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Abstract 

Study Objectives: Alcohol abuse is a significant public health problem, particularly in populations in 

which sleep deprivation is common as such as shift workers and aged individuals. Although research 

demonstrates the effect of alcohol on sleep, little is known about the role of sleep in alcohol sensitivity 

and toxicity. We investigated sleep as a factor modulating alcohol toxicity using Drosophila 

melanogaster, a model system ideal for studies of sleep, alcohol and aging. 

Methods: Following 24 hours of sleep deprivation using mechanical stimulation, Drosophila were 

exposed to binge-like alcohol exposures. Behavioral sensitivity, tolerance, and mortality were assessed. 

The effects of chronic sleep deprivation on alcohol toxicity were investigated using a short sleep mutant 

insomniac. Pharmacological induction of sleep for prior to alcohol exposure was accomplished using a 

GABAA-receptor agonist, 4,5,6,7-tetrahydroisoxazolo(5,4-c)pyridin-3-ol (THIP)  to determine if 

increased sleep mitigated the effects of alcohol toxicity on middle-aged flies and flies with 

environmentally disrupted circadian clocks mimicking groups more vulnerable to the effects of alcohol.  

Results: Acute sleep deprivation increased alcohol-induced mortality following alcohol exposure. 

However, sleep deprivation had no effect on alcohol absorbance or clearance. Sleep deprivation also 

abolished functional tolerance measured 24 hours after the initial alcohol exposure, although tolerance at 

4 h was observed. Pharmacologically increasing sleep prior to alcohol exposure decreased alcohol-

induced mortality.  

Conclusions: Sleep quantity prior to alcohol exposure affects alcohol toxicity with decreased sleep 

increasing alcohol toxicity and dampened 24-hour alcohol tolerance. In contrast, increased sleep mitigated 

alcohol-induced mortality even in vulnerable groups such as aging flies and those with circadian 

dysfunction.   

 

Keywords: Drosophila, sleep deprivation, alcohol, sedation, tolerance, toxicity, neural plasticity 
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Statement of significance  

With the growing incidence of sleep deprivation and sleep disorders across adolescents and adults, it is 

important to understand the role of sleep in alcohol toxicity to develop future therapies for prevention and 

treatment of alcohol-induced pathologies. Using Drosophila melanogaster, an established model for both 

sleep and alcohol research, we found that acute and chronic sleep deprivation increased alcohol toxicity 

and eliminated long-term functional alcohol tolerance. In contrast, increased sleep prior to binge-like 

alcohol exposure mitigated alcohol-induced mortality even in vulnerable groups with higher susceptibility 

to alcohol toxicity. 
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Introduction 

Alcohol abuse and its associated pathologies is a pervasive societal problem with serious negative 

impacts on individual health, family structure and the economy1-8. In the United States alcohol use 

disorders account for 79% of all diagnoses of substance use disorders9 and the economic impact of 

alcohol misuse is estimated at $249 billion annually7,10. Alcohol abuse and alcohol pathologies appear 

higher in populations in which sleep deprivation is common including teenagers, young adults, shift 

workers and aged individuals11-18. Although considerable behavioral research has demonstrated the effects 

of alcohol on sleep homeostasis19-21, surprisingly little is known about the role of sleep in modulating 

alcohol sensitivity and toxicity at the physiological level. Sleep impairments are traditionally viewed as 

symptoms of alcohol use disorders; however, sleep disorders increase the incidence and risk of relapse in 

recovering alcoholics22-25. Sleep deprivation represents a significant rising public health problem in the 

United States and the world26-29. The pervasiveness of factors contributing to sleep disruptions including 

artificial light at night, the use of personal electronics and the increase in shiftwork and extended work 

days30,31, combined with the increased risk of substance abuse associated with sleep deprivation, makes 

understanding how sleep deprivation affects alcohol-induced behaviors and toxicity imperative to identify 

and optimize therapies for future prevention and treatment of alcohol-induced pathologies.  

 The high degree of physiological, molecular and neurological conservation between the fruit fly 

Drosophila melanogaster and mammals makes Drosophila an ideal model for the investigation of sleep 

and alcohol interactions32-34. Sleep in Drosophila occurs in stages, varying in intensity during the night 

with observable sex and age dependent differences35-44. As in other species, circadian and homeostatic 

processes regulate sleep in flies with waking activity affecting sleep need38,45. Moreover, alcohol 

physiology is remarkably conserved from flies to humans with parallels in behaviors as well as the 

underlying molecular mechanisms46,47. When exposed to alcohol vapor, initially flies exhibit hyperactivity 

with increased locomotor activity, followed by a loss of motor control and eventually sedation48-51. Flies 

also develop functional alcohol tolerance dependent upon changes in neural plasticity50,52-55 and addiction-

like behaviors56-58 with a preference for alcohol following previous exposure59,60.  
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We investigated the role of decreased and increased sleep in modulating alcohol toxicity. We 

found that acute sleep deprivation increased behavioral sensitivity and mortality following acute and 

repeated exposure to alcohol. These effects were independent of alcohol metabolism as no differences 

were observed in alcohol absorption and clearance between sleep deprived and non-sleep deprived flies. 

Sleep deprivation also inhibited the induction of long-term functional alcohol tolerance observed 24 h 

following the first alcohol exposure, although short-term tolerance measured 4 h following the first 

alcohol exposure was not affected. Chronic sleep restriction also increased alcohol-induced mortality. 

Encouragingly, we found that pharmacologically increasing sleep had the opposite effect of sleep 

deprivation, ameliorating alcohol mortality in middle-aged flies and flies with a disrupted circadian clock. 

This research highlights the critical role of sleep as a factor in alcohol toxicity. 

 

Methods 

Fly Maintenance 

All flies were maintained on standard cornmeal-molasses food at 25°C and 60-70% relative humidity in 

12:12 light-dark (LD) cycles. Insomniac (inc) mutants and the background w1118 line were generously 

provided by Dr. Nicholas Stavropoulos, New York University. Adult flies (~30 per vial) were transferred 

approximately every 3 days to maintain stress-free cultures. All experiments were carried out in an 

environmentally controlled dark room at 25°C and 60-70% relative humidity under dim red light. 

Zeitgeber time (ZT) 0 represents lights on and ZT 12 corresponds with lights off. For experiments 

performed in constant light (LL) conditions, flies were transferred to LL on the day of eclosion. 

Alcohol Exposure   

Alcohol vapor exposure was performed as previously described51,61,62. Four tubes, each containing ~30 

flies, received a steady flow of ethanol vapor at a pre-determined percentage. Precise alcohol percentages 

were achieved by mixing air bubbled through deionized water and 95% ethanol (Koptec, Declon Labs, 

Inc.). Air flow rates were monitored throughout the experiment to ensure consistency of alcohol 
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concentration. Water vapor controls were run simultaneously with 100% water vapor. Alcohol exposures 

were performed at ZT 9 to avoid circadian variation in responses unless otherwise stated for a specific 

protocol. 

Sleep Deprivation 

Consistent sleep deprivation was achieved using gentle mechanical stimulation on the GyroMini Nutating 

Mixer (Labnet International, Inc.). Vials containing ~30 flies were placed at an angled position in a larger 

beaker with a raised block at a fixed position inside the beaker. Mixer rotation caused the vials to rotate 

within the beaker and then gently jump over the raised block, providing the flies with a startle movement 

every 2.5 seconds. The constant motion of the vials combined with the startle ensured consistent sleep 

deprivation with no apparent injuries or increased mortality observed after 24 hours of sleep deprivation. 

Sleep deprivation was performed in an incubator under 25°C, 60-70% relative humidity and 12:12 LD 

conditions.  Non-sleep deprived controls were housed in the same incubator. 

Sedation 

Alcohol-induced sedation was performed as previously described48. Briefly, flies were exposed to 50% 

alcohol vapor for one hour with observations of behavioral state made every five minutes following a 

gentle tap of the vial. Flies were scored as sedated when immobile and lacking coordinated leg 

movements except for spontaneous twitching52. The mean time to 50% sedation was calculated using a 

linear extrapolation. 

Tolerance 

Tolerance was determined as previously described51. Flies received a pre-exposure of 50% alcohol for 30 

minutes at ZT4.5 following a one-hour dark room acclimation period. Sedation was assessed during the 

pre-exposure. Flies were then returned to food vials to allow time for recovery and complete metabolism 

of the alcohol before testing. Testing occurred 4 hours later at ZT9 for short-term rapid tolerance or 24 

hours later for long-term rapid tolerance with all experimental groups represented at each test. Tolerance 

was defined as an increase in average time to reach 50% sedation from the pre-exposure with the 
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difference in sedation time between naïve and pre-exposed flies used for quantification. For tolerance 

experiments, sleep deprivation took place from ZT3.5 – ZT3.5. 

Mortality 

Following each alcohol exposure, flies were returned to food vials placed horizontally for approximately 

2 h to allow recovery of postural control. Immediate mortality was assessed 24 hours following the last 

alcohol exposure and then daily for 6 days. Delayed mortality refers to the cumulative mortality within 

seven days of the final alcohol exposure.  

Gaboxadol Treatment 

Sleep was pharmacologically increased with the GABA-A agonist, 4,5,6,7-tetrahydroisoxazolo [5,4-

c]pyridin-3-ol (THIP or Gaboxadol). 10 d old (in constant light) or 20 d old (in LD) flies were transferred 

to Gaboxadol-containing food (0.05 mg/mL) for either 48 or 24 h respectively prior to repeated alcohol 

exposure. A repetitive alcohol exposure protocol was used to assess alcohol-induced mortality as 

described previously61. Flies were exposed for 3 days to 1 h alcohol vapor at ZT 9 (exposures separated 

by 24 h).    

Alcohol Absorbance 

Following 24 h sleep deprivation, batches of 20 flies were exposed to 50% alcohol vapor for 30 minutes 

at ZT 9, after which they were frozen at 0, 0.5, 1, 2, or 4 h following alcohol exposure. Alcohol 

absorbance was measured using an enzymatic alcohol dehydrogenase assay (ADH-NAD kit; Sigma-

Aldrich) per the manufacturer’s directions and as described previously49,51. Briefly, flies were 

homogenized in 200 uL refrigerated Tris-HCl (pH 7.5) buffer. Homogenate was spun at 15,000 x g for 20 

min at 4°C. 250 uL NAD-ADH reagent was added to a 5-µL aliquot of supernatant. Absorbance was 

measured at 340 nm within 20 min using a 96-well plate format and a Versa-Max plate reader (brand). 

Alcohol absorbance was normalized to total protein to eliminate the effect of body size variation between 

batches of flies. 

Locomotor Activity Rhythms 
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Locomotor activity of adult male flies was monitored using Drosophila activity monitors (Trikinetics, 

Waltham, MA) as described previously63. Sleep activity of flies was recorded following entrainment 

either in LL or LD cycles at 25°C for 4 days, after which the flies were transferred without using 

anesthetic to Gaboxadol-containing media for 48 hours for further measurements. Sleep data were 

analyzed using the ClockLab Suite.    

Statistics 

Statistics were performed using GraphPad Prism Version 6.0. Experimental groups were compared using 

analysis of variance (ANOVA). Post-hoc analyses in multiple comparisons were performed using the 

Bonferroni correction. 

 

Results  

Sleep deprivation increases sensitivity to alcohol-induced sedation 

Sleep deprivation appears to be a contributing factor to the increased use of alcohol as suggested 

in studies of shift workers and young adults64-69. However, relatively little is known about the effects of 

sleep deprivation on alcohol toxicity and alcohol pathologies. As a first step in exploring the modulatory 

role of sleep on alcohol sensitivity, we evaluated the effect of 24 hours sleep loss on alcohol sensitivity. 

Drosophila (mixed sex, 10 d old) were sleep deprived using mechanical sleep deprivation for 24 hours 

(ZT 8 – ZT 8) and then exposed to 50% alcohol vapor (1 h exposure; Figure 1A). As predicted given the 

sedative effects of alcohol, sleep deprived flies were sedated significantly faster than non-sleep deprived 

age-matched controls indicating that sleep loss increases behavioral sensitivity to alcohol (Figure 1B – 

1C; t(14) = 13.46, p = 0.0002).  

Potentially, the alteration in alcohol sensitivity between the groups may have arisen from the 

mechanical procedure used for sleep deprivation rather than sleep deprivation itself. To test whether sleep 

deprivation or mechanically induced stress was the underlying cause of the observed difference in alcohol 

sensitivity, we took advantage of the sex-specific difference in daytime sleep in flies38. Male flies exhibit 

a daytime “siesta sleep” period in which they sleep significantly more during the daytime as compared to 
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mated females70. If the increased behavioral alcohol sensitivity observed in sleep deprived flies was 

attributed to sleep loss, sleep deprivation during the daytime should have a greater impact on males. 

However, if the increased sensitivity to alcohol were due to mechanically induced stress, the effects of 

daytime sleep deprivation would be similar in males and females. Mated 10-d old female and male flies 

were separately sleep deprived for the first eight hours of the subjective day (ZT 0 – ZT 8) and exposed to 

50% alcohol vapor for 1 h at ZT 9 with sedation assayed at 5 min intervals. Sleep deprived males were 

significantly more sensitive to alcohol than non-sleep deprived males with shorter exposure times 

inducing sedation (Figure 1D – 1E; ANOVA: F3,28 = 29.24, p < 0.0001). In contrast, sleep deprivation 

appeared to have little effect on female flies with sleep deprived females showing similar alcohol 

responses to non-sleep deprived flies (Figure 1D – 1E; ANOVA: F3,28 = 29.24, p < 0.0001). These results 

suggest that sleep deprivation increases the behavioral sensitivity to alcohol and these effects are 

independent of any stress from mechanical perturbation.  

Sleep deprivation increases acute and chronic alcohol toxicity 

Excessive binge drinking escalates the incidence of alcohol-poisoning deaths71,72. Therefore, it is 

important to understand the potential confounding effects of sleep loss on alcohol toxicity. To determine 

whether sleep deprivation alters alcohol toxicity, we tested the effect of a single exposure to 50% alcohol 

vapor on mortality. Flies (10 d, mixed sex) were sleep deprived for 24 h (ZT 8 – ZT 8) and exposed to 

50% alcohol vapor for one h at ZT 9 (Figure 2A). Nearly 100% of the flies become sedated under this 

protocol. Mortality was assessed 24 h and 7 days following alcohol exposure. When exposed to alcohol 

vapor following sleep deprivation, flies showed significant mortality 24 h after alcohol exposure 

compared to non-sleep deprived flies exposed to alcohol vapor or flies that were sleep deprived and 

exposed to water vapor (Figure 2B, ANOVA: F3,28 = 22.50, p < 0.0001 and 2C; ANOVA: F3,28 = 14.01, p 

< 0.0001). However, there was no significant further increase in alcohol induced mortality when 

cumulative delayed mortality was measured 7 days following the exposure to alcohol suggesting that the 

effects of sleep deprivation on alcohol toxicity occurred within the first 24 hours. Non-sleep deprived and 

sleep deprived flies exposed to water vapor alone had negligible levels of mortality at either 24 h or 7 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 18, 2021. ; https://doi.org/10.1101/2021.04.16.440198doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.16.440198
http://creativecommons.org/licenses/by/4.0/


days suggesting that 24 h sleep deprivation itself does not result in mortal injury to the flies (Figure 2B 

and 2C). Exposure to alcohol vapor caused a noticeable but not significant rise in immediate and delayed 

mortality compared to water vapor controls (Figure 2B and C). These results suggest that sleep 

deprivation exacerbates the acute toxicity of alcohol with primary mortality observed within 24 hours of 

alcohol exposure (Figure 2B). We next investigated the effects sleep deprivation prior to a repeat binge 

alcohol exposure paradigm. As previously, flies were sleep deprived for 24 h (ZT 8 – ZT 8) and then 

exposed to 40% alcohol vapor for 1 h (ZT 9) on 3 consecutive days (Figure 2D). Perhaps not surprisingly, 

the first alcohol exposure after sleep deprivation induced a significant increase in mortality (Figure 2E, 

ANOVA: F3,76 = 15.42, p < 0.0001). Alcohol-induced mortality was not significantly higher following the 

2nd and 3rd alcohol exposures (Figure 2F), potentially due to the opportunity for recovery sleep following 

the 1st exposure to alcohol. The degree of mortality observed 7 days following the last alcohol exposure 

was similar between the acute and repeated binge alcohol paradigms (Figure 2G, ANOVA: F3,76 = 19.91, 

p < 0.0001).  

Sleep deprivation does not affect the rate of alcohol clearance 

It is possible that the increases in alcohol sensitivity and mortality observed following sleep 

deprivation were due to increased alcohol absorption or a decline in the rate of alcohol clearance resulting 

in greater alcohol exposure and subsequent toxicity. To investigate this possibility, flies were sleep 

deprived as previously described and exposed to 50% alcohol vapor for 30 min at ZT 9 and alcohol 

absorbance was measured (Figure 3A). There were no significant differences in alcohol absorbance or 

clearance between sleep deprived flies and non-sleep deprived flies (Figure 3B). These results suggest 

that potential metabolic changes due to sleep deprivation do not account for the observed increased 

sensitivity to alcohol with the more likely possibilities including sleep deprivation induced changes in 

neuroadaptation at the molecular or cellular levels.  

Chronic sleep deprivation induces increased alcohol-induced mortality 

Chronic sleep deprivation with multiple short sleep nights may also be a predisposing factor for increased 

alcohol consumption and other recreational drug use18,73.  In the United States, approximately 70 million 
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Americans suffer from chronic sleep loss with serious consequences for health and longevity as well as 

economic productivity29,74,75. To investigate the effects of chronic sleep restriction on alcohol 

neurobiology, we used a genetic approach rather than a mechanical system to induce sleep deprivation to 

avoid the possibility of stress arising from long-term mechanical stimulation.  Numerous mutants with 

short sleep phenotypes have been identified in Drosophila. However, the circadian clock also regulates 

aspects of sleep and sleep timing, and many sleep mutants have circadian phenotypes. Given previous 

research demonstrating circadian modulation of alcohol sensitivity and increased alcohol-induced 

mortality with circadian disruption48,61, we used the mutant insomniac that has normal circadian rhythms 

but exhibits a short sleep phenotype76 to investigate the effects of chronic sleep restriction on alcohol 

toxicity. Insomniac (inc) is a mutation in a putative adaptor protein for the Cullin-3 ubiquitin ligase 

complex76. We used two inc mutant lines, inc1 and inc2 (generous gifts of Nicholas Stavropoulos at 

NYU), to test the effects of chronic sleep restriction on alcohol sensitivity and alcohol-induced mortality. 

Both inc1 and inc2 mutant lines have a 90% reduction in inc transcript mRNA levels with no detectable 

protein produced76. Confirming previously published results, we found that that inc1 and inc2 flies (Figure 

4A – C) exhibit considerable reductions in total sleep time with inc1 flies sleeping a little over 300 

minutes per day and inc2 flies sleeping approximately 600 min per day (Figure 4A, ANOVA: F2,67 = 

81.13, p < 0.0001). These mutants exhibit significantly shortened sleep bouts (Figure 4B, ANOVA: F2,67 = 

17.52, p < 0.0001) reflecting a decrease in sleep consolidation, although they do have a greater number of 

sleep bouts (Figure 4C, ANOVA: F2,67 = 8.64, p < 0.0001).  

   To investigate the effects of chronic sleep restriction on alcohol sensitivity, we exposed 10 d old 

inc1 and inc2 flies to 50% alcohol for 1 h at ZT 9 with sedation assessed at 5-minute intervals (Figure 4D). 

Surprisingly, inc1 and inc2 flies did not exhibit increased sensitivity to alcohol; indeed, these mutants were 

more resistant to the sedating effects of alcohol with significantly longer times to reach 50% sedation than 

the w1118 control flies (Figure 4D and 4E, ANOVA: F2,34 = 47.28, p < 0.0001 with post-hoc analysis 

identifying significant differences between w1118 vs. inc1 and w1118 vs inc2). These results suggest that 

either compensatory mechanisms exist to buffer against increased sensitivity to alcohol in these mutants 
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or chronic sleep loss associated with the disruption of the Cullin-3 ubiquitin ligase complex does not 

increase alcohol sensitivity.  

While the chronic sleep deficit associated with the disruption of the Cullin-3 

ubiquitin ligase complex in the inc mutants did not increase alcohol sensitivity, we hypothesized that it 

would still increase alcohol toxicity as alcohol affects multiple signaling pathways both in the central 

nervous system and in peripheral tissues. To test this, we gave 10 d inc1 and inc2 flies a single exposure to 

50% alcohol vapor for 1 h at ZT 9 and assessed mortality 24 h and 7 d following the alcohol exposure. 

Both inc1 and inc2 flies exhibited significantly higher mortality immediately (24 h) and 7 d following the 

exposure compared to w1118 background controls (Figure 5B, ANOVA: F2,29 = 16.46, p < 0.0001 and 

Figure 5C, ANOVA: F2,29 = 20.87, p < 0.0001). Given that the inc mutants are postulated to have defects 

in ubiquitination that may affect many target proteins and signaling pathways, it is possible that the 

observed mortality was due to other consequences of the mutation and not to the effects of chronic sleep 

restriction on alcohol toxicity. Presumably as inc flies age, the short sleep phenotype results in an 

accumulated sleep debt. If this is the case, we hypothesized that younger flies (3 d) would show lower 

alcohol-induced mortality at levels similar to that seen with acute sleep deprivation. To test this 

hypothesis, we exposed 3 d inc1 and inc2 flies to alcohol and assessed mortality 24 h and 7 d following 

exposure. While there was higher mortality observed in 3 d inc1 and inc2 flies following alcohol exposure 

than 3 d w1118 control flies (Figure 5E, ANOVA: F2,34 = 15.03, p < 0.0001 and Figure 5F, ANOVA: F2,34 = 

25.01, p < 0.0001), the 3 d inc1 and inc2 flies exhibited significantly lower mortality following a single 

exposure to alcohol than 10 d inc1 and inc2 flies (Figure 5E - F). No significant differences were observed 

in alcohol-induced mortality between 3 d and 10 d w1118 flies. These results suggest that the increase in 

alcohol-induced mortality in the 10 d inc mutants was due to the accrued sleep debt in the older flies 

rather than a non-sleep related consequence of the mutation. Together, these results suggest that separate 

mechanisms mediate the behavioral sensitivity to alcohol and the alcohol’s toxic effects whereby 

insomniac is necessary for the resistance to alcohol-induced mortality but not alcohol behavioral 

sensitivity.  
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Pharmacologically increasing sleep ameliorates alcohol-induced mortality in populations with sleep 

phenotypes 

   Previously we found that circadian arrhythmia and aging significantly increase alcohol-induced 

mortality61 mirroring human populations such as shift-workers and the elderly with sleep disturbances. If 

accrued sleep loss is the driving force for the observed alcohol-induced mortality in inc mutants, we 

hypothesized that increasing sleep in the inc1 and inc2 mutants should decrease mortality following 

exposure to alcohol. To pharmacologically increase sleep, inc1 and inc2 mutant flies were raised on 

standard Drosophila media for 9 d and then transferred to media containing the GABAA agonist THIP 

which has previously been shown to pharmacologically increase sleep in Drosophila 77-79. Following 

THIP exposure, inc1 and inc2 flies were given a single 1 h exposure to alcohol (Figure 6A). THIP 

exposure significantly reduced mortality 24 h and 7 d following alcohol exposure in both inc1 and inc2 

mutant flies compared to non-THIP exposed inc1 and inc2 mutants (Figure 6B, ANOVA: F3,44 = 13.27, p < 

0.0001 and Figure 6C, ANOVA: F2,44 = 12.83, p < 0.0001 respectively). However, THIP has dual effects 

as an analgesic and anxiolytic, and has been tested as a treatment for both alcohol use disorders as well as 

insomnia80. Potentially, as an agonist for GABAA receptors, THIP may be affecting alcohol-receptor 

interactions to affect mortality rather than through its pharmacological induction of sleep. To determine 

whether acute THIP interactions decreased alcohol-induced mortality by altering alcohol-receptor 

interactions rather than through increased sleep prior to alcohol exposure, we fed 10 d inc1, inc2 and w1118 

flies 0.1 mg/mL THIP for 1 h at ZT 7-8 and then exposed them to 50% alcohol vapor. There were no 

differences in mortality between THIP-fed inc1 and inc2 flies and non-THIP fed flies following alcohol 

exposure (Figure 6E, ANOVA: F5,46 = 50.88, p < 0.0001 and Figure 6F, ANOVA: F5,46 = 55.83, p < 

0.0001).  These results are consistent with the hypothesis that increased sleep prior to binge-like alcohol 

exposure buffers the toxic effects of alcohol.  

Pharmacologically increasing sleep, independent of circadian rhythmicity, decreases alcohol-

induced mortality 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 18, 2021. ; https://doi.org/10.1101/2021.04.16.440198doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.16.440198
http://creativecommons.org/licenses/by/4.0/


In Drosophila, the circadian clock can be rendered non-functional using environmental 

manipulation by housing the flies in constant light. Constant light (LL) is sufficient to dampen molecular 

oscillations and abolish circadian rhythms in locomotor activity, memory formation and the rhythm in 

alcohol-induced loss-of-righting reflex 51,63,81-85. We have previously shown environmental disruption of 

circadian function exacerbates alcohol sensitivity and mortality48,61. Along with a disrupted circadian 

clock, we found that 10 d CS flies in LL have significantly lower total sleep, specifically less sleep during 

the subjective night compared to 10 d CS flies in LD (Figure 7A; t(236) = 4.46, p < 0.0001) and Figure 7B, 

ANOVA: F3,442 = 27.31, p < 0.0001), consistent with mis-timed sleep due to circadian dysfunction. Flies 

housed in LL had significantly higher number of sleep bouts in both the subjective day and night (Figure 

7C, ANOVA: F3,442 = 98.99, p < 0.0001), although the sleep bout length was significantly shorter than 

flies housed in LD resulting in the decrease in total sleep (Figure 7D, ANOVA: F3,442 = 78.45, p < 

0.0001).  As a first step to separate the effects of sleep from the effects of circadian disruption on alcohol 

toxicity, we characterized the effects of THIP on sleep for flies housed in LL. As expected, flies housed 

on THIP containing food in constant light slept significantly more than flies on regular Drosophila food 

in LL (Figure 7E – H; Mean sleep time per day: t(233) = 29.43, p < 0.0001; Mean sleep time, day vs night, 

ANOVA: F3,463 = 437.1, p < 0.0001; number of sleep bouts, ANOVA: F3,463 = 358.1, p < 0.0001; Mean 

sleep bout length, ANOVA: F3,463 = 277.6, p < 0.0001).  To separate the role of sleep from circadian 

regulation in mediating alcohol toxicity following a repeat binge-like alcohol exposure, we increased 

sleep in flies in LL as they remained under conditions of circadian disruption. 10 d LL flies were 

maintained on medium containing THIP for 48 hours prior to exposure to the first of three exposures of 

40% alcohol vapor (Figure 7I). LL flies housed on THIP containing food prior to alcohol exposure had a 

significantly lower mortality rate than those exposed to alcohol vapor alone (Figure 7J, ANOVA: F3,36 = 

132.6, p < 0.0001). However, LL flies given a short exposure to THIP followed by alcohol exposure 

exhibited no differences in mortality compared to LL flies exposed to alcohol alone (Figure 7K, ANOVA: 

F3,36 = 92.26, p < 0.0001). These results suggest that increased sleep is sufficient to ameliorate mortality 

following repeated binge-like alcohol exposure even under conditions of circadian disruption.  
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Increasing sleep buffers age-related susceptibility to alcohol-induced mortality 

Aging is accompanied by the breakdown of circadian rhythmicity at the cellular, metabolic and 

physiological levels as well as disruptions in sleep architecture61,86-90. In recent years, chronic and binge 

alcohol consumption in middle-aged and older adults has significantly increased91,92 with more than 75% 

of the alcohol-induced poisoning deaths occurring in these age groups11,14. More than 10% of older adults 

engage in binge drinking behavior91. Given that the aging population is expected to double by 205093, it is 

necessary to identify ways to treat or ameliorate alcohol toxicity in middle-aged and older individuals. In 

previous studies, we have shown that aging exacerbates alcohol sensitivity and mortality61. Middle-aged 

flies (20 d) exhibit shorter sleep times compared to younger flies (40; Figure 8A, (t(147) = 6.54, p < 0.0001) 

and Figure 8B, ANOVA: F3,294 = 38.12, p < 0.0001). While we found no differences in total sleep amount 

during the night between 10 and 20 d flies, 20 d flies had a significantly greater number of sleep bouts 

with shorter duration reflecting decreases in sleep consolidation (Figure 8C, ANOVA: F3,294 = 19.21, p < 

0.0001 and Figure 8D; ANOVA: F3,294 = 38.12, p < 0.0001). We tested whether pharmacologically 

increasing sleep in middle-age was sufficient to overcome the age-related increase in mortality following 

repeated binge-like exposures to alcohol. We pharmacologically induced sleep in 20 d CS flies by 

housing them on 0.1 mg/mL THIP for 24 h after which they were given a 1 h alcohol exposure for 3 

consecutive days (Figure 8I). 20 d THIP-fed flies slept significantly more than control 20 d flies (Figure 

8E – 8H; Avg total sleep/day: t(89) = 13.05, p < 0.0001; Avg sleep time, day vs night, ANOVA: F3,178 = 

91.72, p < 0.0001; number of sleep bouts, ANOVA: F3,178 = 60.24, p < 0.0001; Sleep bout length, 

ANOVA: F3,178 = 113.0, p < 0.0001). Middle-aged flies housed on THIP containing food prior to the 

repeated binge-like alcohol exposures had significantly lower rates of mortality than those exposed to 

alcohol alone (Figure 8J, ANOVA: F3,44 = 243.8, p < 0.0001). The decreased mortality observed in THIP-

fed flies was not due to increased alcohol tolerance from THIP interactions as 20 d flies given THIP for 1 

h at ZT 7 followed by alcohol exposure at ZT 9 show mortality rates similar to 20 d flies exposed to 

alcohol alone (Figure 8K, ANOVA: F3,30 = 23.09, p < 0.0001). These results suggest that increased sleep 
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is sufficient to ameliorate mortality following repeated alcohol exposures in middle-aged flies that have 

both circadian and sleep disruption.  

Sleep deprivation inhibits long-term but not short-term tolerance 

Drosophila exhibit drug tolerance with repeat alcohol exposures in which the behavioral response 

to subsequent exposures of alcohol is lessened similar to that observed in rodent models and humans. At 

the behavioral level, functional tolerance results in a decreased sensitivity to alcohol during subsequent 

exposures with increased alcohol concentrations or longer alcohol exposures necessary to induce 

sedation33,94,95. In flies, rapid tolerance develops after a single alcohol exposure and can be observed 

during a second alcohol exposure 4 h or 24 h later50,96. The development of functional alcohol tolerance is 

dependent upon changes in neural plasticity rather than changes in the metabolism or clearance of 

alcohol50,53-55,96,97. Changes in neural plasticity associated with drug and alcohol tolerance share features in 

common with synaptic plasticity observed in learning and memory98-100. Potentially, sleep loss affects the 

development of alcohol tolerance as sleep deprivation disturbs memory formation as seen across 

invertebrate and vertebrate species101-103. To investigate the effect of sleep deprivation on tolerance 

formed after a single alcohol exposure, 10 d wild-type flies were sleep deprived for 24 hours (ZT 3.5 – 

ZT 3.5) and given a pre-exposure of 50% alcohol vapor for 30 minutes (ZT 4.5; Figure 9A). Pre-exposed 

sleep deprived flies and sleep deprived naïve flies were exposed to alcohol 4 h later at ZT 9 during which 

sedation was measured (Figure 9A). Similarly, non-sleep deprived flies were pre-exposed to alcohol with 

responses compared during a second alcohol exposure to naïve flies.  Non-sleep deprived flies 

demonstrated robust 4 h alcohol tolerance with significant increases observed in the time necessary for 

50% of the flies to reach sedation compared to naïve flies (Figure 9B, ANOVA: F3,20 = 49.62, p < 0.0001 

and Figure 9C). Surprisingly, sleep deprived flies also demonstrated robust 4 h alcohol tolerance (Figure 

9B and C) suggesting that sleep disruption does not affect the cellular signaling mechanisms necessary for 

the formation of 4 h tolerance.  

To determine the effect of sleep deprivation on the formation of long-term alcohol tolerance, flies 

were sleep deprived for 24 hours (ZT 7.5 – ZT 7.5) and given a pre-exposure of 50% alcohol vapor for 30 
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minutes (ZT 8.5) and tested 24 hours later at ZT 9 (Figure 9D).  Groups of non-sleep deprived flies were 

handled concurrently. When flies were tested 24 h after the initial alcohol exposure, sleep-deprived flies 

demonstrated significantly less tolerance to alcohol with the time to sedation similar to sleep-deprived 

naïve flies while non-sleep deprived flies demonstrated robust long-term tolerance with response times 

significantly different than naïve flies (Figure 9E, ANOVA: F3,26 = 125.7, p < 0.0001 and Figure 9F). 

Although our previous research found that tolerance was not modulated by the circadian clock, we 

verified the effect on long-term tolerance by exposing flies to alcohol at the same time that we observed 

the formation of 4 h tolerance in sleep-deprived flies (Figure 9G). Sleep-deprived flies pre-exposed to 

alcohol at ZT 8.5 and then subsequently exposed to alcohol at ZT 9 the following day also exhibited little 

or no alcohol tolerance, while non-sleep deprived flies exhibited significant long-term tolerance (Figure 

9H, ANOVA: F3,20 = 0.92, p = 0.4488 and Figure 9I). Thus, acute sleep deprivation prior to alcohol 

exposure inhibits the expression of alcohol tolerance 24 h following the initial alcohol pre-exposure while 

no effect is observed on the development of short-term tolerance expressed 4 h after the initial exposure. 

These results are consistent with the hypothesis that different molecular mechanisms underlie the 

development of short-term and long-term rapid alcohol tolerance similar to the differences in formation of 

short and long-term memory.  

Discussion 

Research from our lab and others suggests a bidirectional relationship between clock dysfunction 

and the onset and severity of alcohol-related pathologies18,48,51,104,105. Social jet lag, large shifts in sleep 

timing between the weekday and the weekend is observed in numerous populations, including individuals 

on shift and rotating schedules106,107 and is strongly correlated with increased alcohol use108,109. Due to the 

long working hours, rotating schedules and work-associated stress, many individuals report using alcohol 

as a sleep aid64,65,110,111 which can eventually lead to an increased number of binge drinking episodes and 

other detrimental effects associated with alcohol abuse64,65,67,112. Previous studies from our lab found that 

the circadian clock modulates alcohol sensitivity and toxicity and that circadian dysfunction significantly 

increases the behavioral sensitivity to alcohol and mortality following acute and repeated alcohol 
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exposures48,51. In humans, differences in individual chronotype also appears to modulate alcohol use and 

its associated pathologies. Individuals expressing an “evening chronotype” report significantly increased 

alcohol use113-124 125. Interestingly, individuals with an evening chronotype also have lower quality of 

sleep and increased greater daytime fatigue126,127. However, it has been difficult to detangle the effects of 

circadian dysfunction from the effects of altered sleep on alcohol use.  

Sleep disorders and sleep disturbances have become increasingly prevalent in modern society 

with longer working hours, irregular work schedules and the prevalence of electronics, affecting more 

than 35% of adults and 70% of teenagers27,74,128-131. Insufficient sleep exacerbates the risk of developing 

chronic diseases and health problems including cancer, diabetes, neurodegenerative and psychiatric 

disorders132-136. Consequently, we investigated the effects of sleep loss on the alcohol sensitivity and 

toxicity using Drosophila melanogaster to dissect the interactions between sleep deprivation and alcohol 

sensitivity and mortality.  

We found that acute (24 h) sleep deprivation significantly increased sensitivity and mortality in 

young flies following a single binge-like exposure to alcohol. Most of the observed increase in mortality 

following alcohol exposure occurred within 24 h following alcohol exposure. These effects were 

independent of stress or injury as 48 h recovery sleep prior to alcohol minimized alcohol-induced 

mortality. The increases in sensitivity and mortality were also independent of changes in metabolic 

tolerance as there were no differences between sleep deprived and non-sleep deprived flies in alcohol 

absorbance or clearance. Thus, sleep deprivation changes both immediate alcohol sensitivity and acute 

alcohol toxicity after a single binge-like alcohol exposure. Our data underlines the phylogenetic 

conservation across species showing a correlation between sleep loss and alcohol behaviors. Studies from 

rodents and humans outline a correlation between sleep loss and increased severity of alcohol behavioral 

responses including increased alcohol intake, accelerated development of alcohol abuse, dependence and 

relapse following alcohol abstinence137-140. In mice, alcohol dose dependently increases hyperactive 

locomotor activity in open-field tests with acute sleep deprivation for 48 h abolishing these stimulatory 

effects141. Insufficient sleep (< 8 h per night) is correlated with increased number of drinking sessions in 
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adolescents and young adults142-144. College-aged students are considered a vulnerable population for risk-

taking behaviors and multiple studies show a strong correlation between poor sleep quality and excessive 

alcohol intake and the accompanying consequences for mental health and academic performance 

including increased rates of depression, anxiety, psychological stress and academic issues in these 

students66,145,146. Insufficient and poor quality sleep also appear to predict the onset of alcohol abuse and 

its adverse consequences68,147-150. Sleep disturbances observed in children 3-5 years of age predicted the 

early onset of alcohol use at ages 12-14151. This is particularly harmful because recovering alcoholics who 

used alcohol as a sleep aid are three times more likely to relapse in 12 months22,23,152. Altogether, these 

studies emphasize disturbed sleep as a potent risk factor for the initiation of alcohol use, escalation of 

problems associated with alcohol abuse and hindrance of recovery from alcohol-use disorders.  

With the genetic tools and mutants available, Drosophila provides a suitable model system to test the 

relationship between chronic sleep disturbances and alcohol induced pathologies. Using flies with 

mutations in the insomniac gene (inc) that provide a model mirroring chronic sleep restriction, we found 

that inc mutants have significantly increased mortality following alcohol exposure than background 

controls. Moreover, we found that alcohol exposure is more lethal in 10 d old inc-mutant flies compared 

to 3 d old flies, although wild type flies in either age groups show little alcohol-induced mortality. Inc 

mutant flies were surprisingly less sensitive to the sedative effects of alcohol compared to their 

background controls supporting previous research that the different physiological consequences of 

alcohol can be regulated separately. Although, the mechanism through which sleep buffers alcohol 

toxicity is unknown, it is possible that the changes in oxidative stress in the inc mutant flies may 

contribute to the change in alcohol toxicity.  The inc gene seems necessary for mediating the oxidative 

stress response as reducing inc both globally and neuronally significantly increases mortality following a 

single injection to paraquat, a common inducer of oxidative stress76,153. Support for this hypothesis is 

found in previous research demonstrating that  pharmacologically increasing sleep in inc-mutant flies 

using gaboxadol significantly decreased the sensitivity to paraquat-induced oxidative stress153. Sleep loss 

has also been shown to increase reactive oxygen species in the gut154 raising the possibility that peripheral 
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mechanisms also contribute to increased alcohol toxicity. As changes in sleep potentially impact multiple 

physiological processes in the central nervous system as well as in peripheral organs, the precise 

mechanism(s) through which sleep buffers alcohol toxicity will undoubtedly be the focus of future 

studies.  

Pharmacologically increasing sleep alone in circadianly disrupted and middle- aged wild-type 

flies was sufficient to significantly reduce alcohol-induced mortality. Gaboxadol increased total sleep 

duration as well as significantly increasing sleep bout length suggesting a greater consolidation of sleep.  

Both increased total sleep and increased sleep consolidation suggest that improved sleep quality could aid 

in mitigating alcohol-induced pathologies. Although there have been few studies examining the 

relationship between sleep health and alcohol toxicity, sleep loss or decreased sleep consolidation has 

been shown to reduce reproductive output, accelerate aging and increase the accumulation of reactive 

oxygen species and death in flies154,155. In humans, increasing sleep in adolescents is correlated with 

decreased risk of emotional and cognitive disruption as well as lowered risk of obesity156. Also, increasing 

sleep by 30 minutes for 3 days over the weekend in healthy industrial workers and individuals susceptible 

to obesity significantly increased insulin sensitivity and had a restorative effect of sleep on metabolic 

homeostasis157,158. Finally, increasing sleep in older adults significantly improves performance on visual 

tasks and stabilizes memory recall159. Although more specific research needs to be done assessing the 

direct effects of increased sleep on alcohol toxicity in vulnerable groups, these data suggest a role for 

sleep as a buffer to protect against the toxic effects of alcohol in populations vulnerable to chronic sleep 

loss as aged adults and shift workers.  

The development of acute tolerance to alcohol is a distinct and critical behavioral metric used to 

gauge the propensity for alcohol dependence and abuse160, that can be separated from alcohol sensitivity 

and alcohol toxicity. Similar to mammals, an acute exposure to a high concentration of alcohol induces 

functional tolerance in Drosophila at the behavioral50,96,161 and the molecular levels97,162-165. Functional 

alcohol tolerance is dependent on changes in neuronal strength and connectivity or synaptic 

plasticity97,162,163. Consistent with previous findings, we observed tolerance 4 hours and 24 hours 
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following a short pre-exposure to alcohol vapor50,51. We found that sleep deprivation abolished the 

development of tolerance at 24 hours but had no effect on tolerance at 4 hours. Potentially, acute sleep 

deprivation selectively impairs the cellular and molecular processes necessary for encoding long-term 

rapid tolerance to alcohol without severe disruption of those mechanisms necessary for the development 

of 4 hour tolerance. In fact, previous studies demonstrate altered expression of rapid tolerance in flies 

with mutations in genes necessary for learning and memory46,96,166. For example, the gene dunce (dnc) 

encodes a phosophodiesterase required for cAMP degradation and is necessary for behavioral and 

synaptic plasticity167,168. Originally identified as a learning mutant169,170, dnc-mutant flies exhibit 

significant sleep deficits171 and are incapable of forming rapid tolerance172,173. Time-dependent differences 

in the effects of sleep deprivation can also be seen for memory with acute sleep deprivation affecting the 

consolidation of long-term but not short-term hippocampal dependent memory in mice174,175. Together 

with support from existing research, the results from our studies suggest that sleep deprivation selectively 

impacts processes underlying synaptic plasticity to affect the development of long-term rapid tolerance. In 

conclusion, the results from our study start to dissociate the role of sleep in modulating alcohol toxicity 

from the regulation of alcohol neurobiology by the circadian clock. These results lay the groundwork for 

future studies and treatments considering sleep quality and sleep duration as an important component of 

alcohol use disorder and alcohol-induced pathologies. 
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Figure Legends 

Figure 1: Acute sleep deprivation increases sensitivity to alcohol-induced sedation A) 10 d old WT 

CS flies were sleep – deprived for 24 h then exposed to 50% alcohol vapor for 1 h. Sensitivity to sedation 

was measured by counting the number of flies sedated every 5 min.  B) Sleep deprivation significantly 

exacerbates alcohol-induced sedation (t(14) = 13.4558, p = 0.0002). Mean time necessary for 50% of the 

flies to become sedated during alcohol exposure and standard error of the mean plotted for all 

experiments. C) Complete time course of alcohol exposure showing percent of flies exhibiting sedation 

for 10 d old sleep-deprived and non-sleep deprived flies. D) Separate groups of 10 d male and female flies 

were sleep deprived for 24 h then exposed to 50% alcohol vapor for 1 h. Sleep-deprived males sedate 

faster compared to sleep-deprived females, indicating that increased sensitivity to alcohol sedation is not 

due to an exacerbated response to stress. (ANOVA F3,28 = 29.24, p < 0.0001). N shown on bars for each 

group is the number of vials tested for each group with 25-30 flies per vial. E) Complete time course of 

alcohol exposure showing percent of flies exhibiting sedation for 10 d old sleep-deprived and non-sleep 

deprived male and female flies. 

 

Figure 2: Acute sleep deprivation exacerbates alcohol-induced mortality following a single and 

repeated exposures to alcohol. A) 10 d old WT CS flies were sleep – deprived for 24 h then exposed to 

50% alcohol vapor for 1 h. The number of flies that died were counted every 24 h for 7 days following 

alcohol exposure. B) Sleep-deprived flies exhibited a drastic increase in mortality within 24 h of exposure 

to alcohol compared to non-sleep deprived flies (ANOVA F3,28 = 22.50, p < 0.0001). C) Mortality 

continued to significantly rise 7 days following exposure to alcohol in both non-sleep deprived and sleep 

deprived flies (ANOVA: F3,28 = 14.01, p < 0.0001). D) 10 d old WT CS flies were sleep – deprived for 24 

h followed by 3 consecutive exposures to 1 h alcohol (50% alcohol vapor) at ZT 9 with each exposure 

separated by 24 h. E) Sleep-deprived flies exhibited a drastic increase in mortality within 24 h of 1st 

exposure to alcohol compared to non-sleep deprived flies (ANOVA: F3,76 = 15.42, p < 0.0001). F) 

Mortality continued to rise 24 h following the 3rd exposure to alcohol vapor in both non-sleep deprived 
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and sleep deprived flies (ANOVA: F3,76 = 14.42, p < 0.0001), although this rise was not significant. G) 

Mortality measured 7 d following the 3rd alcohol exposure was significantly higher than mortality 

following the 1st alcohol exposure (ANOVA: F3,76 = 19.91, p < 0.0001). 

 

Figure 3: Sleep deprivation does not affect alcohol accumulation or rate of alcohol clearance. A) 

Flies are aged in 12:12 LD cycle for 10 days then sleep deprived for 24 h. 10 d CS flies are exposed to 30 

min of 50% alcohol vapor on day 11 with alcohol absorbance and rate of alcohol clearance assessed. B) 

No significant differences exist in alcohol absorbance or rate of alcohol clearance between sleep deprived 

and non-sleep deprived flies (n=4 per group). 

 

Figure 4: Mutations in insomniac do not increase behavioral sensitivity to alcohol exposure. The 

impact of sleep loss due to mutations in the inc1 and inc2 genes on alcohol sensitivity was assessed. A-C) 

Sleep profiles of w1118, inc1 and inc2 flies. inc1, inc2 and flies have significantly shorter daily sleep times 

(A, ANOVA: F2,67 = 81.13, p < 0.0001), shorter bout lengths (B, ANOVA: F2,67 = 17.52, p < 0.0001) and 

increased number of bouts compared to w1118 flies (C, ANOVA: F2,67 = 8.64, p < 0.0001). D) 10 d inc1, 

inc2 and w1118 control flies were exposed to 50% alcohol vapor for 1 h at ZT 9 with sedation assessed 

every 5 minutes during the alcohol exposure. E) inc1 and inc2 flies demonstrated increased resistance to 

alcohol vapor compared to w1118 controls (ANOVA: F2,34 = 47.28, p < 0.0001). F) The complete time 

course for w1118, inc1 and inc2 flies.  

 

Figure 5: Short sleeping flies have significantly increased mortality following a single exposure to 

alcohol. A) The impact of sleep loss due to mutations in inc1 and inc2 on alcohol-induced mortality was 

assessed. 10 d w1118, inc1 and inc2 flies were exposed to 50% alcohol vapor for 1 h at ZT 9 with mortality 

assessed every 24 h for 7 d following exposure to alcohol. B) inc1 and inc2 mutant flies showed 

significantly increased mortality 24 h following exposure to alcohol compared to w1118 control flies 

(ANOVA: F2,29 = 16.46, p < 0.0001). C) Mortality in inc1 and inc2 flies continued to rise 7 d following the 
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initial exposure to alcohol (ANOVA: F2,29 = 20.87, p < 0.0001). D) To determine whether the alcohol-

induced mortality in 10 d inc1 and inc2 flies was due to accumulation of sleep deficits, 3 d inc1, inc2 and 

w1118 control flies were exposed to 50% alcohol vapor for 1 h at ZT 9 with mortality assessed every 24 h 

for 7 d after alcohol exposure. E) The rate of mortality 24 h following exposure to alcohol was 

significantly higher in 3 d inc1 and inc2 flies compared to w1118 controls but significantly lower than that 

of 10 d inc1 and inc2 flies (ANOVA: F2,34 = 15.03, p < 0.0001). F) Compared to w1118 controls, the 

mortality in inc1 and inc2 mutant flies continued to rise 7 d following the alcohol exposure but remained 

lower than that of 10d inc1 and inc2 mutant flies (ANOVA: F2,34 = 25.01, p < 0.0001). These results 

support the hypothesis that sleep loss accumulated with age exacerbates susceptibility to alcohol-induced 

toxicity.  

 

Figure 6: Pharmacologically increasing sleep in insomniac mutants ameliorates mortality following 

alcohol exposure. A) To determine whether increased sleep buffered against the toxic effects of alcohol, 

inc1, inc2 and w1118 flies were aged in LD cycles for 9 d and transferred to media containing 0.1 mg/mL 

THIP for 24 h. On day 10, flies were exposed to 1 h of 50% alcohol vapor at ZT 9 with mortality being 

assessed every 24 h for 7 d following exposure. B) Significantly reduced mortality was observed in THIP-

fed inc1 and inc2 flies 24 h following alcohol exposure compared to inc1 and inc2 flies given alcohol alone 

(ANOVA: F3,44 = 13.27, p < 0.0001). C) Although mortality rose in THIP-fed inc1 and inc2 flies 7 d 

following alcohol exposure, the percent of THIP-fed inc1 and inc2 flies was still significantly lower than 

non-THIP fed inc1 and inc2 flies at 7 d after exposure to alcohol (ANOVA: F2,44 = 12.83, p < 0.0001). D) 

To determine whether the decreased mortality observed in THIP-fed flies was due to buildup of GABA-A 

receptor tolerance, inc1, inc2 and w1118 flies were aged in LD cycles for 10 d and transferred to media 

containing 0.1 mg/mL THIP for 1 h at ZT 7. At ZT 9, the flies were exposed to 1 h of 50% alcohol vapor 

with mortality being assessed every 24 h for 7 d following exposure. E) No significant differences in 

mortality were observed between THIP-fed inc1 and inc2 flies 24 h following alcohol exposure (ANOVA: 

F5,46 = 50.88, p < 0.0001). F) No significant differences in mortality were observed in THIP-fed inc1 and 
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inc2 flies compared to non-THIP fed flies 7 d following alcohol exposure (ANOVA: F5,46 = 50.88, p < 

0.0001).  

 

Figure 7: Pharmacologically increasing sleep in flies that are circadianly disrupted reduces 

mortality following repeated exposures to alcohol. A-D) Comparison of sleep profiles between 10 d 

WT CS flies housed in LD cycles and 10 d flies housed in constant light conditions (LL). Compared to 

control WT flies grown in a 12:12 h LD cycle, 10 d WT CS flies grown in LL exhibit significantly 

decreased average sleep time per day (A, [t(236) = 4.46, p < 0.0001)]), decreased sleep during both the light 

and dark cycle (B, ANOVA: F3,442 = 27.31, p < 0.0001), increased number of sleep bouts (C, ANOVA: 

F3,442 = 98.99, p < 0.0001) and decreased bout duration (D, ANOVA: F3,442 = 78.45, p < 0.0001). 10 d LL 

flies fed 0.1 mg/mL THIP exhibit significantly higher quiescence compared to 10 d LL flies on control 

media with significantly longer total sleep time per day (E, t(233) = 29.43, p < 0.0001), increased sleep time 

during the light and dark cycles (F, ANOVA: F3,463 = 437.1, p < 0.0001), decreased number of sleep bouts 

(G, ANOVA: F3,463 = 358.1, p < 0.0001) and increased bout duration (H, ANOVA: F3,463 = 277.6, p < 

0.0001). I) To determine whether increasing sleep was sufficient to ameliorate alcohol-induced mortality 

under conditions of circadian disruption, WT CS flies are housed in LL upon eclosion and transferred to 

media containing 0.1 mg/mL THIP on day 8 for 48 h. On days 10, 11 and 12, flies were subjected to a 

three-exposure repeated binge-like alcohol paradigm with 1 h alcohol exposure (50% alcohol vapor) 

occurring at ZT 9 and mortality was assessed. J) Alcohol-induced mortality in THIP-fed LL flies was 

drastically reduced compared to control LL flies (ANOVA: F3,36 = 132.6, p < 0.0001). K) Reduced 

mortality following THIP exposure is not due to increased tolerance as 1 h exposure to 0.1 mg/mL 

immediately prior to alcohol exposure had no significant effect on reducing alcohol-induced mortality 

(ANOVA: F3,36 = 92.26, p < 0.000).   

 

Figure 8: Pharmacologically increasing sleep in aging ameliorates alcohol-induced mortality. 

Compared to young 10 d flies, 20 d flies grown in LD cycles exhibit significantly decreased average sleep 
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time per day (A), decreased sleep during both the light and dark cycle (B), increased number of sleep 

bouts (C) and decreased bout duration (D). 20 d flies fed 0.1 mg/mL THIP exhibit significantly higher 

quiescence compared to 20 d flies on control media with significantly longer total sleep time per day (E) 

increased daytime and nighttime sleep. I) Flies are grown in 12 h light: 12 h dark cycles and transferred to 

media containing 0.1 mg/mL THIP on day 19 for 24 h. On days 20, 21 and 22, flies were subjected to a 3-

exposure repeated binge-like alcohol paradigm with 1 h alcohol exposure (40% alcohol vapor) occurring 

at ZT 9 and mortality was assessed. J) Increased quiescence in 20 d THIP-fed flies significantly 

ameliorated alcohol-induced mortality compared to 20 d flies fed control media (ANOVA F3,44 = 243.8, p 

< 0.0001). K) 20 d flies exposed for 1 h to 0.1 mg/mL THIP immediately prior to alcohol exposure had no 

significant effect on reducing alcohol-induced mortality [t(9) = 1.047, p = 0.3223].   

 

Figure 9: Sleep deprivation differentially affects short-term and long-term functional tolerance. A-

C) Effect of 24 h sleep deprivation on short-term functional alcohol tolerance. A) WT CS flies were aged 

in 12:12 h LD cycle and sleep deprived for 24 h on day 10. On day 11, flies were exposed to 50% alcohol 

vapor for 30 min and tested 4 h later by exposing to 50% alcohol vapor for 1 h with sedation being 

measured. B) 24 h sleep deprivation has no significant effect on the development of short-term acute 

alcohol tolerance. Both sleep deprived and non-sleep deprived flies exhibited alcohol tolerance (ANOVA 

F3,20 = 49.62, p < 0.0001).  C) Complete time course of alcohol exposure showing percent of flies 

exhibiting sedation for 10 d old sleep-deprived and non-sleep deprived flies. D-F) Effect of sleep 

deprivation on development of long-term functional alcohol tolerance. WT CS flies were aged in 12:12 h 

LD cycle and sleep deprived for 24 h on day 10. On day 11, flies were exposed to 50% alcohol vapor for 

30 min and tested 24 h later by exposing to 50% alcohol vapor for 1 h at ZT 9 with sedation being 

measured. E) Both sleep-deprived and non-sleep deprived flies exhibited alcohol tolerance (ANOVA F3,26 

= 125.7, p < 0.0001) with 24 h sleep deprivation significantly dampens development of long-term 

functional alcohol tolerance. F) Complete time course of alcohol exposure showing percent of flies 

exhibiting sedation for 10 d old sleep-deprived and non-sleep deprived flies. 
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