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- Mechanistic activity flow models accurately predict task-evoked neural effects across a

wide variety of brain regions and cognitive tasks.

Abstract

Brain activity flow models estimate the movement of task-evoked activity over brain connections

to help explain the emergence of task-related functionality. Activity flow estimates have been

shown to accurately predict task-evoked brain activations across a wide variety of brain regions

and task conditions. However, these predictions have had limited explanatory power, given

known issues with causal interpretations of the standard functional connectivity measures used

to parameterize activity flow models. We show here that functional/effective connectivity (FC)

measures grounded in causal principles facilitate mechanistic interpretation of activity flow

models. Starting from Pearson correlation (the current field standard), we progress from FC

measures with poor to excellent causal grounding, demonstrating a continuum of causal validity

using simulations and empirical fMRI data. Finally, we apply a causal FC method to a

dorsolateral prefrontal cortex region, demonstrating causal network mechanisms contributing

to its strong activation during a 2-back (relative to a 0-back) working memory task. Together,

these results reveal the promise of parameterizing activity flow models using causal FC methods

to identify network mechanisms underlying cognitive computations in the human brain.

Keywords: predictive models; causal inference; brain networks; functional connectivity;

network neuroscience; activity flow
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Introduction
The activity flow mapping (actflow) framework (Cole et al., 2016) aims to model the emergence

of observed neural responses from functional interactions between neural populations. Actflow

is built upon a long tradition of artificial neural networks, spanning highly abstract to strongly

biologically-constrained models (Fukushima, 1980; Stephen José Hanson & Burr, 1990;

Hopfield, 1982; Kohonen, 1984; McClelland & Rogers, 2003; McCulloch & Pitts, 1943; Olson &

Hanson, 1990; Rashevsky, 1933; Rosenblatt, 1958; Rumelhart, Hinton, & Williams, 1986; Von

der Malsburg, 1973; Widrow, 1962; Yamins et al., 2014). The actflow framework has successfully

imported insights from neural networks (in particular, the propagation and activation rules

(Rumelhart, Hinton, & McClelland, 1986)) and applied them to research the complex interplay

between functional connectivity and task-evoked neural responses. Specifically, actflow has been

used to study: the flow of task-related activity via whole-brain resting-state networks (Cole et al.,

2016); the fine-scale transfer of information-representing task activity between specific pairs of

functionally connected regions (Ito et al., 2017); the relevance of task-state functional networks

in communicating task-related neural responses (Cole et al., 2021); the disruption of task

activations from altered functional networks in pre-clinical Alzheimer’s disease (Mill et al.,

2020); the disruption of task activations from altered activity flows in schizophrenia (Hearne et

al., 2020); the role of specific brain networks in a visual shape completion task (Keane et al.,

2020); and the cortical heterogeneity of localized and distributed cognitive processes (Ito,

Hearne, & Cole, 2020).

In general, cognitive tasks are experimental manipulations designed to cause a series of neural

responses (activations), which can then be focally estimated (e.g., using regression). These

estimated neural activations can be considered causal effects of an exogenous experimental

intervention (Maathuis et al., 2009), but by themselves do not explain the underlying causal

mechanisms from which they emerge. To bridge this gap the actflow framework provides a

connectionist model of the generation of  task-related activation that combines functional

connectivity (FC) patterns and neural activations propagating through those connections

(Figure 1G). The studies mentioned above confirm that actflow modeling can indeed

successfully predict effects of task experimental interventions, while providing hypotheses about

the causal network interactions that give rise to such effects.
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Figure 1 — Causally-grounded functional connectivity methods can be used to build

mechanistic activity flow predictive models. (A) When inferring an FC network from neural data,

theoretical constraints ordered in a causal continuum can be used to reduce the possibly vast hypothesis

space. These constraints can build upon each other in order to get closer to the true causal network. Here

we implemented them with four different FC methods: correlation, multiple regression, combinedFC and

PC algorithm. (B) An example of a true causal FC network, denoted as W, for five neural regions time

series Z, X, Y, D and K. The green arrows represent direct causal functional associations between the time

series. (C) The expected network when using Pearson correlation FC to recover the true mechanism from

panel B. Correlation only evaluates pairwise associations between time series. Green lines indicate

correctly inferred undirected connections, while red dashed lines indicate incorrectly inferred

connections. Incorrectly inferred connections resulted from not controlling for one causal confounder (X

← Z→ Y) and two causal chains (Z→ X→ D and Z→ Y→ D). (D) The expected network when using

multiple regression FC. The association between each pair of time series is conditioned on the rest of the

regions to control for confounders and chains. In this case, the incorrectly inferred connections resulted

from three conditioned-on causal colliders (X→ D← Y, X→ D← K and Y→ D← K). (E) The network
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recovered by combinedFC. Thanks to its zero-correlation check—based on the statistical behavior of

colliders (see CombinedFC section)—combinedFC removed two of the spurious connections from

conditioned-on colliders. Nevertheless, for this mechanism the zero-correlation check cannot remove the

remaining spurious connection because the confounder (X← Z→ Y) will always force a non-zero

correlation between X and Y. (F) The directed network recovered by the PC algorithm. By iteratively

testing associations with conditioning sets of increasing size and then applying a series of orientation

rules, PC inferred the true FC mechanism from panel C, with the exception of the direction of two

connections (see the PC algorithm section for details on why some connections cannot be oriented by this

method). (G) Activity flow predictive model. The inferred task-evoked activation Â of a held-out neural

region X (yellow box) is predicted as a linear function of the inferred FC weights (Ŵ, green bidirectional

arrows) and the actual task-evoked activations A from the rest of the i connected regions. The

bidirectional arrows reflect the ambiguity of the inferred FC with respect to the true causal orientation.

(H) Directed activity flow model using data-driven information about the causal direction of the

functional connections. The task-evoked activation Â of a neural region X (yellow box) is predicted as a

linear function of the causal FC weights (Ŵ, green unidirectional arrows) and the actual task-evoked

activations A from the i causal source regions. The unidirectional arrows show that causally-valid FC

methods can be helpful to infer the causal direction of connections.

Actflow models parameterized with functional networks estimated with Pearson correlation

(pairwise association; the field standard) or with multiple regression (fully conditional

associations) have provided accurate predictions of task-evoked activations. This suggests that

these methods can capture, to some degree, relevant properties of the mechanisms supporting

task-related functionality. Nevertheless, these FC methods pose theoretical limitations for causal

interpretation of actflow models. For example, they are inherently undirected, and from their

results we cannot make inferences about the causal direction of the activity flow evoked by a task

manipulation. In addition, these FC methods are known to have issues with spurious

connections arising from uncontrolled common causes (causal confounders, X← Z→ Y),

uncontrolled causal chains (X→ Z→ Y), and incorrectly controlled common effects (causal

colliders, X→ Z← Y) (Reid et al., 2019). These spurious inferences can bias actflow predictions

by producing incorrect hypotheses of the true underlying functional networks supporting task

computations.

To overcome these limitations, we propose building more causally valid actflow models

parameterized with directed FC networks, which estimate the task-evoked activation of a

particular neural region (causal effect of a task manipulation) as a function of the activation

values of its direct causal source regions (Figure 1H). With these models, we are not only

interested in accurate predictions of task activity but also in identifying  causal networks

contributing to the emergence of task functionality. FC methods grounded in stronger causal

principles about the data generating mechanism, such as combinedFC (Sanchez-Romero & Cole,

2021) and methods based on Bayes networks (Mumford & Ramsey, 2014), allow for more

effective control over confounders, chains and colliders than standard correlation and regression

approaches. We hypothesize that these methods will produce FC networks whose connections

more accurately (relative to standard FC estimates) represent true direct interactions between

regions. This will improve the theoretical insight about neurocognitive function generated by

actflow predictions by providing more valid mechanistic accounts of the functional interactions

between neural populations that underlie task-related computations.
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The ability to infer causal directions and avoid spurious connections using causal principles

suggests a continuum into which we can order FC methods (Figure 1A). Here, we test the

field-standard Pearson correlation (located at the least causal extreme of the continuum),

followed by multiple regression (progressing one degree in the continuum, thanks to the use of

conditional associations), then combinedFC (progressing another degree due to the use of causal

principles to detect the presence of causal colliders), and finishing with the Bayes

networks-based PC (Peter-Clark) algorithm (Spirtes et al., 2000) (progressing one more degree

by integrating selective conditional associations and rules to orient connections) (Figures

1B-F). We use the PC algorithm—which, like all current methods, is imperfect—because we

hypothesized that it provides much more accurate causal inferences than the current field

standard in FC research (Pearson correlation). Further, we consider the PC algorithm to be an

important and tractable example of how to use causal principles to effectively integrate pairwise

and conditional association methods, as well as how causal directionality can be derived from

these principles (see PC algorithm section and Figure 1F).

To test our hypothesis about the varying causal validity of these FC methods (Figure 1A), we

first use simulated resting-state functional MRI (fMRI) data to determine the methods’ accuracy

in recovering connectivity patterns of ground-truth (since we specified the simulation

parameters ourselves) FC networks. Our subsequent hypothesis is that more causally-valid FC

methods, by better controlling the effects of spurious connections, will lead to actflow models

with better predictions of task-evoked activations. To test this second hypothesis, we simulate

task-state fMRI data and measure the prediction efficacy of actflow models based on these

different FC methods.

Theoretical considerations about these FC methods’ causal validity, and their performance on

simulated fMRI data, prompt us to hypothesize that the observed comparative performance on

simulations will translate, to a degree, to empirical data. To test this hypothesis, we use

empirical fMRI data to measure the accuracy of actflow models in predicting empirical

task-evoked activations, across a large battery of cortical regions, task conditions and

participants.

The above general analysis motivates us to show at more detail the differences in predictive

efficacy between activity flow models based on the field-standard Pearson correlation FC, and

those based on the PC algorithm FC (the method with the strongest causal principles in our

proposed causal validity continuum). To do this, we compare the methods in how well they can

predict whole-brain task activation patterns for each of the task conditions analyzed, and how

well they can predict for each of the individual brain regions, the activations evoked by the

whole set of task conditions.

Finally, we illustrate how actflow models parameterized with directed FC methods can provide

mechanistic insight into the emergence of causal effects from task experimental interventions in

specific brain regions. In particular, we applied the PC algorithm to a right dorsolateral

prefrontal cortex region to identify likely causal networks contributing to an activation contrast

between a 2-back and a 0-back condition of the n-back working memory task. This local actflow
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model characterizes the flow of task-related activity from direct causal source regions to a

dorsolateral prefrontal target region. As such, its mechanistic insight represents a starting point

for what could be considered a full neurocognitive mechanistic explanation, which would

identify the full causal chain from stimulus to network-supported cognitive neural effects to

behavioral response (Ito, Hearne, Mill, et al., 2020; Weichwald & Peters, 2021).

Confirmation that some FC methods are more causally valid and lead to better actflow

predictions of empirical data would demonstrate the validity of using actflow models to develop

plausible (i.e., above-chance/non-random) causal explanations for the emergence of cognitive

effects (task-evoked activations) from brain data.

Materials and Methods

Activity flow mapping
Activity flow mapping (actflow) is a general predictive model to explain local task-related neural

activations as the product of task-evoked activity flowing through pathways of functional brain

connections (Cole et al., 2016). Formally, for a set of brain regions V, the task-related activation

AX for brain region X, can be expressed as AX = f(WX, AV\{X}), where WX are the connections of X

with the rest of the regions, AV\{X} are the activations of all regions in V except X, and f() is a

function relating connections and activations. Following Cole et al. (2016), we assume f() is a

linear function and implement the actflow prediction model for a particular held-out region as

ÂX = Σi∈V\{X}ŴiXAi, where the predicted activation (ÂX) is the sum of the actual activations of all

other regions (Ai), weighted by their estimated connectivity values with X (ŴiX) (Figure 1G).

(This function corresponds to a neural network linear propagation and activation rule (Stephen

José Hanson & Burr, 1990; Rumelhart, Hinton, & McClelland, 1986).)

The above definition of actflow does not differentiate between causal sources and causal targets

in the connectivity pattern, and predicts using all inferred connected regions. By using all truly

connected regions to predict the activation of a particular held-out region we are leveraging

information from the direct causes (as the linear combination of the afferent (incoming)

connection weights and the sources activations), and from the direct effects (as the linear

combination of the efferent (outgoing) connection weights and the targets activations). Once we

consider the activation of the direct causes and of the direct effects of a held-out region,

information from other regions loses its predictive power, since all relevant information to

predict the held-out region is already accounted for (Guyon et al., 2008). Thus, we can predict

with high accuracy the activation of a held-out region only using its truly connected regions,

disregarding if these are direct sources or direct targets. This implies that an actflow model can

be parameterized with an undirected functional connectivity method and achieve a high

prediction accuracy, as long as the method effectively avoids spurious connections (Cole et al.,

2016).
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To test the improvements on actflow predictions derived from stronger causal principles in the

FC methods, we used three undirected association methods on fMRI time series: correlation,

multiple regression and combinedFC.

Despite the likelihood that using all connected regions is optimal for predicting task-evoked

activations, we want to impose a causal biological constraint on the actflow models, such that

the activation of a region is modelled as a function of the task activity flowing into it from its

direct causal sources (Figure 1H). Formally, the prediction of the activity of a held-out region

must be derived from the actual task-evoked activation of its direct sources and the

corresponding afferent connection weights. From a mechanistic perspective, our goal now is not

just to maximize the accuracy of our prediction, but to correctly predict how the activation of a

held-out region will react to exogenous or endogenous changes in its direct causes, its afferent

connection weights, or both. Nevertheless, moving towards this kind of mechanistic predictive

model comes with a potential reduction of predictive power, since we will predict a held-out

region only using its direct causes, and not leveraging useful information from its direct effects

(if any).

With this idea in mind, we define a mechanistic linear actflow model as ÂX = Σi∈V\{X}Ŵi → XAi,

where Ŵi → X are the estimated causal connections from direct sources i to held-out region X. In

contrast to the first actflow definition (Figure 1G), this causal model predicts the task-evoked

activation for a target region using only its estimated causal sources (Figure 1H). The challenge

with this mechanistic model is that to obtain connectivity estimates Ŵi → X, we necessarily need a

directed FC method. Here, we use the PC algorithm to estimate the required causal directed

networks.

Finally, as in Cole et al. (2016), we measured the prediction accuracy of actflow models using the

Pearson correlation r between predicted and actual activations, and compared it across the

different FC methods used to parameterize the models. Activity flow mapping prediction and

evaluation analyses were performed with the Python open-source Actflow Toolbox (available at

colelab.github.io/ActflowToolbox).

Functional connectivity methods

Correlation
Functional connectivity methods can be organized in a continuum depending on their causal

principles. On the less-causal extreme we place pairwise associative methods, such as Pearson

correlation or mutual information (a way to measure non-linear statistical associations). These

methods do not hold causal assumptions about the generating mechanism giving rise to the

observed association. For example, a non-zero Pearson correlation between the time series of

two brain regions X and Y indicates a functional association between these regions, but no

further knowledge about the nature of this association can be derived from it. We cannot

conclude if the observed non-zero pairwise correlation resulted from a causal mechanism where

one brain region is the direct cause of the other (X→ Y or X← Y), or one region is the indirect

cause of the other (causal chain, X→ Z→ Y), or a third region is a common cause of the two
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regions (causal confounder, X← Z→ Y) (Reichenbach, 1956), or a combination of these cases.

This ambiguity impedes causal interpretations of correlation-based network connections. In

practice, pairwise associative methods do not control for the effects of causal confounders and

chains, thus inferring spurious connections in the estimated FC network  (Figure 1C). In

activity flow models, these spurious connections will create false pathways through which task

activity will be incorrectly added, biasing the linear prediction of the task-evoked activations.

We applied Pearson correlation rXY = cov(X,Y)/(std(X)std(Y)), where X and Y are time series for

two brain regions, cov() is the sample covariance and std() is the sample standard deviation; and

used a two-sided z-test with significance threshold of p-value < ⍺ = 0.01, for every individual

simulation and empirical dataset.

Multiple regression
Advancing on the causal continuum, we can use multiple regression to compute the statistical

association between one region time series and every member of a set of regressor time

series—in FC analysis this set is usually the rest of the brain regions in the dataset—where each

association is conditioned on the rest of the regressors. Conditioning on the rest of the regions in

the dataset controls for spurious connections arising from the effect of causal chains and causal

confounders. Thus, in contrast to pairwise methods, a non-zero multiple regression coefficient

can be interpreted as a direct functional connection between two brain regions. Despite this

improvement in causal interpretation, multiple regression still cannot determine the actual

causal orientation of direct network connections. In addition, a fundamental limitation of

multiple regression as an FC method is that by conditioning on the rest of the brain regions it

will infer a spurious association between two unconnected regions if these two regions are

causes of a third one (collider, X→ Z← Y) (Figure 1D) (Berkson, 1946; Bishop, 2006; Kiiveri

et al., 1984; Reid et al., 2019). The presence of colliders in a causal structure—which we cannot

tell in advance—implies that any connection inferred by multiple regression could in principle

be a spurious connection. For example, Sanchez-Romero & Cole (2021) showed that in

simulated networks with a larger proportion of colliders relative to confounders, multiple

regression returns a higher number of spurious connections than correlation.

We applied ordinary least squares linear multiple regression Y = 𝜷0+𝜷1X1+𝜷2X2+...+𝜷kXk+eY,

where Y is the time series for a brain region, X1 to Xk are the time series for the rest of the

regions in the dataset, 𝜷1 to 𝜷k are the corresponding regression coefficients, 𝜷0 is the intercept

and eY is the regression error of Y. We used a two-sided t-test for the regression coefficients with

significance threshold of p-value < ⍺ = 0.01, for every individual simulation and empirical

dataset.

CombinedFC
The combined functional connectivity (combinedFC) method (Sanchez-Romero & Cole, 2021),

proposes a causally-principled solution to avoid spurious connections from conditioning on

colliders. As such, combinedFC allows us to advance in the causal continuum from correlation

and multiple regression to more causally-valid methods of functional connectivity. The strategy

of combinedFC is based on the observation that for a collider X→ Z← Y, the pairwise
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correlation of the two causes X and Y will be zero; while the multiple regression X = aY + bZ (or

Y = aX + bZ),  where the common effect Z is being conditioned on, will infer a non-zero

regression coefficient a between X and Y.

CombinedFC leverages this observation to detect and remove spurious connections from

conditioning on colliders. In a first step, the method computes the multiple regression for each

brain region on the rest of the regions in the dataset. In a second step, it checks for each

non-zero multiple regression coefficient, if its corresponding pairwise correlation is zero. If this

is the case, there is evidence of a spurious connection from conditioning on a collider and

combinedFC removes the false connection from the network (Figure 1E ).

Using combinedFC we have more evidence to conclude that the inferred network does not

include indirect causal chains or spurious connections from causal confounders—thanks to the

initial multiple regression conditioning—or spurious connections from conditioning on

colliders—thanks to the zero-correlation check. Nonetheless, Sanchez-Romero & Cole (2021)

have shown that in the presence of certain challenging causal patterns, for example a mix of a

causal confounder and a collider (e.g., Figure 1B), combinedFC will inevitably produce

spurious connections (Figure 1E). It is the risk of these spurious connections that limits

combinedFC to unequivocally orient detected colliders. Thus, as correlation and multiple

regression, combinedFC returns an undirected network, albeit with more causally-interpretable

connections.

Here, we implement combinedFC with two modifications. In the first step of combinedFC,

instead of using linear multiple regression to evaluate conditional associations, we used partial

correlation using the inverse of the covariance matrix, which is a faster and equivalent way to

determine significant connections (Sanchez-Romero & Cole, 2021). The second modification is

considering the output of combinedFC as an initial feature selection step (Guyon et al., 2008;

Guyon & Elisseeff, 2003), and compute the final FC weights by regressing each region only on its

connected regions (selected features) in the combinedFC network. We have seen that this

second modification produces FC weights that result in higher activity flow prediction accuracy

than the original weights of combinedFC.

For every individual simulation and empirical dataset, we applied combinedFC with a two-sided

z-test and significance threshold of p-value < ⍺ = 0.01 for the partial correlation, and of p-value

> ⍺ = 0.01 for the zero-correlation check (following Sanchez-Romero & Cole (2021)). After the

feature selection, we computed FC weights with linear multiple regression and no significance

test.

PC algorithm
The Peter-Clark (PC) algorithm (Spirtes et al., 2000; Spirtes & Glymour, 1991) provides a

discovery strategy that overcomes the limitations of the three methods described above. It

controls for spurious connections created by casual chains, confounders and conditioned-on

colliders, even in challenging causal patterns. In addition, after undirected connections are

estimated (adjacency discovery phase), the PC algorithm applies a series of orientation rules to
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infer, when possible, the causal direction of connections (orientation discovery phase). The

outcome of the algorithm is a directed network from which functional causal relationships

between brain regions can be read out (Figure 1F).

We used an order-independent version of the PC adjacency discovery phase known as PC-stable

(Colombo & Maathuis, 2014; termed FAS-stable in Sanchez-Romero et al., 2019), and include

pseudocode in Box 1 (1). In short, PC starts with a fully connected undirected network and

checks for every pair of brain regions if they are correlated or not. If two regions are not

correlated, PC removes their adjacency from the network. Next, the algorithm checks for every

pair of still connected regions if they are correlated conditioning on one other region. (This

implies a conditional correlation with a conditioning set of size one. In the pseudocode, the size

of the conditioning set S is referred to as depth (Box 1 (1).3).)  If two regions are not

conditionally correlated on one other region, PC removes their connection from the network.

For every pair of still connected regions, PC keeps testing correlations conditioning on two other

regions (conditioning set of size two), three other regions and so forth, until no more

connections can be removed from the network. Note that when PC evaluates conditional

correlations, it does it iteratively through all possible combinations of conditioning sets of size

one, two, three and so forth, until it finds, if any, a set S that makes the regions not conditionally

correlated (Box 1 (1).3.b).

The implementation we used of PC computes the conditional correlation for any two regions X

and Y conditioning on a set S (Box 1 (1).3.b.i), using the inverse of the covariance matrix

(precision matrix P) for X, Y and S, to obtain the conditional correlation coefficient rXY|S =

-PXY/sqrt(PXXPYY), where sqrt() is the square root function and PXY is the entry for X and Y in the

precision matrix. To determine statistical significance, first the conditional correlation

coefficient rXY|S is transformed to a Fisher z statistic ƶ = tanh
-1
(rXY|S)sqrt(N−|S|−3), where N is

the number of datapoints and |S| is the size of the conditioning set (number of regions

conditioned on); then, for a two-sided z-test, we compute the p-value = 2(1−cdf(abs(ƶ)), where

abs() is the absolute value and cdf() is the cumulative distribution function for a standard

normal distribution. For a user-chosen ⍺ significance threshold, if p-value > ⍺, then we conclude

that regions X and Y are not correlated conditioning on the set of regions S. (In the PC algorithm

this result would imply removing the network connection between X and Y.) A significance

threshold of ⍺ = 0.01 was set for all applications of PC.

It is important to note that we implement the PC algorithm with conditional correlations to

estimate the required conditional associations, but other approaches can be used, such as

conditional mutual information, or other non-linear, non-Gaussian, conditional association

measures (Ramsey, 2014; Zhang et al., 2011), depending on the properties of the distributions

and functional associations of the data under study
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Box 1. PC algorithm pseudocode

(1) Adjacency discovery phase
1. V ← set of regions in the input dataset
2. Ŵ ← fully connected undirected network over V
3. for all depth = 0, 1, …, until no more connections can be removed do

a. for all X in V do //guarantees order independence
i. a(X) ← set of adjacent regions for X in Ŵ

b. for all X, Y, S; X, Y in V, Y in a(X), S a subset of a(X)\{Y}, |S| = depth do
i. if X is not correlated to Y conditioning on the set of regions S then

1. remove connection X — Y in Ŵ
4. return Ŵ

(2) Orientation discovery phase
1. for all X — Z — Y, and X and Y not connected in Ŵ do //collider orientation

a. if Z is not in the conditioning set that made X and Y not correlated then
i. orient X → Z ← Y

2. for all X → Z — Y, and X and Y not directly connected do //Meek’s rule
a. orient Z → Y

3. return Ŵ

The second phase of our implementation of the PC algorithm applies two rules to orient, when

possible, the adjacencies from the first phase. We include the orientation discovery phase rules

in Box 1 (2). The first rule is based on causal principles about conditional independencies

implied by collider structures and is part of the original implementation of PC (Spirtes &

Glymour, 1991). The collider orientation rule states that if in a network, a region X is adjacent to

a region Z, and Z is adjacent to a region Y, and X and Y are not adjacent (triple, X — Z — Y), if Z

is not in the conditioning set that made X and Y not correlated, then necessarily these regions

form a collider X→ Z← Y (Box 1 (2).1). If the opposite were true, and Z were in the

conditioning set that made X and Y not correlated, then we would not be able to orient this

triple, because the three possibilities X→ Z→ Y, X← Z← Y or X← Z→ Y, equally imply that X

is not correlated with Y conditioning on Z. In this particular case, only collider structures

produce unambiguous conditional correlations that can be used to orient adjacencies (see

Figure 1F for an example).

In practice, when the fMRI time series have a small number of datapoints, some conditional

correlation estimates may be inaccurate and we could end up incorrectly orienting colliders. To

minimize this risk, Ramsey (2016) implemented the collider orientation rule with the max

p-value heuristic. The heuristic consists in computing the p-values of the correlations of regions

X and Y conditioning on every possible subset of regions adjacent to X. Then, choosing the

conditioning subset corresponding to the maximum p-value, and if region Z is not in this subset,

orienting the triple as a collider X→ Z← Y. By choosing the conditioning subset with the

maximum p-value we try to guarantee that from all the possible subsets, we select the one that

optimally assures that X and Y are conditionally not correlated.
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Importantly, Ramsey (2016) also showed that with inaccurate conditional correlation estimates

due to small number of datapoints, we may end up orienting two conflicting colliders in the

network. For example, for two triples we could conclude X→ Z← Y and Z→ Y← D, which

implies a conflicting orientation for Z and Y. The problem is then which collider orientation

should we remove. Ramsey (2016), following the same ideas of the max p-value heuristic,

suggests sorting all the previously inferred colliders from high to low according to its

p-value—from the max p-value heuristic—and remove a collider orientation if it conflicts with

any higher p-value collider. Ramsey (2016) showed in simulations the improvement in

orientation accuracy from these two heuristics, so in our implementation of PC we used the

collider orientation rule with the max p-value heuristic followed by the collider conflict

resolution heuristic.

Meek (1995) introduced a set of orientation rules that in some cases can complement the

collider orientations. This second orientation rule (Box 1 (2).2) is based on the assumption that

the collider orientation rule properly detected all existing colliders in the network, such that no

new colliders are allowed. Thus, for X→ Z — Y we can orient Z→ Y, since the opposite

direction Z← Y will create a new collider, and that is not allowed. The rest of the Meek’s rules

leverage the assumption that the underlying causal network does not contain cycles, and thus

orient adjacencies avoiding the formation of cycles. Since we know the brain contains

feedforward and feedback structures supporting communication between regions, the

assumption of no cycles is incorrect in this case. For this reason, we did not implement those

orientation rules and prefered to retain undirected connections that may suggest the presence of

cycles, than orienting connections based on incorrect assumptions. For mechanistic purposes we

consider more problematic  a connection oriented in the incorrect causal direction, than no

orientation at all.

The output of the PC algorithm is an unweighted directed connectivity network Ŵ from which

connections weights can be estimated. Using Ŵ as a starting point we derived two different FC

approaches. In the first, for each region X, we get Pa(X) the set of causal sources (parents) of X

in network Ŵ, and solve the linear regression X = 𝜷XPa(X). The elements of the estimated vector

of regression coefficients 𝜷X are considered the weights for the parent connections into X. For

example, in X→ Z← Y, Z = 𝜷ZPa(Z) = 𝜷ZXX + 𝜷ZYY, such that the estimate for 𝜷ZX is the weight

for the directed connection X→ Z, and equivalently for 𝜷ZY. Doing this for every region outputs a

FC network, where each directed connection X→ Y has a causal interpretation in the sense that,

keeping all other regions fixed, a change of one unit in X will cause a change of 𝜷YX in Y (Pearl,

2000; Spirtes et al., 2000; Woodward, 2005). In activity flow models, using a directed FC

network implies predicting task-related activity for a held-out region using only its putative

causal sources (Figure 1H). Hereinafter we refer to this FC method simply as PC algorithm or

PC.

The second FC approach is motivated by the hypothesis that the accuracy to predict the

activation of a held-out region can increase by using information from both its true direct causal

sources and its true direct causal targets (which contain information about the intrinsic

processes in the held-out-region that is not provided by the sources) (Aliferis et al., 2010; Fu &

Desmarais, 2010). In this approach, for each region X, we get adj(X) the set of adjacent regions
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for X in network Ŵ, and solve the linear regression X = 𝜷Xadj(X). The elements of the estimated

vector of regression coefficients 𝜷X are considered the connectivity weights for the adjacencies of

X. For example, in X→ Y→ Z, Y = 𝜷Yadj(Y) = 𝜷YXX + 𝜷YZZ. Essentially, we are computing the FC

weights using every adjacent region, which may include, depending on the inferred causal

pattern, only direct causal sources, only direct causal targets or a combination of both—as in the

example. These FC weights disregard the orientation of the connections and thus no longer have

as straightforward a causal interpretation as in the above PC method. Hereinafter we refer to

this FC method as PC-adjacencies or PCadj.

Our implementation of the PC algorithm (with the removal of certain Meek orientation rules as

described above) is available at [project repository will be available upon manuscript

acceptance], and it is a Python wrapper of the PC algorithm from the Java open-source Tetrad

software 6.7.1 (available at github.com/cmu-phil/tetrad).

Simulated causal networks and data
As described above, activity flow analysis requires FC estimates from resting-state data and

task-evoked activations from task-state data. Our general simulation strategy consists in first

creating a synthetic ground-truth causal network (directed graph), simulating dynamics to

create a resting-state network and associated dataset, and then simulate a task-state network by

introducing small random modifications to the original resting-state coefficients, plus an

exogenous task input variable feeding into the network to produce a task-state dataset.

Simulation of resting-state networks and data closely follows Sanchez-Romero & Cole (2021).

Networks were based on a directed graphical model that has a preference for common causes

and causal chains than for colliders, and includes two-node and three-node cycles. All networks

W were simulated with 200 nodes and an average connectivity density of 5% (percentage of

connections out of total possible). The connectivity coefficients in W were sampled from a

uniform distribution in the interval [0.1, 0.4), and randomly setting 10% of the coefficients to its

negative value. To simulate resting-state data we used a causal linear model X = WX+E, where X

is a dataset of nodes (nodes × datapoints), W a directed network or matrix of connectivity

coefficients (nodes × nodes), with direction encoded from column to row, and E a set of

independent noise terms (intrinsic activity) (nodes × datapoints). 1000 datapoints for X were

generated by expressing this model as X = (I-W)
-1
E, where I is the identity matrix (nodes ×

nodes), W is the simulated resting-state network, and pseudo-empirical datapoints for E

(Sanchez-Romero & Cole, 2021) were produced by randomizing preprocessed fMRI resting-state

data across datapoints, regions and participants, from the Human Connectome Project (HCP).

Using pseudo-empirical terms E allowed us to simulate resting-state data X that better capture

some of the distributional properties of the empirical fMRI.

To create task-state networks WT, we took the previously simulated resting-state networks W

and defined with equal probability each task-state coefficient as: (a) one standard deviation

above the corresponding resting-state coefficient, or (b) one standard deviation below, or (c)

equal to the resting-state coefficient. This ensured that the connectivity coefficients for rest and

task-state were not exactly the same. To generate task-state data we first introduced an
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exogenous task input variable T with pseudo-empirical datapoints (1 × datapoints). Then, we

defined a task connectivity vector C (nodes × 1), that specifies the network nodes directly

affected by the task variable T. We randomly chose 10% of nodes to be directly affected by T, and

sampled task connectivity coefficients from a uniform distribution in the interval [0.1, 0.4).

(Note that other nodes can also be affected by T but through indirect causal paths.) Expanding

the linear model to include the task-related elements, we now have XT = WTXT+CT+ET. We

generated 1000 datapoints for task-state dataset XT by expressing the model as XT =

(I-WT)
-1
(CT+ET). As with the resting-state data we used pseudo-empirical datapoints for ET.

Finally, simulated task-evoked activations were computed individually for each task-state

network node XT by a linear regression of the form XT = aT, where the estimated coefficient a

represents the task-evoked activation, and reflects direct and indirect effects of the task variable

T on the node XT.

200 instantiations of the simulated models were generated to compare (1) the accuracy of the

different FC methods to recover resting-state networks, and (2) the prediction accuracy of the

activity flow models parameterized with these networks. Analyses were run in the

Rutgers-Newark high-performance computing cluster AmarelN

(oarc.rutgers.edu/resources/amarel), using one node, 2 cores, and 64G RAM.

Empirical fMRI data
We used open access fMRI resting and task-state data from a subset of 176 participants from the

minimally-preprocessed HCP 1200 release (Glasser et al., 2013; Ugurbil et al., 2013; Van Essen

et al., 2013). All subjects gave signed informed consent in accordance with the protocol

approved by the Washington University institutional review board. We abide by the HCP open

access use terms and the Rutgers University institutional review board approved use of these

data. These participants were selected by passing the following exclusion criteria described in

Ito, Brincat, Siegel, et al. (2020): anatomical anomalies found in T1w or T2w scans;

segmentation or surface errors as output from the HCP structural pipeline; data collected during

periods of head coil problems; data in which some of the FIX-ICA components were manually

reclassified; participants that had any fMRI run in which more than 50% of TRs had greater

than 0.25mm motion framewise displacement; removal according to family relations ( only

unrelated participants were selected, and those with no genotype testing were excluded). We

include here a brief description of the data fMRI collection parameters: whole-brain echo-planar

functional imaging acquisitions were acquired with a 32 channel head coil on a modified 3T

Siemens Skyra MRI with TR = 720 ms, TE = 33.1 ms, flip angle = 52°, BW = 2290 Hz/Px,

in-plane FOV = 208 × 180 mm, 72 slices, 2.0 mm isotropic voxels, with a multiband acceleration

factor of 8. For our analysis, we only used one 14.4 minutes run of resting-state data (1200

datapoints), and two 30 minutes consecutive runs (60 min total) of task-state data (7 tasks with

24 conditions). Further task and resting-state data acquisition details can be found elsewhere

(Barch et al., 2013; Smith et al., 2013).

In brief, the seven tasks consisted of an emotion cognition task (valence judgment, 2

conditions); gambling reward task (card guessing, 2 conditions); language processing task (2
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conditions); motor task (tongue, finger, toe, 6 conditions); relational reasoning task (2

conditions); social interaction cognition task (2 conditions); and working memory task (0-back,

2-back, 8 conditions). Details about these task paradigms can be found in Barch et al. (2013).

The minimally-preprocessed HCP surface data (Glasser et al., 2013) were first parcellated into

360 cortical regions using the Glasser et al. (2016) atlas. Then, we applied the preprocessing

steps detailed in Ito et al. (2020). Briefly, they include removing the first five datapoints of each

run, demeaning and detrending the time series, and nuisance regression—based on Ciric et al.

(2017)—with 64 parameters to control for the effects of motion and physiological artifacts, and

their derivatives and quadratics. Global signal regression was not applied since its physiological

basis and effects on functional connectivity inferences are still not fully understood (Aquino et

al., 2020; Colenbier et al., 2020; Li et al., 2019; T. T. Liu et al., 2017; Murphy & Fox, 2017).

Task-evoked activations for each of the 360 regions and 24 conditions were estimated using a

standard general linear model at the region level. The SPM software canonical hemodynamic

response function (fil.ion.ucl.ac.uk/spm) was used for general linear model estimation , given

that all tasks involved block designs (Cole et al., 2021).

Resting and task-state empirical fMRI data were used to compare the accuracy of activity flow

predictions under the five different FC methods tested here. Analyses were also run in the

AmarelN cluster mentioned above.

Data and code to reproduce our synthetic and empirical analyses are available at [project

repository will be available upon manuscript acceptance].

Results

Network recovery on simulated fMRI data
We began by simulating ground-truth functional causal networks to determine the validity of FC

methods, each of which we hypothesized to be at different levels of causal validity (Figure 1A).

A series of 200 random networks, each with 200 nodes, were simulated from a graphical causal

model with more common causes and causal chains than colliders, and two-node and

three-node cycles. Positive and negative connectivity weights were sampled from a uniform

distribution. For each causal network, we simulated fMRI time series with 1000 datapoints

using a linear model and randomized empirical resting-state fMRI data. The validity of the FC

methods was assessed in terms of how good they recovered ground-truth resting-state networks.

We used precision and recall as measures of recovery accuracy.

We first report in Figures 2A-C, precision and recall for the recovery of the true network

adjacency pattern in simulated data, for each of the FC methods tested. Precision is defined as

the number of true-positive adjacencies (tp) divided by the sum of the number of true-positive

and false-positive adjacencies (fp) (precision = tp/(tp+fp)). Precision values range from 0 to 1,

and quantify the ability of each FC method to avert false-positive (spurious) connections. A
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precision of 1 indicates that the method did not output any false positives, and a precision of 0

that it only output false-positive connections. Recall is defined as the number of true-positive

adjacencies divided by the sum of the number of true-positive and false-negative adjacencies

(fn) (recall = tp/(tp+fn)). Recall values also range from o to 1, and reflect the ability of each FC

method to recover true connections. A recall of 1 indicates that the method inferred all the true

connections, and a recall of 0 that it did not recover any of the true connections. Together,

precision and recall yield a complementary view of each method’s capacity to recover the true

network while avoiding spurious connections. Results are reported in boxplots indicating

median, and lower and upper quartiles for 200 simulated resting-state networks.

Figure 2 — Recovery of functional connectivity networks and accuracy of activity flow

prediction of task-evoked activations for simulated fMRI data. Boxplots show median, and

lower and upper quartiles for 200 simulations. Correlation (corr), multiple regression (mulReg),

combinedFC (combFC), PC-adjacencies (PCadj) and PC algorithm (PC). (A) Precision and recall formulas

to measure goodness of network adjacency recovery. (B) Precision. (C) Recall. (D) Accuracy of actflow

prediction of task-evoked activations, measured with Pearson correlation coefficient r and averaged

across 200 regions. (E) Number of predictor regions averaged across 200 regions, plotted on a

logarithmic scale for visualization, with actual median values next to each boxplot. For reference, the

median in-degree (number of direct causal sources) in the true networks is 6.62. (F) Running time in

seconds.

Spurious causal inferences (false positives) are generally considered to be more problematic

than false negatives in science. This strategy reduces the chance that a false result will be

considered a scientific fact. With the primary goal of avoiding spurious causal inferences, we

sought to maximize precision first (reducing false positives), followed by maximizing recall
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(reducing false negatives). Thus, the method with the highest precision would be preferred even

with a moderately lower recall.

Considering the theoretical properties of each FC method to avoid spurious connections from

confounders, chains and conditioned-on colliders, we expect the PC algorithm to achieve the

highest precision (less false-positive connections) for network recovery, followed by

combinedFC, multiple regression and correlation, in that order. Regarding recall, it is not clear

which of the FC methods is expected to recover the highest number of true connections.

As expected, Figure 2B shows that PCadj and PC dominated over the rest of the methods with a

median precision of 0.91, indicating that 91% of its inferred adjacencies are true positives (true

connections) and 9% are false positives (spurious connections). Note that PCadj and PC have the

exact same precision since PCadj is PC without the orientation information, and here precision

is calculated only for adjacencies. CombinedFC and multiple regression were next, with

precisions of 0.64 and 0.56 respectively. The lowest scoring method was correlation, with a

precision of 0.07, implying that 7% of its inferred adjacencies are true positives and 93% are

false positives.

Figure 2C shows that the results for recall go in the opposite direction. Correlation had the

highest median recall, 0.89, indicating that 89% of the total true connections were recovered.

Multiple regression and combinedFC follow closely with 85% and 77% respectively, while PCadj

and PC had the lowest recall, with 45% of the true connections recovered.

From these methods only the PC algorithm has inference rules to orient connections (Box 1

(2)). To measure the orientation accuracy of PC, meaning if the causal direction of an adjacency

was correctly inferred, we computed the proportion of correct orientations out of the total

number of correctly inferred adjacencies (true-positive adjacencies). Notably, PC showed a

median orientation accuracy of 0.83 across the 200 simulations, implying that 83% of the

true-positive adjacencies were oriented in its correct causal direction.

These first results confirm that FC methods grounded in stronger causal principles, such as

combinedFC or PC, can recover with higher precision (lower number of spurious connections

inferred) simulated resting-state fMRI networks. This suggests that more causally-valid FC

methods will result in activity flow models with better prediction accuracy, since the prediction

of the task-evoked activations will not contain effects from spurious or indirect pathways.

Actflow prediction accuracy on fMRI synthetic networks
We extended our ground-truth models to determine if more causally valid FC methods, by better

controlling the effect of spurious connections, lead to more accurate predictions of task-evoked

activity. Task-state networks were simulated by taking the previous 200 resting-state simulated

networks and applying minor variations to the original connectivity weights. For each iteration,

the task was modeled as an exogenous source node, randomly connected to a number of

network nodes. Task fMRI time series with 1000 datapoints were simulated for each network.

We regressed each task-state network node on the exogenous task and considered the regression

coefficients as the to-be-predicted task-evoked activations.
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In Figure 2D we report the prediction accuracy of the actflow models for each of the FC

methods tested. Following Cole et al. (2016), we measured prediction accuracy with the Pearson

correlation coefficient r between the vector of predicted activations for the 200 simulated

regions and the vector of actual activations. Measured in this way, the prediction accuracy r

summarizes the actflow model performance across the whole network. Boxplots show median,

and lower and upper quartiles for 200 simulations.

Actflow predictions are a function of the estimated FC network and the actual task-evoked

activations, therefore we expect that a better recovery of the true network will lead to a higher

actflow prediction accuracy. Previous fMRI empirical results (Cole et al., 2016) showed that

functional networks estimated with multiple regression produced more accurate actflow

predictions compared to networks estimated with correlation. In addition, our simulation

results (Figures 2A and 2B) show that multiple regression-based networks have a higher

number of false negatives (lower recall) but a lower number of false positives (higher precision)

than correlation-based networks. Together, these observations suggest that actflow prediction

accuracy may be more improved by reducing false-positive functional connections than by

reducing false-negative connections. Thus, we expect that PCadj and PC—the methods with the

best network recovery precision—will have the higher prediction accuracy, followed by

combinedFC, multiple regression and correlation, in that order.

CombinedFC had the best median prediction accuracy of all the methods (r = 0.90), probably

due to a good balance of false positives and false negatives. It was followed closely by PCadj (r =

0.87) and multiple regression (r = 0.87). PC had a lower prediction accuracy compared to these

methods (r = 0.72). Note that when the actflow model is parameterized with the PC-based

oriented network, it only uses the estimated direct sources to predict the activity of each

held-out region. In contrast, when actflow uses unoriented networks, derived from multiple

regression, PCadj or combinedFC for example, it considers all the adjacent regions of a held-out

region to predict its activity. In causal terms, this implies that with unoriented networks, the

held-out region activity prediction leverages information from both direct sources (forward

causation) and direct targets (backward causation), achieving a better prediction than when only

source information is used. It is for this reason that the PC prediction accuracy was lower than

PCadj, multiple regression and combinedFC prediction accuracies. Critically, the higher network

recovery precision for the PC-based models (Figure 2B) means that (despite having lower

prediction accuracy) they are more causally valid, increasing mechanistic interpretability of the

actflow-generated activity predictions.

As expected, actflow models based on correlation networks showed the lowest accuracy of all (r

= 0.66). Despite the low number of false negatives (high recall), these models have a high

number of false-positive connections (low precision), which create spurious pathways through

which task activity is incorrectly accounted for.

Note that a vector of predictions and a vector of actual activations can have a high Pearson r,

even if their values are in a completely different scale (e.g., all values multiplied by 2). If we are

interested in assessing the deviation from the actual values, we can use the coefficient of
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determination R
2

= 1−(Σi(Ai−Âi)
2
/Σi(Ai−Ā)

2
), where Ai are the actual activations, Âi the predicted

activations, and Ā the mean of the actual activations. R
2

measures the proportion of the variance

of the actual activations that is explained by the prediction model. It ranges from 1 (perfect

prediction) to minus infinity (prediction deviations can be arbitrarily large), with a value of zero

when the predictions are equal to the mean of the actual activations (Âi = Ā). For our

simulations, the median actflow prediction R
2

for the FC methods followed the same ordering as

the Pearson r: combinedFC (R
2

= 0.80), PCadj (R
2

= 0.74), multiple regression (R
2

= 0.68), PC

(R
2

= 0.52) and correlation (R
2

= −164.68). The high negative R
2

of correlation-based models

indicates that predicted values strongly deviate from actual activation values, confirming the

detrimental effect of spurious network pathways on the actflow prediction model.

The complexity of actflow models can be evaluated with the number of regions used to predict

the task-evoked activation of held-out regions. Figure 2E shows the number of  predictors for

each held-out region, averaged across the 200 regions. Notably, actflow models based on PC

causal networks were highly accurate (Figure 2D), despite having the lowest model complexity

(median of 3 predictors, since only causal sources were used to predict activations). These

results evidence that PC can successfully recover functional causal connections that have high

predictive power. This is further confirmed with the results of PCadj-based actflow models,

which also had a relatively low number of predictors (median of 5), and an accuracy as high as

combinedFC and multiple regression, both with an order of magnitude more predictors (median

of 13 and 16 respectively). Correlation-based actflow models reported the highest complexity

(median of 125 predictors) and the lowest accuracy to predict task-evoked activations.

Finally, Figure 2F shows that all FC methods have efficient running times which do not exceed

the tens of seconds. The PC algorithm had the longest median running time (7 sec), which is

very efficient considering the large number of conditional associations it has to compute due to

the number of regions and the complexity of the connectivity patterns in the true networks.

Surprisingly, multiple regression had a relatively long median running time (4 sec). Analysis of

our code revealed that this unexpected running time was caused by the significance test for the

multiple regression coefficients. Not computing the significance test considerably reduces the

running time. Running times depend on the hardware used for the analysis, but we expect that

the reported ordering of the methods will replicate in any machine.

Our results on simulated fMRI data show that causally-valid FC methods, such as PC and

combinedFC, can be used to build activity flow models with high prediction accuracy, low

complexity (number of predictors) and efficient running times, thanks to their use of causal

principles to control for the effects of confounders, causal chains and conditioned-on colliders,

and if orientation rules are provided, such as with PC, these methods can provide mechanistic

interpretations of the predicted task-evoked activations.

Actflow prediction accuracy on fMRI empirical networks
Our theoretical considerations about the causal validity of the FC methods (Figure 1A) and the

comparative performance observed above in simulations, prompted us to hypothesize that this

performance will translate, up to a degree, to an empirical domain. Here, we used fMRI data to
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assess the performance of actflow predictive models under a complex empirical setup—for which

the ground-truth networks are not known—comprising 360 cortical regions, 24 task conditions

across various cognitive domains and 176 different participants. We compared the average

prediction accuracy of the different FC methods across all conditions.

Formally, prediction accuracy was measured as the Pearson correlation coefficient r between the

vector of predicted activations for all 360 cortical regions of Glasser et al. (2016) and the vector

of actual activations, averaged across the 24 HCP task conditions. Measured in this way, the

prediction accuracy r summarizes the actflow model performance across the whole-brain and

the full set of task conditions. Figure 3A reports actflow prediction accuracy boxplots with

median, and lower and upper quartiles across the 176 participants, for each connectivity

method. PCadj attained the highest median prediction accuracy (r = 0.82), followed by

combinedFC (r = 0.77) and PC (r = 0.74). Multiple regression (r = 0.60) and correlation (r =

0.57) showed lower accuracies. As in the simulation results, we include median coefficient of

determination R
2

as a complementary measure of prediction accuracy: PCadj (R
2

= 0.67),

combinedFC (R
2

= 0.59), PC (R
2

= 0.53), multiple regression (R
2

= 0.33) and correlation (R
2

=

−710). As remarked in the simulation results, the high negative R
2

of the correlation-based

models reflects large differences between the predicted and the actual activation values, which

are likely the result of spurious network pathways. As we hypothesized, these empirical results

are consistent with the simulations, in the sense that actflow models parameterized with more

causally valid FC methods, such as PC and combinedFC, can better predict task-evoked activity.

The number of predictors in the actflow models (Figure 3B) followed the same order observed

in simulations. PC had the lowest model complexity (median of 3 predictor source regions),

followed by PCadj (median of 6), combinedFC (median of 8), multiple regression (median of 10)

and correlation (median of 253). These results also reflect the different connectivity densities of

the estimated FC networks. Correlation produced highly dense networks (Figure 3D), resulting

in actflow models with high complexity (large number of predictors) but low prediction accuracy

(Figure 3A), whereas PC inferred sparser networks (Figures 3G-H), that produced actflow

models with lower complexity and high prediction accuracy.

Lastly, Figure 3C reports running times for the inference of FC networks from empirical fMRI

time series. We observed efficient running times not exceeding tens of seconds. For these data,

multiple regression showed the longest median running time (44 seconds), followed by PC (33

seconds). As mentioned above, the relatively long running time of multiple regression comes

mainly from the computation of the significance test for the regression coefficients.

21

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 18, 2021. ; https://doi.org/10.1101/2021.04.16.440226doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.16.440226
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 3 — Accuracy of activity flow prediction of task-evoked activations and functional

connectivity networks for fMRI empirical data. Correlation (corr), multiple regression (mulReg),

combinedFC (combFC), PC-adjacencies (PCadj) and PC algorithm (PC). Boxplots show median, and lower

and upper quartiles for the 176 participants. (A) Prediction accuracy for activity flow models

parameterized with each of the FC methods tested. Accuracy was measured as the Pearson correlation

coefficient r between the vector of predicted activations for all 360 cortical regions of Glasser et al. (2016)

and the vector of actual activations, averaged across the 24 HCP task conditions. (B) Number of predictor

regions averaged across 360 regions, plotted on a logarithmic scale for better visualization, with actual

values next to each boxplot. (C) Running time in seconds for network estimation. (D) Correlation-based

functional connectivity (FC) network, averaged across 176 participants. The 360 cortical regions were

organized in 12 functional networks from Ji et al. (2019). (E) FC average network from multiple

regression. (F) FC average network from combinedFC. (G) FC average  network from PC-adjacencies. (H)

FC average network from PC algorithm. (I) Cortical surface map of the 12 functional networks partition

used in panels D-H (available at github.com/ColeLab/ColeAnticevicNetPartition). For visualization, in all

FC networks (panels D-H), values between -/+ 0.005 were set to zero.

Together, these results confirm empirically that causally-informed methods can estimate

undirected and directed FC networks useful to build activity flow models with low complexity
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and high prediction accuracy. Actflow models using undirected FC networks can provide

excellent predictions (e.g., combinedFC and PCadj), but cannot tell if the task activity is flowing

into, from, or into and from (as in a feedback) the held-out region. In contrast, PC-based

directed networks, despite some reduction in the prediction accuracy, provide mechanistic

models in which the flow of task activity can be traced from source regions directly into held-out

regions.

Actflow predictions across brain regions and task conditions
Our results so far have confirmed in simulations and empirically (Figure 3A, summary across

brain regions, task conditions and participants) the benefits in prediction and mechanistic

interpretation from more causally-grounded FC methods. Notably, we showed that directed FC

networks from the PC algorithm can be used to build directed actflow models (Figure 1H) with

high prediction accuracy, low complexity and a tractable mechanistic interpretation. We now

extend these results by comparing and visualizing at more detail, the performance of PC-based

directed actflow models against actflow models parameterized with the field-standard Pearson

correlation FC. This analysis is essentially focused on measuring the accuracy in predicting a

whole-brain pattern of regional activations for each task condition (node-wise accuracy) (Cole et

al., 2021).

The actflow accuracies reported in Figure 3A summarize on the Pearson r, general information

from all 360 cortical regions and 24 task conditions. Here, we unpacked this information by

showing in matrix form the actual task activations for all regions (rows) and task conditions

(columns), median across the 176 participants (Figure 4B), flanked by the predicted activations

of the field-standard Pearson correlation-based models (Figure 4A) and by the predictions of

the PC-based mechanistic actflow models (Figure 4C). These matrices show with greater detail

how PC-based predictions across regions and all conditions had a more similar pattern to the

actual activations, relative to correlation-based predictions (r = 0.74 > r = 0.57, median across

participants). Importantly, we also observed that the PC-based predicted values were in

approximately the same range as the actual activations (compare colorbars in Figures 4B and

4C), while correlation-based predicted activations were often hundreds of times off of the actual

values (see Figure 4A colorbar). As mentioned above, these deviations can be quantitatively

assessed with the coefficient of determination, R
2

= 0.53 vs. R
2

= −710, for PC-based models and

correlation-based models correspondingly. The high negative R
2

reflects the observed strong

deviations in the correlation-based actflow predicted values.

For each of the 24 task conditions taken individually, we confirmed that PC-based actflow

models attained a significantly higher node-wise prediction accuracy than correlation-based

models (for both Pearson r and R
2
, p<0.01 corrected for multiple comparisons with the

nonparametric test of Nichols & Holmes (2002), for 176 participants).
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Figure 4 — Activity flow prediction of task-evoked activations for fMRI empirical data,

across brain cortical regions and task conditions. (A) Actflow predicted activations based on

correlation FC, for 360 regions organized in 12 networks (rows) (Glasser et al., 2016; Ji et al., 2019), and

24 HCP task conditions (columns), median across 176 participants. The median r = 0.57 (R
2

= −710)

results from first computing the Pearson r (coefficient of determination R
2
) prediction accuracy node-wise

(360 regions) for each of the 24 conditions, then averaging across conditions and finally obtaining the

median across participants. (B) Actual task-evoked activations. (C) Actflow predicted activations based on

PC algorithm FC. Median prediction accuracy of r = 0.74 (R
2

= 0.53). (D) Correlation-based actflow

predictions for the motor task: left hand condition, projected into a brain surface map with 360 Glasser

regions, median across 176 participants. The prediction accuracy of r = 0.47 (R
2

= −353) is the Pearson r

(coefficient of determination R
2
) between the vector of node-wise (360 regions) predicted activations for

this condition and the vector of actual activations, median across participants. (E) Actual activations for

the motor task: left hand condition. (F) PC-based actflow predictions for the motor task: left hand

condition. Median prediction accuracy of r = 0.64 (R
2

= 0.40). (G) Correlation-based actflow predictions

for the working memory task: 2-back: places condition, median across 176 participants. Median
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prediction accuracy of r = 0.57 (R
2

= −481). (H) Actual activations for the memory task: 2-back: places

condition. (I) PC-based actflow predictions for the memory task: 2-back: places condition. Median

prediction accuracy of r = 0.78 (R
2

= 0.59).

To further illustrate this result, we performed a more targeted analysis that focuses on one task

condition (one column in the Figures 4A-C matrices) and examines the pattern of actflow

predicted activations across the 360 brain regions (node-wise accuracy). We first show this

analysis for the motor task: left hand condition. The PC-based actflow models (Figure 4F)

recovered the whole-brain actual activation pattern (Figure 4E) better than the

correlation-based models (Figure 4D) (r = 0.64 > r = 0.47; and R
2

= 0.40 vs. R
2

= −353,

median across participants). More importantly, the PC-based models correctly recovered the

functionally-relevant pattern of positive activations in the right hemisphere somatomotor

network, known to be engaged during task-induced left hand movements. In contrast,

correlation-based models predicted negative and inflated activation values across the entire

cortex.

We repeated the node-wise accuracy analysis, this time for the working memory task: 2-back:

places condition. In this case, we also confirmed the superior performance of PC-based actflow

models (Figure 4I) compared to correlation-based models (Figure 4G), both in the prediction

of the whole-brain activation pattern and in the range of predicted values (r = 0.78 > r = 0.57;

and R
2

= 0.59 vs. R
2

= −481, median across participants). Note how the predictions of

correlation-based models are massively biased towards positive and negative values (Figure

4G, colorbar), reflecting again the presence of inferred spurious pathways through which task

activity is incorrectly summed to the actflow computation.

These results confirm that mechanistic actflow models based on causally-valid directed FC

methods (such as PC, that controls for indirect and spurious pathways, and provide causal

source information), better predict whole-brain activation patterns and actual values, for each of

the 24 task conditions tested here. In contrast, correlation-based FC produced densely

connected actflow models in which every region’s connectivity profile probably conflated direct,

indirect and spurious pathways (see Figure 3D FC matrix) that incorrectly biased the actflow

predicted activations.

Focal activity flow prediction across task conditions
The previous analysis compared the accuracy of PC- and correlation-based actflow models in

predicting whole-brain activation patterns for individual task conditions (node-wise accuracy,

e.g., Figure 4F). Here, in contrast, we want to measure the accuracy of PC-based directed

actflow models and correlation-based models for predicting activations across the 24 task

conditions for each individual brain region (condition-wise accuracy) (Cole et al., 2021). This

analysis allows us to highlight brain areas for which the two methods differ significantly.

We consider the matrices in Figures 4A-C, choosing one row (region) and computing the

Pearson r value between the vector of 24 column (conditions) actual activations and the vector
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of 24 column actflow-predicted activations. The prediction accuracy r value for each region is

then projected to a brain map. Figures 5A-B show the condition-wise accuracy of

correlation-based and PC-based actflow models for each region (median across 176

participants).

To highlight differences in prediction accuracy across the methods, Figure 5C shows the

PC-based condition-wise accuracy minus the correlation-based accuracy for each brain region.

For 82% of the 360 regions PC-based actflow models attained a significantly higher

condition-wise prediction accuracy than correlation-based models (Pearson r, p<0.01 corrected

for multiple comparisons with the nonparametric test of Nichols & Holmes (2002), for 176

participants. 99% of the 360 regions for R
2
). The brain map of Figure 5C shows that accuracy

differences are relatively larger in the language and somatomotor networks. This condition-wise

result is consistent and complementary to the previous node-wise accuracy analysis of the motor

and working memory tasks (Figures 4D-I).

These results extend our previous observations by confirming that PC-based directed actflow

models (with lower complexity and valid mechanistic interpretation) can better predict, for a

large majority of cortical regions, the task-evoked activations across a diverse set of cognitive

conditions.

Figure 5 — Condition-wise accuracy of activity flow predictions for 360 cortical regions.

Condition-wise actflow accuracy is the prediction accuracy for each region across the 24 task conditions of

the HCP data. Brain surface maps show median across 176 participants. Colorbars indicate minimum,

mean and maximum prediction accuracy (r) across the 360 Glasser regions. (A) Actflow condition-wise

accuracies using the field-standard Pearson correlation FC. (B) PC algorithm-based actflow

condition-wise accuracies. (C) PC algorithm-based minus correlation-based actflow condition-wise

accuracies. Positive values indicate that PC algorithm-based actflow models predict better than

correlation-based models, negative values indicate the opposite.
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Directed activity flow models improve mechanistic insight into task
condition selectivity
Results thus far demonstrate that parameterizing activity flow models with causally-principled

FC methods improves our ability to predict task-evoked activations. This was shown via

summaries of results across all regions and task conditions. Here, we focus on one particular

region engaged in a single cognitive task manipulation to illustrate how causal actflow models

can be used to provide more precise mechanistic insight into the emergence of task-evoked

activations of interest. Specifically, we applied an actflow model to understand how the flow of

activity from distal brain regions may give rise to an established cognitive activation effect

(2-back vs. 0-back working memory task conditions) in one region of the right dorsolateral

prefrontal cortex (DLPFC). We focused on a cognitive contrast given the enhanced causal

experimental control inherent in such a contrast (controlling for, e.g., stimulus perception, task

timing, general task engagement). Results are compared for correlation-based and PC-based

actflow models.

First, activations for the 4 conditions for 2-back (body, face, place and tool stimuli) (see

Figures 4A-C) were averaged to form one 2-back activation for each of the 360 Glasser regions.

The same procedure was applied for the 0-back conditions. Then, activation differences or

contrasts (2-back minus 0-back) were computed, and regions with higher 2-back than 0-back

activation were localized (Figure 6A, red regions).

Brodmann’s Area 8 in the posterior section of the DLPFC has been extensively reported to have

an important role in the maintenance of stimuli information during working memory tasks

(Carlson et al., 1998; Constantinidis et al., 2001; Courtney et al., 1998; Petrides, 2000; Rowe et

al., 2000; Rowe & Passingham, 2001; Wager & Smith, 2003). In the Glasser et al. (2016)

parcellation, DLPFC Area 8 is subdivided into areas 8C, 8Av, 8Ad and 8BL, from which the right

hemisphere Area 8C showed the highest positive activation in the 2-back vs. 0-back

contrast—both in the analysis conducted here and the one in Glasser et al. (2016). The right

DLPFC Area 8C therefore has a prominent and established role in working memory function,

and this motivated us to choose it as our to-be-predicted target (Figure 6C, green region).

We built an actflow model for right Area 8C using the actual activation contrasts  for the rest of

the regions (Figure 6A) and the estimated resting-state functional connections (Figures

6B-C). Multiplying each region’s actual activation contrast by its corresponding connection to

the to-be-predicted target, we obtained a brain map of activity flow contrast estimates (Figures

6D-E). Positive values indicate incoming contributions that would increase activity in the

DLPFC Area 8C, while negative values indicate incoming contributions that would decrease

activity in this region. Finally, we summed the activity flow estimates to predict the task-evoked

activation contrast for the chosen DLPFC region.

As a consequence of Pearson correlation’s inability to control for spurious effects of confounders

and causal chains, the correlation-based actflow models used  a considerably high number of
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regions in the left and right hemispheres (Figure 6B) to predict the activation contrast of the

right DLPFC Area 8C. These densely connected models predicted an activation contrast one

order of magnitude larger than the actual contrast (52.22 vs. 8.3, average across 176

participants) (Figure 6D).

In addition to its inaccurate prediction, the correlation-based actflow model is poorly

informative in a mechanistic sense, since we cannot derive reliable causal hypotheses about the

effects of possible interventions. For example, given the lack of oriented connections, and the

presence of uncontrolled confounders and chains, intervening on a highly correlated region does

not guarantee that the target region will be affected with the assumed strength and sign, or even

affected at all.

In contrast, the PC algorithm inferred a sparser and more causally-valid directed connectivity

pattern for the DLPFC Area 8C, with sources in parietal, frontal and temporal lobes, principally

on the right hemisphere (Figure 6C and Table 1). This sparser causal pattern resulted in a

causal actflow prediction closer to the actual contrast value (5.45 vs. 8.3, average across 176

participants) (Figure 6E).

Most importantly, theory and simulation results both suggest that the activity flows computed

using PC are more causally valid, such that they can be used to infer the likely direct causes of

activity in a given neural population. In this case, it is likely that a specific set of cortical regions

(visualized in Figure 6E) contribute to the emergence of working memory effects in Area 8C of

the right DLPFC. We detected 95 regions that on average across participants, have a non-zero

contribution to the PC-causal DLPFC prediction. After ordering them according to the strength

of their contribution, we found (after increasing the number of removed regions one-at-a-time)

that by collectively removing the top 21 regions from the actflow computation (simulated

lesioning) (Table 1), the predicted working memory contrast becomes statistically

non-significant (average across participants 0.16, p-value>0.10 for a two-sided t-test), which

strongly supports the relevance of these functional interactions. (The full list of 95 contributing

regions is included as Supplementary Table 1.)

This analysis goes beyond previous studies that have determined that DLPFC is especially active

during n-back tasks (Evangelista et al., 2021; Kumar et al., 2017; Sherwood et al., 2016;

Woodcock et al., 2018) and studies that have characterized DLPFC connectivity (Cole et al.,

2012; Panikratova et al., 2020; Reineberg & Banich, 2016), revealing likely direct causal

mechanisms contributing to DLPFC’s involvement in n-back task cognitive processes. As

mentioned before, this single-causal-step activity flow model represents a starting point for a

more comprehensive multiple-causal-step neurocognitive explanation of working memory. This

explanation would characterize the causal chain from stimulus (i.e., n-back task) to

network-based cognitive phenomenon (i.e., neural activity changes from differences in working

memory load) to behavior (i.e., motor response).
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Figure 6 — Directed activity flow models provide more valid causal insight into the

emergence of n-back cognitive responses in DLPFC. (A) 2-back vs. 0-back actual activation

contrast, for each of the 360 Glasser cortical regions. (B) Correlation FC for one to-be-predicted region in

the right hemisphere dorsolateral prefrontal cortex (green region, right DLPFC Area 8C), averaged across

176 participants. (C) PC algorithm directed FC from causal sources to the to-be-predicted right DLPFC

Area 8C (green region). (D) Correlation-based activity flow estimates, resulting from multiplying each

region’s actual activation contrast (panel A) by its correlation functional connection (panel B), averaged

across 176 participants. The region-wise sum of the activity flow estimates is the correlation-based actflow

contrast prediction for the right DLPFC Area 8C; average predicted value across 176 participants, 52.22,

p-value = 5.8e-4 for a two-sided t-test. (E) PC algorithm-based causal activity flow estimates, resulting

from multiplying contrasts (panel A) by its PC causal functional connection (panel C). The region-wise

sum of the causal activity flow estimates is the PC-based contrast prediction for the right DLPFC Area 8C;
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average predicted value across 176 participants, 5.50, p-value = 3.5e-26 for a two-sided t-test. The actual

activation contrast for the right DLPFC Area 8C is included for comparison, average across participants

8.3, p-value = 4.8e-32 for a two-sided t-test.

Table 1 — Contributing regions to the PC-causal DLPFC prediction. 21 regions (out of 95)

with the strongest positive contributions (activity flow estimates) to predict right DLPFC Area 8C

2-back vs. o-back working memory contrast. Values are averages across 176 participants. The

collective removal of these regions from the actflow computation (simulated lesioning) makes the

predicted contrast non-significant (average across participants 0.16, p-value>0.10 for a two-sided

t-test). Region name and location from Glasser et al. (2016). See also Figure 6.

Region name Location
Actual

contrast
activation

PC
functional
connection

Activity flow
estimate

Area PFm Complex (right) Inferior Parietal Cortex 8.8304 0.1962 1.6823

Area 8Av (r) Dorsolateral Prefrontal Cortex 6.4347 0.1338 0.7911

Area 8BM (r) Medial Prefrontal Cortex 9.9563 0.0758 0.7120

Area posterior 9-46v (r) Dorsolateral Prefrontal Cortex 12.8559 0.0432 0.5672

Area 8C (left) Dorsolateral Prefrontal Cortex 7.8699 0.0402 0.3433

Inferior 6-8 Transitional Area (r) Dorsolateral Prefrontal Cortex 14.1699 0.0139 0.2203

Area anterior 47r (r) Orbital and Polar Frontal Cortex 5.0893 0.0286 0.1349

Area IFJp (r) Inferior Frontal Cortex 2.2545 0.0143 0.0873

Area posterior 10p (r) Orbital and Polar Frontal Cortex 6.9349 0.0146 0.0864

Area PGs (r) Inferior Parietal Cortex 5.3585 0.0171 0.0831

Area 44 (r) Inferior Frontal Cortex 5.3350 0.0166 0.0827

Area 9 Posterior (r) Dorsolateral Prefrontal Cortex -1.5470 0.0154 0.0759

Area IntraParietal 1 (r) Inferior Parietal Cortex 7.6205 0.0140 0.0754

Area IFSp (r) Inferior Frontal Cortex -0.0056 0.0240 0.0679

Anterior Ventral Insular Area (r) Insular Cortex 10.8755 0.0042 0.0595

Superior 6-8 Transitional Area (r) Dorsolateral Prefrontal Cortex 9.1950 0.0078 0.0582

Area anterior 9-46v (r) Dorsolateral Prefrontal Cortex 10.3015 0.0077 0.0508

Area posterior 47r (l) Inferior Frontal Cortex 4.4618 0.0031 0.0507

Area IFJa (r) Inferior Frontal Cortex 0.5240 0.0132 0.0435

Area PGi (r) Inferior Parietal Cortex 0.8612 0.0091 0.0404

Parieto-Occ. Sulcus Area 2 (r) Posterior Cingulate Cortex 4.2712 0.0045 0.0348

30

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 18, 2021. ; https://doi.org/10.1101/2021.04.16.440226doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.16.440226
http://creativecommons.org/licenses/by-nc-nd/4.0/


Discussion
Using simulations and empirical fMRI we confirmed that FC methods grounded in causal

principles can accurately recover properties of the underlying functional networks. These

inferred networks can be used to construct actflow predictive models—empirically-constrained

network simulations—that provide plausible causal explanations of the emergence of distributed

cognitive brain activation effects.

Importantly, we illustrated the explanatory potential of activity flow models with a PC-based

actflow model of right DLPFC (Area 8C), which accounts for the emergence of an established

cognitive effect observed during increased working memory load (a statistically significant

2-back vs. o-back contrast). We observed that the activation in right DLPFC Area 8C can be

partially explained by the strong incoming flow of task-evoked activity from directly connected

regions in inferior parietal, dorsolateral prefrontal and medial prefrontal cortices. In addition,

we reported specific FC weights (as measures of communication between source regions and the

to-be-predicted region) and activations (as measures of source regions sensitivity to the task

conditions), to attain a fine-grained characterization of each source region’s contribution to the

predicted cognitive effect in right DLPFC Area 8C. Finally, we showed that simulated lesioning

of a subset of the inferred source regions makes the predicted activation contrast

non-significant, evidencing the functional relevance of these connections to explain the observed

task-related effect. This approach goes beyond single reports of task-evoked activations of

DLPFC during n-back conditions, or single reports of DLPFC connectivity patterns. Also, it is

worth noting that our actflow-based mechanistic model of the DLPFC activation is derived from

empirical brain data, which sets it apart from previous mechanistic models based on abstract

computational neural networks (e.g., most artificial neural network models, since they are not

directly constrained by empirical brain data).

Directed actflow models provide a basis for a new scientific paradigm for discovering network

mechanisms underlying the emergence of neurocognitive phenomena. Most traditional

explanations of cognitive phenomena are based on focal measures of neural responses to

experimental interventions (Cabeza & Nyberg, 2000; Saxe et al., 2006). While this approach has

been successful in establishing robust associations between brain regions and cognitive tasks

(for example, DLPFC and working memory tasks or fusiform face area and face visual stimuli),

these associations by themselves do not explain how task activity in a brain region emerges from

underlying causal processes (e.g., brain network interactions). Patterns of activations have also

been used in multivariate analyses to explain differences between task conditions (Kriegeskorte

et al., 2008; Norman et al., 2006), but also fail to mechanistically explain how activations

emerge from underlying causal processes. Another strategy to characterize associations between

cognitive tasks and brain regions is to analyze changes in inter- or intra-region connectivity due

to task manipulations (Gordon et al., 2014; Jolles et al., 2013; Vatansever et al., 2017). However,

these studies do not typically assess the role of task-related neural activations, which are more

clearly linked to cognition and behavior (e.g., activations in M1 are known to cause motor

responses). Other explanations of cognitive effects are based on artificial neural network models
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that try to reproduce empirically observed cognitive activity (Thomas & McClelland, 2008).

However, most of these models are not constrained by empirical brain data (biological network

architectures or signals), and thus provide only limited mechanistic insight. In contrast to these

explanatory strategies, mechanistic actflow models successfully integrate empirically-derived

connectivity models and empirical task activations to provide data-driven causal insight into

network-supported cognitive processes in the human brain—as illustrated with our DLPFC

example.

While the particular methods used here are illustrative of the proposed mechanistic actflow

paradigm for explaining neurocognitive effects, there are many opportunities for further

improvements. The limitations of the current study can perhaps be best illustrated by

contrasting it with an idealized experiment not currently possible due to methodological

limitations in neuroscience. Such an ideal study would observe all action potentials and local

field potentials throughout the human brain in real time. This would contrast with the present

study’s use of fMRI, which has limited spatial resolution (2.0 mm voxels) and temporal

resolution (720 ms time points) but whole-brain coverage that matches the ideal. FMRI detects

blood-oxygen level dependent changes in MRI signals, which is an indirect measure of aggregate

action potentials and local field potentials (Kahn et al., 2013; Logothetis et al., 2001; Shmuel &

Leopold, 2008). Our data preprocessing procedures were designed to remove likely

physiological artifacts (e.g., respiration, movement, and heart rate) present in fMRI data (see

Methods).

The ideal study’s perfect spatial coverage would be essential for reducing potential causal

confounds. Given that fMRI has full spatial coverage, this benefit extended to the present study.

However, the ideal study’s perfect spatial resolution would allow the functional connectivity

algorithms used in the present study to even better account for potential causal confounders,

such as neural signals lost through averaging into observed voxel time series. The ideal study’s

perfect temporal resolution would present a challenge to the FC algorithms used here, since

action potentials and downstream changes in local field potentials would occur with a temporal

lag. Such lags would provide additional constraints on causal inferences not accounted for in the

present study, but which are utilized in actflow studies utilizing higher temporal resolution

methods (Mill et al., 2021). As mentioned above, another important component in the ideal

study would be to follow the causal chain from stimulus to the cognitive phenomenon of interest

(i.e., 2-back vs. 0-back activity increases in right DLPFC) to motor responses (behavior). This

more comprehensive explanation of the DLPFC n-back effect is beyond the scope of the present

study, but something close to this level of explanation—of a different set of neurocognitive

phenomena—has been achieved in a recent actflow study (Ito et al., 2021). Finally, the ideal

study would use stimulation and lesion approaches to fully verify the causal relevance of

observed neural signals. While we utilized simulated lesioning to help verify the causal relevance

of observed activations and connections, this illustrates an opportunity to use empirical

stimulation and lesion approaches to verify the causal predictions made here.

We estimated causal networks using resting-state data, which has become a standard approach

in neuroimaging and in actflow models. However, a recent study demonstrated improvements in

actflow predictions when using task-state FC (relative to resting-state FC) (Cole et al., 2021). We
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nonetheless chose to use resting-state FC here, given improvements in explanatory power with

this approach. Specifically, successful actflow predictions using FC from a brain state (rest)

other than the state of interest (e.g., 2-back task performance) provided evidence that our

inferences were based on latent causal properties that generalize across brain states (McCormick

et al., 2021). This is largely equivalent to estimating causal effects over structural connectivity

networks, which (because structural connectivity generalizes over brain states) can be

considered latent causal factors underlying dynamic neural processes. This approach contrasts

with an account in which the identified causal interactions during the state of interest (e.g.,

2-back task performance) would reveal no information regarding whether the identified

mechanism generalizes beyond the observed state. Further, inferring causal networks using data

from another state reduces the chance of overfitting to noise (Lever et al., 2016), which could

potentially result in false causal inferences. An additional practical consideration is that FC

estimation is substantially improved by including more time points, such that actflow

predictions (and causal inferences) can be improved using the brain state(s) with the greatest

amount of data (Cole et al., 2021; Sanchez-Romero & Cole, 2021). Using causal FC estimates

from the state of interest nonetheless provides an opportunity for future research, given the

possibility that some details of the actflow mechanisms generating cognitive effects were not

observed with the present approach (e.g., task-specific DLPFC FC updates during the n-back

task).

In our study, FC networks were inferred using the PC algorithm due to its strong causal

principles, implementation simplicity, efficient running times, and adaptability (here we used

linear conditional association tests, but nonlinear or nonparametric tests can be used if

necessary). But other available directed FC methods could in principle be applied. Promising

alternatives are an efficient implementation of the popular dynamical causal modelling (DCM)

(Frässle et al., 2021), and artificial neural network modeling approaches such as the mesoscale

individualized neurodynamic modeling (MINDy) (Singh et al., 2020) and current-based

decomposition (CURBD) (Perich et al., 2020). These methods use different causal principles

and estimation techniques other than the PC algorithm (and related Bayes networks methods

(Ramsey et al., 2011, 2017)), and thus offer future opportunities to explore the robustness and

diversity of mechanistic actflow explanations across diverse FC procedures.

The PC algorithm, as applied here, estimates contemporaneous functional associations from

fMRI data, but for neural data acquired with higher temporal resolution, such as

electroencephalography (EEG) or magnetoencephalography (MEG), it would be possible to

apply temporal FC methods based on autoregressive processes (Amblard & Michel, 2013; Gilson

et al., 2019; Malinsky & Spirtes, 2018; Moneta et al., 2011; Novelli et al., 2019; Runge, 2018;

Shen et al., 2019) that identify temporally lagged functional interactions between brain regions.

For example, Mill et al. (2021) have recently shown how temporally resolved FC networks can

characterize with high precision the dynamics of the task-evoked causal activity flow that

produce cognitive computations.

Tavor et al. (2016) presented an approach where task-evoked activations are predicted with

resting-state connectivity maps and structural features as regressors, and recently Dohmatob et

al. (2021) proposed a predictive model where resting-state spatial maps (e.g., default mode
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network) are used as regressors to predict task activations—as opposed to linearly combining

region-wise FC connections and activations as in actflow. However, while it is unclear that these

predictive models offer tractable causal mechanistic accounts of cognitive task activations, their

insight into the statistical associations between resting and task states may still provide

complementary explanations relative to mechanistic actflow models.

Overall, the results presented here show that activity flow predictive models based on causal FC

methods can accurately predict activations for a wide variety of brain regions and task

conditions, offering the bases for a new explanatory paradigm with the flexibility and

mechanistic properties to advance our understanding of network-based local and distributed

cognitive computations in the human brain.
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