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Abstract 

Blood oxygenation level-dependent (BOLD) signals in white matter (WM) have usually been 

ignored or undetected, consistent with the lower vascular density and metabolic demands in WM 

than in gray matter (GM). Despite converging evidence demonstrating the reliable detection of 

BOLD signals in WM evoked by neural stimulation and in a resting state, few studies have examined 

the relationship between BOLD functional signals and tissue metabolism in WM. By analyzing 

simultaneous recordings of MRI and PET data, we found that the correlations between low 

frequency resting state BOLD signals in WM are spatially correlated with local glucose uptake, 

which also covaried with the amplitude of spontaneous low frequency fluctuations in BOLD signals. 

These results provide further evidence that BOLD signals in WM reflect variations in metabolic 

demand associated with neural activity, and suggest they should be incorporated into more complete 

models of brain function. 
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Introduction 

Since the discovery of correlations between spontaneous low frequency fluctuations in blood 

oxygenation level dependent (BOLD) signals around the mid-90s (Biswal et al. 1995), resting state 

functional connectivity (FC) has been extensively studied, leading to the identification of several 

resting state networks in the human brain (Fox et al. 2007). Whilst the vast majority of these studies 

have hitherto focused on cortical gray matter (GM), there has been growing interest in the evaluation 

of functional networks in white matter (WM) (Peer et al. 2017; Li et al. 2019). In particular, it has 

been recently demonstrated that spontaneous low frequency fluctuations in WM BOLD signals are 

robustly detectable and reflect specific neural activities (Ding et al. 2013; Ding et al. 2018), which 

suggests the potential of analyzing and characterizing FC in WM. 

 

Notwithstanding compelling evidence provided by experimental studies (Gore et al. 2019) and 

supportive clinical data that have recently emerged (Faragó et al. 2019; Gao et al. 2019; Wang et al. 

2019; Frizzell et al. 2020; Zhang et al. 2020; Cui et al. 2021; Liu et al. 2021; Sarma et al. 2021;), the 

interpretation of the observed fluctuations in WM signals remains unclear (Gawryluk et al. 2014). 

Physiologically, the vascular density of WM is approximately one fourth that of GM, so 

hemodynamic responses to increases in energy demand in WM are expected to be proportionally 

reduced, so that BOLD signals are weaker and may fall below the sensitivity of conventional 

acquisitions and analyses. Moreover, it is not clear what processes within WM modulate local 

metabolic needs or regulate flow and oxygenation to couple neural activity and vascular 

hemodynamics. The observed signal fluctuations in WM could plausibly originate from venous 

draining effects from upstream GM or other non-neural confounds that impact BOLD signals 

throughout the brain parenchyma. 

 

Although previous studies have shown WM BOLD signals are affected concomitantly with 

changes in neural activity in cortex, there is a residual need to clarify whether those changes 

reflect an intrinsic metabolic demand within WM itself. The primary energy substrate of brain 

tissues is glucose, and variations in glucose uptake reflect variations in baseline metabolic rates. 

We hypothesized the engagement of regions of WM in brain functions in a resting state is 

reflected in the magnitudes of the spontaneous fluctuations in local BOLD signals and in the 

strengths of the correlations of BOLD signals across time with other areas, which is interpreted as 

functional connectivity (FC). We analyzed PET and MRI data previously acquired and reported by 

(Jamadar et al. 2020). We demonstrate that, by analyzing simultaneous recordings of the uptake of 

fluorodeoxyglucose (FDG) by dynamic positron emission tomography (PET) (Lameka et al. 2016) 

and BOLD signals by functional magnetic resonance imaging (fMRI), there are strong and 

significant spatial correlations between FDG uptakes and FC in WM, and FC is associated with 

the fractional amplitude of low frequency fluctuations (FALFF) in the BOLD signals. These 

observations lend strong support to the notion that BOLD signal fluctuations in WM are linked to 

neural activities through local variations in aerobic metabolism. 

Results 

Measurements of FC, FDG uptake and FALFF  

FC, FDG uptake and FALFF measures were computed on the basis of individual WM bundles, 
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which here are denoted as bFC, bFDG and bFALFF. Average bFC, bFDG and bFALFF values across 

all the bundles and subjects studied and all six sessions ranged from -0.06 to 0.47 (0.27±0.11), 0.47 

to 1.00 (0.72±0.15), and 0.20 to 0.25 (0.23±0.01) respectively. Spatial distributions of bFC and 

bFDG (see left and middle panels in Figure 1A) were highly symmetrical, with a Pearson’s 

correlation coefficient of 0.966 and 0.995 respectively comparing the bilateral WM bundles. By 

comparison, the inter-hemispheric similarity of bFALFF distributions (see the right panel in Figure 

1A) was somewhat reduced (r=0.744). 

 

Correlations between bFC and bFDG  

Pearson’s correlations between bFC and bFDG pooled over all the WM bundles and subjects studied 

are shown in Figure 1B (left). As seen, bFC exhibited significant correlation with bFDG, which was 

highly consistent across the six fMRI sessions (r=0.25±0.02, all p<0.001). bFC was also found to 

correlate significantly with bFALFF for each session (all p<0.001, r=0.41±0.04) (Figure 1B middle), 

likely because measures of FC are larger when FALFFincreases compared to physiological noise. 

For completeness, Pearson’s correlation between bFALFF and bFDG was also computed (Figure 

1B right), which appeared to be weaker and had only five of the six sessions reaching significance 

(r=0.12 ±0.03, all p<0.01 except for session 4). 

 

Figure 1. Distributions of bFC, bFDG and bFALFF measures and pairwise correlations between them. 

(A) Distributions of average bFC (left), bFDG (middle), and bFALFF (right) in selected axial slices (see 

Figure S1-S3 for full brain distributions). Note that for visualization purposes, average values of these 

measures are mapped to the original atlas with no WM mask erosions. (B) Scatter plots of linear 

relationships between bFC and bFDG, bFALFF and bFC, and bFALFF and bFDG. Tight regions shaded 

in green illustrate highly consistent linear fitting of the three measure pairs across six fMRI sessions. (C) 

Summary of Pearson’s correlations between the three measure pairs for each of the six fMRI sessions. 
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To assess the amount of variance in a dependent variable explainable by a predictor variable in 

the absence of intra-subject variations, a mixed effects model was evaluated by treating the subject 

number as a random effect in each of the three paired comparisons. The p-values for all the three 

models were <0.001, and the R2-Adjusted = 17%, 42% and 8% respectively for bFC vs. bFDG, 

bFALFF vs. bFC and bFALFF vs. bFDG correlations (see Table 1). The corresponding coefficients 

for the three pairs of correlations were 0.41, 0.65 and 0.28 respectively, indicating the existence of 

moderate to strong correlations between these measures when the random effects introduced by 

inter-subject variations were controlled. 

 

 

Table 1. Summary statistics of mixed effect models. See text for explanations. 

 

Assessments of partial volume effects in WM  

To examine whether the observed correlation between bFC and bFDG in WM was corrupted by the 

effects of partial volume averaging with GM, the correlation derived with WM masks eroded from 

0 to 4 mm was compared (see Figure 2). It can be seen that, with the level of erosions increasing 

from 0 to 3 mm, the correlation varied from r=0.37±0.03 to 0.25±0.02. However, the correlation 

tended to stabilize with further erosions of WM masks. This trend indicated that with WM masks 

eroded at 3 mm, the effects of partial volume averaging were quite minimal if any. Also note that 

the gradual decrease in the correlation coefficient from WM mask erosions of 1-3 mm may be due, 

at least in part, to the density gradient of interstitial neurons in WM, which tend to be more abundant 

toward the superficial WM zone (Sedmak et al. 2019). 

 

Discussion 

White matter constitutes nearly half the volume of the human brain, in which axonal fibers serve as 

information conduits that transmit neural activities between cortical regions. A complete 

understanding of brain functional architecture therefore requires both GM and WM be taken 

into consideration. At present, this is only partly achieved by combining functional imaging of GM 

cortices and structural information from diffusion based tractography of WM pathways (Horn et al. 

2014). However, diffusion based tractography does not reveal how WM tracts are engaged in 

dynamic functional processes within brain networks. 

 

As mentioned previously, there have been several reports of successful detections of functional 

signals in WM using fMRI (Grajauskas et al. 2019), but their interpretation remains unclear.  It 

has been demonstrated that BOLD signals in GM are correlated with local field potentials 

(Logothetis 2001), and much of the energy consumption of cortex is accounted for by neural activity 

of a type not found in WM. This raises concerns as to whether the observed fluctuations in WM 

reflect BOLD effects consequent on transient variations in metabolic demand. Interestingly, 
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subsequent studies have found that BOLD signals are also correlated with postsynaptic spiking 

activity, which also increases oxygen consumption (Heeger&Ress, 2002; Mukamel et al. 2005). 

Direct measurements of metabolism promise to clarify the origins of MRI signal changes. It was 

found earlier that, although WM has about one-fourth of the vascular density of GM, the oxygen 

extraction fraction is quite uniform throughout the brain parenchyma (Raichle et al. 2000). A 

combined PET and fMRI study found that, during a hypocapnia challenge, BOLD signals increased 

in WM but with reduced magnitudes compared to GM, an effect that was largely attributable to 

reduced blood flow and volume in WM (Rostrup et al. 2000). Moreover, it was recently observed 

that global glucose metabolic activities in WM, measured by FDG-PET, vary with the functional 

state of the brain (Thompson, 2016). These findings suggest that the blood volume and oxygenation 

level in WM could also fluctuate with neural activities, thereby producing BOLD effects similar but 

smaller than those found in GM. We therefore analyzed regional glucose metabolism using dynamic 

PET data and explored their relations with BOLD signals. It was found that FC in WM bundles is 

significantly correlated with local metabolism and that the FC is associated with the power density 

of low frequency fluctuations of BOLD signals. These findings support the notion that BOLD 

signals in WM are modulated by cortical activities and reflect local metabolic variations and are 

robustly detectable. 

  

It should be noted that fMRI is well known for being susceptible to a variety of artifacts, which 

contribute high variance to BOLD signals and confound their interpretations (Power et al. 2017). In 

the context of WM fMRI, a particular concern relates to the possible contributions of vascular 

drainage from upstream GM (Bianciardi et al. 2011), which adds to other potential confounds 

common across the brain such as cardiac pulsations, pulmonary modulations, or subject head 

 

Figure 2. Effects of WM mask erosions on correlations between bFC and bFDG. (A) Linear fittings 

between bFC and bFDG and correlation coefficients at the levels of WM mask erosions from 0 to 4 mm. 

(B) Mean and standard deviation of correlation coefficient across six imaging sessions at each level of 

WM mask erosion. Note that WM masks eroded at 3 mm were used throughout this study. 
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movements. Our findings that FC in WM bundles is highly and significantly correlated with local 

FDG uptakes essentially exclude the effects of these confounds as they in principle bear little 

relations with local metabolisms. There is a possibility that the bulk motion induced by some of 

these confounds might mediate artificial couplings of FDG and BOLD measurements, but the 

frequency domain of the bulk motion is presumably different from that of neural activities and after 

corrections, its impacts can be largely reduced (Behzadi et al. 2007). In light of the correlation 

between FC and low frequency fluctuations found in WM, it is quite unlikely that the bulk motion 

contributed significantly, if any, to the observed high correlations between functional connectivity 

and glucose uptake in WM. 

 

Methods 

A schematic diagram of data analysis for this study is shown in Figure 3. 

Participants. The subjects in the current study included 25 right-handed human adults (aged 18-23 

yrs, 18 F and 7 M) with no diagnosed mental illness, diabetes or cardiovascular illness. Other 

inclusion and exclusion criteria are seen in previous reports (Jamadar et al. 2019b, Jamadar et al. 

2020), 

 

MR-PET Imaging. Detailed imaging parameters and procedures can be found elsewhere (Jamadar 

et al. 2019b). Briefly, each participant underwent a 95-min simultaneous MRI-PET scan in a supine 

position in a Siemens (Erlangen) 3T Biograph molecular MR (mMR) scanner (Syngo VB20 P). The 

infusion of [18F] FDG (36 mL/hr) was synchronized with the start of PET acquisitions. In the initial 

30 mins, while the PET signal rose to a detectable level, only non-functional MRI scans were 

acquired, including T1 3D MPRAGE, and some other scans that are not reported in this study. This 

procedure was followed by six sessions of resting-state PET-fMRI, wherein each lasted for 10 

minutes and subsequently went through a series of processing procedures, as described below. 

 

Preprocessing of PET. For each individual, motion correction was performed on 225 PET volumes 

using the realign module in SPM (https://www.fil.ion.ucl.ac.uk/spm/software/spm12/) where the 

first volume was regarded as reference. Each of the realigned PET volumes was then coregistered 

to the T1 weighted image of the same individual. Summing these coregistered volumes produced a 

static PET image, from which measurements of FDG uptakes were extracted. 

 

Preprocessing of Resting State fMRI Data. Resting state data preprocessing involved a few steps 

as follows. First, the fMRI images were corrected for slice timing and head motion. Second, T1 

weighted images were segmented into GM, WM and cerebrospinal fluid (CSF) using SPM, and all 

these images were registered to the fMRI data space of each individual. Third, mean signals from 

the whole brain mask were regressed out as nuisance covariates from the fMRI time series. Fourth, 

the fMRI data, along with the coregistered T1 weighted images as well as the GM and WM segments, 

were normalized into the Montreal Neurological Institute (MNI) space. Fifth, linear trends from the 

BOLD images were removed to correct for signal drift. 

 

Computation of FALFF. To compute FALFF, we defined 48 WM bundle templates based on the 

JHU-ICBM WM atlas. These WM templates were multiplied by the WM segment obtained in the 
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preceding step, which was thresholded at 0.5 and eroded for 3 mm to eliminate potential partial 

volume effects from GM (see Figure S4). The time-series in each bundle template were averaged, 

which was then normalized to unit variance and Fourier transformed to derive the power spectrum. 

The FALFF was defined to be the average of the square root of the low-frequency power spectrum 

(0.01~0.05Hz) divided by that from the full frequency range, similarly to (Tomasi et al. 2013). 

 

Computation of FC. Following the procedure in (Ding et al. 2018), a set of time series was 

extracted from 130 regions of interest (ROI), including 82 Brodmann areas (BAs) in GM and 48 

WM bundles (based on the eroded WM mask as above) for each subject. Each time series was 

temporally filtered using a bandpass filter (0.01~0.1Hz). Pearson’s correlation in the time series was 

calculated for each pair of WM and GM regions. This resulted in an 82*48 FC matrix, from which 

BA-averaged FC was computed for each of the WM bundles that represented its overall FC profile. 

 

Computation of FDG uptake. The FDG uptake was computed by first normalizing the image 

intensity of each static PET voxel with the global mean of the entire brain, so that the mean value 

of the entire brain is 1. Then WM bundle templates defined above were warped back to each 

individual space of the PET data, from which averaged FDG uptake values from each bundle was 

obtained. 

 

 

 

  

Figure 3. Schematic diagram of analysis framework. See text for detailed explanations of the procedures. 
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