–48], and its 
disruption is linked to several developmental pathologies [49–52]. It also helps 
coordinate the transcription of unrelated genes at both the micro- (neighboring genes) 
and macro-scales (A/B compartments and topologically associated domains (TADs)) 
are transcriptionally correlated [53–59]. However, whether clustering of unrelated genes 
also has a functional role in coupling the transcription of disparate BPs, spanning many 
genes dispersed throughout the genome, is not well understood. 
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Recently, using the fission yeast (Schizosaccharomyces pombe), we showed that as 
cells enter quiescence (G0), the constitutive heterochromatin protein Clr4 - the sole 
lysine 9 histone H3 (H3K9) methyltransferase in this organism - is deployed to 
euchromatic parts of the genome to coregulate the expression of hundreds of genes 
[60]. Unexpectedly, we found that most of these coregulated genes occur in linear gene 
arrays dispersed throughout the genome, and were together overrepresented in 
developmental, cell cycle and metabolic BPs, all of which are important for establishing 
the G0 state [61]. In addition to examples in yeast [62,63], formation of transcriptionally 
coregulated linear gene arrays are also found in mammals. For example, growth factor-
induced exit from quiescence of mouse fibroblast cells also results in the transcriptional 
activation of immediate early genes (IEG) which spreads in cis to neighboring genes via 
a transcriptional ripple effect [42] creating transcriptionally coordinated linear gene 
arrays. These and other observations [64,65] suggest that clustering of genes belonging 
to disparate BPs within a few gene neighborhoods may be a conserved strategy for 
efficient targeting of the same transcriptional regulatory proteins. This type of genome 
architecture, we hypothesized, would couple the transcription of disparate BPs, help 
create modulons and would thus be under strong evolutionary selection. 
 
To test this hypothesis, we devised a statistical framework to quantify genomic 
clustering between disparate BPs in five of the most commonly used and best-
annotated eukaryotic model organisms ranging from yeast to human, spanning over one 
billion years of evolution [66,67]. Using this platform, we identified thousands of 
conserved and species-specific clustered BP pairs, many of which are strongly 
transcriptionally correlated in normal human cells. Interestingly, even in the absence of 
pathway-wide clustering, BP pairs sharing at least one clustered TF pair display strong 
transcriptional coherence, suggesting that clustered TFs represents nodes of 
transcriptional coregulation whose disruption, we find, results in loss of transcriptional 
coherence. Overall, these data reveal that genic proximity of disparate BPs contributes 
to their transcriptional coregulation and suggest that such genome organization helps in 
the rapid and synchronous co-expression of distinct BPs, thus establishing tunable, 
coregulated modulons in eukaryotes. 
 
Results 
 
Identification of clustered BP pairs in eukaryotic model organisms 
 
To identify significantly clustered BP pairs (Fig. 1A), we developed a statistical 
framework to quantify clustering using the one-dimensional positioning of protein-coding 
genes (Fig. 1B) in the fission yeast (Schizosaccharomyces pombe), nematode 
(Caenorhabditis elegans), fruit fly (Drosophila melanogaster), mouse (Mus musculus) 
and human (Homo sapiens) genomes. The highly annotated genomes of these 
organisms endowed our analyses with the power to examine thousands of conserved 
and species-specific biological pathways across evolution (Fig. 1C). BP terms in the 
Gene Ontology (GO) consortium [68] were used to define biological pathways in our 
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analyses. GO provides an up-to-date, pan-organismal classification of BP terms in the 
aforementioned organisms.  
 
To identify disparate, significantly clustered BP pairs (Fig. 1A-C) (see Methods), we (1) 
selected BP terms with sufficient number of genes to provide enough statistical power 
for our analyses in each genome (Table S1), (2) set a threshold distance for gene 
clustering that captures the majority of the nearby gene-pair transcriptional correlations 
(Figure S1), and tested its statistical robustness against a range of alternative threshold 
distances (Figure S2-3), (3) demonstrated the specificity (Figure S4) and performance 
(Figure S5) of our statistical method using randomly generated gene sets (see 
Methods), (4) determined background clustering by performing 2,000 random samplings 
(Figure S6) for each BP-BP analysis in each organism, and (5) estimated p-values for 
each BP-BP analysis in each organism (Table S2). The p-values were used to generate 
quantile-quantile (QQ) plots shown in Fig. 1D-H. The QQ plot for each organism stayed 
close to the expected diagonal, indicating minimal systematic inflation or deflation.  
However, the tails of the QQ plots curl upwards in all organisms except the fission yeast 
indicating that metazoan genomes have thousands of significantly clustered BP pairs. 
The peculiarity of the fission yeast QQ plot is likely the result of its distinct genome 
organization relative to metazoans: (A) gene density of protein-coding genes is almost 
uniform across the fission yeast euchromatic domains, and (B) 50% of all fission yeast 
protein-coding genes overlap with another gene. Overall, these plots reveal that the 
statistical framework developed here for capturing BP-BP clustering works effectively in 
metazoans but may not be ideally suited for the uniformly dense and highly overlapped 
genomes of yeast species. Next, for each organism, we adjusted the significance of 
clustering for multiple comparisons using positive false discovery rate [69]. In the end, 
out of over 2 million BP-BP analyses, 1,855 BP pairs were found to be significantly 
clustered (FDR < 0.05) in the five genomes analyzed (Fig. 1C, Table S2).  Fig. 2 shows 
examples of clustered GO pairs in each organism. Even though some of the clustered 
BP pairs identified exhibit an overlapping biological function, many BP pairs are 
functionally disparate (Table S2). Together, these analyses demonstrate that genome 
clustering of disparate BPs is an organizational feature of eukaryotic genomes.     
 
Several similar BP pairs show conserved clustering in eukaryotic genomes 
 
If gene clustering couples the transcriptional outputs of essential BPs, then it would be 
under selection and thus maintained in evolution. Accordingly, 17 identical significantly 
clustered BP pairs were identified in the mouse and human genomes (Table S2). This is 
largely driven by synteny between these two species which shared a recent common 
ancestor [70]. Interestingly, we also found that several clustered BP pairs, though not 
identical, were highly similar to one another.  
 
To determine whether similar BP pairs cluster in these distantly related eukaryotes, we 
selected BP terms that have a clustered BP partner in at least two organisms. This 
yielded 393 BP pairs (Table S2). We then used two parallel strategies to answer this 
question (see Methods). First, using the semantic similarity developed by Lin [71] or 
Resnik [72], we found that the 393 BP pairs form into 30 highly similar BP groups (Table 
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S3 and Fig. 3A). The two semantic similarity produced highly overlapping BP groupings 
(Figure S7A). We then asked in how many different genomes BPs in each group cluster 
with BPs in other groups. This analysis revealed several highly similar clustered BP 
pairs in the five eukaryotic genomes (Fig. 3B and Figure S8). In the second parallel 
strategy, we asked whether a given BP in Table S3 clusters with similar BP terms in the 
different genomes. For example, if BP1 clusters with BP2 and BP2’ in mouse and yeast 
genomes, respectively, we calculated the BP2-BP2’ similarity using semantic similarity 
by Lin. Our results (Figure S7B) revealed that the frequency with which highly similar 
(Lin scores >0.9) BP2-BP2’ are found is significantly higher than background, 
supporting the hypothesis that a given BP tends to cluster with highly similar BPs in 
multiple eukaryotic genomes. Together these data demonstrate that clustering of 
hundreds of BPs is maintained over long evolutionary timescales, suggesting that this 
type of genome organization may serve a functional role in linking their transcription. 
For example, metabolism BPs cluster with stress response BPs in four out of the five 
genomes, consistent with the well-established link between these two processes in 
biology [73–75]. Another example is the conservation of clustering between the amino 
acid metabolism and neural development BPs. Considering the critical role that amino 
acids and their metabolites play in synaptic transmission [76,77], and learning and 
memory [78,79], our data suggest that this type of genomic clustering may portend a 
functional link in their coregulation in organisms ranging from fly to human. 
 
Clustered BPs are transcriptionally correlated 
To ask whether genome clustering predicts the transcriptional coupling of disparate BP 
pairs in the human genome, we quantified BP-BP transcriptional correlation across 53 
different tissues represented in the GTEx dataset [80] (Figure S9). Because clustered 
gene pairs tend to be transcriptionally correlated (Figure S1), we excluded them to 
remove this bias from all BP-BP correlation calculations. This permitted us to determine 
whether a BP-BP correlation spans both pathways or is driven by the clustered genes 
shared by both pathways. Also, because similar GO terms often impact overlapping 
functions and are thus transcriptionally coordinated, to focus our analysis on disparate 
BPs, we separated BP pairs into similar (Lin score >0.1) and disparate (Lin score ≤0.1) 
pairs. To quantify the BP-BP transcriptional correlation, we calculated Z scores for all 
genes in each of the 53 different tissues and asked whether clustered BP pairs display 
higher transcriptional correlation compared to unclustered BP pairs (see Methods). We 
found that disparate clustered BP pairs (N=278) exhibited significantly higher 
transcriptional correlation compared to unclustered BP pairs (N=458,999) (Fig. 4A), 
supporting a model in which clustering of disparate BPs links their transcription. Also, 
because clustered gene pairs were removed from our calculations, these analyses 
reveal that the BP-BP correlations are pathway-wide. 
 
BP pairs which share a clustered TF display significant transcriptional correlation 
 
Interestingly, several of the clustered gene pairs in clustered BPs were TFs. Because 
regulatory nodes of GRNs often consist of trans-acting co-expressed genes [81,82], this 
prompted us to test whether clustered TFs are a strong predictor of the transcriptional 
coherence of clustered BP pairs. We divided disparate clustered BP pairs (N=278) into 
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three groups: 1) one or both BPs lacks an annotated TF (N=18); 2) both BPs contain at 
least one annotated TF, and the TFs are not clustered (N=123); 3) both BPs contain at 
least one annotated TF, and at least one pair of TFs is clustered (N=142). Our analysis 
revealed that clustered BPs with clustered TFs display the highest transcriptional 
correlation of the three groups (Fig. 4B). Fig. 4C shows an example of a clustered BP 
pair with clustered TFs in human, namely humoral immune response (GO:0006959) and 
negative regulation of cell adhesion (GO:0007162) (also shown in Fig. 2E). Likewise, 
similar (Lin score>0.1) clustered BP pairs displayed higher transcriptional correlation 
relative to unclustered BP pairs (Figure S10A), especially those with a clustered TF pair 
(Figure S10B). Together, these data support a model in which clustered TFs can be 
used to couple the transcription of BPs in human.  
 
The strong predictive value of clustered TFs in BP-BP correlation suggested that 
clustered TFs alone (without pathway-wide BP-BP clustering) could be sufficient to 
predict the transcriptional correlation of BP pairs. If true, this type of gene placement 
could couple the transcription of multiple disparate BP pairs. To test for this, we 
compared the transcriptional correlation of disparate BP pairs that share (N=58,760) or 
do not share (N=401,118) at least one clustered TF pair. By plotting BP-BP 
transcriptional correlation versus the strength of clustering, we found that (1) genome 
clustering positively correlates with BP-BP transcriptional correlation, and that (2) BP-
BP pairs with at least one clustered TF have a dramatically higher transcriptional 
correlation compared to BP pairs without a clustered TF (Fig. 4D). In fact, we also found 
that the most concordant and discordant BP pairs have the highest TF-TF 
transcriptional correlation consistent with an activator-activator and activator-repressor 
TF pairing, respectively (Figure S10D). Likewise, similar BP pairs with at least one 
clustered TF (N=27,898) have a dramatically higher transcriptional correlation compared 
to BP pairs without a clustered TF (N=158,016) (Figure S10C). In sum, these analyses 
demonstrate that beyond pathway-wide BP-BP gene clustering, TF clusters alone are 
strong predictors of the transcriptional coupling of their associated BPs. 
 
TF clustering is required for transcriptional coregulation of discrete BPs 

If clustered TFs couple the transcription of their associated BPs, then their disruption 
(e.g. by a deletion or translocation) may result in the loss of these transcriptional 
couplings. To test this prediction, we used the Cancer Cell Line Encyclopedia (CCLE) 
dataset [83], to identify cell lines in which a deletion or a translocation disrupts a 
clustered TF pair whose associated BPs are transcriptionally correlated. We then 
quantified the extent to which such a deletion or translocation impacts the transcriptional 
correlation of the associated BPs (see Methods). As an example, among the CCLE’s 
lymphocytic cell line collection, SUDHL8 is a cell line that carries a deletion in the IRF8 
gene disrupting the IRF8-FOXF1 clustered TF pair. Comparing the SUDHL8 
transcriptome versus the other lymphocytic cell lines by using standardized residuals as 
a measure for transcriptional deviation, we found that even though the overall 
transcriptome of SUDHL8 is typical for a subset of lymphocytic cell line (Fig. 5A), 
specifically the transcriptional coherence among the IRF8- and FOXF1-associated BPs 
is lost (Fig. 5B-C). Similarly, among the transverse colon cancer cell lines, the SNU1033 
cell line carries a deletion in the PRDM16 gene, disrupting the PRDM16-TP73 clustered 
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TF pair.  Here also we observed that even though the overall transcriptome of SNU1033 
is typical for a transverse colon cancer cell line (Figure S11A), specifically the 
transcriptional coherence among the PRDM16- andTP73-associated BPs is lost (Figure 
S11B-C).  

Deletion of a TF could impact the expression of many genes in its pathway. To test if 
genomic clustering of TFs specifically can predict the transcriptional coherence of their 
associated BPs, we analyzed cell lines carrying translocations between clustered TFs in 
a similar fashion. Fig. 5D illustrates one example where a translocation in the HCC1419 
breast cancer cell line disrupts the clustering of HSF1-FOXH1 TF pair. Consistent with 
our model, we found that even though the overall transcriptome of this cell line is similar 
to other breast cancer lines, there is a specific loss of transcriptional coherence among 
the HSF1/FOXH1-associated BP pairs. Fig. 5E and Table S4 summarize similar 
findings in 31 other cell lines in which a translocation separating a clustered TF pair co-
occurs specifically with a significant loss of transcriptional correlation of their associated 
BPs. Taken together, these data support a model in which clustered TFs couple the 
transcriptional output of disparate BPs.  

Because genes within TADs are transcriptionally correlated, another predication of our 
model is that the cooccurrence of the clustered TFs in the same TAD would portend the 
transcriptional correlations of their associated BPs. To test this prediction (see 
Methods), we analyzed TAD domains identified from 37 independent samples [53,84] 
(Figure S12A) and compared the frequency with which a clustered TF is found in the 
same TAD versus the transcriptional correlation of their associated BPs. As expected, 
clustered TFs found most frequently in the same TAD displayed the highest TF-TF 
transcriptional correlations (Figure S12B). Moreover, their associated BP pairs 
displayed the most highly concordant (activator-activator) and discordant (activator-
pressor) transcriptional couplings (Fig. 5F). Together these data further support a model 
in which transcriptionally coupled clustered TFs link the transcriptional outputs of their 
associated BPs in the human genome. 

 
Temporal regulation of multiple BPs by clustered TFs  
 
So far, our data suggest that clustered TFs can act as regulatory hubs for transcriptional 
coordination of discrete BPs. Previous work has shown that transcriptional activation 
can spread in cis to neighboring genes via a transcriptional ripple effect, resulting in the 
transcriptional coregulation of linear gene arrays [42]. Here we tested whether a ripple 
mechanism could also activate the transcriptional outputs of TF clusters, providing a 
possible means for temporal co-regulation of multiple pathways by clustered TFs. To 
test this, we mined the data sets presented in  [85], in which SNAI1, a TF and critical 
regulator of the epithelial-to-mesenchymal transition (EMT), was overexpressed in the 
MCF10A human breast cell line. In this study, transcriptional changes caused by SNAI1 
overexpression were monitored at regular intervals for up to five days post-
overexpression. We selected SNAI1 because it is clustered with two other TFs, CEBPB, 
and ADNP (Figure S13A), which are transcriptional regulators of other pathways.  
Because all three TFs are primarily repressors, we asked whether the core SNAI1-, 
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CEBPB-, and ADNP-regulated genes (see Methods) show any signs of time-dependent 
repression post SNAI1 overexpression. Consistent with a transcriptional ripple effect 
initiated at SNAI1, we found that the largest fraction of the early-repressed genes is the 
core SNAI1-regulated (Figure S13B) genes, whereas CEBPB- and ADNP-regulated 
genes are enriched in the late-repressed gene set (Figure S13C-E). These data support 
a model in which a transcriptional ripple, initiated by the activation of a TF, can spread 
in cis to its neighboring TFs coordinating the expression of multiple BPs temporally (Fig. 
6). 
 
Discussion 
 
Here, the analysis of the distantly related genome of yeast, fly, worm, mouse and 
human reveals that clustering of disparate BPs is a conserved feature of eukaryotic 
genomes, demonstrating a strong evolutionary selection for maintaining this type of 
genome organization. Clustered BP pairs display strong transcriptional correlation in 
human cells, especially those which also share a clustered TF. Moreover, TF clustering 
alone is a strong predictor of BP-BP transcriptional correlation, suggesting that 
formation and maintenance of TF clusters (which we propose form regulatory nodes) 
provide an efficient genomic architecture for coupling the transcription of GRN sub-
circuits. In support of this, we find that deletion, translocation or overexpression of a TF 
within a clustered TF pair or group impacts the transcriptional coherence of their 
associated BPs. Fig. 6 depicts a simple model in which transcriptional coregulation of a 
clustered TF pair drives the transcriptional coherence of their respective BPs in trans. 
According to our model, eukaryotic genomes contain many regulatory nodes through 
which the combinatorial activities of trans-acting factors, such as TFs, can be efficiently 
coordinated. This in turn endows organisms with the ability to coregulate several GRN 
sub-circuits simultaneously or in a temporally ordered manner, which could help the 
timely establishment of distinct biological outcomes rapidly and robustly (Fig. 6).  
 
BP clustering across evolution 
 
Previously, it was shown that genomic clustering of similarly expressed or functionally 
interrelated genes provides an efficient strategy for coregulating or temporally ordering 
the expression of many genes in the same pathway [27,35,45–48,62,65,86]. This helps 
in the establishment of transient, persistent or temporally ordered adaptive GRN states 
[87], and is under strong evolutionary selection [11–13]. Accordingly, in support of this, 
a recent evolutionary survey of 341 fungal species revealed that evolution by vertical 
and horizontal gene transfer of several metabolic BPs has led to the maintenance of the 
same gene clusters among these fungal species. Strikingly, this was true even in cases 
of convergent evolution such that the de novo acquirement of some BPs leads to the 
formation of the same gene clusters [88], demonstrating the importance of clustering of 
interrelated genes in evolution. Here in this report we show that genomic clustering also 
extends to disparate BP pairs (Fig. 1-3), many of which in normal human tissue display 
strong transcriptional correlation (Fig. 4A and Table S2). This correlation is pathway-
wide and especially strong among BP pairs which also share a clustered TF pair (Fig. 
4B). Moreover, even though individual genes, TFs and lower-level GRN sub-circuits 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 19, 2021. ; https://doi.org/10.1101/2021.04.17.440292doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.17.440292


10 

 

vary across evolution, our data demonstrate that the maintenance of this type of 
genome organization for higher level BP-BP coregulation spans hundreds of millions of 
years of evolutionary time (Fig. 3). In addition to revealing clustering among previously 
known interdependent BPs (e.g. stress response and metabolism and amino acid 
metabolism and neural development), some clustered BP pairs illustrate emerging 
interdependencies. For example, we found that learning and histone methylation and 
learning and RNA methylation are clustered in worm and fly genomes, respectively 
(Table S3). Indeed, several recent reports have provided support for the emerging role 
of these modifications in learning and memory in metazoans [89–92]. Another example 
is the clustering of sphingolipid metabolism genes with serine/threonine kinase signaling 
genes in mouse and human genomes. Here also, recent data demonstrate the 
emerging role of sphingolipid metabolites in intra- and intercellular signaling pathways 
[93–95], which when combined with their genome clustering with serine/threonine 
kinase signaling pathways suggest a functional link for their transcriptional coupling. 
Lastly, we also found that some BP clusters do not have clearly defined links in biology 
(Table S2). It will be interesting to determine whether these kinds of clustered BP pairs 
portend previously unappreciated biological interdependencies considering their 
correlated transcriptional outputs in human cells. 
 
Beyond pathway-wide BP-BP gene clustering, we also found that a strong predictor of 
transcriptional correlation between disparate BPs is the presence of at least one shared 
clustered TF pair (Fig. 4D, Figure S10C), suggesting that clustered TFs can be used to 
couple their transcription. Considering that during the continual shuffling of genes in 
evolution the probability of forming clustered TFs (a single gene pair) is higher than 
clustered BP pairs (several gene pairs), clustered TFs may present an efficient 
evolutionary solution for coregulation of disparate BPs, especially those whose 
biological outputs are similarly regulated in response to the same developmental or 
stress conditions.  
 
In addition to protein-coding genes, clustering and coregulation of trans-acting 
noncoding factors, such as micro RNAs (miRNAs) also may play important roles in 
coregulation of multiple BPs, consistent with the presence of their target sequences in 
multiple transcripts [96]. These, together with TFs, provide additional layers of 
combinatorial regulation through which system-level changes to transcriptomes can be 
achieved. For example, TF-miRNA and miRNA-miRNA clustering also may serve as 
efficient strategies to regulate expression of a wide range of target genes. With better 
classification and identification of ncRNAs and their targets, the application of our 
clustering framework may expose novel BP interconnections and other networks motifs 
involving various coding and noncoding elements.   
 

Clustered TFs as nodes for modulon regulation 
 
Our data reveal that transcriptional coregulation of neighboring genes, such as 
clustered TFs, is a key driver of BP-BP coherence (Fig. 5 and Figure S9-10). This is 
conserved in organisms ranging from bacteria to human and plays a critical role in 
coregulation and thus establishment of GRN sub-circuits [9–11]. In fact, in human, 
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genes that display similar expression changes across different tissues occur in clusters, 
suggesting that tissue-level GRN regulation occurs at gene-cluster or chromosomal-
domain scale [97]. There are several molecular mechanisms that help coregulate gene 
neighbors in cis such as Transcription interference [98,99], divergent transcription [100], 
and regulation of local chromatin states [101,102]. Another is the so-called 
transcriptional ripple effect observed in yeast [62,63] and mammalian cells [42]. In 
mammals, transcriptional activation of immediate early genes (IEGs) causes time-
lagged ripples of gene expression and active chromatin marks (histone H3 and H4 
acetylation) that spread in cis from IEGs to neighboring genes. Similarly, transcriptional 
silencing demarcated by H3K9 and/or H3K27 methylation can spread in cis into 
neighboring regions [103,104] to repress the transcriptional output of a group of linked 
genes. In this paper, we showed that SNAI1 induction causes time-lagged coregulation 
of CEBPB- and ADNP-associated genes (Fig. 5E-F). Interestingly, both CEBPB and 
ADNP play important roles in EMT [105,106], suggesting that neighboring TFs like 
SNAI1, CEBPB, and ADNP may represent a regulatory node for coordinating the 
expression of multiple eukaryotic regulons, facilitating EMT during development [107]. 
Based on these observations, we hypothesize that eukaryotic genomes contain multiple 
regulatory nodes through whose coregulation or temporally ordered transcriptional 
activation, the transcriptional output of multiple distinct BPs can be coupled. We 
hypothesize that this, in turn, helps create modulons, orchestrating the coordinate 
establishment of GRNs in eukaryotes (Fig. 6). Indeed, such a model is consistent with 
the recent observations that combinations of TFs [108–110] and enhancers [111] define 
the various cell states in mammals. Because in the human genome, gene clusters 
showing the highest transcriptional coupling across different tissues occur in regions of 
high gene density [97], we hypothesize that TF clusters in high gene density regions 
present promising targets for probing novel biological interrelationships between BPs.  
 
Conclusions  
 
Overall, based on these analyses we hypothesize that as eukaryotic genomes 
expanded in size and complexity during evolution, modulons were maintained and 
created by the formation of trans-acting regulatory nodes (such as TF clusters) through 
which the biological outputs of disparate BPs were coupled. This, we propose, is a 
conserved organizing principle of eukaryotic genomes. Additionally, the transcriptionally 
linked disparate BP pairs identified in this study not only support the well-known 
interdependencies among some disparate BPs, but also suggest the existence of new 
BP interconnections which future studies may uncover their molecular links. Finally, 
because the functional, hierarchical and temporal organization of these sub-circuits 
underlie the complex developmental and adaptive programs deployed in eukaryotes, in 
future studies it will be informative to ask whether and how the loss or inappropriate 
gain of these coregulations impacts disease states such as cancer.  
 
Methods 
  
Gene lists and gene ontology (GO) terms 
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The gene ontology (GO) annotation files for S. pombe and other organisms (D. 
melanogaster, C. elegans, M. musculus, and H. sapiens) were obtained from PomBase 
[112] and Gene Ontology Consortium [68,113], respectively. To focus our analyses on 
biological pathways, we chose Biological Process (BP) GO terms only. We also limited 
our analyses to BP GO terms with gene numbers suitable for generating sufficient 
statistical power in our analyses. In each organism, these gene number cutoffs were set 
after accounting for the total number of genes with at least one associated BP GO term 
and the number of chromosomes. For S. pombe, BP GO terms which contain10-250 
genes, for C. elegans and D. melanogaster BPs with 20-250 genes, and for M. 
musculus and H. sapiens BPs with 50-250 genes were considered for analysis (for total 
BPs in each organism, see Fig. 1C). The list of genes and their coordinates are from 
PomBase [112] for S. pombe and Ensemble Genomes [114] for the other model 
organisms. We also removed largely redundant BP terms as defined by those 
containing 75% or more identical genes. In such instances, the BP term with more 
genes was retained and the other was eliminated from analyses.  This reduced the 
number of BP-BP analyses between largely redundant BP pairs. The number of genes 
and BP terms analyzed in this work can be found in Fig. 1C. The list of all BP terms in 
each organism can be found at 
https://figshare.com/projects/Transcriptional_coherence/72644.    
 
Identification of clustered BP pairs 
Setting the threshold distance for clustering and testing its statistical robustness 
Because in most eukaryotes cis-regulatory elements and local gene-gene interactions 
driving transcriptional correlation of gene pairs tend to occur within five times (5X) the 
average intergenic distance [53,115], we assessed whether this distance (1MB in 
human) also captures the majority of proximity-driven gene pair transcriptional 
correlations found in the human genome. We used the human GTEx datasets [80] and 
quantified transcriptional correlation among all protein-coding gene pairs across 
different tissues (see below for details on how transcriptional correlations were 
calculated). Consistent with previous work [25,27], our data revealed that (1) 
transcriptional correlation is a function of the gene pair’s intergenic distance, and (2) 5X 
mean intergenic distance (1Mb) is a good threshold distance capturing the majority of 
cis transcriptional correlations (Figure S1).  
 
To confirm the statistical robustness of this threshold distance, we performed our 
clustering (see below) analyses and p-value quantifications for a range of different 
threshold distances (1X, 2X, 7X, 10X, 15X and 20X) and compared these p-values 
versus those generated using the 5X intergenic distance. This comparison was done for 
all organisms for all BP pairs. Figure S2 shows our analyses for the human genome as 
an example. In sum, these analyses revealed that significantly clustered BP pairs are 
robust at several different threshold distances in all model genomes analyzed in this 
report. 
 
Also, we compared the overlap of highly clustered BP pairs (p<0.001) among the 
different threshold values in each organism (Figure S3). Based on these data, we set 
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5X mean intergenic distance as the threshold distance for gene-pair clustering for the 
genomes used in this study. 
 
Determining the number of clustered gene pairs 
To quantify clustering between two BP terms (e.g., BP1 and BP2), we determined the 
number of instances genes from BP1 lie within the threshold distance of genes from 
BP2. Gene coordinates were used to count instances of gene pair clustering in BP1 and 
BP2. To eliminate clustering overestimation, if identical genes were found in the two 
BPs, they were removed from consideration in our analyses. 
 
Specificity and performance of the statistical method used to quantify genome 
clustering 
To test the specificity of our statistical framework, we generated several random gene 
sets by selecting genes from the pool of BP-associated genes used in this study in each 
organism.  Similar to the gene number limits used to select BPs in each organism (see 
above), the number of randomly selected genes were 10-250 in yeast, 20-250 in worm 
and fly, and 50-250 in mouse and human. Next, all pairwise clustering analyses were 
performed and QQ plots were generated as depicted in Figure S4. 
 
To monitor the performance of our statistical method, we selected 100 artificially 
generated gene sets and analyzed how the p-value for clustering changes as more 
clustered gene pairs are added incrementally to each analysis. As expected, the 
artificial addition of clustered gene pairs decreases the p-value for clustering (Figure 
S5). We also found that the magnitude of decrease in p-value caused by the 
incremental addition of clustered gene pairs to a given BP-BP analysis varies 
depending on the distribution of each gene set pair.  
 
Determining background clustering using Poisson distribution 
Background clustering was calculated for each BP-BP analysis in each organism. In 
total, over 2 million clustering analyses were performed in this study. To illustrate how 
background clustering between two BP terms was calculated, we use the following 
example: BP1 has 20 and BP2 has 30 genes. To determine background clustering 
between BP1 and BP2, first the 20 genes in BP1 were fixed in the genome and 30 
genes were randomly selected 1,000 times from among the pool of genes with at least 
one ascribed BP designation. The numbers of clustered gene pairs generated from 
these 1,000 random samplings were then fit into a Poisson distribution. Next, the 
process was repeated by fixing the 30 genes in BP2, and 20 genes were picked 
randomly 1,000 times from among the pool of genes with at least one ascribed BP 
designation. The numbers of clustered gene pairs generated from these 1,000 random 
samplings were also fit into a Poisson distribution. In total, over 4 billion random 
samplings were performed to generate the Poisson graphs used in our study. 
 
To calculate the significance of clustering for each pairwise analysis, we compared the 
observed number of clustered gene pairs versus the Poisson distribution generated by 
the background clustering as described above. Figure S6 shows simulated and fitted 
Poisson distributions for four representative sets of BP-BP analyses in the human 
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genome.  Note that the Poisson distribution can overestimate the p-value when the 
number of clustered gene pairs is large. In these instances, the fitted distribution is 
wider than the actual distribution (Figure S6D), thus this method is a stringent way to 
calculate p-values. This generates two p-values for each clustering analysis of which we 
used the smaller of the two. These values were used to generate the quantile-quantile 
(QQ) plots depicted in Fig. 1D-H. 
  
Adjusting p-values and selecting highly clustered BP pairs 
Positive false discovery rate (pFDR) [69] was used to deal with the multiple comparison 
problem using a cutoff of 0.05.  Also, we noted that some BP terms tended to cluster 
with many BP terms. To reduce this bias in our analyses, we kept only the top five most 
significantly clustered BP pairs in these instances. The list of significantly clustered BP 
pairs in all organisms can be found in Table S2. Significantly clustered BP pairs that had 
a Lin similarity score (see below for details) of 0.1 or less were considered disparate. 
 
Conservation of clustering 
To ask whether similar BP pairs cluster in the distantly related eukaryotes analyzed in 
this study, we selected BP terms which have clustered counterparts in at least two 
model organisms. The cutoff of two also permits the identification of mammalian-specific 
(mouse and human) or metazoan-specific (fly and worm) clustered BP pairs. This 
generated a list of 396 BP terms. Of the 396 BP terms 3 were absent in the R package 
and were not considered further. Using semantic similarity measurement scheme 
developed by Lin [71] and the R package GOSemSim [116], we found that the 393 BP 
terms form 30 highly similar BP groups (Table S3) (Fig. 3A and Figure S7A). Highly 
similar BP groupings were defined by performing hierarchical clustering analysis on the 
Lin’s similarity scores (ranging from 0-1.0) with the Euclidean pairwise distance (Fig. 
3A). The robustness of these BP groupings were tested against the Resnik semantic 
similarity method [72] revealing highly similar results (Figure S7A). We then asked in 
how many different genomes BPs in each group cluster with BPs in the other groups 
(Fig. 3B and Figure S8). 
 
We also used a parallel strategy in which we asked whether a given BP in Table S3 
clusters with similar BP terms in the different genomes. For example, if BP1 clusters 
with BP2 and BP2’ in mouse and yeast respectively, we used Lin to calculate the BP2- 
BP2’ similarity score. The distribution of these values and the frequency with which 
highly similar (Lin scores >0.9) BP2-BP2’ are found are depicted in Figure S7B. 
 
Human transcriptome analysis 
To quantify the transcriptional correlation between two BPs, we used the datasets 
available at the GTEx portal (v7 dataset) which contain transcriptomes of 53 different 
human tissues [80] from healthy individuals. The GTEx data were converted to mean 
log2 Transcript Per Million (TPM) values for each gene in every tissue (Figure S9A). 
Then the mean log2(TPM+1) expression for each gene was calculated across all 53 
tissues. For each gene, these values were then normalized by subtracting the mean 
expression value in each tissue (Figure S9B). The normalized TPM values were used to 
calculate Z-scores (deviation from the mean log TPM) for each gene across tissues 
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(shown in Figure S9C). Using these data, we calculated transcriptional correlation 
between two BP terms as the correlation between mean tissue expression in BP1 and 
BP2 by summing all the Z-scores in each BP (53 mean tissue-specific Z-scores for each 
BP term as shown in Figure S9D).  
 
Calculating transcriptional correlations 
For transcriptional correlation calculations, we excluded genes that are present both in 
BP1 and BP2 from our analysis. Also, because clustered gene pairs are transcriptionally 
correlated (Figure S1), to remove this bias from our correlation analyses, we excluded 
the clustered gene pairs from all BP-BP correlation calculations. This permitted us to 
determine if the observed BP-BP correlations are driven by gene clusters or the entire 
pathway. Also, because similar GO terms often impact overlapping functions and are 
thus transcriptionally coordinated, to focus our analysis on disparate BPs, we separated 
BP pairs into two groups defined based on their semantic similarity score: (1)  similar 
(Lin score >0.1) and (2) disparate BP pairs (Lin score <=0.1) [71]. List of all BP pairs, 
the presence of shared clustered TFs, semantic similarity and transcriptional correlation 
scores can be found here 
(https://figshare.com/projects/Transcriptional_coherence/72644). Fig. 4 and Figure S10 
illustrate the impact of clustered TF pairs on the transcriptional correlation of disparate 
(Lin score <=0.1) and similar (Lin score >0.1) pairs, respectively. ‘circlize’ package from 
the Comprehensive R Archive Network was used to draw the graph in Fig. 4C [117]   
 
Human transcription factors 
The list of human TFs were obtained from UniProt [118].        
 
Cancer cell line analysis 
Cancer Cell Line Encyclopedia (CCLE) [83] provide both gene expression and copy 
number variation data. For our analyses, we used 806 cell lines for which both 
transcriptome and copy number data were available. To estimate if a cancer cell line is 
an outlier in terms of the transcriptional coherence among cancer cell lines of the same 
type, we used the standardized residual of linear regression from a BP pair (BP1/BP2) 
within a specific tumor type. We calculated the mean expression of two BP terms for 
every cell line (excluding overlapping genes), and then used it to estimate two 
standardized residuals based on BP1 and BP2 as independent variables. The root 
mean squared values of two standardized residuals for TF-associated BP pairs (e.g. 
TF1 is associated with BP1, and TF2 is associated with BP2) and background (10,000 
random BP pairs) are shown in Fig. 5C-D and Figure S11C. This analysis was 
performed for cell lines that carry a deletion which eliminates one of the two clustered 
TFs or a translocation which physically separates a clustered TF pair. 
 
Topologically associated domains (TADs) 
To ask if the genes in a clustered TF pair occur in the same TAD, we used  the 3D 
Genome Browser data and associated studies [53,84]. These datasets 
(http://promoter.bx.psu.edu/hi-c/publications.html)  predict TADs by applying the Dixon 
et al. [53] pipeline to analyze their and other published datasets [55,119]. For each 
clustered TF pair, we calculated the number of times the clustered TFs were found in 
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the same TAD in the 37 samples analyzed in this study. For Fig. 5F and Figure S12, all 
the values sorted by x-values and y-values represent 50-points moving average.   
 
SNAI1 overexpression data 
To study the effect of SNAI1 overexpression on neighboring TFs, we mined the 
datasets presented in the Javaid et al., 2013 paper, in which SNAI1, a TF and a critical 
regulator of epithelial to mesenchymal transition (EMT), was overexpressed in the 
MCF10A breast cancer cell line. In this study, transcriptional changes caused by SNAI1 
overexpression were monitored at regular intervals for up to five days post-
overexpression. We used the early/late/transiently up/down-regulated gene sets 
reported to create the early- and late-repressed gene sets used in this paper. The early-
repressed gene set was based on the combined transcriptomes of samples collected 3, 
6 and 12hr after SNAI1 overexpression; late-repressed gene set was based on the 
combined transcriptomes of samples collected 72 and 120hrs after SNAI1 
overexpression.   
 
To identify core genes that are regulated by SNAI1 and TFs which lie in its vicinity, 
namely ADNP and CEBPB (Figure S13A), we calculated the number of times a gene is 
associated with a SNAI1-, CEBPB -, or ADNP-associated BP term. We reasoned that 
the higher the number of times that a gene belongs to a BP regulated by the TF, the 
more likely that this gene is one of the core genes regulated by the TF. For Figure S13B 
and S13C, we used genes which belong to seven SNAI1-associated, 10 CEBPB-
associated and 8 ADNP-associated BP terms each containing roughly 75 genes (Table 
S5).     
 
Availability of data and materials 
Data for all pairwise analyses and MATLAB codes for this project can be found at 
https://figshare.com/projects/Transcriptional_coherence/72644. 
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Main Figures 

Fig. 1.  
Hundreds of disparate Gene Ontology (GO) biological process (BP) pairs are 
clustered in the genomes of organisms ranging from yeast to human. (A) Scheme 
depicting how clustered BP pairs were identified.  Blue and green boxes depict genes in 
BP1 and BP2, respectively.  (B) Flow chart of all analytical steps in this study. (C) Table 
summarizing the numbers of BP terms, pairwise analyses, and significantly clustered 
BP pairs identified in each organism. (D-H) Quantile-quantile (Q-Q) plots of observed 
(Y-axis) versus theoretical (X-axis) of p-value distributions for BP-BP clustering in (D) 
yeast (S. pombe), (E) worm (C. elegans), (F) fly (D. melanogaster), (G) mouse (M. 
musculus) and (H) human (H. sapiens). 
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Fig. 2. 
Clustered BPs are found in organisms ranging from yeast to human. Ring plots 
depicting representative clustered BP pairs in (A) yeast (S. pombe GO:0032956 
(regulation of actin cytoskeleton organization) and GO:2001251 (negative regulation of 
chromosome organization), (B) worm (C. elegans GO:0007169 (transmembrane 
receptor protein tyrosine kinase signaling pathway) and GO:1901136 (carbohydrate 
derivative catabolic process)), (C) fly (D. melanogaster GO:0045747 (positive regulation 
of Notch signaling pathway)and GO:0046486 (glycerolipid metabolic process)), (D) 
mouse (M. musculus GO:0030308 (negative regulation of cell growth) and GO:0033135 
(regulation of peptidyl-serine phosphorylation)) and (E) human (H. sapiens GO:0006959 
(humoral immune response) and GO:0007162 (negative regulation of cell adhesion)). 
Ring segments with a number on the outside denote a different chromosome. Blue and 
green lines in outer and inner rings indicate the genomic location of each gene in their 
respective pathways. Red lines in central gap indicate locations of clustered gene pairs.  
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Fig. 3. 
Several similar BP pairs show conserved clustering in eukaryotes. (A) Heatmap 
depicting hierarchical clustering of BP terms with clustered BP partners in at least two 
model organisms. Color is proportional to the magnitude of Lin’s semantic similarity 
score (0-1.0). (B) Visual representation of clustering among different BP groups in 
yeast, worm, fly, mouse, and human. Lines connecting two BP groups indicate 
clustering in at least three genomes. Thickness of lines is proportional to the number of 
organisms in which pairwise clustering occurs. 
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Fig. 4.  
Disparate (Lin Score ≤0.1) clustered BP pairs, especially those with clustered 
TFs, are transcriptionally correlated in human. (A) Box plots depicting transcriptional 
correlation of clustered and unclustered BP pairs. (B) Box plots depicting transcriptional 
correlation of clustered BP pairs assigned to three groups based on the presence and 
clustering of TFs. ‘No TF’ refers to clustered BP pairs in which one or both of the two BP 
terms is missing a TF; ‘No clustered TF’ refers to clustered BP pairs in which both BP 
terms have a TF, but their TFs are not clustered; and ‘Clustered TF’ refers to clustered 
BP pairs in which both BP pairs have a TF and share at least one clustered TF pair. p-
values were calculated by the two-sample t-test. (C) Ring plot of human genome, drawn 
to the same specification as Fig. 2E, depicting the transcriptional correlation of a 
representative clustered BP pair with clustered TFs. Green and blue curves depict high 
transcriptional correlation (>0.5) between a clustered TF and genes in the other BP. The 
two BP terms are GO:0006959 humoral immune response (blue) and GO:0007162 
negative regulation of cell adhesion (green) in human. (D) Graph depicting the 
transcriptional correlation of all disparate human BP pairs as a function of the strength 
of their genomic clustering. Red and blue lines represent transcriptional correlation of 
BP pairs with or without clustered TFs, respectively. BP pairs were sorted by the 
strength of clustering. The correlation plotted represents the moving average of 5,000 
points. 
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Fig. 5.  
Genomic clustering of TFs can couple the transcription of associated BPs.  (A) 
Hierarchical clustering of transcriptomes of EBV-transformed lymphocytic cancer cell 
lines (N=126). Red arrow indicates SUDHL8, the cell line with IRF8 deletion. The color 
indicates the overall pairwise correlation between two cancer cell lines. (B) Graph 
depicting the mean expression of two IRF8- and FOXF1-associated BPs (GO:0034340 
response to type I interferon and GO:0061180 mammary gland epithelium development, 
respectively) among lymphocytic cell lines. Red dot represents SUDHL8. (C) Boxplot 
depicting the distribution of standardized residuals of BP pairs in SUDHL8 versus other 
lymphocytic cancer cell lines. The left and right bars depict this distribution for the 
IRF8/FOXF1-associated BP pairs and random BP pairs, respectively. (D) Boxplot 
depicting the distribution of the standardized residuals of BP pairs in HCC1419 cell line, 
carrying a translocation disrupting HSF1-FOXH1 genomic clustering, versus other 
breast cancer cell lines. The left and right bars depict this distribution for the 
HSF1/FOXH1-associated BP pairs and 10,000 random BP pairs, respectively. (E) 
Examples of cancer cell lines where the occurrence of a translocation, physically 
separating a clustered TF pair, co-occurs with greater standard residuals of the TF-
associated BPs versus random BP pairs. Similar to C and D, standard residual of 
translocation-bearing cell lines was compared against other cancer cell lines from the 
same tissue. p-values are from two-sample t-tests. (F) Plot depicting the frequency that 
clustered TFs occur in the same TAD versus the transcriptional correlation of the 
associated BPs. For each clustered TF pair, the mean correlation of associated BP 
pairs was plotted. The frequency of TF occurring in the same TAD is the moving 
average of 50 points. 
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Fig. 6.  
Model for how clustered TFs drive transcriptional coherence of disparate BPs in 
eukaryotes. Schematic model of prokaryotic operons (left) and eukaryotic modulons 
regulated by clustered TFs (right). According to our model, temporally ordered activation 
of clustered TFs can coordinate the expression of hundreds of genes belonging to 
disparate BPs dispersed throughout the genome. 
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Supplementary Figures 

 
Fig. S1.  
Transcriptional correlation of human gene pairs is a function of their intergenic 
distance. The graph depicts the transcriptional correlation of all possible human gene 
pairs as a function of the pairwise intergenic distance using the human GTEx data. 200 
intergenic distance bins were created ranging from 20-230MB and the mean 
transcriptional correlation of all gene pairs within each bin was calculated and plotted 
(blue line). The red line represents the threshold distance (five times (5X) mean 
intergenic distance) chosen to define clustered gene pairs in the human genome in this 
paper (see Materials and Methods). Left and right dashed gray lines represent 2X and 
20X mean intergenic distances, respectively, shown for comparison.  
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Fig. S2.  
5X mean intergenic distance is robust for identifying clustered BP pairs in the 
human genome. Heatmaps depicting distribution of p-values (log10(p)) for identifying 
significantly clustered BP pairs calculated for five times (5X) mean intergenic distance 
versus the p-values calculated for the indicated threshold distances (1X, 2X, 7X, 10X, 
15X, 20X mean intergenic distance). Color is proportional to the number of BP pairs in 
each bin. The data for other model organisms are available at 
https://figshare.com/projects/Transcriptional_coherence/72644. 
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Fig. S3. 
5X threshold distance captures a cross section of significantly clustered GO pairs 
in all organisms. Heat map depicting the fraction of overlap of significantly clustered 
BP pairs with p values less than 0.001 for the indicated threshold distances (1X, 2X, 5X, 
7X, 10X, 15X, 20X mean intergenic distance) in each organism. Color is proportional to 
the fraction of overlap of significantly clustered BP pairs at each threshold distance.  
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Fig. S4. 
Randomly selected gene sets do not display significant genome clustering. 
Quantile-quantile (QQ) plots of observed (Y-axis) versus theoretical (X-axis) p-value 
distributions for genome clustering between gene sets generated by randomly selecting 
genes from the pool of BP-associated genes in each organism (see Materials and 
Methods). The QQ plots in (A) yeast (S. pombe), (B) worm (C. elegans), (C) fly (D. 
melanogaster), (D) mouse (M. musculus) and (E) human (H. sapiens) are depicted. In 
contrast to naturally occurring BPs (Fig. 1D to H), these QQ plots do not curl up, thus 
fail to exhibit significant clustering. These analyses reveal that our statistical method 
specifically identifies significantly clustered BP pairs in each genome. 
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Fig. S5. 
The statistical method developed for genome clustering performs as expected.  
Heat maps depicting the impact on p-value as clustered gene pairs are artificially added 
to randomly generated gene sets. For each indicated organism, p-values for clustering 
of 100 artificially generated pairs of gene sets were calculated. As expected, the 
artificial addition of clustered gene pairs decreases the p-value for clustering in all 
model organisms. Color is proportional to -log10(p).  
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Fig. S6. 
Background clustering was quantified by random gene sampling. Graphs depicting 
the distribution of background gene clustering occurrences (bar graphs) and their 
Poisson fit (red lines) for four representative sets of BP-BP analyses performed on the 
human genome. 2,000 random samplings (Materials and Methods) were done to 
quantify background gene clustering for each BP pair analysis in each organism. μ is 
the mean number of clustered gene pairs derived from the fitted Poisson distribution. 
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Fig. S7. 
Highly similar BP pairs are clustered in eukaryotes. (A) Graph comparing the BP 
groups generated by hierarchical clustering using Lin’s and Resnik’s semantic similarity 
methods. The BPs used in this analysis all have a clustered BP partner in at least two 
model organisms. (B) Graph depicting the frequency of semantic similarity score of BP 
terms which share a common clustered partner in at least two organisms. Using the 
example from the main text, similarity of partner BPs calculates the similarity between 
BP2 and BP2’ which are clustered partners of BP1. Semantic similarity scores of 
partner BPs were calculated using the Lin method.  
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Fig. S8.  
Several BP groups cluster in multiple eukaryotic genomes. The lines connect two 
BP groups which have at least one clustered BP pair between them in the indicated 
organisms. 
 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 19, 2021. ; https://doi.org/10.1101/2021.04.17.440292doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.17.440292


39 

 

Fig. S9. 
GTEx transcriptome data were normalized to quantify transcriptional correlation 
between BPs. Graphs depict the (A) raw Transcript Per Million (TPM) data 
(log2(TPM+1)), (B) normalized TPM and (C) Z-score of TPM.  Each color corresponds 
to a different tissue. The Z-scores were used for quantitative comparisons across 
different tissues. (D) An example of BP-BP transcriptional correlation in human 
(GO:0006959 (humoral Immune response) and GO:0007162 (negative regulation of cell 
adhesion)).  Each dot represents a different tissue in GTEx.  
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Fig. S10. 
Similar (Lin score > 0.1) clustered BP pairs, especially those with clustered 
transcription factors (TFs), are transcriptionally correlated in human cells. (A) Box 
plots depicting transcriptional correlation of similar clustered (N=188) and unclustered 
(N=186,330) BP pairs. (B) Box plots depicting transcriptional correlation of similar 
clustered BP pairs assigned to three groups based on the presence and clustering of 
TFs. ‘No TF’ refers to clustered BP pairs in which one or both of the two BP terms is 
missing a TF (N=7); ‘No clustered TF’ refers to clustered BP pairs in which both BP 
terms have a TF, but their TFs are not clustered (N=78); and ‘Clustered TF’ refers to 
clustered BP pairs in which both BP pairs have a TF and those TFs are clustered 
(N=103). p-values were calculated by the two-sample t-test. (C) Graph depicting the 
transcriptional correlation of all similar (Lin score > 0.1) human BP pairs as a function of 
the strength of their genomic clustering. Red and blue lines represent transcriptional 
correlation of BP pairs with (N=27,898) or without (N=158,016) clustered TFs, 
respectively. Each BP pair was sorted by the strength of clustering and the correlation 
represents the moving average of 5,000 points. (D) Graph depicting TF-TF 
transcriptional correlation as a function of the transcriptional correlation of the 
associated BP pairs. TF-TF pairs were sorted by BP-BP correlation, and the moving 
averages of 50 points are shown. 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 19, 2021. ; https://doi.org/10.1101/2021.04.17.440292doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.17.440292


41 

 

 
Fig. S11. 
Transcription factor (TF) clustering drives the coregulation of discrete biological 
processes.   
(A) Hierarchical clustering of transcriptomes of transverse colon cancer cell lines 
(N=50). Red arrow indicates SNU1033, the cell line carrying a deletion in PRDM16. The 
color indicates to the overall pairwise correlation between two cancer cell lines. (B) 
Graph depicting the mean expression of two PRDM16- and TP73-associated BPs 
(GO:0045600 positive regulation of fat cell differentiation and GO:0071901 negative 
regulation of protein serine/threonine kinase activity, respectively) among transverse 
colon cancer cell lines. Red dot represents SNU1033. (C) Boxplot depicting the 
distribution of standardized residuals of BP pairs in SNU1033 versus other transverse 
colon cancer cell lines. The left and right bars depict this distribution for the PRDM16- 
and TP73-associated BP pairs and random BP pairs, respectively. 
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Fig. S12. 
Clustered TFs found frequently in the same TAD display high TF-TF 
transcriptional correlation. (A) The list of 37 cell lines in which TADs were identified. 
This was used to calculate the frequency by which a clustered TF pairs falls in the same 
TAD based on these studies. (B) Graph depicting TF-TF correlation and the frequency 
which clustered TFs are found in the same TAD. p-values were calculated by the two-
sample t-test. 
 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 19, 2021. ; https://doi.org/10.1101/2021.04.17.440292doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.17.440292


43 

 

Fig. S13.  
SNAI1 overexpression drives the temporal coregulation of ADNP- and CEBP- 
associated BPs.  (A) Schematic representation of the ADNP-CEPBP-SNAI1 clustered 
TFs in the human genome. (B-C) Enrichment of genes regulated by the indicated TFs 
that are also found in the (E) early- and (F) late-repressed genes over background. 
Background is the expected number of indicated genes by random gene sampling. The 
early and late repressed gene sets were identified in a time-course assay after the 
inducible overexpression of SNAI1 in MCF10A human breast epithelial cells (Javaid et 
al 2013) [1]. p-values are from one-tailed binomial test. Fractions of SNAI1-, CEBP-, 
and ADNP-associated genes found in the (D) early- and (E) late-repressed 
transcriptomes after the inducible overexpression of SNAI1 in MCF10A epithelial human 
breast cells. The x-axis is the number of times that a given gene shares the same BP 
term with SNAI1, CEBPB and ADNP. This measure was used as a surrogate for core 
genes regulated by these TFs. 
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