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Abstract

Severe falciparum malaria has substantially affected human evolution. Genetic association
studies of patients with clinically defined severe malaria and matched population controls have
helped characterise human genetic susceptibility to severe malaria, but phenotypic imprecision
compromises discovered associations. In areas of high malaria transmission the diagnosis of
severe malaria in young children and, in particular, the distinction from bacterial sepsis, is
imprecise. We developed a probabilistic diagnostic model of severe malaria using platelet
and white count data. Under this model we re-analysed clinical and genetic data from 2,220
Kenyan children with clinically defined severe malaria and 3,940 population controls, adjusting
for phenotype mis-labelling. Our model, validated by the distribution of sickle trait, estimated
that approximately one third of cases did not have severe malaria. We propose a data-tilting
approach for case-control studies with phenotype mis-labelling and show that this reduces false
discovery rates and improves statistical power in genome-wide association studies.

Introduction1

Severe malaria caused by the parasite Plasmodium falciparum kills nearly half a million children2

each year, mostly in sub-Saharan Africa [1]. By causing death in children before reaching their3

reproductive age, P. falciparum has exerted a substantial selective evolutionary pressure on the4

human genome [2, 3]. Recent advances in whole genome sequencing and haplotype imputation5

[4], combined with data gathered prospectively from large patient cohorts has improved our un-6

derstanding of genetic susceptibility to P. falciparum infection and severe disease [5, 6, 7, 8] but7

many questions remain unanswered [3]. A major limitation of genetic association studies in se-8

vere malaria is that the diagnosis of severe falciparum malaria in children is imprecise [9, 10, 11].9

This imprecision increases with transmission intensity due to the low positive predictive value of10
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blood-stage parasitaemia in areas where the background prevalence of microscopy detectable par-11

asitaemia in apparently healthy young children is high (typically around 30% [12] but can exceed12

90%[13]).13

Severe falciparum malaria has been defined by experts convened by the World Health Orga-14

nization (WHO) as clinical or laboratory evidence of vital organ dysfunction in the presence of15

circulating asexual P. falciparum parasitaemia [14]. The WHO definition of severe malaria is aimed16

primarily at clinicians and health care workers managing patients with malaria who appear severely17

ill. This appropriately prioritises sensitivity over specificity [15]. An inclusive clinical definition18

ensures that cases are not missed and patients receive the best treatment. In contrast genetic19

association studies require high specificity [16]. For a given sample size, their statistical power,20

false-discovery rates and the validity of their interpretation are weakened by phenotypic inaccu-21

racy. Specificity in the severe malaria diagnosis depends on the prevalence of malaria parasitaemia22

which reflects background transmission intensity. In areas of low or seasonal transmission (e.g.23

most of endemic Asia and the Americas), clinical and laboratory signs of severity accompanied by24

a positive blood film for P. falciparum are highly specific for severe malaria, which predominantly25

affects young adults. In contrast in high transmission areas in sub-Saharan Africa and the islands of26

New Guinea, where severe malaria is largely a disease of young children, the diagnostic criteria for27

defining severe malaria are less specific because of the high background prevalence of asymptomatic28

parasitaemia and the lower specificity of the clinical manifestations. Standard case definitions of29

severe malaria will therefore inevitably include both patients with non-malarial severe illness with30

concomitant parasitaemia, and with concomitant non-severe malaria.31

We developed a probabilistic diagnostic model of severe malaria based on haematological32

biomarkers using data from 1, 704 adults and children mainly from low transmission settings whose33

diagnosis of severe malaria is considered to be highly specific. We used this model to demonstrate34

low phenotypic specificity in a cohort of 2, 220 Kenyan children who were diagnosed clinically with35

severe malaria. We validated the predictions using a natural experiment, the distribution of sickle36

cell trait (HbAS), the genetic polymorphism with the strongest known protective effect against all37

forms of clinical malaria [6]. Building on work on ‘data-tilting’ [17], we suggest a new method for38

testing genetic associations in the context of case-control studies in which cases are re-weighted by39

the probability that the severe malaria diagnosis is correct under the model. As proof-of-concept,40

we ran a genome-wide association study across 9.6 million bi-allelic variants using the subset of41

cases with whole-genome sequencing data (n = 1, 297) and population controls (n = 1, 614). Ad-42

justing for case mis-classification decreased genome-wide false-discovery rates [18], and increased43

effect sizes in the top three regions of the human genome most strongly associated with protection44

from severe malaria in East Africa (HBB, ABO, and FREM3 [7]). A re-analysis of 120 directly45

typed polymorphisms in 70 candidate malaria-protective genes in the 2,220 Kenyan cases and 3,94046

population controls, examining differential effects between correctly and incorrectly classified cases,47

suggests that the protective effect of glucose-6-phosphate dehydrogenase (G6PD) deficiency has48

been obscured in this population by case mis-classification. Our results show that adding full blood49

count meta-data - routinely measured in most hospitals in sub-Saharan Africa - to severe malaria50

cohorts would lead to more accurate quantitative analyses in case-control studies and increased51

statistical power.52

Results53

Reference model of severe malaria54

We used the joint distribution of platelet counts and white blood cell counts (both on a logarithmic55

scale) to develop a simple biomarker-based reference model of severe malaria. To fit the reference56

model (i.e. P[Data | Severe malaria]), we used (i) platelet and white count data from severe57

malaria patient cohorts enrolled in low transmission areas where severe disease accompanied by58

a positive blood stage parasitaemia has a high positive predictive value for severe malaria (93059

adults from Vietnam [19, 20] and 653 adults and children from Thailand and Bangladesh); and (ii)60

data from severely ill African children with plasma PfHRP2 concentrations > 1,000 ng/ml and >61

1,000 parasites per µL of blood (121 children from Uganda [21]). Severe illness accompanied by62

a high plasma PfHRP2 concentration makes the diagnosis of severe malaria highly specific [22].63

The joint distribution of platelet and white blood cell counts in severe malaria was modelled as a64

bivariate t-distribution with both blood count variables on the log10 scale.65
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Figure 1: Platelet counts and white blood cell counts as diagnostic predictors of severe
malaria. Panel A shows the bi-variate marginal distribution in the training data (thought to
be highly specific to severe malaria, green triangles, n = 1, 704) and in the Kenyan case data
(pink squares, n = 2, 220; black diamonds: HbAS). The dashed ellipses show the 50 and 95%
bivariate normal probability contours approximating each dataset (dark green: training data;
purple: Kenyan data). Panel B shows the relationship between platelet counts and plasma PfHRP2
in adults and children with severe malaria from Bangladesh (green circles, n = 172, the green line
shows a linear fit) and in the FEAST trial (n = 566, not specific to severe malaria) [21]. Red
squares: malaria-positive blood slide; black triangles: malaria-negative blood slide. The grey line
shows a spline fit to the FEAST data (smooth.spline function in R with default parameters).
Undetectable plasma PfHRP2 concentrations were set to 1 ng/mL ± random jitter.

Figure 1A shows the training data (green triangles: patients with a highly specific diagnosis of66

severe malaria) alongside data from a large Kenyan cohort of hospitalised children diagnosed with67

severe malaria, whose diagnosis had unknown specificity (pink squares). The median platelet count68

in the training data was 57,000 per µL and the median total white blood cell count was 8,400 per µL.69

In contrast, the median platelet count in the Kenyan children was 120,000 per µL and the median70

total white blood cell count was 13,000 per µL. To rule out substantial confounding by geography71

and age, we demonstrate the discriminatory value of platelet counts alone (Figure 1B). Low platelet72

counts were highly predictive of blood stage parasitaemia and elevated PfHRP2 in a cohort of 56673

severely ill African children enrolled in the FEAST trial [21] (p=10−16 for a spline term on the74

log10 platelet count in a generalised additive logistic regression model predicting PfHRP2 > 1,00075

ng/mL, Figure S1). African children enrolled in the FEAST trial who had severe thrombocytopenia76

(< 100, 000 platelets per µL) had comparable PfHRP2 concentrations to Asian adults diagnosed77

with severe falciparum malaria. Total white blood cell counts are age dependent and vary across78

genetic backgrounds, in particular related to mutations in the ACKR1 gene that results in the79

Duffy negative phenotype prevalent in African populations [23]. However, after adjustment for age80

(see Methods), the marginal distributions of total white counts were comparable between Asian81

adults and children with severe malaria and African children with high PfHRP2 (Figure S2).82

Estimating the proportion of children mis-diagnosed with severe malaria83

We can consider the hospitalised Kenyan children in this series as a mixture of two latent sub-84

populations, ‘severe malaria’ and ‘not severe malaria’ (i.e an alternative aetiology for severe illness).85

To estimate the proportion of each we use the distribution of HbAS, the human polymorphism86

most protective against all forms of clinical falciparum malaria. HbAS provides at least 90%87
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Figure 2: Theoretical causal pathways that lead to the clinical diagnosis of severe
malaria under the current WHO definition [14]. Pathways (a) & (b) represent the two
ways patients can be mis-classified as severe malaria. For both pathways (a) & (b), we expect a
higher prevalence of HbAS relative to the population with true severe malaria due to the protective
bottlenecks. In this causal model we assume that HbAS does not protect against asymptomatic
parasitaemia, although this assumption is not strictly necessary. Adapted with permission from
[25].

protection against severe malaria [24, 6]. The causal SNP rs334 was genotyped in 2,213 of the88

Kenyan children, of whom 57 were HbAS. The causal pathways (a) or (b) in Figure 2 (note all89

children have been selected into the study on the basis of clinical symptoms consistent with severe90

malaria) show how the distribution of HbAS can be used to infer the marginal probability P(Severe91

malaria) in the Kenyan cohort as the prevalence of HbAS is expected to differ in the two latent92

sub-populations.93

We assumed that cases with the highest likelihood values P(Data | Severe malaria) under94

the reference model (a bivariate t-distribution fit to the training data) had a diagnosis of severe95

malaria that was 100% specific (top 40% of cases, a sensitivity analysis varied this threshold).96

The cases with lower likelihood values were assumed to be drawn from a mixture of the two latent97

populations with an unknown mixing proportion; the prevalence of HbAS in the ‘not-severe malaria’98

subgroup was estimated from a cohort of hospitalised children enrolled in the same hospital and99

who were malaria blood slide positive but were clinically diagnosed as not having severe malaria100

(n = 6, 748 of whom 364 were HbAS [26]). We assumed that this diagnosis of ‘not-severe malaria’101

was 100% specific. Under these assumptions, we estimated that P(Severe malaria)=0.64 (95%102

credible interval (C.I.) 0.46 to 0.8), implying that approximately one third of the 2,200 cases103

are from the ‘not-severe malaria’ sub-population (they have malaria parasitaemia in addition to104

another severe illness - likely to be bacterial sepsis, Figure 2).105

Estimating individual probabilities of severe malaria106

We then estimated P(Severe malaria | Data) for each Kenyan case by fitting a mixture model to107

the training data and to the Kenyan data jointly. The model assumed that the platelet and white108

count data for the Kenyan children were drawn from a mixture of P(Data | Severe malaria) and109

P(Data | Not severe malaria). The training data (Asian adults and children with severe malaria110

and African children with PfHRP2 > 1,000 ng/mL) were assumed to be drawn only from P(Data111

| Severe malaria). P(Data | Not severe malaria) was modelled itself as a mixture of bivariate112

t-distributions. We used an informative prior on the mixture proportion (‘severe malaria’ versus113

‘not severe malaria’) in the Kenyan cases, a beta distribution approximating the posterior estimate114

from the analysis of HbAS prevalence.115

Figure 3A shows the bi-modal distribution of the posterior individual estimates of P(Severe116

malaria | Data). The individual posterior probabilities of severe malaria were highly predictive117

of HbAS (p = 10−6 from a generalised additive logistic regression model fit, Figure 3C) and in-118

hospital mortality (p = 10−9 from a generalised additive model fit; Figure 3D). In the top quintile119

of patients with the highest estimated P(Severe malaria | Data), the prevalence of HbAS was 0.7%120

(3 out of 446). In contrast, for patients in the lowest quintile of estimated P(Severe malaria |121

Data), the prevalence of HbAS was 4.8% (21 out of 444). These patients with a low probability122
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of severe malaria had a substantially higher case fatality ratio (6.1% mortality for patients in the123

top quintile of P[Severe malaria | Data] versus 18.8% mortality for the bottom quintile of P[Severe124

malaria | Data]). This may be explained by the higher case-specific mortality of severe bacterial125

sepsis (the most likely alternative cause of severe illness). The blood culture positive rate was 2.1%126

in the top quintile of P(Severe malaria | Data), and 4.4% in the lowest quintile of P(Severe malaria127

| Data) and the individual probabilities were predictive of blood culture results (p = 0.004 under128

a generalised additive logistic regression model fit).129

Accounting for case imprecision in case-control studies130

‘False-positive’ cases reduce statistical power and dilute effect size estimates in case-control studies.131

We propose a novel approach for case-control studies with phenotypic imprecision based on data132

tilting [17]. The idea is to ‘tilt’ the cases towards a pseudo-population with higher specificity for133

severe malaria. We can do this by re-weighting the data by the probabilities P(Severe malaria |134

Data), i.e. re-weighting the contribution to the log-likelihood in an association model.135

We applied this approach as proof-of-concept to a genome-wide association study using the136

subset of Kenyan children who had clinical and whole genome data available (after quality control137

checks n = 1, 297 cases) and a set of matched population controls (n = 1, 614), across 9.6 million138

bi-allelic variants on the autosomal chromosomes. We compared the data-tilting method to the139

standard non-weighted approach by estimating local false discovery rates (FDR) [18]. Compared140

to the standard non-weighted GWAS, data-tilting substantially increased the number of significant141

associations for local FDRs in the range of 1-5% (Figure 4). For example, at an FDR of 2%,142

the number of significant hits is more than doubled with the additional hits all around known143

loci associated with protection from severe malaria. We note that if the data weights were not144

predictive of the true latent phenotype, we would expect fewer significant hits for a given FDR145

due to the reduction in effective sample size. This is demonstrated by permuting the data weights146

(for the cases only), which results in 50-75% reduction in the number of significant hits at a FDR147

of 5% (Figure S3).148

Examining the three major genetic regions strongly associated with protection from severe149

malaria in East Africa (HBB : HbAS; ABO : O blood group; FREM3 : Dantu blood group) [7], the150

data-tilted approach estimated larger effect sizes compared to the non-weighted model in all three151

regions (effect size increases: 30% around HBB, 9% around ABO, and 5% around FREM3 ). This152

resulted in larger -log10 p-values for HBB and ABO, but slightly smaller for FREM3 (Figure 5).153

Reappraisal of directly typed polymorphisms154

We re-analysed 120 polymorphisms on 70 candidate malaria-protective genes which were typed155

directly in the 2,220 Kenyan children along with 3,940 population controls. In this case-control156

cohort, 14 polymorphisms had previously been identified as associated with protection or increased157

risk in severe malaria [27]. A re-analysis of these 14 variants using the same models of association158

as previously published and down-weighting the likely mis-classified cases replicated the major-159

ity of associations, with increased effect sizes and increased -log10 p-values (Figure S4). For the160

three major genes (HBB, ABO, FREM3 ), effect sizes were increased by 10-30% and associations161

all had higher significance levels on the -log10 scale (0.25-1.7). The allele frequencies of all three162

polymorphisms were directly associated with the probability weights, showing increased protection163

in individuals more likely to have severe malaria (Figure S5). Two polymorphisms on the genes164

ARL14 and LOC727982, reported previously as associated with protection in severe malaria (nei-165

ther of which are related to red cells), showed decreased effect sizes and -log10 p-values and are166

thus potentially spurious hits.167

We explored whether there was evidence of differential effects in the Kenyan cases using P[Severe168

malaria | Data] to assign probabilistically each case to the ‘severe malaria’ versus ‘not severe169

malaria’ sub-populations. We fitted a categorical logistic regression model predicting the latent sub-170

population label versus control, where the latent case label was estimated from the weights shown171

in Figure 3A. This resulted in approximately 1,279 cases in the ‘severe malaria’ sub-population and172

941 cases in the ‘not severe malaria’ sub-population. Differential effects were tested by comparing173

the estimated log-odds for the two sub-populations. After accounting for multiple testing, two174

polymorphisms showed significant differential effects: rs334 (derived allele encodes haemoglobin175

S, p = 10−6) and rs1050828 (derived allele encodes G6PD+202T, p = 10−3 in the model fit176
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Figure 3: Model estimates of P(Severe malaria | Data) in 2,220 Kenyan children clini-
cally diagnosed with severe malaria. Panel A: distribution of posterior probabilities of severe
malaria being the correct diagnosis. Panel B shows these probabilities plotted as a function of the
platelet and white counts on which they are based. The black diamonds show the HbAS individu-
als. Panels B & C show the relationship between the estimated probabilities of severe malaria and
HbAS and in-hospital mortality. The black lines (shaded areas) show the mean estimated values
(95% confidence intervals) from a generalised additive logistic regression model with a smooth
spline term for the likelihood (R package mgcv).
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Figure 4: The number of significant hits as a function of the false discovery rate for
the genome-wide association study across 9.6 million bi-allelic variants. This analysis
is based on a subset of the Kenyan children with whole genome data available and passing quality
checks n = 1, 297, and n = 1, 614 controls. Dashed line: weighted-model; thick line: non-weighted
model.

to females only), see Figure 6. As expected, rs334 was associated with protection in both sub-177

populations [28, 26] but the effect was almost 8 times larger on the log-odds scale in the ‘severe178

malaria’ sub-population relative to the ‘not severe malaria’ sub-population (odds-ratio of 0.029179

[95% C.I. 0.0088-0.094] in the ‘severe malaria’ population versus 0.63 [95% C.I. 0.48-0.83] in the180

‘not severe malaria’ population). For rs1050828 (G6PD+202T allele), approximately the same181

absolute log-odds were estimated for both sub-populations but they had opposite sign. Under an182

additive model in females, the rs1050828 T allele was associated with protection in the ‘severe183

malaria’ sub-population (odds-ratio of 0.71 [95% C.I. 0.57-0.88]) but with increased risk in the184

‘not severe malaria’ sub-population (odds-ratio of 1.30 [95% C.I. 1.00-1.70]). The additive model185

including both males and females was consistent with these opposing effects but significant only186

at a nominal threshold (p = 0.02). Opposing effects across the two sub-populations is consistent187

with the hypothesis that G6PD deficiency leads to a greater risk of being erroneously classified188

as severe malaria due to the severe anaemia criterion [29] (shown in more detail in Figure S5).189

Investigation of haemoglobin concentrations as a function of P(Severe malaria | Data) indicates190

that the mis-classified group is very heterogeneous, but with a larger proportion of severe anaemia191

(<5 g/dL) relative to the correctly classified sub-population (Figure S6).192

Discussion193

The clinical diagnosis of severe falciparum malaria in African children is imprecise [10, 11, 9].194

Even with quantitation of parasite densities, specificity is still imperfect [11]. In children with195

cerebral malaria (unrouseable coma with malaria parasitaemia), the most specific of the severe196

malaria clinical syndromes, post-mortem examination revealed another diagnosis in about 25% of197

cases studied in Blantyre, Malawi [10]. Diagnostic specificity can be improved by visualisation of198

the obstructed microcirculation in-vivo (e.g. through indirect ophthlamoscopy) or from parasite199

biomass indicators (quantitation and staging of malaria parasites on thin blood films, counting of200

neutrophil ingested malaria pigment, measurement of plasma concentrations of PfHRP2 or parasite201

DNA), but these are still largely research procedures and have not been widely adopted or measured202

at scale for genetic association studies. Our results suggest that imprecision in clinical phenotyping203

is more substantial than thought previously. In this cohort of 2,220 Kenyan children diagnosed204

with severe malaria from an area of moderate transmission, a probabilistic assessment suggests that205
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Figure 5: The three regions in the human genome with the greatest evidence for protec-
tion against severe malaria in East Africa (HBB, ABO and FREM3) [7]. The Manhattan
plots (left panels) compare p-values from the weighted model (blue) and the non-weighted model
(orange). Each Manhattan plot is centred around the known causal position shown by the vertical
dashed line (0.5 Mb region). The horizontal dashed line shows p = 10−7 (threshold often used
for defining genome-wide significance). The 10 positions with the greatest -log10 p-values under
the non-weighted model are shown as large diamonds. The scatter plots on the right compare
absolute effect size estimates under both models with the same top 10 hits shown by the larger
purple diamonds. Increases of 30%, 9% and 5% are seen for the ten top hits for HBB, ABO, and
FREM3, respectively.
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Figure 6: Exploring differential effects in 120 directly typed polymorphisms across 70
candidate malaria-protecting genes. Panel A: case-control effect sizes estimated for the ‘severe
malaria’ sub-population versus the ‘not severe malaria’ sub-population (n = 3, 940 controls and
n = 2, 220 cases, with approximately 1,279 in the ‘severe malaria’ sub-population and 941 in the
‘not severe malaria’ sub-population). The vertical and horizontal grey lines show the 95% credible
intervals. Panel B shows the log10 p-values testing the hypothesis that the effects are the same for
the two sub-populations relative to controls. The top dashed line shows the Bonferroni corrected
α = 0.05 significance threshold (assuming 70 independent tests). The bottom dashed line shows
the nominal α = 0.05 significance threshold. In both panels, red circles denote p < 0.05 (nominal
significance level), and red squares denote p < 0.05/70. Panel C: Analysis of the rs1050828 SNP
(encoding G6PD+202T) under a non-additive model (hemi/homozygotes and heterozygotes are
distinct categories). This shows that heterozygotes are clearly under-represented in the ‘severe
malaria’ sub-population and hemi/homozygotes are clearly over-represented in the ‘not severe
malaria’ sub-population. Panel D: evidence of differential effects for the O Blood Group (rs8176719,
recessive model) and FREM3 (additive model).
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over one third may not have had severe malaria (although malaria may have contributed to their206

illness [25]). This supports our previous conclusion that differences in treatment effects between207

Asian adults and African children (i.e the benefits of artesunate over quinine in severe malaria208

estimated from randomised trials [30, 31]) are predominantly driven by differences in diagnostic209

specificity [22, 9]. Using HbAS as a natural experiment to validate the biomarker model, we show210

that the joint distribution of platelet and white blood cell counts is a diagnostic predictor of severe211

malaria. Complete blood counts are inexpensive and increasingly available in low-resource setting212

hospitals. An upper threshold of 200,000 platelets per µL would have substantially decreased213

mis-classification in this large cohort of Kenyan children diagnosed with severe malaria.214

Our re-analysis using rich clinical data provides additional evidence for the three major genetic215

polymorphisms present in East Africa which are the most highly protective against severe malaria.216

After probabilistic down-weighting of the likely mis-classified cases substantial increases in effect217

sizes were found. Dilution of effect sizes resulting from mis-classification could explain the large218

heterogeneity in effects noted in the largest severe malaria GWAS to date [7]. For haemoglobin219

S (rs334) there was a 4-fold variation in estimated odds-ratios across participating sites. Some of220

this heterogeneity can be attributed to variations in linkage disequilibrium affecting imputation221

accuracy [5], but our analysis shows an additional substantial source of heterogeneity which results222

from diagnostic imprecision. This can be adjusted for if detailed clinical data are available. For223

example, in the case of rs334 (directly typed), the data-tilting approach results in a 25% increase224

in effect size on the log-odds scale, corresponding to 35% decrease in estimated odds-ratios (0.1225

versus 0.16).226

As for the interpretation of genetic effects, one of the most interesting results concerns the227

G6PD gene. G6PD deficiency is the most common enzymopathy of humans, and its role in falci-228

parum malaria has been controversial [32, 29]. A very large multi-country genetic association study229

with over 11,000 severe malaria cases and 17,000 population controls found no overall protective230

effect of the G6PD+202T allele (the most common mutation in sub-Saharan Africa causing G6PD231

deficiency), under an additive model [6]. The same pattern is observed in this Kenyan cohort232

(which is a subset of the larger study). In the Kenyan cohort overall, a previous analysis found no233

clear evidence of protection for male homozygotes but substantial evidence of protection for female234

heterozygotes [33]. This suggests a heterogyzote advantage leading to a balancing polymorphism.235

However, when the Kenyan cases are modelled as two distinct sub-populations, there is evidence of236

differential effects between the ‘severe malaria’ and ‘not severe malaria’ sub-populations. Hemi and237

homozygous G6PD deficiency was associated with an increased risk of mis-classification (reflecting238

an increased risk of severe anaemia), but it is unclear whether or not hemi/homozygous G6PD239

deficiency was protective in the ‘true severe malaria’ sub-population (Figure 6C). On the other240

hand, heterozygote deficiency was very clearly protective in the true severe malaria subgroup, con-241

sistent with previous findings, and did not appear to lead to an increased risk of mis-classification242

(consistent with a lower risk of extensive haemolysis and thus false classification in heterozygotes243

who have both normal and G6PD deficient erythrocytes in their circulation). When examining244

the ‘severe malaria’ sub-population only, the sample size in this study is too small to discriminate245

between the heterozygote and additive models of association. In our view, the relationship between246

G6PD deficiency and severe falciparum malaria remains unanswered. This approach should now247

be applied to other case-control cohorts for a definitive understanding of the role of this major248

human polymorphism.249

The limitations of our diagnostic model can be summarised as follows. First, the validity250

and interpretation of the individual probabilities that severe malaria is the correct diagnosis is251

heavily dependent on the reference model and thus the training data. Our training data were252

primarily from Asian adults in whom diagnostic specificity for severe malaria is thought to be very253

high. Diagnostic checks suggested that the marginal distributions of platelet counts were similar254

between adults and children, and we made age corrections to the white blood cell count, but small255

deviations could reduce the discriminatory value (e.g. lower white counts associated with the256

Duffy negative phenotype [23]). Second, it is possible that rare genetic conditions exist in which257

the probabilities of severe malaria under this model might be biased. One example is sickle cell258

disease (HbSS, <0.5% in the Kenyan cases), which results in chronic inflammation with high white259

counts and low platelet counts relative to the normal population [34]. The 11 children with HbSS260

in this cohort were all assigned low probabilities of severe malaria, but this should be interpreted261

with caution. Whether HbSS is protective against severe malaria or increases the risk of severe262

malaria remains unclear [35]. For these patients, other biomarkers such as plasma PfHRP2 may263
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be more appropriate. Third, it is theoretically possible that the joint distribution of the clinical264

variables used to fit the reference model could be dependent on the underlying distribution of265

severe malaria sub-phenotypes. For example, if the training data were biased towards cerebral266

malaria, and the joint distribution of platelet and white cell counts in cerebral malaria differed267

from those in the other severe malaria syndromes, then the predicted outliers could represent other268

forms of severe malaria instead of ‘not-severe’ malaria. This would not impact the estimate of 1 in269

3 mis-classification unless the protective effect of HbAS varied substantially amongst the different270

sub-phenotypes of severe malaria. This variation has not been noted in previous analyses [7].271

In summary, under a probabilistic model based on routine blood count data, we have shown272

that it is possible to estimate mis-classification rates in diagnosed severe childhood malaria in273

a higher transmission endemic area and compute probabilistic weights that can downweight the274

contribution of likely mis-classified cases. The well-established protective effect of HbAS provided275

an independent validation of the model. These data suggest that normal range platelet counts276

(> 200,000 per µL) could be used as a simple exclusion criterion in severe malaria cohort studies.277

Based on this analysis we recommend that future studies in severe malaria collect and record278

complete blood count data. Further studies of platelet and white blood cell counts from a diverse279

cohort of children with severe malaria, confirmed using high specificity diagnostic techniques such280

as indirect ophthlamoscopy, plasma PfHRP2, or plasma P. falciparum DNA should be conducted281

to validate this approach.282

Methods283

Data284

Kenyan case-control cohort285

The Kenyan case-control cohort has been described in detail previously [27]. Severe malaria cases286

consisted of all children aged <14 years who were admitted with clinical features of severe falci-287

parum malaria to the high dependency ward of Kilifi County Hospital between June 11th 1999288

and June 12th 2008. Severe malaria was defined as a positive blood-film for P. falciparum along289

with: prostration (Blantyre Coma Score of 3 or 4); cerebral malaria (Blantyre Coma Score of290

<3); respiratory distress (abnormally deep breathing); severe anaemia (haemoglobin < 5 g/dL).291

Controls were infants aged 3-12 months who were born within the same area as the cases and who292

were recruited to a cohort study investigating genetic susceptibility to a wide range of childhood293

diseases. Cases and controls were genotyped for the rs334 SNP and for α+-thalassaemia along with294

120 other SNPs using DNA extracted from fresh or frozen samples of whole blood as described in295

detail previously [27, 36].296

The Fluid Expansion as Supportive Therapy (FEAST) trial297

FEAST was a multicentre randomised controlled trial comparing fluid boluses for severely ill chil-298

dren (n = 3, 161) that was not specific to severe malaria [21]. Platelet counts, white blood cell299

counts, parasite densities and PfHRP2 were jointly measured for 566 children (for children enrolled300

in the sites in Mulago, Lacor and Mbale, Uganda). In order to select only those with a very high301

probability of having severe malaria as the primary cause of illness, we selected the 121 children302

who had measured PfHRP2 > 1,000 ng/mL and parasitaemia > 1,000 per µL.303

AQ Vietnam and AAV randomised controlled trials304

The AQ and the AAV studies were two randomised clinical trials in Vietnamese adults diagnosed305

clinically with severe falciparum malaria recruited to a specialist ward of the Hospital for Tropical306

Diseases, Ho Chi Minh City, Vietnam, between 1991 and 2003 [19, 20]. AQ Vietnam was a307

double blind comparison of intramuscular artemether versus intramuscular quinine (n = 560);308

AAV compared intramuscular artesunate and intramuscular artemether (n = 370).309

Observational studies in Thai and Bangladeshi adults and children310

We included data from multiple observational studies in severe falciparum malaria conducted by311

the Mahidol Oxford Tropical Medicine Research Unit in Thailand and Bangladesh between 1980312
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and 2019. These pooled data have been described previously [37]. Platelet counts and white blood313

cell counts were available in 657 patients. We excluded one 30 year old adult from Bangladesh314

whose recorded platelet count was 1,000 per µL, and three other adults with platelet counts greater315

than 450,000 per µL as outliers reflecting likely data entry errors. Plasma PfHRP2 concentrations316

were available in 172 patients from Bangladesh. 55 patients from this series were younger than 15317

years of age.318

Multiple imputation319

In the Kenyan severe malaria cohort (n = 2, 220), data on platelet counts were missing in 18%,320

white blood counts were missing in 0.2%, and parasite density was missing in 1.6%. In-hospital321

outcome (died/survived) was missing for 13 patients. rs334 genotype was missing for 7; α+-322

thalassaemia genotype was missing for 101 patients. In the Vietnamese adults, platelet counts323

were missing in 4%, white counts in 2% and parasitaemia in 0%.324

We did multiple imputation using random forests for all available clinical variables using the325

R package missForest (targeted genotyping data was not included for imputation). Supplemen-326

tary Figures S7 and S8 shows the missing data pattern in the studies in Vietnamese adults and327

in the Kenyan severe malaria cases, respectively. Ten datasets were imputed for each dataset328

independently and were used for the subsequent analyses. Analyses using directly typed genetic329

polymorphisms or the within-hospital outcome as the dependent variables used only the data where330

these outcomes were recorded, assuming that they were missing at random.331

Reference model of severe malaria332

Biological rationale333

Thrombocytopenia accompanied by a normal white blood count and a normal neutrophil count334

are typical features of severe malaria [38, 39], but they may also occur in some systemic viral335

infections and in severe sepsis. Neutrophil leukocytosis may sometimes occur in very severe malaria,336

but is more characteristic of pyogenic bacterial infections. These indices, whilst individually not337

very specific, could each have useful discriminatory value. We reasoned therefore that their joint338

distribution could help discriminate between children with severe malaria versus those severely ill339

with coincidental parasitaemia. The Kenyan severe malaria cohort did not have differential white340

count data, so we used platelet counts and total white blood cell counts as the two diagnostic341

biomarkers in the reference model of severe malaria.342

Choice of training data and confounders343

The best data for fitting the biomarker model are either from children or adults from low transmis-344

sion areas (where parasitaemia has a high positive predictive value); or in children or adults with345

high plasma PfHRP2 measurements indicating a large latent parasite biomass [22]. In the first346

years of life, white blood cell counts are often much higher than in adults because of lymphocytosis.347

We used data from 858 children from the FEAST trial, in whom white counts were measured, to348

estimate the relationship between age and mean white count in severe illness (median age was 24349

months). The estimated relationship is shown in Figure S9 (using a generalised additive linear350

model with the white count on the log10 scale), with mean white counts reaching a plateau around351

5 years of age. We used this to correct all white count data in children less than 5 years of age,352

both in the training data and the Kenyan cohort.353

There is also a systematic difference associated with the Duffy negative phenotype which is354

near fixation in Africa but absent in Asia. Duffy negative individuals have lower neutrophil counts355

(termed benign ethnic neutropenia) [23]. The use of Asian adults to estimate the reference distri-356

bution of white counts in severe malaria could thus falsely include individuals with elevated white357

counts (relative to the normal ranges). However, a diagnostic quantile-quantile plot (Figure S2, on358

the log-scale) comparing the white count distribution in Vietnamese adults and in children in the359

FEAST trial who had PfHRP2 > 1,000 ng/mL did not suggest any major differences. In fact the360

African children had slightly higher white counts on average even after the correction for age, this361

may represent imperfect specificity when using a plasma PfHRP2 cutoff of 1,000 mg/mL.362

For platelet counts (which have the greatest diagnostic value for severe malaria in our series)363

age is not a confounder and published data support the hypothesis that thrombocytopenia is highly364
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specific for severe malaria in children as well as adults (with a diagnostic and a prognostic value).365

The French national guidelines specifically mention thrombocytopenia (<150,000 per µL) for the366

diagnosis of children who have travelled to a malaria endemic area. In a French paediatric se-367

ries in travellers, almost half had severe thrombocytopenia (<50,000 per µL) [40, 41]. In Dakar,368

Senegal (one of the lowest transmission areas in Africa) thrombocytopenia was an independent369

predictor of death and the median platelet count was 100,000 [42, 43]. Comparison of the distri-370

butions of platelet counts (on the log scale) between Asian children and Asian adults suggested371

no major differences (Figure S10), although we had few data for Asian children. In the seminal372

Blantyre autopsy study [10], platelet counts were substantially different between fatal cases con-373

firmed post-mortem to be severe malaria (62,000 per µL, and 56,000 per µL for the children with374

sequestration only, and for sequestration + microvascular pathology, respectively) and fatal cases375

with a mis-diagnosis of severe malaria (no sequestration: 176,000 per µL; the inter-group difference376

was significant, p = 0.008). A larger cohort from the same centre in Malawi reported substan-377

tially higher platelet counts in retinopathy negative cerebral malaria (mean count was 161,000 per378

µL, n = 288) compared to retinopathy positive cerebral malaria (mean count was 81,000 per µL,379

n = 438) [25].380

We visually checked approximate normality for each marginal distribution using quantile-381

quantile plots (Figure S11). On the log10 scale, platelet counts and white counts show a good382

fit to the normal approximation but with some outliers so a t-distribution was used (robust to out-383

liers). For all modelling of the joint distribution of platelet counts and white blood cell counts, we384

chose bivariate t-distributions with 7 degrees of freedom as the default model. The final reference385

model used was a bi-variate t-distribution fit to the joint distribution of platelet counts and white386

counts both on the logarithmic scale. On the log10 scale the mean values (standard deviations)387

were approximately 1.76 (0.11) and 0.92 (0.055) for platelets and white counts, respectively. The388

covariance was approximately 0.0035. These values varied very slightly across the ten imputed389

datasets. Log-likelihood values for each severe malaria case in the Kenyan cohort were calculated390

for each imputed dataset independently. The median log-likelihoods per case were then used in391

downstream analyses.392

Limitations of the model393

The diagnostic model of severe malaria using platelet counts and white blood cell counts cannot be394

applied to all patients. We summarise here the known and possible limitations. When using this395

model to estimate the association between a genetic polymorphism and the risk of severe malaria,396

if the genetic polymorphism of interest affects the complete blood count independently, there will397

be selection bias (see the directed acyclic graph in Figure S12). One example is HbSS. Children398

with HbSS have chronic inflammation with white blood cells counts about 2-3 times higher than399

normal and slightly lower platelet counts [34]. All 11 children in the Kenyan cohort with HbSS400

were assigned low probabilities of having severe malaria (Figure S13), but these probabilities reflect401

a deficiency of the model. Including or excluding these children from the analysis had no impact402

on the results as they represent less than 0.5% of the cases.403

The second possible limitation concerns the validation using HbAS. Previous studies have sug-404

gested negative epistasis between the malaria-protective effects of HbAS and α+-thalassaemia405

[44, 45]. The 3.7 kb deletion across the HBA1-HBA2 genes (known as α+-thalassaemia) has an406

allele frequency of ∼ 40% in this population, therefore 16% of HbAS individuals are homozygous407

for α+-thalassaemia [46]. Negative epistasis implies that those with both polymorphisms would408

have less or no protective effect against severe malaria. Of the 2,113 Kenyan cases with both HbS409

and α+-thalassaemia genotyped, 13 were HbAS and homozygous α+-thalassaemia. Figure S14410

shows that the majority of those with both polymorphisms had clinical indices pointing away from411

severe malaria suggesting that the observed number of patients with both HbAS and homozygous412

α+-thalassaemia is inflated by 2 to 3 fold.413

The final possible problem concerns the use of white blood cell counts in relation to invasive414

bacterial infections. Bacteraemia could either be the cause of severe illness (with coincidental415

parasitaemia), or it could be concomitant (which may result from extensive parasitised erythrocyte416

sequestration in the gut), i.e. a result of severe malaria. The former should be identified as ‘not-417

severe malaria’ (as bacteraemia is the main cause of illness), but the latter should be identified as418

‘severe malaria’ and might be mis-classified as ‘not-severe malaria’ under our model. However, in419

a series of 845 Vietnamese adults (high diagnostic specificity), only one of eight patients who had420

concomitant invasive bacterial infections and a white count measured had leukocytosis (median421
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white count was 8,100; range 3,500 to 14,850) [47].422

Estimating the diagnostic specificity in the Kenyan cohort423

We assume that the Kenyan cases are a latent mixture of two sub-populations: P0 is the population424

‘severe malaria’ and P1 is the population ‘not-severe malaria’ (mis-classified). For diagnostic425

biomarkersX, this implies thatX ∼ G = πf0+(1−π)f1, where f0, f1 are the sampling distributions426

(likelihoods) of each sub-population, respectively.427

We can infer the value of π (proportion correctly classified as severe malaria) without making428

parametric assumptions about f1 by using the distribution of HbAS (see Figure 2). This done429

as follows. We first estimate f̂0 by fitting a bivariate t-distribution to the training data - this430

approximates the sampling distribution for P0. We then make three assumptions:431

1. Out of the 2,213 Kenyan cases with rs334 genotyped, we assume that cases in the top 40th432

percentile of the likelihood distribution under f̂0 are drawn from P0: N0 = 887, of which433

Nsickle
0 = 9 are HbAS.434

2. For the other cases the proportion drawn from P0 is unknown and denoted π′: NG = 1, 326,435

of which Nsickle
G = 48 are HbAS.436

3. Finally, additional information is incorporated by using data from a cohort of individuals437

with severe disease from the same hospital who had positive malaria blood slides but whose438

diagnosis was not severe malaria (N1 = 6, 748, of which Nsickle
1 = 364 were HbAS) [26].439

Under these assumptions, we can fit a Bayesian binomial mixture model to these data with440

three parameters: {π′, p0, p1}. The likelihood is given by: Nsickle
0 ∼ Binomial(p0, N0); Nsickle

G ∼441

Binomial(π′p0 + (1 − π′)p1, NG); Nsickle
1 ∼ Binomial(p1, N1) The priors were: p1 ∼ Beta(5, 95)442

(i.e. 5% prior probability with 100 pseudo observations); p0 ∼ Beta(1, 99) (1% prior probability443

with 100 pseudo observations). A sensitivity analysis with flat beta priors (Beta[1,1]) did not444

qualitatively change the result (by one percentage point for the final estimate of π). To check445

the validity of the use of the external population from [26], we did a sensitivity analysis using the446

lowest quintile of the likelihood ratio distribution as a population drawn entirely from P1 (instead447

of the external data from [26]).448

Estimating P(Severe malaria | Data) in the Kenyan cohort449

Denote the platelet and white count data from the FEAST trial as {XFEAST
i }121i=1; the data from the

Vietnamese adults and children as {XAsia
i }1583i=1 ; the data from the Kenyan children as {XKenya

i }2220i=1 .
We fit the following joint model to the training biomarker data and the Kenyan biomarker data.

XFEAST
i ∼ Student(µ1

SM ,Σ
1
SM , 7)

XAsia
i ∼ Student(µ2

SM ,Σ
2
SM , 7)

XKenya
i ∼ πf0 + (1− π)f1

f0 = p Student(µ1
SM ,Σ

1
SM , 7) + (1− p) Student(µ2

SM ,Σ
2
SM , 7)

f1 =
K∑
j=1

αj Student(µ
j
notSM ,Σ

j
notSM , 7)

with the following prior distributions and hyperparameters, where α = {α1, .., αK} such that∑K
j=1 αj = 1 :

π ∼ Beta(40.3, 24.7)

p ∼ Beta(2, 2)

µ1,2
SM ∼ Normal({1.8, 0.95}, 0.12)

µ1..K
notSM ∼ Normal({2.5, 1.5}, 0.252)

α ∼ Dirichlet(1/K, ..., 1/K)
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The covariance matrices Σ1,2
SM and Σ1..6

SM were parameterised as their Cholesky LKJ decomposi-450

tion, where the L correlation matrices had a uniform prior (i.e. hyperparameter ν=1). The model451

was implemented in rstan.452

This models the biomarker data in ‘not severe malaria’ as a mixture of K t-distributions. We453

chose K = 6 as the default choice (sensitivity analysis increasing this has no impact). The Dirichlet454

prior with hyperparameter 1/K forces sparsity in this mixture model (most of the prior weight is on455

the vertices of the K-dimensional simplex), see for example [48]. This is a very general and flexible456

way of modelling the ‘not severe malaria’ distribution: we are not trying to make inferences about457

this distribution, we just want the mixture model to be flexible enough to describe it. The model458

also allows for differences in the joint distribution of platelet counts and white counts between the459

training datasets (FEAST trial and the Asian studies). The Kenyan cases drawn from the ‘severe460

malaria’ sub-population are then modelled as a mix of these two training models.461

Reweighted likelihood for case-control analyses462

For each {XKenya
i }2220i=1 we estimate the posterior probability of being drawn from the sampling463

distribution f0. The mean posterior probability then defines a precision weight wi which can be used464

in a standard generalised linear model (glm) with the same interpretation as inverse probability465

weights. The weighted glm is equivalent to computing the maximum likelihood estimate where the466

log-likelihood is weighted by wi. In our case-control analyses all the controls are given weight 1.467

Nie et al [17] give a proof of correctness for this re-weighted log-likelihood (equivalent to ‘tilting’468

the dataset towards the desired distribution f̂0(X)).469

Genome-wide association study470

Anonymised whole genome data from the Illumina Omni 2.5M platform for 1,944 severe malaria471

cases and 1,738 population controls were downloaded from the European Genome-Phenome Archive472

(dataset accession ID: EGAD00010001742, release date March 2019 [7]). This contained sequencing473

data on 2,383,648 variants. We used the quality control meta-data provided with the 2019 data474

release to select SNPs and individuals with high quality data. We first excluded 386 individuals475

(due to relatedness: 155; missing data or low intensity: 226; gender: 5). We then removed 616,426476

SNPs that did not pass quality control, leaving a total of 1,767,222 SNPs. We used plink2 to477

prune the SNPs (options: –maf 0.01 –indep-pairwise 50 2 0.2) down to a set of 462,120 SNPs in478

approximate linkage equilibrium. These SNPs were then used to calculated the first 5 principal479

components (Figure S15), which we subsequently used to control for population structure in the480

genome-wide association study. We used the Michigan imputation server with the 1000 Genomes481

Phase 3 (Version 5) as the reference panel to impute 28.6 million polymorphisms across the 22482

autosomal chromosomes. This is a web-based service that runs imputation pipelines (phasing is483

done with Eagle2, imputation with Minimac4). Encrypted results are returned with a one-time484

password. Of the remaining 3,682 individuals (1,681 cases and 1,615 controls), we had clinical485

data available for 1,297 cases. We only used the subset of individuals with clinical data available486

in order for a fair comparison between the weighted and non-weighted genome-wide association487

studies. We ran subsequent genome wide association studies on all bi-allelic sites with a minor488

allele frequency ≥ 5% (9,615,446 sites in total) assuming an additive model of association. We489

used the R function glm with a binomial link for all tests of association (genetic data are encoded490

as the number of reference alleles). The supplementary appendix gives the R code for weighted491

logistic regression. The point estimates from the weighted model estimated by glm are correct492

but it is necessary to transform the standard errors in order to take into account the reduction in493

effective sample size (see code).494

Case-control study in directly typed polymorphisms495

We fit a categorical (multinomial) logistic regression model to the case-control status as a function496

of the directly typed polymorphisms (120 after discarding those that are monomorphic in this497

population, see [27] for additional details). We modelled the severe malaria cases as two separate498

sub-populations with a latent variable: ‘severe malaria’ versus ‘not severe malaria’, resulting in499

3 possible labels (controls, ‘severe malaria’, ‘not severe malaria’). The models adjusted for self-500

reported ethnicity and sex. The model was coded in stan [49] using the log-sum-exp trick to501

marginalise out the likelihood over the latent variables (see code). Normal(0,5) priors were set on502
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all parameters and parameter estimates and standard errors were estimated from the maximum a503

posteriori value (function optimizing in rstan).504

Code availability505

Code along with a minimal clinical dataset for reproducibility of the diagnostic phenotyping model506

is available via a github repository: https://github.com/jwatowatson/Kenyan_phenotypic_507

accuracy.508

Data availability509

A curated minimal clinical dataset is currently available alongisde the code on the github repos-510

itory. This will also be made available at publication via the KEMRI-Wellcome Harvard Data-511

verse (https://dataverse.harvard.edu/dataverse/kwtrp). Whole genome data are available512

from European Genome-Phenome Archive (dataset accession ID: EGAD00010001742). Requests513

for access to appropriately anonymized clinical data and directly typed genetic variants for the514

Kenyan severe malaria cohort can be made by application to the data access committee at the515

KEMRI–Wellcome Trust Research Programme by e-mail to mmunene@kemri-wellcome.org. The516

FEAST trial datasets are available from the principal investigator on reasonable request (k.maitland@imperial.ac.uk).517

Requests for access to appropriately anonymized clinical data from the AQ and AAV Vietnam study518

and the Asian paediatric cohort can be made via the Mahidol Oxford Tropical Medicine Research519

Unit data access committee by emailing the corresponding author JAW (jwatowatson@gmail.com)520

or Rita Chanviriyavuth (rita@tropmedres.ac).521
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Figure S1: The relationship between platelet counts and plasma PfHRP2 in severely ill
African children. The black line (shaded area) shows the estimated probability (95% confidence
interval), derived from a generalised additive logistic regression model (p < 10−16 for the spline
term, fit using the R package mgcv), that the plasma PfHRP2 > 1,000 ng/mL as a function of
log10 platelet count. The generalised additive model was fit to data from 566 African children
enrolled in the FEAST trial [21] (all the children who had both platelet counts and PfHRP2 data
available). Plasma PfHRP2 > 1,000 ng/mL is highly discriminatory for severe malaria [22].
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Figure S2: Comparison of the marginal distributions of white blood cell counts be-
tween Asian adults and children with severe malaria and African children with
severe malaria. FEAST: 121 severely ill Ugandan children with PfHRP2 > 1,000 ng/mL
[21]. Vietnamese adults: 930 adults from two large randomised trials in severe malaria [20, 19].
Bangladesh/Thailand: 653 adults and children from observational studies of severe malaria [37].
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Figure S3: Effect of permuting the weights in the re-weighted (data-tilting) GWAS.
Here we show the results of 20 random permutations of the weights, applied to the Kenyan case-
control GWAS using only chromosomes 4, 9 and 11 (where the top hits are - we limit it to these 3
chromosomes for computational reasons). The random permutations (grey) decrease the number
of significant hits compared to the non-weighted (thick black) and the non-permuted re-weighted
model (dashed purple).
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Figure S4: Comparison of the non-weighted and weighted models of association for
directly typed polymorphisms previously reported as associated with severe malaria
[27]. Panel A: estimated effect sizes under the non-weighted model versus the difference in ef-
fect sizes between the weighted and non-weighted models (absolute effects on the log-odds scale).
Differences > 0 imply that the absolute effect size is estimated to be larger under the weighted
model. Panel B: -log10 p-values under the non-weighted model versus the differences in -log10

p-values under the weighted and non-weighted models, again differences >0 represent larger -log10

p-values for the weighted model. Each point is represented by the gene name. In each case we
use the model that best fit the data in the original analysis [27]. For the X-linked polymorphisms
(G6PD, CD40LG), multiple models were reported and so the association model is also shown: H
(heterozygote); A (additive); M (males only); F (females only); M/F (all).
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Figure S5: Case-only analysis of five key polymorphisms effecting red cells, reported in
[27] under additive, recessive or heterozygote models. The horizontal dashed lines show
the estimated frequency in the controls (for additive models this is the frequency of the derived
allele, for the heterozygote or recessive models this is the frequency of the genotype thought to
confer protection). The line (shaded area) show logistic regression fits with P(Severe malaria |
Data) as the predictor (95% confidence interval of the fit). The p-value corresponds to the test
that the predictor P(Severe malaria | Data) is not associated with the genotype in the cases only.
OBG: O Blood Group
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Figure S6: Distribution of admission haemoglobin concentrations as a function of
P(Severe malaria | Data). Severe anaemia is generally defined as a haemoglobin less than
5 g/dL in African children diagnosed with severe malaria, shown by the horizontal dashed red line
in the top panel and the vertical dashed red lines in the bottom panels. The vertical dashed red
lines in the top panel show the top and bottom quintiles of the probability distribution (0.9 and
0.2, respectively). Patients in the bottom quintile of the probability distribution had a markedly
bi-modal distribution in haemoglobin concentrations with a substantial proportion meeting the
severe anaemia criterion and a substantial proportion with relatively high haemoglobin concentra-
tions (> 10 g/dL), suggesting two patients subgroups. Patients in the top quintile had a uni-modal
distribution of haemoglobin.
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Figure S7: Pattern of missing clinical data in the 930 Vietnamese adults. These data pool
the AQ Vietnam severe malaria study [19] and the AAV severe malaria study [20] (red: missing;
yellow: recorded).
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Figure S8: Missing clinical data in the 2,220 Kenyan children diagnosed with severe
malaria . (red: missing; yellow: recorded).
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Figure S9: Relationship between age and mean white count (modelled on the log10
scale). This is estimated from 858 children in the FEAST trial who had white counts available
using a additive linear model (p = 10−8 for the smooth spline term). We used this model to adjust
observed log10 white counts in all children less than 5 years of age in the training and testing
datasets.

28

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 17, 2021. ; https://doi.org/10.1101/2021.04.16.440107doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.16.440107
http://creativecommons.org/licenses/by/4.0/


Figure S10: Comparison of the marginal distributions of platelet counts between Asian
adults and children with severe malaria and African children with severe malaria.
FEAST: 121 severely ill Ugandan children with PfHRP2 > 1,000 ng/mL [21]. Vietnamese adults:
930 adults from two large randomised trials in severe malaria [20, 19]. Bangladesh/Thailand: 653
adults and children from observational studies of severe malaria [37].
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Figure S11: Normal-quantile plots for platelet counts and white blood cell counts in
the training data. Both were standardised to have mean 0 and standard deviation of 1 on the
log10 scale. The diagonal lines shows the identity line.

Figure S12: Collider bias in the diagnostic model of severe malaria based on complete
blood count data. HBB in its homozygous S form (HbSS, <1% prevalence in this Kenyan
population) is a rare example of how this can occur. Children with HbSS have white counts above
2-3 times higher than the normal population and slightly lower platelet counts [34]. Under the
probabilistic model, all 11 children with HbSS were classified as having a low probability of severe
malaria, based on their high white counts (mean 40,000 per µL). These probabilities cannot be
taken at face value and it remains an unanswered question whether children with HbSS are more
or less susceptible than their wild-type counterparts [35]
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Figure S13: The relationship between HbSS and the estimated probabilities of severe
malaria under the diagnostic model. There were 11 children with HbSS and they all had low
probabilities of severe malaria but this is biased as these children have chronic inflammation with
white counts 2-3 higher than the general population [34] (see Figure S12 for the causal diagram
showing collider bias).
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Figure S14: Scatter plots of platelet counts versus white blood cell counts for the Kenyan cohort,
showing the 13 individuals with the double mutation HbAS & homozygous α+-thalassaemia as
large black diamonds (HZ-alpha-thal)). The red-yellow-blue colour scheme is proportional to the
P(Severe malaria | Data) as given by the legend in the top left corner.
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Figure S15: Principal components analysis of 1,666 Kenyan cases and 1,606 population controls.
The colours show the main self-reported ethnicities (black: Chonyi; red: Giriama; green: Kauma;
blue: other). The first 5 principal components were used to stratify for population structure in the
GWAS analyses.
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