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Abstract

Bulk segregant analysis (BSA) is a technique for identifying the genetic loci that underlie
phenotypic trait di↵erences. The basic approach of this method is to compare two pools
of individuals from the opposing tails of the phenotypic distribution, sampled from an in-
terbred population. Each pool is sequenced and scanned for alleles that show divergent
frequencies between the pools, indicating potential association with the observed trait dif-
ferences. BSA has already been successfully applied to the mapping of various quantitative
trait loci in organisms ranging from yeast to maize. However, these studies have typically
su↵ered from rather low mapping resolution, and we still lack a detailed understanding of
how this resolution is a↵ected by experimental parameters. Here, we use coalescence theory
to calculate the expected genomic resolution of BSA. We first show that in an idealized in-
terbreeding population of infinite size, the expected length of the mapped region is inversely
proportional to the recombination rate, the number of generations of interbreeding, and the
number of genomes sampled, as intuitively expected. In a finite population, coalescence
events in the genealogy of the sample reduce the number of potentially informative recom-
bination events during interbreeding, thereby increasing the length of the mapped region.
This is incorporated into our theory by an e↵ective population size parameter that specifies
the pairwise coalescence rate of the interbreeding population. The mapping resolution pre-
dicted by our theory closely matches numerical simulations. Furthermore, we show that the
approach can easily be extended to modifications of the crossing scheme. Our framework
enables researchers to predict the expected power of their mapping experiments, and to
evaluate how their experimental design could be tuned to optimize mapping resolution.

Introduction

The advent of easy and a↵ordable genome sequencing has enabled powerful genetic map-
ping approaches. In addition to improving our understanding of the molecular basis of
phenotypic traits, such approaches can have important practical applications. For exam-
ple, genetic mapping can help us identify variants that underlie human diseases [1], localize
genes associated with favorable traits in plant or animal breeding [10, 37], and detect the
loci responsible for drug or pesticide resistance [3, 28, 29].
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Various techniques have been developed for this purpose, ranging from classical linkage
mapping to genome-wide association studies (GWAS), with numerous extensions or com-
binations of these approaches that are often tailored towards specific applications. Which
particular technique is best suited for a given problem can depend on a variety of factors,
such as the genetic architecture of the trait, the specific biology of the study system, the
resources available for experiments and sequencing, and the mapping resolution desired.

In species that can be experimentally crossed, classical linkage mapping has proven a
powerful technique for detecting quantitative trait loci (QTL) [20, 22, 25, 39]. This method
involves the generation of an F1 cross from two parental homozygous strains of contrasting
phenotypes. The F1 o↵spring are then backcrossed to the parental strains, and the resulting
progeny are phenotyped for the trait of interest and genotyped at a set of marker loci
distributed across the genome. By scanning for markers with an inheritance pattern that
correlates with the trait, one can localize the segments of the genome on which causal
variants could reside. This method has long been the primary genetic mapping technique.
However, it tends to attain rather low genomic resolution (i.e., the length of the identified
genomic region in which the causal locus must be contained but cannot be more precisely
pinpointed). This is because the segments linked to the parental strains are typically quite
long due to the limited number of recombination events in a single cross.

GWAS is an alternative approach for QTL mapping that does not require experimental
crosses, but instead exploits historical recombination events in a genetically diverse pop-
ulation. In this approach, a large number of individuals are genotyped at a dense set of
SNP markers, or by whole genome sequencing, and phenotyped for the trait of interest [34].
The QTL responsible for trait variation can then be identified by regressing SNP genotypes
against phenotype. The genomic resolution of this approach is limited in principle only by
the density of SNP markers and the genomic distance over which linkage disequilibrium
decays in the mapped population. As a result, GWAS can sometimes detect even individual
causal SNPs and tends to work well also for highly polygenic traits, whereas classical linkage
mapping is more suited for traits with a few major QTL. However, the trait of interest needs
to exhibit su�ciently high levels of additive genetic variation in the population for GWAS
to work. Detection power also tends to be limited for causal variants that segregate at low
population frequency. In addition, due to the large number of SNPs tested, the thresholds
for calling statistical significance can be very high.

Bulk segregant analysis (BSA) is a mapping approach that combines ideas from linkage
mapping and GWAS [24]. Like classical linkage mapping, BSA starts from two homozygous
parental strains of contrasting phenotypes. These strains are then crossed to generate an F1

population that is further interbred for several generations while maintaining a su�ciently
large population size to allow recombination to break up linkage from the two parental
strains. In the final generation, two pools of individuals are selected from the tails of
the phenotypic distribution, and each of these pools is sequenced. The alleles responsible
for trait di↵erences (as well as any alleles linked to them) should then exhibit significant
frequency di↵erences between the two pools, while alleles at other loci should be present in
both pools at similar frequencies.

In contrast to both GWAS and classical linkage mapping, BSA does not require the
sequencing of individuals, since only the overall allele frequencies in the two pools are rel-
evant. This allows the use of more economic sequencing approaches such as Pool-seq [30].
The resolution of BSA is still expected to be considerably lower than GWAS because the
number of generations over which the population is interbred will be limited. For longer
experiments, the e↵ects of drift could also become problematic [26]. However, in contrast to
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GWAS, BSA can still be used for detecting QTL where causal alleles are segregating at low
frequency in the population, as long as they are present in one of the parental strains. This
could be a key factor for applications such as the mapping of drug or pesticide resistance
mutations.

Conceptually, BSA is similar to “introgression mapping” [7,31], where the population is
repeatedly selected for the phenotype of the first parental strain in every even generation
of the experiment. The surviving individuals are then back-crossed to the second parental
strain and the resulting o↵spring are interbred without selection in every odd generation.
Under this approach, the population at the end of the experiment should be genetically
similar to the first strain in the genomic regions that surround causal QTL, while it should
be similar to the second parental strain for the rest of the genome. Note, however, that this
approach can require a considerably higher experimental e↵ort than BSA.

BSA has already been successfully applied in various contexts. For example, implemen-
tations of this approach have been used to identify DNA markers linked to disease-resistance
genes in lettuce [24] and pest-resistance genes in crops [32], to study horizontal gene transfer
in Tetraychus urticea [4], to locate QTLs associated with drought resistance in maize [27],
and to map the genetic basis of various complex traits in yeast and Drosophila [8, 18, 21].

Despite these successful applications, one practical shortcoming of BSA is its tendency to
produce very wide peaks of significance, which in previous studies have often extended over
hundreds of kilobases [38] or even several megabases [33]. This is particularly problematic
because we do not currently have a good understanding of how the expected mapping res-
olution is determined by biological and experimental parameters. Simulation studies have
shed some light on this issue and demonstrated that more generations of interbreeding, a
larger population size during interbreeding, and deeper sequencing can all improve mapping
resolution, while the size of the selected pools apparently has less of an impact [26]. Nev-
ertheless, it would still be desirable to have an analytical understanding of exactly how all
of these factors influence mapping resolution; this would allow us to predict the expected
resolution for a given experiment, and to assess which factors one should tune to optimize
the mapping resolution most economically.

In this study, we employ coalescence theory to develop an analytical framework for
calculating the expected mapping resolution of a BSA experiment. Our theory reveals
how the recombination rate of the study organism, the e↵ective population size during
interbreeding, the overall length of the experiment, and the number of genotyped individuals
combine to determine the maximally achievable mapping resolution for a trait with a simple
genetic architecture.

Results

Consider a phenotypic trait determined by a single QTL with two segregating alleles: A and
a. We assume that recombination occurs at a uniform rate r per bp along the chromosome.
For simplicity, we neglect gene conversion and assume that recombination events always
result in crossover. Starting from the two founding strains (“blue” and “red”) which we
assume have genotypes AA and aa, respectively, a BSA experiment is performed for t

generations of interbreeding, as outlined in Figure 1A. At the end of the experiment, we
select two samples from the interbred population, such that the first sample contains s

chromosomes of genotype A, while the second contains s chromosomes of genotype a. In
practice, this could be achieved be selecting s/2 individuals that are homozygous for A as
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the first sample, and s/2 individuals that are homozygous for a as the second sample (our
approach thus relies on the ability to accurately identify such individuals based on their
phenotype). Each of the two samples is then pooled and sequenced.

A Causal
LocusF0

F1

♀ ♂

Ft

AA-pool aa-pool

Allele A
Allele a

Interbreeding

AA aa

Aa

B

Figure 1: Illustration of BSA. (A) Our model assumes a trait determined by a single QTL with
two di↵erent alleles (A, a). The starting point of the experiment are two homozygous parental strains,
represented by red and blue chromosomes. The blue strain carries the A allele and the red carries the a
allele. An F1 population is created and interbred for t generations. At the end of the experiment, two
pools of individuals are selected such that the first comprises only AA individuals and the second only aa
individuals. The mapping resolution is determined by the length of the region surrounding the QTL for
which all chromosomes in the AA-pool still have blue ancestry, while all in the aa-pool still have red ancestry.
(B) Mapping resolution in a simulated BSA experiment for a QTL located at the center (red line) of a 10
Mb-long chromosome. Interbreeding was modeled for 10 generations in a population of 100 individuals with
a uniform recombination rate of 1.0 cM/Mb (see Methods). Two pools of 10 AA and 10 aa individuals were
selected at the end of the experiment. The blue curve shows the G0 statistic estimated from marker SNPs
placed at equidistant intervals of 1 kb along the chromosome to di↵erentiate ancestry from the two parental
strains. The peak in G0 around the QTL indicates the region where all chromosomes in the AA/aa pools
still have blue/red ancestry, which extends for ⇠ 0.5 Mb.

As a consequence of recombination during interbreeding, each of the chromosomes sam-
pled at the end of the experiment should be a mosaic of red and blue ancestry segments.
However, there should be a region surrounding the QTL where all chromosomes in the AA-
pool still have blue ancestry, while all in the aa-pool still have red ancestry. The maximally
achievable mapping resolution is determined by the size of this region (assuming that there
is only one such region in the sample). Several summary statistics have been developed to
identify such regions, which typically rely on the detection of di↵erences in allele frequencies
at marker SNPs between the two pools. Examples for such statistics include ancestry dif-
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ference (Ad) [26], �(SNP� index) [9], and a modified G-statistic (G0) [21]. An illustration
of this mapping problem is provided in Figure 1B, where we show G

0 estimated along a
chromosome in a simulated BSA experiment.

The goal of our theoretical analysis will be to calculate the expected length of the region
where all chromosomes in the AA-pool still have blue ancestry, while all in the aa-pool
still have red ancestry. For this purpose, let us define D as the distance to the closest
“ancestry breakpoint” (defining a point where ancestry changes between blue and red in a
chromosome) located downstream of the QTL among all chromosomes in the samples (Figure
2A). Due to symmetry, the expected length of the mapped region will then be simply 2E[D],
where E[D] denotes the expectation value of D (we will neglect edge e↵ects when a QTL
is located close to the start/end of the chromosome). This length determines the expected
mapping resolution of the BSA experiment (with “shorter” expected mapping tract lengths
corresponding to “higher” resolution). Note that the actually achievable resolution will
likely be lower in practice than predicted by our theory due to the need to rely on marker
SNPs as proxies for ancestry, as well as other experimental factors such as sequencing errors.

Our general approach for the calculation of E[D] is to trace the lineages of all sampled
chromosomes back to the two parental strains, and then study how ancestry breakpoints
have been generated along this genealogy (Figure 2B). Note that due to recombination
events, local genealogies will vary as one moves along the chromosome of the samples,
constituting the so-called “tree sequence” [17]. However, at any given position, there will be
exactly one genealogy. Thus, the lineage of any given sampled chromosome at that position
can be traced back all the way to a single chromosome in the F0. If this happens to be a
red chromosome, the sampled chromosome will be assigned red ancestry at this position,
otherwise it will be assigned blue ancestry.

Each ancestry breakpoint in a sampled chromosome stems from a crossover event in one
of its ancestors. Importantly, this must have been an ancestor that carried a blue ancestry
segment around the crossover location in one of its chromosomes, and a red one in the other
(Figure 2B). By contrast, crossover events at positions where an individual carries either
two blue or two red ancestry segments around the crossover location will never create new
ancestry breakpoints.

Infinite Population Model

We initially want to assume an idealized model of an interbreeding population of infinite size.
This is for two reasons: first, we want to be able to neglect coalescence events when tracing
back the lineages from the chromosomes in our sample to the chromosomes in parental
strains. Second, we want to be able to neglect any changes in allele frequencies over the
course of the experiment due to random genetic drift.

Let us first consider a short BSA experiment where the population is already sampled
in the F2. Since all individuals in the F1 carry one red and one blue chromosome, all re-
combination events in this generation should create new ancestry breakpoints. We model a
uniform recombination rate (r) per base pair. In 2s sampled chromosomes from the F2 (rep-
resenting the combined two pools), the overall rate (R) at which new ancestry breakpoints
have been created per bp in this generation is therefore simply R = r ⇥ 2s.

Assuming R ⌧ 1, we can model these events by a Poisson process along the chromosome.
The distance D to the closest ancestry breakpoint downstream of the QTL in all sampled
chromosomes should then be an exponential random variable with cumulative density func-
tion P (D  d) = 1� e

�Rd and expectation value E[D] = 1/R = 1/(2rs).

5



B

F1

F3

F0

F2
Crossover that creates
ancestry breakpoint

Crossover that creates
no ancestry breakpoint

……
!

A

Figure 2: Resolution of a BSA experiment. (A) We define D as the distance between the QTL
and the first ancestry breakpoint downstream of the QTL in all samples. (B) Example of a full pedigree
of an individual from the F3. All crossover events that have occurred along its pedigree are also shown.
Only those crossover events occurring in individuals that carried red and blue ancestry at the location of
the crossover actually generated new ancestry breakpoints, and every breakpoint observed in the sampled
chromosome can be traced back to such a specific crossover event in the pedigree.

We can directly extend this process to chromosomes sampled from the F3, but here things
become a bit more complicated. This is because the parents of the sampled individuals are
no longer guaranteed to carry one red and one blue chromosome. Instead, according to
Hardy-Weinberg equilibrium, the probability that a randomly picked individual from the
F2 at any given genomic position will carry chromosomes with di↵erent ancestry is only
1/2. Thus, only half of the crossover events during meiosis are actually expected to create
new ancestry breakpoints in this generation, and the overall rate at which new ancestry
breakpoints are created per bp is therefore R = rs. Since we neglect drift in the infinite
population model, this should be the same fraction for all future generations.

The infinite population model also ensures that no two sampled chromosomes will ever
share a parent or grandparent with each other. Consequently, we can model individual
ancestral lineages completely independently of each other. In 2s chromosomes sampled
from the F3, the overall rate (R) at which new ancestry breakpoints have been generated
per bp is therefore simply the sum of the individual rates over the 2s lineages and the two
parental generations: R = 2rs + rs = 3rs. Every additional generation of crossing will
further increment this rate by rs. Thus, after t generations of interbreeding, the overall rate
will be R = rst. Assuming R ⌧ 1, we can again model these events by a Poisson process
along the chromosome, yielding:

E[D] =
1

R
=

1

rst
. (1)

Because the situation upstream and downstream of the QTL is symmetric, the expected
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resolution of the BSA experiment in this infinite population mode is then simply 2E[D] =
2/(rst) bp. Thus, it is inversely proportional to the product of the recombination rate,
sample size, and length of the experiment. This result is very intuitive; all that matters
is the overall rate at which new ancestry breakpoints are generated along the lineages of
the sample. Note that because we have modeled D as an exponential random variable,
its variance will be given by 1/(rst)2 and the full cumulative distribution function will be
P (D  d) = 1� e

�rstd.

Finite Population Model

In the infinite population model, every ancestry breakpoint present in the sampled chro-
mosomes traces back to a unique crossover event along the genealogy of the sample. In a
finite population, di↵erent chromosomes can share a breakpoint that traces back to the same
crossover event in a common ancestor. In that case, we can no longer describe the geneal-
ogy of the samples by 2s distinct lineages through the interbreeding phase, since individual
lineages could have merged (Figure 3).

An important consequence of this is that the expected “length” of the sample’s genealogy
will be shorter in a finite population compared to our infinite population model, where it
was simply 2st. In general, this should reduce the number of ancestry breakpoints captured
in the sample, thereby increasing the length of the mapped region.

To derive an analytic expression for the mapping resolution in a finite population, let
us assume that we can model it as a diploid Wright-Fisher population with coalescence
e↵ective population size Ne. Let x(i) denote the number of ancestral lineages in the sample’s
genealogy in generation i at a given genomic position (Figure 3). We can calculate how x(i)
is expected to change between consecutive generations, applying a result from the theory of
occupancy distributions [15]:

E[x(i� 1)] = 2Ne

"
1�

✓
1� 1

2Ne

◆x(i)
#
. (2)

Evaluating this equation recursively, starting from x(t) = 2s, then allows us to calculate the
expectation values of x(i) all the way back to i = 2.

As in the infinite population model, every crossover event in the F1 will create a new
ancestry breakpoint, while this should be true for only half of such events in subsequent
generations. Together with the above result for x(i), this allows us to calculate the overall
rate (R) at which new ancestry breakpoints are generated per bp along the genealogy of all
sampled chromosomes:

R = rx(2) +
r

2

tX

i=3

x(i). (3)

Since E[x(i)] < 2s for all i < t, this rate will be smaller than the corresponding rate R = rst

of the infinite population model.
One important assumption underlying Eq. (3) is that the population frequencies of red

and blue alleles still remain constant at 50% over the course of the experiment, so that
from the F2 onward, the probability that a randomly chosen individual carries both a
red and a blue ancestry segment at any given genomic position remains at 0.5. However,
random genetic drift should lead to a decay of heterozygosity (H) over time according to
H / exp(�t/(4Ne)], and the probability that an individual carries ancestry segments from
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Figure 3: Infinite and finite population models. (A) In the infinite population model, all lineages
descend independently and the overall length of the genealogy of 2s sampled genomes is simply 2st. (B)
In the finite population model, by contrast, lineages can coalesce in ancestors of the sample, reducing
the expected overall number of ancestors in previous generations and thereby the expected length of the
genealogy.

both parental strains at a given genomic position is expected to decrease at a similar rate.
Since we neglect this e↵ect, Eq. (3) should still overestimate R, although much less so than
in the infinite population model. This should primarily be a problem for very long BSA
experiments with small Ne where t ⌧ 4Ne does not hold.

As long as R ⌧ 1, we can again model the creation of new ancestry breakpoints by a
Poisson process along the chromosome. The distance D to the closest ancestry breakpoint
downstream of the QTL captured in the sample will then be an exponential random variable
with expectation value:

E[D] =
1

R
=

1

rx(2) + r
2

Pt
i=3 x(i)

. (4)

This result provides an analytic solution for the expected mapping resolution of a BSA
experiment with an interbreeding population of e↵ective size Ne. However, its calculation
requires iterative evaluation of Eq. (2), and we are not aware of any closed-form solution for
this recursion. Even though all elements of x(i) can be easily calculated with the help of a
computer, this may not be particularly helpful in allowing us to understand how individual
parameters are expected to a↵ect the mapping resolution. To address this issue, we will make
use of a previously suggested deterministic approximation for x(i), which can be obtained
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by mapping the recursion to a di↵erential equation [6, 11, 14,23]:

x(i) ⇡ 2s

2s� (2s� 1)e�
t�i
4Ne

. (5)

We will further replace the summation in Eq. (3) by an integral over the t generations of
the experiment, yielding:

R ⇡ r

2

Z t

0
x(y)dy = 2Ner ln

⇣
2s

h
e

t
4Ne � 1

i
+ 1

⌘
. (6)

Note that this integration assumes that recombination events along the genealogy create
ancestry breakpoints with a uniform probability of 1/2 in every generation (not just from
the F2 onward). This assumption is obviously incorrect for individuals in the F1, where
every recombination event will generate a new ancestry breakpoint. However, by extending
our integration back to the F0, where recombination events never generate new ancestry
breakpoints, we e↵ectively compensate for this e↵ect, at least as long as E[x(0)] ⇡ E[x(1)].
This yields an expected mapping resolution of:

E[D] ⇡ 1

2Ner ln
⇣
2s

h
e

t
4Ne � 1

i
+ 1

⌘ . (7)

In the following, we will refer to Eq. (4) as the “recursion” solution, while the approximation
presented in Eq. (7) will be referred to as the “integration” solution.

Limiting cases

We now want to take a closer look at the expected mapping resolution derived in Eq. (7)
and discuss how it relates to the result from the infinite population model. First, as we
already mentioned above, our approach relies on the assumption that t ⌧ 4Ne, as drift
would otherwise be strong and heterozygosity would be expected to decay noticeably over
the course of the experiment. This assumption specifies a regime where the probability that
a given pair of lineages coalesce over the course of the experiment is still small (since the
expected time to pairwise coalescence should be 2Ne generations). Given t ⌧ 4Ne, we can
perform a Taylor series approximation to the exponential in Eq. (7):

ln
⇣
2
h
e

t
4Ne � 1

i
+ 1

⌘
⇡ ln

✓
st

2Ne
+ 1

◆

) E[D] ⇡ 1

2rNe ln
⇣

st
2Ne

+ 1
⌘ . (8)

This approximation allows us to better understand how the infinite and finite population
models di↵er from each other. In the infinite population model, mapping resolution was
simply inversely proportional to the product of recombination rate (r), sample size (s),
and number of generations (t) of the experiment. In the finite population model, mapping
resolution is still inversely proportional to the recombination rate, but the e↵ects of sample
size and experiment length are now attenuated by a logarithm. Consequently, increasing
those parameters is no longer expected to improve mapping resolution as e↵ectively as in the
infinite population model. We further note that sample size and generations enter Eq. (8)
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only in terms of the product s⇥ t. Varying each of these two parameters by the same factor
is therefore expected to produce a similar impact on the expected mapping resolution (as
long as t ⌧ 4Ne still holds). In practice, this means that running an experiment twice as
long, for instance, should yield the same benefit as doubling the sample size.

Eq. (8) also reveals where the e↵ects of a finite population start to become substantial.
When st ⌧ 2Ne, we can further approximate

ln

✓
st

2Ne
+ 1

◆
⇡ st

2Ne

) E[D] ⇡ 1

rst
. (9)

Thus, the infinite and finite population models converge in this regime. The two models
will increasingly diverge from each other as st becomes of the same magnitude as 2Ne.
The condition st ⌧ 2Ne should typically be much stricter than t ⌧ 4Ne, our essential
assumption for the finite population model, unless sample size is very small. The former
e↵ectively assumes that there are only very few coalescence events among the genealogy of
all sampled chromosomes, whereas the latter only assumed that coalescence was unlikely
between any two sampled chromosomes.

Figure 4 illustrates the behavior of our analytical solutions for the finite and infinite
population models as a function of the product st, and, in the finite population model, for
di↵erent values of Ne. As predicted, both models converge when st ⌧ 4Ne. Compared to
the infinite population model, increasing st provides only diminishing returns for improving
mapping resolution in the finite population model. Lower Ne values generally decrease
mapping resolution.

Figure 4: Analytical solutions for the infinite and final population models. Blue dots show the
prediction by the infinite population model according to Eq. 1; red dots show the prediction by the finite
population model according to Eq. 6 for 3 di↵erent values of Ne. Recombination rate was set to r = 10�8

per bp. To vary st in these equations, we fixed t = 2 and then varied s from 2 to 1024. The infinite and
finite population models converge as st becomes much larger than 2Ne, as predicted by our theory.

Numerical Validation

To evaluate the accuracy of our analytical results, we conducted individual-based simulations
of a BSA experiment (see Methods). Specifically, we modeled an experimental setup as
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described in Figure 1A, assuming a trait that is determined by a single QTL located on a
100 Mbp-long chromosome. We assumed a uniform recombination rate of r = 10�8 per bp
and generation (i.e., 1 cM/Mbp), which we did not vary in our simulations because mapping
resolution should always be inversely proportional to r. The parameters we did vary were
the sample size (s), the e↵ective population size (Ne), and the number of generations of
interbreeding (t).

Figure 5: Comparison between analytical results and simulations. A single QTL located on
a 100 Mb chromosome with a uniform recombination rate of 1 cM/Mb was modeled. Box plots show
the distribution (quartiles) of D estimated over 5000 simulation runs for each given parameter setting.
The top/bottom whiskers represent the highest/lowest datum within the 1.5 interquartile range of the
upper/lower quartile. Blue lines show the means of the data, which tend to be much larger than the
medians. Symbols show the expected resolutions for the infinite (green) and finite (red/orange) population
models according to Equations (1) and (4/7), respectively. Green dots are di�cult to see in the lower left
panel because they are almost completely overlaid by the red dots. Note that these analytical predictions
should be compared to the means of the simulations (blue lines), not the medians. In the top row, we varied
Ne from 50 to 1000 while keeping t = 10 constant. In the bottom row, we varied t from 2 to 20 while keeping
Ne = 100 constant.

Figure 5 shows the comparisons between these simulations and our analytical results
given by Equations (1), (4), and (7) over a broad range of parameter values (Ne varying
between 10 - 1000, s varying between 2 - 1024, and t varying between 2 - 20). For each
parameter setting, we estimated D over 5000 simulations. The resulting distributions are
shown by box-and-whisker plots. Note that these distributions tend to have rather pro-
nounced positive skews, such that their means tend to be much larger than their medians.
Our analytical results are given in the form of expectation values for D, and thus need to
be compared to the mean values of the simulation data, not the medians.

The simulation results show excellent agreement with our recursion solution for the fi-
nite population model provided in Eq. (4). As already discussed above, the solution from
the infinite population model provided in Eq. (1) constitutes an upper bound for the maxi-
mally achievable mapping resolution. Consistent with analytical predictions, the finite and
infinite models converge when st ⌧ 4Ne, and the infinite population model increasingly
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overestimates mapping resolution as the condition st ⌧ 4Ne is increasingly violated.
The integration approximation of the finite population model we derived in Eq. (7) gen-

erally works well for small and moderate sample sizes, but tends to underestimate mapping
resolution when s approaches Ne in magnitude. It also breaks down when t is very small (as
can be seen in the lower left panel for t = 2, where the integration approximation actually
becomes less accurate than the infinite population model). This is a consequence of the
use of a continuous integration in Eq. (6), which underestimates the total tree length when
the number of discrete generations is small. However, in this small t regime, the recursion
solution, which is most accurate, can also be easily evaluated due to the need for only few
recursion steps.

Extension to alternative crossing schemes

Our analytical approach for calculating E[D] is straightforward to extend to variations of
the experimental design, such as alternative crossing schemes. The key parameters that need
to be ascertained for a given design are the rate ⇢(i) at which new ancestry breakpoints are
generated per bp in the gametes that will make up the individuals in generation i, together
with E[x(i)], the expected number of ancestral lineages present in the sample’s genealogy in
that generation. The expected mapping resolution is then given by a direct generalization
of Eq. (3):

E[D] =
1

Pt
i=2 ⇢(i)E[x(i)]

. (10)

In the standard BSA design, we had ⇢(2) = r and ⇢(i > 2) = r/2, with E[x(i)] calculated
recursively by Eq. (2) using the coalescence e↵ective size Ne of the interbreeding population.

In the following, we will illustrate how this approach can be applied to two proposed
modifications of the standard BSA design. The first approach is introgression mapping (IM),
illustrated in Figure 6 (left). Here, AA homozygotes are selected in every even generation
of the experiment (the approach thus relies on our ability to do so e↵ectively). These
individuals are then backcrossed to the aa parental strain. The resulting o↵spring are
interbred without selection in every odd generation, after which the cycle starts anew. At
the end of the experiment, s individuals of genotype AA are selected and sequenced. Their
genomes should then resemble the AA strain across a genomic region that surrounds the
causal QTL, while resembling the aa strain throughout the rest of the genome.

During the odd generations of an IM experiment, all individuals should be Aa heterozy-
gotes at the QTL, and thus carry one red and one blue ancestry segment across some region
surrounding it. These segments will become shorter and shorter due to recombination events
as the experiment progresses. The rate at which new ancestry breakpoints are created close
to the QTL, during the odd generations, should therefore be twice that of a standard BSA
experiment, while it will be zero in all even generations (when all surviving individuals will
be AA homozygotes at the QTL). When averaged over the whole experiment, new ancestry
breakpoints in the vicinity of the QTL should hence arise at a rate of r/2, similar to the
BSA design.

However, due to the selection step for AA homozygotes in the even generations, the
coalescence rate in the IM design should be higher as compared to a standard BSA design
with an interbreeding population of comparable size, given that only 1/4 of the population
should be AA homozygotes. Thus, the value of Ne will need to be adjusted in Eq. (2).
A reasonable approximation would be to use the harmonic mean between odd and even
generations, yielding Ne = 0.4N 0, where N

0 is the coalescence e↵ective population size of
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Figure 6: Extension of our theory to two di↵erent crossing schemes. In the introgression mapping
(IM) scheme shown in the left panels, AA homozygotes are selected in even generations and then backcrossed
to the aa founding strain. The resulting o↵spring are interbred without selection in odd generations. At the
end of the experiment, AA homozygotes are sequenced. The bottom-left panel shows that the distributions
of D values in simulated IM experiments conform well to our analytical predictions (see Methods). The
heterozygote selection (HS) scheme shown in the right panels is similar to the standard BSA design, except
that only Aa heterozygotes are allowed to reproduce in every generation. Our theory again accurately
predicts the expected mapping resolution under this design (bottom-right panel).

the interbreeding population in a scenario where no selection for homozygotes would be
performed. Figure 6 confirms that this approach produces an accurate analytical prediction
for the expected mapping resolution in an IM experiment.

This example illustrates how our theory can help evaluate the expected performance of
alterations to an experimental design. For the IM design in particular, the fact that ⇢(i)
should be comparable to a standard BSA design when averaged over the entire experiment,
whileNe should be smaller, suggests that an IM design should generally have lower resolution
than BSA, confirming previous simulation results (Pool 2016). Yet, there may be other
advantages of IM. For example, this design ensures that A and a alleles are kept at 50%
frequency throughout the experiment, thereby eliminating any potential e↵ects of drift or
selection at the QTL that could exist in a standard BSA design.

The second alternative design we want to discuss is heterozygote selection (HS), illus-
trated in Figure 6 (right). In this approach, only Aa heterozygotes are selected for repro-
duction in every generation (again assuming that we can do so e↵ectively). This should
double the rate of ancestry breakpoint generation in the vicinity of the QTL as compared
to a standard BSA design, so that ⇢(i) = r for all generations i � 2. However, the ef-
fective population size will again be reduced due to the selection step. Here, a reasonable
approximation should be that Ne is about 1/2 of that in a standard BSA design with an
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interbreeding population of comparable size, given that about half of the population are
expected to be Aa heterozygotes at any point. Our simulations confirm that this approach
again produces an accurate analytical prediction for the expected mapping resolution in an
HS experiment (Figure 6).

In principle, due to the higher rate of ancestry breakpoint generation, the HS design
could therefore yield a mapping resolution up to two times better than a standard BSA
design, as long as this is not outweighed by the concomitant reduction in Ne. Note that, as
with IM, the HS design maintains the frequency of A and a alleles at 50%.

Methods

Simulations of BSA experiments were implemented in the SLiM (version 3.5) evolutionary
simulation framework [13]. We modeled a single QTL located on a 100Mb chromosome.
Each experiment was initialized with two homozygous parental strains (denoted as AA and
aa strains). The F1 was always seeded with 1000 males from the AA strain and 1000 fe-
males from the aa strain. The population was then interbred over t discrete, non-overlapping
generations, using SLiM’s default Wright-Fisher model without selection. While the total
number of individuals was kept constant at 2000 in each generation, only Ne randomly
chosen individuals were actually allowed to mate and reproduce in each generation. Re-
combination occurred at a uniform rate of r = 10�8 per bp (i.e., 1 cM/Mb) along the
chromosome in all simulations.

For the comparisons of analytical vs. simulation results in the standard BSA design
(Figure 5), as well as the HS scheme (Figure 6), we used SLiM’s tree-sequence recording
feature [12] to track the ancestry at each position in each genome. This allowed us to directly
identify ancestry breakpoints in the sampled chromosomes without having to model any
marker SNPs for such inference.

For the simulations of the IM scheme (Figure 6), we modeled SNPs placed at equidistant
intervals of 10 kb along the chromosome to di↵erentiate ancestry from the two parental
strains. While this approach only allows for indirect and approximate inference of ancestral
breakpoint locations, it should not pose a limiting factor given that the mapping resolution
was several orders of magnitude larger than the distance between marker SNPs.

For the simulation of a short-read PoolSeq experiment (Figure 7), we used marker SNPs
placed at equidistant intervals of 1 kb along the chromosome. Here, we assumed that every
SNP provided an independent locus where a new set of C chromosomes was genotyped from
the s chromosomes present in each sample. These chromosomes were chosen randomly with
replacement. Thus, we e↵ectively assumed a read length of less than 1 kb.

The calculation of G0 in Figures 1B and 7 followed the procedure illustrated in [21].
Smoothed curves were obtained by a weighted sum of all SNPs within the window bracketing
the focal SNP, where the weight of each SNP was obtained by a Nadaraya-Watson kernel
regression [35].

The SLiM model for simulations, Python scripts for data analysis, and other related files
are available at: https://github.com/runxi-shen/Predict-Genomic-Resolution-of-BSA.

Discussion

BSA has become an increasingly popular technique for mapping the genetic basis of pheno-
typic traits. Previous studies have used simulations to study how the genomic resolution of
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BSA is a↵ected by key experimental parameters such as sample size and number of genera-
tions of interbreeding [26]. However, a truly quantitative understanding has so far remained
elusive. In this study, we were able to derive an analytic solution for the expected mapping
resolution of a BSA experiment. We have further demonstrated how our framework can be
easily extended to modifications of the experimental design, such as introgression mapping
or selection for heterozygotes.

Figure 7: The impact of sample size versus coverage in a BSA experiment with short-read
sequencing. All simulations modeled a single QTL (vertical red line) at the center of a 10 Mb-long
chromosome in a BSA experiment with Ne = 100 and t = 10. The outside plots show two example
simulation runs of experiments with sample sizes s = 1000 (left) and s = 100 (right), where we assumed
perfect sequencing data for every genome in the two pools. The middle plot shows a simulation with sample
size s = 1000 as before, but here with the addition of simulated short-read sequencing at only C = 100⇥
coverage in each pool. Blue lines show tricube-weighted G0 statistics, while green lines show a smoothed
version of that statistic. The red horizontal bars indicate the size of the peak around the causal locus in
which G0 is maximal, thereby determining mapping resolution. As expected, larger sample size yields better
mapping resolution. Remarkably, the low-coverage experiment yields a similar resolution to the full-coverage
experiment, despite having less than 10% of genomes, on average, actually genotyped at each locus.

Our approach is based on the insight that the mapping resolution of a BSA experiment
is ultimately limited by the length of the genomic region surrounding the QTL in which
all sequences in each sampled pool still share the ancestry of the respective parental strain.
This region is delimited by the two closest ancestry breakpoints observed upstream and
downstream of the QTL. We model the occurrence of such breakpoints by a Poisson process
along the chromosome, with its rate determined by two factors: the expected length of the
sample’s genealogy at any given genomic position, and the expected rate at which new an-
cestry breakpoints were generated along this genealogy in the ancestors to the sample. Both
factors combine to determine the expected mapping resolution according to Equation (10).

Our solution sheds light on the possible avenues for improving mapping resolution. First,
the rate of ancestry breakpoint generation could be increased. While this rate is obviously
bounded by the recombination rate of the organism, only recombination events in individuals
that carry ancestry segments from both parental strains at the crossover location actually
generate new ancestry breakpoints. Thus, one could seek to increase the frequency of such
individuals; this is the rationale behind the “heterozyogte selection” strategy we discussed
above. Second, the length of the sample’s genealogy could be increased. In principle, this
could be achieved by using a larger sample size, including more generations of inbreeding,
or achieving a lower coalescence rate during the experiment. Exactly how these parameters
play out will depend on the specific experimental setup.

In Equation (7), we provided an approximate solution for the maximal mapping resolu-
tion of a standard BSA experiment. This solution requires specification of the coalescence
e↵ective population size (Ne) of the interbreeding population that determines the pairwise
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coalescence rate in the genealogy of the sample. In practice, the value of Ne will typically be
smaller than the actual number of individuals present in the interbreeding population, espe-
cially when there is high variance in o↵spring number among individuals [5]. While various
methods have been developed for inferring Ne of experimental populations [2,16,19,36], such
inference may be non-trivial, and it may thus be unclear how to choose the appropriate value
for this parameter; at a minimum, however, the population size of the interbreeding popu-
lation constitutes an upper bound for Ne. Our analysis suggests that Ne should generally
be kept as large as possible throughout the experiment to optimize mapping resolution.

The way in which we assess mapping resolution in our theory may not always corre-
spond exactly to what determines the resolution in a real-world experiment. For example,
our mathematical approach is based on the location of ancestry breakpoints in the sampled
chromosomes, but such breakpoints are typically not directly observable. Instead, their
location can only be inferred approximately through marker SNPs that allow one to distin-
guish ancestry from the two founding strains. The genomic density of such marker SNPs
thus places a practical limit on the achievable mapping resolution; however, this should not
be problematic as long as the average distance between di↵erentiating sites remains short
compared to the mapping resolution predicted by our theory. Another simplification is that
we have assumed perfect sequencing, while any experiment will su↵er from some level of
sequencing errors. This will create ”noise” in the summary statistics used for mapping such
as G0.

Perhaps most importantly, the sequencing data in a BSA experiment will typically be
comprised of short-read sequences from pooled samples [30], rather than individual genome
sequences. Unless the sequencing coverage level substantially exceeds the sample size, the
number and specific set of genomes that are actually sequenced at any given genomic position
will thus vary along the genome. This raises an important practical question: is sample size
(s) or coverage (C) the more critical factor in limiting the resolution of a BSA experiment?
Our theory makes a clear prediction. Since mapping resolution is ultimately limited by
the ancestry breakpoints present in the sampled genomes, the size of the samples will be
the primary factor. In larger samples, there is simply a better chance to capture more
breakpoints that are closer to the QTL. By contrast, even for low coverage (C ⌧ s), it is
still possible to achieve a mapping resolution close to what would be predicted by our theory
for the given sample size. This is due to the randomness in the pooled sequencing process.
Consider, for example, two SNPs that are separated by a distance that is substantially larger
than the typical read length. We will then likely find di↵erent sets of sampled chromosomes
being sequenced at each. Thus, as we move away from the QTL, each such locus can be
regarded as a new trial that provides another chance to observe a read with ancestry from
the opposite strain, thereby allowing us to confine the location of the causal locus. As long
as read length is much shorter than the expected mapping resolution, the large number of
trials can thus make up for the limited number of chromosomes sequenced at each individual
locus.

In Figure 7, we confirm this prediction for simulated BSA experiments, demonstrating
that short-read sequencing at a coverage level ten times smaller than the sample size still
achieves a mapping resolution similar to that achieved with full sequencing coverage of
the entire sample. Interestingly, our theory suggests that substantially longer reads would
actually perform worse in such situations, as this would increase the distance over which
the set of sequenced genomes would remain correlated.

For the sake of mathematical tractability, we have focused on a rather simplistic model
of a trait controlled by a single QTL. Our results should still hold for traits determined by
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multiple loci, as long as these loci are on separate chromosomes. However, when several QTL
are located on the same chromosome, overlap between signals could become a problem [26].
Furthermore, it may no longer be possible to select for individuals that are homozygous
for the genomic background of the respective parental strain at all QTL. In such cases, we
expect that our theory can only provide a lower bound to the achievable mapping resolution.

Our approach further assumed that recombination rate is uniform along the chromosome,
but it would be rather straightforward to incorporate non-uniform recombination rates. In
particular, recombination events would then need to be modeled by an inhomogeneous
Poisson process in Eq. (3), so that R, and thus also E[D], would become a function of
genomic position. Intuitively, it is clear that we expect higher mapping resolution in regions
of higher recombination rate, and vice versa.

In the early days of molecular genetics, the precision one could hope to achieve in a
mapping experiment was typically limited by the ability to genotype a su�cient number of
individuals at a su�ciently dense set of marker loci. With the sequencing revolution, this
constraint has fundamentally shifted. Today, it is often feasible to obtain whole-genome
sequencing data for samples of several hundreds or even thousands of individuals. Conse-
quently, it is becoming more relevant to understand which other factors fundamentally limit
mapping resolution under a given experimental design. By providing an analytic solution to
the expected mapping resolution of a BSA experiment, based on coalescence theory, we were
able to shed light on how individual parameters combine, qualitatively and quantitatively,
to place a fundamental limit on mapping resolution. We hope that these results can not
only help scientists to set realistic expectations for the power of their planned experiments,
but also to identify which strategies would allow them to optimize their study design most
e�ciently and economically. Finally, we hope that the conceptual approach that underlies
our theory can be extended to other genetic mapping strategies.
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