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Abstract  

 

Adaptive ecotype formation is the first step to speciation, but the genetic underpinnings of 

this process are poorly understood. While in marine midges of the genus Clunio (Diptera) re-

production generally follows a lunar rhythm, we here characterize two lunar-arrhythmic eco-

types. Analysis of 168 genomes reveals a recent establishment of these ecotypes, reflected in 

massive haplotype sharing between ecotypes, irrespective of whether there is ongoing gene 

flow or geographic isolation. Genetic analysis and genome screens reveal patterns of poly-

genic adaptation from standing genetic variation. Ecotype-associated loci prominently include 

circadian clock genes, as well as genes affecting sensory perception and nervous system de-

velopment, hinting to a central role of these processes in lunar time-keeping. Our data show 

that adaptive ecotype formation can occur rapidly, with ongoing gene flow and largely based 

on a re-assortment of existing and potentially co-adapted alleles. 

 

Keywords: Local adaptation, reproductive timing, lunar rhythm, biological clocks, sympat-

ric speciation, gene flow, Chironomidae, marine ecology  
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Introduction  
 

Understanding the processes underlying local adaptation and ecotype formation is a vital 

theme in evolutionary ecology1,2, but also increasingly important for conservation of biodiver-

sity in the face of climate change and deterioration of natural habitats3. Adaptation in repro-

ductive timing is at particular risk, as under rising temperatures it can be severely mismatched 

with the environment4. Major open questions for understanding the process of adaptation 

are to what extent it requires novel mutations or reuses existing genetic variation, and how 

these different paths of adaptation are constrained by population history and genome archi-

tecture2,5. Answering these questions generally requires identification of the adaptive genetic 

loci. For obtaining a broad understanding, this tedious endeavor must be undertaken in a di-

verse array of model and non-model organisms. Here we present a study on the recent evo-

lution of ecotypes in marine midges of the genus Clunio (Diptera: Chironomidae), which in 

adaptation to their habitat differ in oviposition behavior and reproductive timing, involving 

both circadian and circalunar clocks. 

Circalunar clocks are biological time-keeping mechanisms that allow organisms to antici-

pate lunar phase6. Their molecular basis is unknown7, making identification of adaptive loci 

for lunar timing both particularly challenging and interesting. In many marine organisms, 

circalunar clocks synchronize reproduction within a population. In Clunio marinus they have 

additional ecological relevance8. Living in the intertidal zone of the European Atlantic coasts, 

C. marinus requires the habitat to be exposed by the tide for successful oviposition. The hab-

itat is maximally exposed during the low waters of spring tide days around full moon and new 

moon. Adult emergence is restricted to these occasions by a circalunar clock, which tightly 

regulates development and maturation. Additionally, a circadian clock ensures emergence 

during only one of the two daily low tides. The adults reproduce immediately after emergence 

and die few hours later. As tidal regimes vary dramatically along the coastline, C. marinus 

populations have evolved various local timing adaptations8-10. Analysis of these timing adap-

tations gave first insights into the genetic underpinnings of circalunar clocks11,12. 
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In addition to the above-described lunar-rhythmic Atlantic ecotype of C. marinus, literature 

reports two lunar-arrhythmic ecotypes of Clunio in the Baltic Sea13-15 and in the high Arctic16,17 

(see Fig. 1 for a summary of defining characteristics of the three ecotypes). In the Baltic Sea 

the tides are negligible and the Baltic ecotype oviposits on the open water, from where the 

eggs quickly sink to the submerged larval habitat at water depths of up to 20 metres13,18. Re-

production of the Baltic ecotype happens every day precisely at dusk under control of a circa-

dian clock19. There is no detectable circalunar rhythm14. Near Bergen (Norway) the Baltic and 

Atlantic ecotypes were reported to co-occur in sympatry, but in temporal reproductive isola-

tion. The Baltic ecotype reproduces at dusk, the Atlantic ecotype reproduces during the after-

noon low tide19. Therefore, the Baltic ecotype is considered a separate species – C. balticus. 

However, C. balticus and C. marinus can be successfully interbred in the laboratory19.  

In the high Arctic there are normal tides and the Arctic ecotype of C. marinus is found in 

intertidal habitats16. During its reproductive season, the permanent light of polar day pre-

cludes synchronization of the circadian and circalunar clocks with the environment. Thus, the 

Arctic ecotype relies on a so-called tidal hourglass timer, which allows it to emerge and repro-

duce during every low tide17. It does not show circalunar or circadian rhythms17. 

The geological history of Northern Europe20 and subfossil Clunio head capsules in Baltic Sea 

sediment cores21 suggest that the Baltic Sea and the high Arctic were colonized by Clunio after 

the last ice age, setting a time frame of less than 10,000 years for formation of the lunar-

arrhythmic ecotypes. In this study, we confirmed and characterised these ecotypes in field 

work and laboratory experiments. Sequencing 168 individual genomes highlighted the evolu-

tionary history of the three ecotypes, the processes underlying ecotype formation and major 

molecular pathways determining their ecotype characteristics. 
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Figure 1 Northern European ecotypes of Clunio and their lunar rhythms 
 
The Atlantic, Arctic and Baltic ecotypes of Clunio differ mainly in their lunar rhythms (B-H), circadian 
rhythms (Suppl. Fig. 1), as well as their habitat and the resulting oviposition behavior (Suppl. Note 1).  
(A) Sampling sites for this study. (B-H) Lunar rhythms of adult emergence in corresponding laboratory 
strains under common garden conditions, with 16 hours of daylight and simulated tidal turbulence 
cycles to synchronize the lunar rhythm. In Arctic and Baltic ecotypes the lunar rhythm is absent (E,G,H) 
or very weak (F). Por-1SL: n=1,263; He-1SL: n=2,075; Ber-1SL: n=230; Tro-tAR: n=209; Ber-2AR: n=399; 
Seh-2AR: n= 380; Ar-2AR: n=765. 
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Results 
 

Clunio ecotypes and their lunar rhythms. Starting from field work in Northern Europe (Fig. 

1A), we established one laboratory strain of the Arctic ecotype from Tromsø (Norway, Tro-

tAR; see methods for strain nomenclature) and three laboratory strains of the Baltic ecotype, 

from Bergen (Norway, Ber-2AR), Sehlendorf (Germany; Seh-2AR) and Ar (Sweden; Ar-2AR). 

We also established a strain of the Atlantic ecotype from Bergen (Ber-1SL, sympatric with Ber-

2AR) and used two existing Atlantic ecotype laboratory strains from Helgoland (Germany; He-

1SL) and Port-en-Bessin (France; Por-1SL). We confirmed the identity of the ecotypes in the 

laboratory by the absence of a lunar rhythm in the Baltic and Arctic ecotypes (Fig. 1B-H), their 

circadian rhythm (Supplementary Fig. 1B-H) and their oviposition behavior (for details see 

Supplementary Note 1). The Baltic ecotype from Bergen (Ber-2AR, Fig. 1F) was found weakly 

lunar-rhythmic. In crossing experiments between the Ber-2AR and Ber-1SL laboratory strains, 

the degree of lunar rhythmicity segregates within and between crossing families (Supplemen-

tary Fig. 2), suggesting a heterogeneous polygenic basis of lunar arrhythmicity. Genetic segre-

gation implies that the weak rhythm in Ber-2AR is due to genetic polymorphism. The Ber-2AR 

strain seems to carry some lunar-rhythmic alleles, likely due to gene flow from the sympatric 

Atlantic ecotype (see results below).  

 

Evolutionary history and species status. We sequenced the full nuclear and mitochondrial 

genomes of 168 field-caught individuals, 24 from each population (23 for Por-1SL, 25 for He-

1SL). Based on a set of 792,032 single nucleotide polymorphisms (SNPs), we first investigated 

population structure and evolutionary history by performing a principal component analysis 

(PCA; Fig. 2A-B) and testing for genetic admixture (Fig. 2C). We also constructed a haplotype 

network of complete mitochondrial genomes (Fig. 2D). There are four major observations.  

First, there is strong geographic isolation between populations from different sites. In PCA, 

clusters are formed according to geography (Fig. 2A-B, Supplementary Fig. 3). Mitochondrial 

haplotypes are not shared and are highly divergent between geographic sites (Fig. 2D). In AD-

MIXTURE, the optimal number of genetic groups is six (Supplementary Fig. 4), corresponding 
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to the number of geographic sites, and there is basically no mixing between the six clusters 

(Fig. 2C; K=6).  

Second, and much in contrast to the above, the sympatric ecotypes in Bergen are genet-

ically very similar. In PCA they are not separated in the first four principal components (Fig. 

2A-B) and they are the only populations that share mitochondrial haplotypes (Fig. 2D). In the 

ADMIXTURE analysis, they are only distinguished at K=7, a value larger than the optimal K. As 

soon as the two populations are distinguished, some individuals show signals of admixed 

origin (Fig. 2C; K=7), indicative of ongoing gene flow and incomplete reproductive isolation. 

These observations question the species status of C. balticus, which was based on the assump-

tion of temporal isolation between these two populations19. Given that genetic differentiation 

rather corresponds to geography than to ecotype (Fig. 2), we consider all three ecotypes part 

of a single species, C. marinus. 

 

 

 

 

 

 

 

 

 

 

u 
Figure 2 Genetic structure and evolutionary history of Northern European Clunio ecotypes 
 
(A,B) Principal component analysis (PCA) based on 792,032 SNPs separates populations by geographic 
location rather than ecotype. (C) ADMIXTURE analysis supports strong differentiation by geographic 
site (best K=6), but a notable genetic component from the Baltic Sea in the Bergen populations (see 
K=2 and 3). The Bergen populations are only separated at K=7 and then show a number of admixed 
individuals. (D) Haplotype network of full mitochondrial genomes reveals highly divergent clusters ac-
cording to geographic site, but haplotype sharing between Ber-1SL and Ber-2AR. (E) Correlated allele 
frequencies indicate introgression from Seh-2AR into Ber-2AR.   
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Third, the data suggest that after the ice age Clunio colonized northern Europe from a single 

source and expanded along two fronts into the Baltic Sea and into the high Arctic. The mito-

chondrial haplotype network expands from a single center, which implies a quick radiation 

from a single ancestral haplotype (Fig. 2D). In line with this, 34% of polymorphic sites are poly-

morphic in all seven populations and 93% are polymorphic in at least two populations (Sup-

plementary Fig. 5). In the light of the detected strong geographic isolation, this reflects a large 

amount of shared ancestral polymorphism. Separation of the Baltic Sea populations along PC1 

and the Arctic population along PC2 (Fig. 2A), suggests that Clunio expanded into the high 

Arctic and into the Baltic Sea independently. Congruently, nucleotide diversity significantly 

decreases towards both expansion fronts (Supplementary Fig. 6, Supplementary Tab. 1). Post-

glacial establishment from a common source indicates that the lunar-arrhythmic Baltic and 

Arctic ecotypes must be derived from the lunar-rhythmic Atlantic ecotype.  

Fourth, ADMIXTURE analysis reveals that sympatric co-existence of the Atlantic and Baltic 

ecotypes in Bergen likely results from introgression of Baltic ecotype individuals into an exist-

ing Atlantic ecotype population. At K=2 and K=3 the two Baltic Sea populations Seh-2AR and 

Ar-2AR are separated from all other populations and the two Bergen populations Ber-2AR and 

Ber-1SL show a marked genetic component coming from these Baltic Sea populations (Fig. 

2C). Congruently, TreeMix detects introgression from Seh-2AR into Ber-2AR (Fig. 2E), but no 

other introgression events (Supplementary Fig. 7). The genetic component from the Baltic is 

largely shared between the two Bergen populations, underscoring again that the Baltic and 

Atlantic ecotypes in Bergen are not fully reproductively isolated. However, the Baltic genetic 

component is slightly larger for the Baltic ecotype Ber-2AR population than for the Atlantic 

ecotype Ber-1SL population. The small fraction of introgressed alleles by which the Bergen 

populations differ might determine Baltic ecotype characteristics. Interestingly, the Arctic eco-

type also shares a small genetic component with the Baltic populations (Fig. 2C, K=2), leaving 

open whether it evolved lunar arrhythmicity independently from the Baltic ecotype or 

whether arrhythmicity alleles from the Baltic were carried all the way north. 
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Incomplete lineage sorting and introgression. All subsequent analyses of the evolutionary 

processes and genomic loci underlying ecological adaptation were focussed on the Atlantic 

and Baltic ecotypes, represented by three populations each. First, we reconstructed the gene-

alogical relationship between 36 individuals (six from each population) in 50 kb windows 

(n=1,607) along the genome, followed by topology weighting. There are 105 possible un-

rooted tree topologies for six populations, and 46,656 possibilities to pick one individual from 

each population out of the set of 36. For each window along the genome, we assessed the 

relative support of each of the 105 population tree topologies by all 46,656 combinations of 

six individuals. We found that tree topologies change rapidly along the chromosome (Fig. 3A; 

Supplementary Fig. 8; Supplementary Data 1). The tree topology obtained for the entire ge-

nome (Supplementary Fig. 9) only dominates in few genomic windows (Fig. 3A, black bars 

“Orig.”), while usually one or several other topologies account for more than 75% of the tree 

topologies (Fig. 3A, grey bars “Misc.”). Hardly ever do all combinations of six individuals follow 

a single population tree topology (Fig. 3A, stars), which implies that in most genomic windows 

some individuals do not group with their population. Taken together, this indicates a massive 

sharing of haplotypes across populations and high levels of incomplete lineage sorting. In such 

a highly mixed genomic landscape, it is close to impossible to separate signals of introgression 

from incomplete lineage sorting. Still, we highlighted genomic windows that are consistent 

with the detected introgression from the Baltic ecotype into the Bergen populations (Fig. 3A, 

yellow bars “Intr.”; all topologies grouping Por-1SL and He-1SL vs Ber1SL, Ber-2AR, Seh-2AR 

and Ar-2AR). Regions consistent with introgression are scattered over the entire genome. 

 

Genomic regions associated with ecotype formation. Next, we applied three approaches 

to identify genomic regions associated with divergence between Atlantic and Baltic ecotypes. 

First, genomic windows which are dominated by tree topologies that group populations ac-

cording to ecotype were highlighted (Fig. 3A, red bars “Ecol.”). Second, we screened all genetic 

variants (SNPs and indels; n = 948,128) for those that are overly differentiated between the 

six populations after correcting for the neutral covariance structure across population allele 

frequencies  (see  Ω  matrix,  Supplementary  Fig.  10A-B).  Such  variants  may  indicate  local  
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Figure 3 Genome screens for haplotype sharing and genotype-ecotype associations 
 
(A) Topology weighting of phylogenetic trees for 36 individuals from the Baltic and Atlantic ecotypes, 
as obtained from 50 kb non-overlapping genomic windows. Windows were marked by a bar if they 
were dominated by one kind of topology (wτ > 75%). Most windows are not dominated by the consen-
sus population topology (“Orig.”; Suppl. Fig. 9), but by combinations of other topologies (“Misc.”). 
Windows dominated by topologies that separate the Baltic and Atlantic ecotypes (“Ecol.”) are mostly 
on chromosome 1. Windows consistent with introgression are found all over the genome (“Intr.”). (B) 
Distribution of outlier variants (SNPs and Indels) between the six Baltic and Atlantic ecotype popula-
tions, after global correction for population structure (XtX statistic). Values below the significance 
threshold (as obtained by subsampling) are plotted in grey. (C) Association of variant frequencies with 
Baltic vs. Atlantic ecotype (eBPmc). Values below the threshold of 3 (corresponding to p = 10-3) are given 
in grey, values above 10 are given in red. (D) Genetic differentiation (FST) between the sympatric eco-
types in Bergen. Values above 0.5 are given in black, values above 0.75 in red. (E) The distribution of 
SNPs with FST >= 0.75 in the Baltic vs. Atlantic ecotypes. Circled numbers mark the location of the eight 
most differentiated loci (see Fig. 5). Centromeres of the chromosomes are marked by a red “C”. 
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adaptation. At the same time, we tested for association of these variants with ecotype, as 

implemented in BayPass22. Overly differentiated variants (XtX statistic; Fig. 3B) and ecotype-

associated variants ecotype (eBPmc; Fig. 3C) were detected all over the genome, but many 

were concentrated in the middle of the telocentric chromosome 1. Tests for association of 

variants with environmental variables such as sea surface temperature or salinity find fewer 

associated SNPs and no concentration on chromosome 1 (Supplementary Fig. 10D-E), con-

firming that the detected signals are not due to general genome properties, but are specific 

to the ecotypes. Third, we expected that gene flow between the sympatric Ber-1SL and Ber-

2AR populations would largely homogenize their genomes except for regions involved in eco-

logical adaptation, which would be highlighted as peaks of genetic differentiation. The distri-

butions of FST values in all pairwise population comparisons confirmed that genetic differenti-

ation was particularly low in the Ber-1SL vs. Ber-2AR comparison (Supplementary Fig. 11 and 

12). Pairwise differentiation between Ber-1SL and Ber-2AR (Fig. 3D) shows marked peaks on 

chromosome 1, most of which coincide with peaks in XtX and eBPmc. Notably, when assessing 

genetic differentiation of Baltic vs Atlantic ecotype (72 vs 72 individuals; Fig. 3E; Supplemen-

tary Fig. 13), there is not a single diagnostic variant (FST = 1), and even variants with FST ≥ 0.75 

are very rare (n=63; Fig. 3E).  

Genetic divergence (dxy), nucleotide diversity (𝜋) and local linkage disequilibrium (r2) of the 

two Bergen populations do not show marked differences along or between chromosomes 

(Supplementary Fig. 14). The cluster of ecotype-associated variants on chromosome 1 over-

laps with three large blocks of long-range linkage disequilibrium (LD; Supplementary Fig. 15).  

However, the boundaries of the LD blocks do not correspond to the ecotype-associated region 

and differ between populations. LD blocks are not ecotype-specific. Local PCA of the strongly 

ecotype associated region does not reveal patterns consistent with a chromosomal inversion 

or another segregating structural variant (Supplementary Fig. 16). Thus, there is no obvious 

link between the clustering of ecotype-associated loci and structural variation. Notably, ge-

netic differentiation is not generally elevated in the ecotype-associated cluster on chromo-

some 1, as would be expected for a segregating structural variant, but drops to baseline levels 

in between ecotype-associated loci (Fig. 3D). Taken together, numerous genomic loci – inside 
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and outside the cluster on chromosome 1 – are associated with ecological adaptation and 

none of these are differentially fixed between ecotypes, suggesting that ecotype formation 

relies on a complex polygenic architecture.  

 

Adaptation from standing genetic variation. We next investigated whether adaptive al-

leles underlying ecotype formation rather represent de novo mutations or standing genetic 

variation. We selected highly ecotype-associated SNPs (XtX > 1.152094, threshold obtained 

from randomized subsampling; eBPmc > 3; n = 3,976; Supplementary Fig. 17A) and assessed to 

which degree these alleles are shared between the studied populations and other populations 

across Europe. Allele sharing between the Bergen populations is likely due to ongoing gene 

flow, and hence Bergen populations were excluded from the analysis. In turn, allele sharing 

between the geographically isolated Seh-2AR, Ar-2AR, Por-1SL and He-1SL populations likely 

represents shared ancient polymorphism. Based on this comparison, we found that 82% of 

the ecotype-associated SNPs are polymorphic in both Atlantic and Baltic ecotypes, suggesting 

that the largest part of ecotype-associated alleles originates from standing genetic variation. 

We then retrieved the same genomic positions from published population resequencing data 

for Atlantic ecotype populations from Vigo (Spain) and St. Jean-de-Luz (Jean, southern 

France)11, an area that is potentially the source of postglacial colonization of all locations in 

this study. We found that 90% of the alleles associated with the Northern European ecotypes 

are also segregating in at least one of these southern populations, underscoring that adapta-

tion in the North involves a re-assortment of existing standing genetic variation.  

 

Ecotypes differ mainly in the circadian clock and nervous system development. We then 

assessed how all ecotype-associated variants (SNPs and indels; XtX > 1.148764; eBPmc > 3, n = 

4,741; Supplementary Fig. 17B) may affect C. marinus’ genes. In a first step, we filtered the 

existing gene models in the CLUMA1.0 reference genome to those that are supported by tran-

script or protein evidence, have known homologues or PFAM domains, or were manually cu-

rated (filtered annotations provided in Supplementary Data 2; 15,193 gene models). Based on 

this confidence gene set, we then assessed the location of variants relative to genes,  as  well  
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Figure 4 GO term analysis of ecotype associated SNPs 
 
(A) The top 40 enriched GO terms are listed for the 1,400 genes that are found to be affected by eco-
type-associated genetic variants (eBPmc > 3). For each GO term the significance level (black line, top y-
axis) and the observed-expected ratio of genes annotated to the respective GO term (blue bars, bot-
tom y-axis) are given. (B) The top 40 GO terms are driven by 168 genes. Hierarchical clustering of 
genes and GO terms reveals major signals in the circadian clock and nervous system development 
(more details in Supplementary Table 3). (C) Most GO terms are consistent with the known ecotype 
differences and selected genes are highlighted for all of them. Notably, basically all core circadian 
clock genes are affected. 
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as the resulting mutational effects (SNPeff23; Supplementary Fig. 18; statistics in Supplemen-

tary Tab. 2). The vast majority of ecotype-specific variants are classified as intergenic modifier 

variants, suggesting that ecotype formation might primarily rely on regulatory mutations. 

The ecotype-specific SNPs are found in and around 1,400 genes (Supplementary Data 3 and 

4). We transferred GO terms from other species to the Clunio confidence annotations based 

on gene orthology (5,393 genes; see methods and Supplementary Data 5). GO term enrich-

ment analysis suggests that ecological adaptation prominently involves the circadian clock, 

supported by three of the top four GO terms (Fig. 4A). In order to identify which genes drive 

GO term enrichment in the top 40 GO terms, we extracted the genes that harbour ecotype-

associated SNPs (168 genes; Fig. 4B; Supplementary Table 3). We individually confirmed their 

gene annotations and associated GO terms. Clustering the resulting table by genes and GO 

terms reveals two dominant signatures (Fig. 4B). Many GO terms are associated with circadian 

timing and are driven by a small number of genes, which include almost all core circadian clock 

genes (Fig. 4B and C). As a second strong signal, almost half of the genes are annotated with 

biological processes involved in nervous system development (Fig. 4B and C). GO term enrich-

ment is also found for ecdysteroid metabolism, imaginal disc development and gonad devel-

opment (Fig. 4). These processes of pre-pupal development are expected to be under circal-

unar clock control. The fact that circalunar clocks are responsive to moonlight and water tur-

bulence6 renders the finding of GO term enrichment for “auditory behaviour” and “photo-

taxis” interesting. Furthermore, many of the genes involved in nervous system development 

and sodium ion transport, also have GO terms that implicate them in light- and mechanore-

ceptor development, wiring or sensitivity (Supplementary Data 5). With the exception of “re-

sponse to hypoxia” and possibly “sodium ion transmembrane transport”, there are very few 

GO terms that can be linked to the submerged larval habitat of the Baltic ecotype, which is 

usually low in salinity and can turn hypoxic in summer. There is a striking absence of GO terms 

involved in metabolic processes or immune response. 

Taken together, the detected GO terms are highly consistent with the known ecotype dif-

ferences and suggest that ecotypes are mainly defined by changes in the circadian clock and 

nervous system development. A previously unknown aspect of Clunio ecotype formation is 
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highlighted by the GO terms “male courtship behaviour”, “inter-male aggression” and “copu-

lation” (Fig. 4). These processes are subject to sexual selection and considered to evolve fast. 

They could in the long term entail assortative mating between ecotypes.      

 

Strongly differentiated loci correspond to GO-term enriched biological processes. While 

GO term analysis gives a broad picture of which processes have many genes affected by eco-

type-associated SNPs, this does not necessarily imply that these genes and processes also 

show the strongest association with ecotype. Additionally, major genes might be missed be-

cause they were not assigned GO terms. As a second line of evidence, we therefore selected 

variants with the highest ecotype-association by increasing the eBPmc cut-off to 10. This re-

duced the set of affected genes from 1,400 to 69 (Supplementary Data 6 and 7). Additionally, 

we only considered genes with variants that are strongly differentiated between the ecotypes 

(FST > 0.75, compare Fig. 3E), leaving thirteen genes in eight distinct genomic regions (Fig. 5A; 

numbered in Fig 3E). Two of these regions contain two genes each with no homology outside 

C. marinus (indicated by “NA”, Fig. 5A), confirming that GO term analysis missed major loci 

because of a lack of annotation. Three other regions contain the – likely non-visual – photore-

ceptor ciliary Opsin 1 (cOps1)24, the transcription factor longitudinals lacking (lola; in fruit fly 

involved in axon guidance25 and photoreceptor determination26) and the nuclear receptor tail-

less (tll; in fruit fly involved in development of brain and eye27), underscoring that ecotype 

characteristics might involve differential light sensitivity. Interestingly, tll also affects develop-

ment of the neuroendocrine centres involved in ecdysteroid production and adult emer-

gence28. Even more, re-annotation of this genomic locus revealed that the neighbouring gene, 

which is also affected by ecotype specific variants, is the short neuropeptide F receptor (sNPF-

R) gene. Among other functions, sNPF-R is involved in coupling adult emergence to the circa-

dian clock29. Similarly, only 100 kb from cOps1 there is the differentiated locus of matrix met-

alloprotease 1 (Mmp1), which is known to regulate circadian clock outputs via processing of 

the neuropeptide pigment dispersing factor (PDF)30. In both cases, the close genetic linkage 

could possibly form pre-adapted haplotypes and entail a concerted alteration of sensory and 

circadian functions in the formation of ecotypes. In the remaining two loci, sox100B is known 
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to affect male gonad development31 and the ecdysone-induced protein 93F is involved in re-

sponse to hypoxia in flies32, but was recently found to also affect reproductive cycles in mos-

quitoes33. In summary, only two out of the top 13 ecotype-associated genes were comprised 

in the top 40 GO terms (Fig. 5A). Nevertheless, all major biological processes detected in GO 

term analysis (Fig. 4) are also reflected in the strongly ecotype-associated loci (Fig. 5), giving a 

robust signal that circadian timing, sensory perception and nervous system development are 

underlying ecotype formation in C. marinus.  

Finally, we assessed the top 13 strongly ecotype-associated loci for signatures of selective 

sweeps in genetic diversity and LD (Fig. 5B-G). Despite these loci being the most differentiated 

between ecotypes in the entire genome, there is at best a mild reduction in genetic diversity 

and a mild increase in LD (Fig. 5B-G). If selection acted on these loci, it must have been very 

soft, underscoring a history of polygenic adaptation from standing genetic variation and con-

tinued recombination.   
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Figure 5  The 13 most differentiated ecotype-associated genes 
 
(A) Loci with highly ecotype-associated variants were selected based on eBPmc > 3 and FST(Baltic-At-
lantic) > 0.75. There are 13 genes in eight distinct genomic loci. (B-G) An overview is given for the six 
loci with identified genes. In each panel, from top to bottom the sub-panels show the gene models, 
FST values of genetic variants in the region, local linkage disequilibrium (LD) and genetic diversity (𝜋). 
FST values are coloured by ecotype association of the variant (red: eBPmc > 10; black: 10 > eBPmc > 3; 
grey: eBPmc < 3). LD and genetic diversity are shown for the six populations independently, coloured-
coded as in Fig 1 and 2. The are no strong signatures of selection.   
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Discussion 
 

Inspired by classic literature, we confirmed the existence of three distinct ecotypes of C. 

marinus in Northern Europe.  Based on the analysis of 168 genomes, these ecotypes form a 

single genetic species, exchange genetic material where they occur in sympatry, and estab-

lished very recently from a common ancestor. While ecotype-associated alleles differ in allele 

frequency, they are largely shared between ecotypes, which suggests that adaptation primar-

ily involves standing genetic variation from many different loci. A similar re-use of existing 

regulatory variation has been found in ecotype formation in sticklebacks34-36 or mimicry in 

Heliconius butterflies37. However, while in Heliconius alleles are shared over large evolution-

ary distances via introgression, Clunio ecotypes diverged recently from a common source, as 

is illustrated by massive and genome-wide shared polymorphism. Combined with the obser-

vation that many genes from the same biological processes have ecotype-associated alleles, 

this draws a picture of polygenic adaptation, involving many pre-existing alleles with probably 

small phenotypic effects. Particularly for adaptation in circadian timing this scenario is highly 

plausible. The ancestral Atlantic ecotype comprises many genetically determined circadian 

timing types that are adapted to the local tides8,9,11,38. Existing genetic variants conveying 

emergence at dusk were likely selected or re-assorted to form the Baltic ecotype’s highly con-

centrated emergence at dusk.  

Besides circadian timing, the ecotypes differ in circalunar timing and oviposition behavior. 

In our study the vast majority of GO terms and candidate genes is consistent with these func-

tions, leaving little risk for evolutionary “story-telling” based on individual genes or GO 

terms39. We propose that good congruence between known phenotypic differences and de-

tected biological processes could be a hallmark of polygenic adaptation, as only polygenic ad-

aptation is expected to leave a footprint in many genes of the same ecologically relevant bio-

logical process. In turn, because of the polygenic architecture, pinpointing individual genes’ 

contributions to a specific phenotype will require additional experiments. Genetic manipula-

tion may not be very informative when assessing highly polygenic traits (see e.g. 40). But QTL 
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mapping with recently developed refined statistical algorithms for detection of polygenic sig-

nals may hold some promise41.  

Based on our genomic comparison of lunar-rhythmic and lunar-arrhythmic ecotypes, we 

propose three not mutually exclusive hypotheses on molecular pathways involved in the un-

known circalunar clock. Firstly, Clunio’s circalunar clock is known to tightly regulate ecdyster-

oid-dependent development and maturation just prior to pupation42. Congruently, our screen 

identified ecotype-associated genes in the development of imaginal discs and genital discs, 

and in ecdysteroid metabolism. Lunar arrhythmicity may rely on an escape of these processes 

from circalunar clock control. Secondly, it has been hypothesized that circalunar clocks involve 

a circadian clock43 and such a mechanism has been experimentally confirmed in the midge 

Pontomyia oceana44. Thus, the overwhelming circadian signal in our data might be responsible 

for both circadian timing adaptations and the loss of circalunar rhythms. Thirdly, Clunio’s 

circalunar clock is synchronized with the external lunar cycle via moonlight, as well as tidal 

cycles of water turbulence and temperature6. Our data suggests that sensory receptor devel-

opment, wiring or sensitivity might differ between ecotypes. Interestingly, some Atlantic eco-

type populations are insensitive to specific lunar time cues, either moonlight or mechanical 

stimulation by the tides8. These pre-existing insensitivities may have been combined to form 

completely insensitive and hence lunar-arrhythmic ecotypes. This scenario would fit the gen-

eral pattern of polygenic adaptation through a re-assortment of standing genetic variation, 

which emerges from our study.  

In several species, genes involved in complex behavioral or ecological syndromes were 

found to be locked into supergenes by chromosomal inversions, e.g. in Heliconius butterfly 

mimicry45 or reproductive morphs of the ruff46. While we observe a clustering of ecotype-

associated alleles in Clunio, there is no obvious connection to an underlying structural variant 

(SV). Possibly, the SV is so complex that it did not leave an interpretable genomic signal. Alter-

natively, Clunio’s long history of genome rearrangements11 may have resulted in a clustering 

of ecologically relevant loci without locking them into a single SV. Clustering could be stabi-

lized by low recombination, consistent with the observed three LD blocks, which – while not 

ecotype-specific – all overlap with the differentiated region. Epistatic interactions between 
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the clustered loci and co-adaptation of alleles might further reduce the fitness of recombi-

nants and lead to a concerted response to selection. Such an interconnected adaptive cluster 

might allow for more flexible evolutionary responses than a single, completely linked super-

gene. Further studies will have to show whether such a genome architecture exists, whether 

it facilitates adaptation and whether it might itself be selected for.  
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Methods 
 

Nomenclature of ecotypes. We expanded the existing naming convention of C. marinus 

timing types38 to also include Baltic and Arctic ecotypes. Names of populations and corre-

sponding laboratory strains consist of an abbreviation for geographic origin followed by a code 

for the daily and lunar timing phenotypes. Daily phenotypes in this study are emergence dur-

ing the first 12 hours after sunrise (“1”) or, emergence during the second 12 hours after sun-

rise (“2”) or emergence during every low tide (“t” for tidal rhythm). Lunar phenotypes in this 

study are either emergence during full moon and new moon low tides (“SL” for semi-lunar) or 

arrhythmic emergence (”AR”). As a consequence, the Arctic ecotype is “tAR”, the Baltic eco-

type is “2AR” and the Atlantic ecotype populations in this study are all of timing type “1SL” 

(while other timing types exist within the Atlantic ecotype38). 

 

Fieldwork and sample collection. Field samples for genetic analysis and establishment of 

laboratory strains were collected in Sehlendorf (Seh, Germany), Ar (Sweden), Tromsø (Tro, 

Norway) and Bergen (Ber, Norway) during eight field trips in 2017 and 2018 (Supplementary 

Tab. 4). Field caught adult males for DNA extraction were directly collected in 99.98 % ethanol 

and stored at -20°C. Females are immobile and basically invisible in the field, unless found in 

copulation. Laboratory strains were established by catching copulating pairs in the field and 

transferring multiple fertilized egg clutches to the laboratory (Supplementary Tab. 4). Samples 

and laboratory strains of the sympatric ecotypes in Bergen were collected at the same location 

but at different daytime. Additional samples and laboratory strains from Helgoland (He, Ger-

many) and Port-en-Bessin (Por, France) were collected and described earlier11,38,47, but had 

previously not been subject to whole genome sequencing of individuals.  

 

Laboratory culture and phenotyping of ecotypes. Laboratory strains were reared under 

standard conditions48 at 20°C with 16 h of light and 8 h of darkness. Atlantic and Arctic ecotype 

strains were kept in natural seawater diluted 1:1 with deionized water and fed with diatoms 

(Phaeodactylum tricornutum) and powdered nettles (Urtica sp.). The Baltic ecotype was kept 
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in natural Sea water diluted 1:2 and fed with diatoms and powdered red algae (90%, Delesseria 

spp., 10% Ceramium spp., obtained from F. Weinberger and N. Stärck, GEOMAR, Kiel). For 

entrainment of the lunar rhythm all strains were provided with 12.4 h tidal cycles of water 

turbulence (mechanically induced vibrations produced by an unbalanced motor, 50 Hz, 

roughly 30 dB above background noise, 6.2 h on, 6.2 h off)49,50.  

Assignment of strains to ecotypes was confirmed based on their phenotypes as recorded 

in laboratory culture. Oviposition behavior was assessed during standard culture mainte-

nance: Baltic ecotype eggs are generally found submerged at the bottom of the culture vessel, 

Atlantic and Arctic ecotype eggs are always found floating on the water surface or on the walls 

of the culture vessel (see Supplementary Note 1). Daily emergence times were recorded in 1h 

intervals by direct observation (Seh-2AR, Ar-2AR) or with the help of a fraction collector51 (Ber-

1SL, Ber-2AR, Tro-tAR, Por-1SL, He-1SL; Supplementary Fig. 1). Lunar emergence times were 

recorded by counting the number of emerged midges in the laboratory cultures every day 

over several months and summing them up over several tidal turbulence cycles. Emergence 

data for He-1SL was taken from52, emergence data for Por-1SL was taken from a manuscript 

in preparation (D Briševac, C Prakash, TS Kaiser).  

 

DNA extraction and whole genome sequencing. For each of the seven populations, 24 field 

caught males (23 for Por-1SL, 25 for He-1SL) were subject to whole genome sequencing. DNA 

was extracted from entire individuals with a salting out method53 and amplified using the 

REPLI-g Mini Kit (QIAGEN) according to the manufacturer’s protocol with volume modifica-

tions (Supplementary Tab. 5). All samples were subject to whole genome shotgun sequencing 

at 15-20x target coverage on an Illumina HiSeq3000 sequencer with 150 bp paired-end reads. 

Library preparation and sequencing were performed by the Max Planck Genome Centre (Co-

logne, Germany) according to standard protocols. Raw sequence reads are deposited at ENA 

under Accession PRJEB43766. 

 

Sequence data processing, genotyping and SNP filtering. Raw sequence reads were 

trimmed for adapters and base quality using Trimmomatic v.0.3854 with parameters 
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'ILLUMINACLIP:TruSeq3-PE-2.fa:2:30:10:8:true', 'LEADING:20', 'TRAILING:20', 'MINLEN:75'. 

Overlapping paired end reads were merged with PEAR v.0.9.1055, setting the minimum assem-

bled sequence length to 75 bp and a capping quality score of 20. Assembled and unassembled 

reads were mapped with BWA-MEM56 to the nuclear reference genome11 (ENA accession 

GCA_900005825.1) and the mitochondrial reference genome (ENA accession 

CVRI01023763.1) of C. marinus. Mapped reads were sorted, indexed, filtered for mapping 

quality (-q 20) and transformed to BAM format with SAMtools v.1.957. Read group information 

was added with the AddOrReplaceReadGroups.jar v.1.74 script from the Picard toolkit 

(http://picard.sourceforge.net/) 58.  

For the nuclear genome, SNPs and insertion-deletion (indel) genotypes were called using 

GATK v.3.8-0-ge9d80683659. After initial genotype calling with the GATK HaplotypeCaller and 

the parameter ‘-stand_call_conf 30’, base qualities were recalibrated with the GATK Bas-

eRecalibrator with ‘-knownSites’ and genotype calling was repeated on the recalibrated BAM 

files to obtain the final individual VCF files. Individual VCF files were combined using GATK 

GenotypeGVCFs. SNP and indel genotypes were filtered with VCFtools v.0.1.14 60 to keep only 

biallelic polymorphisms (--max-alleles 2), with a minimum minor allele frequency of 0.02 (--

maf 0.02), a minimum genotype quality of 20 (--minQ 20) and a maximum proportion of miss-

ing data per locus of 40% (--max-missing 0.6), resulting in 792,032 SNPs and 156,096 indels 

over the entire set of 168 individuals. For certain analyses indels were excluded with VCFtools 

(‘--remove-indels’). 

Reads mapped to the mitochondrial genome were transformed into mitochondrial haplo-

types as described in 61.  

 

Population genomic analyses. Mitochondrial haplotype networks were calculated using 

the Median-Joining algorithm62 with Network v.10.1.0.0 (fluxus-engineering.com).  

Nuclear SNP genotypes were converted to PLINK format with VCFtools. SNPs were LD 

pruned with PLINK v.1.90b463 and parameters ‘--indep-pairwise 50 10 0.5’ as well as ‘--chr-set 

3 no-xy no-mt --nonfounders’. Principal component analysis (PCA) was performed in PLINK 

using the option ‘--pca’ with the options default settings. The pruned BED file from PLINK was 
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used as input to ADMIXTURE v.1.3.064, with which we assessed a series of models for K=1 to 

K=10 genetic components, as well as the corresponding the cross-validation error (‘--cv’). Mi-

gration was further tested by converting the SNP data to TreeMix format with the vcf2tree-

mix.sh script65 and running TreeMix 1.1366 with default parameters and the southernmost Por-

1SL as root population.  

Population estimates along the chromosomes were calculated in 100 kb overlapping slid-

ing-windows with 10 kb steps. Nucleotide diversity (𝜋) was calculated for SNPs with VCFtools 

‘--window-pi’. For the genome-wide average, calculations were repeated with 200kb non-

overlapping windows. Linkage disequilibrium (LD; as r2) was calculated in VCFtools with ‘--

geno-r2’. Local LD was calculated with ‘--ld-window-bp 500’. Preliminary tests showed that 

local LD decays within a few hundred base pairs (Supplementary Fig. 19). For long range LD 

minor allele frequency was filtered to 0.2 (‘--maf 0.2‘, resulting in 335,800 SNPs), only values 

larger 0.5 were allowed with ‘--min-r2 0.5’ and the ‘--ld-window-bp 500’ filter was removed. 

Pairwise FST was calculated with VCFtools ‘--weir-fst-pop’ option per SNP and in sliding win-

dows. For calculation of genetic divergence (dxy), allele frequencies were extracted with 

VCFtools ‘--freq’ and dxy was estimated from allele frequencies according to 67.  

 

Phylogenomics and topology weighting. Nuclear genome phylogeny was calculated for a 

random set of six individuals from each population, without Tro-tAR (n=36). For windowed 

phylogenies, the VCF file was subset into non-overlapping 50 kb windows using VCFtools ‘--

from-bp --to-bp’. SNP genotypes were transformed into FASTA alignments of only informative 

sites with the vcf2phylip.py v.2.3 script68 and parameters ‘-m 1 -p -f’. Heterozygous genotypes 

were represented by the respective IUPAC code for both bases. Whole genome and windowed 

phylogenies were calculated with IQ-TREE v.1.6.12 69 using the parameters ‘-st DNA -m MFP -

keep-ident -redo’ for the windowed and ‘-st DNA -m MFP -keep-ident -bb 1000 -bnni -nt 10 -

redo’ for the whole genome phylogenies. Topology weighting was performed on the win-

dowed phylogenies with TWISST 70 and the parameter ‘--method complete’. 
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Association analysis. Population-based association between genetic variants (SNPs and In-

dels) and ecotype, as well as environmental variables (Supplementary Tab. 6) was assessed in  

BayPass v.2.2 22. Allele counts were obtained with VCFtools option ‘--counts’. Analyzed covari-

ates were ecotype, sea surface salinity (obtained from 71) and average water temperature of 

the year 2020 (obtained from weather-atlas.com, accessed 27.04.2020; 16:38), as given in 

Supplementary Tab. 6. BayPass was run with the MCMC covariate model. BayPass corrects for 

population structure via Ω dissimilarity matrices, then calculates the XtX statistics and finally 

assesses the approximate Bayesian p value of association (eBPmc). To obtain a significance 

threshold for XtX values, the data was randomly subsampled (100,000 genetic variants) and 

re-analyzed with the standard covariate model, as implemented in baypass_utils.R. All ana-

lyses we performed in three replicates (starting seeds 5001, 24306 and 1855) and the median 

is shown.  

 

SNP effects and GO term enrichment analysis. Gene annotations to the CLUMA1.0 refer-

ence genome 11 were considered reliable if they fulfilled one of three criteria: 1) Identified 

ortholog in UniProtKB/Swiss-Prot or non-redundant protein sequences (nr) at NCBI or PFAM 

domain, as reported in 11. 2) Overlap of either at least 20% with mapped transcript data or 

40% with mapped protein data, as reported in 11. 3) Manually annotated. This resulted in a 

15,193 confidence genes models. The location and putative effects of the SNPs and indels 

relative to these confidence gene models were annotated using SnpEff 4.5 23 (build 2020-04-

15 22:26, non-default parameter `-ud 0’). Gene Ontology (GO) terms were annotated with 

emapper-2.0.1. 72 from the eggNOG 5.0 database73, using DIAMOND 74, BLASTP e-value <1e−10 

and subject-query alignment coverage of >60%. Conservatively, we only transferred GO terms 

with “non-electronic” GO evidence from best-hit orthologs restricted to an automatically ad-

justed per-query taxonomic scope, resulting in 5,393 C. marinus gene models with GO term 

annotations. Enrichment of “Biological Process” GO terms in the genes associated with eco-

type-specific polymorphisms was assessed with the weight01 Fisher’s exact test implemented 

in topGO 75 (version 2.42.0, R version 4.0.3).   
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Figure preparation. Figures were prepared in R76. Data were handled with the ‘data.table’77  

and ‘plyr’78 packages.  The map of Europe was generated using the packages ‘ggplot2’79 and 

‘ggrepel’ 80, ‘maps’81 and ‘mapdata’82. The map was taken from the CIA World DataBank II 

(http://www.evl.uic.edu/pape/data/WDB/). Circular plots were prepared using the R package 

‘circlize’83. Multiple plots were combined in R using the package ‘Rmisc’84. The graphical edit-

ing of the whole genome phylogeny was done in Archeopteryx (http://www.phylosoft.org/ar-

chaeopteryx)85. Final figure combination and graphical editing of the raw plot files was done 

in Inkscape. Neighbor Joining trees of the omega statistic distances from BayPass were created 

with the R package ‘ape’.86 In all plots the order and orientation of scaffolds within the chro-

mosomes follows the published genetic linkage map11.  
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