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Perspective

1. Microbial growth is the foundation of many biotechnological applications. The key to optimizing microbial

growth lies in thermodynamics, similar to how classical thermodynamics helped optimize steam engines

in the 19th century.

2. Genome-scale metabolic models have become widely available, and are used to predict microbial growth.

These predictions often fail because these models do not distinguish between growth rate and yield.

3. Classical black box models present a sound thermodynamic theory, by viewing microbes as energy con-

verters. Incorporating such concepts into genome-scale metabolic models has the promise to advance our

fundamental understanding of microbial growth, and thus to improve the predictive power of these models.

Abstract

The application of thermodynamics to microbial growth has a long tradition that originated in the middle of

the 20th century. This approach reflects the view that self-replication is a thermodynamic process that is not

fundamentally different from mechanical thermodynamics. The key distinction is that a free energy gradient is

not converted into mechanical (or any other form of) energy, but rather into new biomass. As such, microbes

can be viewed as energy converters that convert a part of the energy contained in environmental nutrients into

chemical energy that drives self-replication. Before the advent of high-throughput sequencing technologies, only
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the most central metabolic pathways were known. However, precise measurement techniques allowed for the

quantification of exchanged extracellular nutrients and heat of growing microbes with their environment. These

data, together with the absence of knowledge of metabolic details, drove the development of so-called black box

models, which only consider the observable interactions of a cell with its environment and neglect all details of

how exactly inputs are converted into outputs. Now, genome sequencing and genome-scale metabolic models

provide us with unprecedented detail about metabolic processes inside the cell. However, the derived modelling

approaches make surprisingly little use of thermodynamic concepts. Here, we review classical black box models

and modern approaches that integrate thermodynamics into genome-scale metabolic models. We also illustrate

how the description of microbial growth as an energy converter can help to understand and quantify the trade-off

between microbial growth rate and yield.

1 Introduction

Thermodynamics has its origins in the optimization of steam engines in the 19th century. During this era,

two of the fundamental laws of thermodynamics were postulated: the first law holds that energy is conserved

in an isolated system; and the second law holds that no process is possible that only transfers heat from a

lower temperature to a higher temperature1 [1]. While the resultant theory mostly dealt with systems at

equilibrium, in the middle of the 20th century strides were made to extend it to irreversible, non-equilibrium

regimes, allowing for the direct analysis of less idealized systems [2, 3]. Today, thermodynamics is integral

to understanding efficiency limitations of natural and engineered systems, and has been widely applied in

biochemistry and biotechnology [4, 5, 6, 7, 8].

Efficiency considerations guide researchers in their quest to rationalize the design of living systems in light of

evolutionary optimization. The importance of understanding efficiency limitations is further stressed by the

fact that the economic competitiveness of bio-processes is often seen as a major hurdle in the development of a

sustainable bio-economy [9]. Because many biotechnological processes are based on exploiting microbes as bio-

based factories [10, 11, 12], the continued development and application of thermodynamic concepts and tools to

study and optimize microbial growth processes is necessary. Heterotrophs obtain energy by metabolizing higher

energy nutrients into lower energy components through a process known as catabolism. Since a part of this

energy gradient is used to build new biomass (anabolism), heterotrophic growth can be seen as a thermodynamic

energy converter [13], where ATP is the central coupling metabolite, which facilitates the conversion of energy

released in catabolic processes to drive biomass formation. This thermodynamic view of microbial growth opens

the door to a rich array of tools that can be used to analyze these systems [14].

A complete understanding and quantitative description of heterotrophic growth will depend on the knowledge

of the detailed mechanisms of how this energy converter functions. Historically, a black box description was

used to investigate the overall conversion [15], but this approach did not reveal how the coupling is performed

in detail. For example, it is unknown how many molecules of ATP are being produced per carbon consumed

in catabolism, and how many are needed to incorporate one carbon into biomass in anabolism. Genome-scale

metabolic models (GEMs) reveal a view into the black box by mapping pathways and reactions to specific genes,

and are increasingly used in systems biology applications [16], but often do not adequately reflect thermodynamic

constraints [17]. It is apparent that a mechanistically sound description of the microbial energy conversion

process must obey the laws of thermodynamics. Incorporating concepts from thermodynamic black box models

into GEMs therefore seems to be a promising way forward to develop a thermodynamically consistent, and

1In the words of Clausius who originally formulated the second law, “No process is possible whose sole result is the transfer of

heat from a body of lower temperature to a body of higher temperature.”
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mechanistically detailed, description of metabolism.

In this review, we first discuss the basis for all further thermodynamic calculations used to describe biological

systems (Section 2). This basis is given by the concept of Gibbs free energies of reactions. We discuss its

importance, its connection to biochemistry, existing methods to calculate it, and how it can be applied to

glean insight into single reactions and complete metabolic pathways. We then review the black box approaches

used to investigate microbial thermodynamics (Section 3), before we review and discuss more recent techniques

that make use of GEMs for this purpose (Section 4). In Section 5 we discuss how these approaches may be

connected. Viewing microbial growth as a thermodynamic energy converter provides access to key quantities,

such as thermodynamic efficiency. This, in turn, immediately raises fundamental questions regarding the trade-

off between growth rate (kinetic efficiency) and yield (stoichiometric efficiency). This trade-off is a recurring

theme in this review, as it is encountered on various levels in different models describing microbial growth as a

thermodynamic energy conversion process.

2 Gibbs free energies - the universal driving force of reactions and

pathways

The laws of thermodynamics can be used to deduce properties of reactions. Typically, chemical reactions

take place at constant temperature and pressure, leading to the use of Gibbs free energy, G, as the primary

thermodynamic potential of interest. As a consequence of the second law of thermodynamics, the change in

Gibbs free energy of a spontaneous reaction, ∆rG, can only be negative, constraining the direction of net flux

for a given reaction. This potential difference can also be used to find the equilibrium conditions of a reaction

through the relation ∆rG
◦ = −RT ln(K), where K is the equilibrium reaction quotient, T the thermodynamic

temperature, and ∆rG
◦ the standard2 Gibbs free energy change of the reaction. Standard Gibbs free energies

can be found in thermodynamic databases [1].

The practical importance of Gibbs free energy has led to the compilation of numerous databases storing ther-

modynamic data for biologically relevant species and reactions. In particular, two current examples of such

databases include the Thermodynamics of Enzyme-Catalyzed Reactions Database [18], and eQuilibrator [19].

The latter database offers the highest coverage of biochemical reactions to date [20], while being thermodynami-

cally consistent [21]. Importantly, these databases deviate from conventional chemical reaction thermodynamics

by their use of apparent equilibrium constants, K ′, as well as apparent standard Gibbs free energies of formation,

∆fG
′◦, and reaction, ∆rG

′◦, to describe the thermodynamic potential of biochemical reactions. In essence, the

qualifier “apparent” denotes that pH and ionic strength are held constant when calculating thermodynamic po-

tentials. This deviation is necessitated by practical challenges associated with biochemistry, e.g. measurements

of enzymatic reactions are typically made in buffered solutions where H+ is not conserved, and protonation

states of metabolites are difficult to measure independently [22]. The most important consequence of this is

that chemical and biochemical thermodynamic databases are not directly compatible with each other, however,

the fundamentally important relations between G and properties of interest remain unchanged, as shown in

equations (1) – (3), where Q′ is the apparent reaction quotient, νi is the stoichiometric coefficient associated

with species i in a reaction with N ′ different chemical species (excluding protons).

∆rG
′◦ =

N ′∑
i

νi∆fG
′◦
i = −RT ln (K ′) (1)

2Concentrations of all species 1 M, temperature 298.15 K, and pressure 1 bar.
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∆rG
′ = ∆rG

′◦ +RT ln (Q′) = RT ln
Q′

K ′
(2)

spontaneous reaction ⇐⇒ ∆rG
′ ≤ 0 (with equality at equilibrium) (3)

Gibbs free energy can be used to identify energetic bottlenecks in native and engineered microbial metabolism.

However, the use of thermodynamic considerations in flux analysis has not been without controversy. The

primary point of contention is the relationship between flux (or rate) and thermodynamic driving force. The

sequence of correspondence [23, 24, 25, 26, 27] highlights the common misconception that flux is independent of

the thermodynamic driving force. In contrast, under certain circumstances the flux, J , through an enzymatic

reaction is proportional to the associated thermodynamic driving force (−∆rG). The flux through a reaction can

be decomposed into kinetic (FK) and thermodynamic (FT) factors, i.e. J = FKFT [28, 29, 30, 31, 32, 33]. The

thermodynamic factor can be written in the form FT = 1− e
∆rG

′
RT [34, 33]. If the thermodynamic driving force

of a reaction is large (∆rG� 0) the thermodynamic component approaches unity, approximately reducing the

rate expression to the kinetic component only. It should be noted that even in this case the kinetic parameters

of an enzymatic reaction are constrained by thermodynamics through the Haldane relation [35]. However, in

the opposite case, FT ≈ −∆rG and the flux becomes proportional to the driving force. This is often observed in

anaerobic environments, where the thermodynamic component plays a much larger role in constraining microbial

growth [36].

Beyond describing the favourability of a single reaction, thermodynamic considerations can also be used to

interrogate the interplay between rate and yield in microbial metabolism at the pathway level [37, 38]. Here,

yield describes the fraction of the available free energy gradient that is used for useful chemical work, such as

the production of ATP. As a consequence, a high yield means a small overall −∆G′, since the energy gradient

is partially conserved in ATP. In light of the foregoing, rate and yield represent a trade-off: the more efficient

a pathway is in conserving energy, the lower the thermodynamic driving force becomes, resulting in a lower

flux. This trade-off is the essential idea behind max-min driving force (MDF) analysis, which can be used to

identify enzymes that act as thermodynamic bottlenecks in pathways. An enzyme operating close to equilibrium

catalyses almost as many conversions in the reverse as in the forward direction. To overcome this inefficiency,

such reactions require a high investment of cellular resources [39]. It is important to note that the concept

of thermodynamic bottlenecks is quite different from that of kinetic bottlenecks (or rate-limiting steps), which

exert a large control on the overall flux of the pathway [40]. MDF analysis was used to show that the Entner-

Doudoroff (ED) pathway is thermodynamically more favourable than the Embden-Meyerhof-Parnas (EMP)

pathway. Consequently, while the latter yields more ATP per glucose it is also more costly because it requires

more enzyme. Thus, it was found that prokaryotes relying primarily on glycolysis for energy (e.g. anaerobes)

tend to invest in the higher yielding, but enzymatically costlier, EMP strategy, while those that have alternative,

non-glycolytic energy generating pathways (e.g. oxidative phosphorlyation in the case of aerobes) would prefer

the enzymatically cheaper ED pathway [41]. Enzyme cost minimization is an extension of MDF that incorporates

kinetic information to calculate the protein cost associated with a metabolic pathway [42]. This hybrid kinetic-

thermodynamic approach was used to show that the ED and EMP pathways both lie close to the Pareto front

of ATP yield vs. enzyme cost [43], confirming earlier studies, which rationalised the design of ATP-producing

pathways by assuming that the naturally evolved pathways are close to optimal [44, 45, 6].

4

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted April 18, 2021. ; https://doi.org/10.1101/2021.04.16.440103doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.16.440103


3 Thermodynamic black box approaches can be used to understand

microbial metabolism

Before low cost genomic sequencing was available to interrogate the full structure of microbial metabolism, the

exact metabolic transformations occurring inside a cell were relatively opaque. However, precise measurements

of the heat and material (substrate consumption, product generation, and biomass production) exchanged with

the environment could be made. Thus, the so-called black box techniques were developed, which depended on

the measurement of macrochemical equations to summarise the conversion of nutrients into metabolic products

and biomass in a single chemical formula. These techniques were used to predict cellular properties important

for biotechnology without needing detailed metabolic information [13]. The entropy balance of a black box

model of a cell, as depicted in Fig. 1, is given by

dS

dt
=

compensating terms︷ ︸︸ ︷
Q̇

T︸︷︷︸
enthalpic term

+
∑
i

s̄iṅi︸ ︷︷ ︸
entropic term

− s̄X ṅX +

always positive︷ ︸︸ ︷
Ṡprod (4)

Here, Q̇ is the rate of heat exchanged between cell and environment, s̄i is the partial molar entropy of species

i, ṅi is the rate of import/export of metabolite i, and the subscript X denotes biomass. Importantly, due to

the irreversibility of growth, entropy is produced by the cell (Ṡprod > 0), leading to unavoidable energetic losses

according to the second law of thermodynamics. To avoid thermal cell death, or structural disorganization

Biomass

(nx)

Cellular 

metabolism

Sprod

Heat

(Q)

Figure 1: Black box approaches assume that only extracellular metabolites are measured and do not require

detailed metabolic mechanisms to yield predictions. Due to the irreversible nature of cellular growth, entropy

must be produced and leads to unavoidable energetic losses. The import rate of a variable is taken as positive.

Based on Figure 19.10 from [46].

leading to cell death, a cell cannot accumulate entropy (implying dS
dt = 0). Thus, entropy production must

be balanced by either heat or metabolite exchange with the environment, revealing one of the thermodynamic

roles of catabolism: to export entropy in the form of heat or high entropy waste products to compensate for

metabolic entropy production [46]. Interestingly, it was shown that microorganisms adopt different catabolic

strategies to achieve this. Respiration is associated with enthalpic compensation, which means that entropy is

exported predominantly as heat (large negative Q̇), whereas fermentation is associated with entropic compen-

sation through a high export rate (large negative ṅi) of high entropy compounds (large s̄i). In acetotrophic

methanogenesis entropy export by product formation is even so large that the overall growth is endothermic

(positive Q̇). Autotrophic methanogensis, in contrast, decreases the chemical entropy in the environment, and

achieves this by a very high heat production [47].

A highly simplified, but very useful and illustrative black box model, is the linear Gibbs energy converter, as
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illustrated in Fig. 2. In this model, catabolism drives anabolism, and these two processes are coupled through

Catabolic products Anabolic substrates

Catabolic substrates Biomass

η∆Gcatabolism< 0 ∆Ganabolism> 0

J2> 0 J1< 0

J1> 0

Figure 2: Gibbs energy converter model. Catabolism and anabolism are represented as coupled processes, where

the Gibbs energy liberated by exergonic catabolic reactions drive the endergonic anabolic reactions.

the so-called Onsager coefficients (Lij), as shown in Eq. (5). Here J1 and J2 are the fluxes of anabolism and

catabolism, respectively; and X1 = −∆Ganabolism and X2 = −∆Gcatabolism are the respective driving forces of

these fluxes [48, 49, 50]. Note that catabolism would spontaneously proceed in the forward direction (J2 > 0),

while anabolism, since it is endergonic, would spontaneously proceed in the negative direction (J1 < 0), i.e. break

down biomass into its constitutive components.

J1 = L11X1 + L12X2

J2 = L21X1 + L22X2

(5)

The coupling between anabolism and catabolism is effected by L12 and L21. For the purpose of studying

the coupling between catabolism and anabolism, we can assume that Onsager’s reciprocal relations hold, and

L12 = L21 [51]. The degree of coupling is defined as q = L12√
L11L22

. Due to the second law of thermodynamics,

L11 and L22 must both be positive, but the coupling terms may be of any sign. The biologically important case

occurs when they are positive, hence it can be shown that 0 ≤ q ≤ 1. In this regime catabolic free energy is

channeled towards the biosynthesis of new biomass (J1 > 0), at the cost of catabolic flux (J2 decreases).

This simple model can be used to explain why maintenance energy is necessary in systems that are not perfectly

coupled (q < 1). In Fig. 3a, the normalised flow ratio j is plotted over the normalised force ratio x (definitions

are given in the Figure caption). Quantitatively, it can be shown that when J1 = 0 (zero net growth rate),

x = −q and the catabolic flux J2 at this point is nonzero and proportional to (1− q2) [48]. This catabolic flux

represents the entropic resistance that needs to be overcome before new biomass can be produced. Maintenance

energy is experimentally observed in chemostat cultures at the limit of zero growth, and, in the context of the

energy converter model, corresponds to this imperfectly coupled regime.

The efficiency, defined as η = −J1X1

J2X2
, can be interpreted as the yield of the overall growth process, while the

anabolic flux power (P = J1X1) reflects growth rate, as discussed in Section 2 for single reactions and pathways.

In Figures 3b – 3c it is demonstrated that the optimum efficiency (yield) and biomass flux (rate) do not coincide,

clearly indicating the existence of a trade-off between microbial growth and yield, as is often observed in nature

[52].

While the linear Gibbs energy converter model is intuitively appealing, the model depends on how catabolism

and anabolism are split with respect to the black box macrochemical equation, which is a non-trivial problem

of definition since many catabolic reactions are actually amphibolic [13]. The problem becomes even greater if
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(a) Systems that are not perfectly coupled require energy input to overcome

entropic driving force resistance. This energy requirement can be found

by looking at cases where the flux of biomass production vanishes (J1 =

0 =⇒ j = 0), as is done in experimental chemostat experiments.

−1.0 −0.8 −0.6 −0.4 −0.2 0.0
0.00
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0.50

0.75

1.00
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q=0.99
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Force ratio (x)

η

(b) Higher efficiency is associated with force ra-

tios tending to unity (entropy production is min-

imized as the force ratio approaches unity).
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0.00
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0.9
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q=0.99

q=0.9

q=0.7

q=0.5

Force ratio (x)
P

(c) For a perfectly coupled system, anabolic flux

power is maximized at a force ratio of 50%.

Figure 3: The normalized force ratio
(
x = X1

X2

√
L11

L22

)
and normalized flux ratio

(
j = J1

J2

√
L22

L11

)
as a func-

tion of coupling strength, q, can be used to interrogate the predictions of the Gibbs linear energy trans-

ducer model. Positive flow ratio, j, indicates that biomass is being produced. Figure based on Figures

1, 2, and 5 from [48]. Code used to generate the plots are available at https://gitlab.com/qtb-hhu/

thermodynamic-linear-converter-review-2021.

several carbon or nitrogen sources are available simultaneously. Furthermore, measuring the coupling coefficient

is not straightforward. Assuming perfect coupling (q = 1) and maximizing anabolic flux power (P ), the

resultant predicted thermodynamic efficiency is 50%. This efficiency seems to match measured values for

aerobes (ηobserved ≈ 30 − 60%), but grossly overestimates anaerobic efficiencies, suggesting that the linear

converter theory might be too simplistic [53].

Other approaches make direct use of the Gibbs energy balance, as shown in Eq. (6). Here µi is the chemical

potential of species i, and Ẇ the rate of work done on the system.

dG

dt
= Ẇ +

∑
i

µiṅi − µX ṅX − T Ṡprod (6)

After some simplifications, it can be shown that ∆rGX ∝ −T Ṡprod, suggesting that the total Gibbs energy

dissipated (∆rGX) by a microbe is the driving force of metabolism [54, 55]. Based on this, some black box

approaches have been developed that make use of Gibbs energy dissipation as a predictive tool [15]. Despite

the complexity of metabolism eschewed, these techniques have been used to model biomass yield (YX/S) on a

variety of substrates, with an average error of 13 – 19 % [56] and 13 – 23% [57], as well as cellular maintenance

coefficients (average error 32 – 41 %) [58], under aerobic and anaerobic conditions. It is noteworthy to point

out that these approaches were all developed before inexpensive sequencing technology was readily available to

interrogate the details of cellular metabolism, yet they are remarkably predictive [59].
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4 Genome-scale models of metabolism: peeking in the black box

Due to the advent of low-cost genomic sequencing, and the existence of large databases mapping genes to

functions, it has become possible to rapidly characterize the metabolic capability of an organism in silico. Con-

sequently, an increasing number of highly detailed genome-scale metabolic models (GEMs) have been developed

to systematically understand and engineer microorganisms [60]. If reaction rates v are known, the temporal

change of metabolite concentrations x, is given by dx
dt = Sv(x, t), where S is the stoichiometric matrix describ-

ing the stoichiometry of the metabolic network encoded by the GEM. However, kinetically characterizing each

metabolic reaction in an organism is infeasible due to the scale, complexity, and interactions endemic to micro-

bial metabolism, although attempts have been made for two organisms [61, 62]. Consequently, simplifications

are typically made to assist analysis. A fundamental assumption made in most GEM studies is that cellular

metabolism is approximately in a stationary state. This simplifies the dynamic equation to Sv = 0, which

relates the stationary reaction fluxes v to the system’s stoichiometry alone. Because this central equation is

under-determined, further assumptions are necessary. Flux balance analysis (FBA) casts a GEM into a linear

program, as shown in Eq. (7).

max
v

µ(v)

s. t. Sv = 0

vLB ≤ v ≤ vUB

(7)

Often, a so-called biomass objective function is used as µ; this ad hoc linear sum of weighted fluxes describes

the proportion of macromolecular constituents needed by a microorganism to grow [63], and is related to the

macrochemical equation used in black box models. Flux measurements and thermodynamic considerations

are used to set the flux bounds, vLB and vUB [64]. It is particularly important to constrain directions of

reactions to reduce the flux variability in a model, and to remove thermodynamically infeasible cycles. Typically,

physiologically observed metabolite concentration bounds are used in conjunction with Eq. (2) to bound ∆rG
′,

and subsequently assign direction to reactions [65].

While the aforementioned approach ensures that individual reactions obey the laws of thermodynamics, it does

not ensure that the entire reaction network is thermodynamically consistent. This can be achieved by imposing

additional thermodynamic constraints on the classic FBA algorithm. To this end, the two most robust methods

are thermodynamic-FBA [66, 67] and loopless-FBA [68]. The former method directly incorporates thermody-

namic parameters, i.e. ∆rG
′◦, for each reaction, as well as bounds on metabolite concentrations achievable by

the cell. By incorporating Eqs. (2) and (3) into (7), the optimization problem is converted into a mixed integer

linear program (MILP). The latter method does not require thermodynamic information, however it also refor-

mulates (7) as a MILP. In both cases it is guaranteed that solutions represent thermodynamically consistent flux

distributions, albeit at the cost of solving a more computationally intensive optimization problem. Interestingly,

while loopless-FBA does not directly use thermodynamic parameters, it can be restated as a simplification of

thermodynamic-FBA, in which internal metabolite concentrations are unbounded [69].

Thermodynamic-FBA has been used to investigate the metabolism of Escherichia coli. Interestingly, by impos-

ing thermodynamic constraints on its GEM, fewer reactions were found to be directionally constrained than were

manually constrained in the original FBA formulation, suggesting that the individual reaction based approach

may be too conservative [70]. However, this analysis also highlighted the sensitivity of thermodynamic-FBA to

uncertainties in ∆rG
′◦, as well as metabolite concentration bounds, suggesting that the loopless approach may

be more robust, because it does not depend on specific values of the reaction energies. However, computational

complexity issues plague both of these MILP-based methods, although faster variants of loopless-FBA have

been developed [71]. For this reason, alternative methods that remove thermodynamically infeasible cycles, but

do not interrogate reaction directions, are more often used in practice [72, 73].
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The rate/yield trade-off can also be quantitatively analyzed with GEMs, if kinetic data is also available. Enzyme

flux cost minimization is a technique that combines GEM based analyses with enzyme cost minimization analysis.

By using this technique, it was found that environmental, as well as kinetic, parameters affect the trade-off

between rate and yield in E. coli [74]. The flexibility of constraint based analysis also facilitates its extension,

e.g. by incorporating phenomenological observations as constraints on fluxes. Recently, an upper bound on the

rate of Gibbs free energy dissipation of cellular metabolism was introduced to further constrain the solution

space of FBA [75]. The additional constraints allowed FBA to accurately predict overflow metabolism in

Saccharomyces cerevisiae and E. coli. As argued in [76], a common feature of all models explaining overflow

metabolism is the existence of two constraints, which restrict metabolism under different conditions. In [75],

these constraints were based on thermodynamic considerations. Interestingly, the same results were obtained

by using a far simpler black box approach [77], which suggests that the two approaches could be synergistically

combined to yield novel insights.

5 Connecting the black box and genome-scale metabolic modeling

approaches

Given the increasing ubiquity of GEMs, a rich tool set has been developed to quantitatively analyze metabolism

at the genome-scale [78]. However, due to the computational complexity associated with thermodynamic-

FBA approaches, it seems that most thermodynamic analyses of GEMs are restricted to reaction direction

assignments. In contrast, the historic black box approaches made prodigious use of thermodynamics to overcome

their inability to inspect the metabolic features of an organism in detail. Given the accuracy of yield predictions

made by using only black box techniques, one can only wonder to what degree deeper thermodynamic integration

of GEMs can increase their predictive abilities.

Promisingly, the development of sophisticated thermodynamic databases has already enabled detailed analysis of

pathways [41, 43], unavailable a mere decade before their release [79]. These databases can be easily integrated

with FBA based approaches. In Fig. 4 we illustrate this integration by calculating the total Gibbs energy

dissipated for a variety of organisms and carbon sources, as well as the associated biomass yields.

While it is intuitively clear that catabolic processes drive biomass formation, as modelled in the black box

approaches of Section 3, it is less clear how this idea can be applied to GEMs. While GEMs reveal exactly which

biochemical transformations are taking place, they do not couple energetics to yield, e.g. there is no disadvantage

in increasing the ATP yield of catabolism. However, a rate/yield trade-off must exist. By increasing the number

of ATPs generated through catabolism, the Gibbs free energy change of the pathway will approach equilibrium.

In light of Sections 2 and 3, this would reduce the rate, since the driving force is diminished. Consequently,

metabolism would slow down, reducing the benefit of increasing the ATP yield. This effect is not captured

by current constraint-based approaches [86]. It is still an open research question on how to best leverage the

bounty of information contained in GEMs, while also incorporating thermodynamic driving force considerations.

Addressing this shortcoming by making use of the linear energy converter ideas touched upon in Section 3 could

clear the way for establishing the connection between rate and yield at the genome-scale.
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Figure 4: Gibbs dissipation and biomass yields calculated using FBA and the GEMs of E. coli [80],

S. cerevisiae [81], Klebsiella pneumoniae [82], Pseudomonas putida [83], and Bacillus subtilis [84]. Ther-

modynamic data was sourced from [19] and [85]. Carbon source abbreviations: glc/glucose, ac/acetate,

succ/succinate, xyl/xylose. Error bars represent the propagated standard deviation of the mean Gibbs en-

ergy of formation for extracellular metabolites and biomass. Code used to generate the plot is available at

https://gitlab.com/qtb-hhu/thermodynamic-linear-converter-review-2021.
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[45] Oliver Ebenhöh and Reinhart Heinrich. Evolutionary optimization of metabolic pathways. theoretical

reconstruction of the stoichiometry of atp and nadh producing systems. Bulletin of mathematical biology,

63(1):21–55, 2001.

[46] Urs von Stockar. Biothermodynamics: The role of thermodynamics in biochemical engineering. PPUR

Presses polytechniques, 2013.

[47] U Von Stockar and J-S Liu. Does microbial life always feed on negative entropy? thermodynamic analysis

of microbial growth. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1412(3):191–211, 1999.

[48] Jörg W Stucki. The optimal efficiency and the economic degrees of coupling of oxidative phosphorylation.

European Journal of Biochemistry, 109(1):269–283, 1980.

[49] Hans V Westerhoff, Klaas J Hellingwerf, and Karel Van Dam. Thermodynamic efficiency of microbial

growth is low but optimal for maximal growth rate. Proceedings of the National Academy of Sciences,

80(1):305–309, 1983. maximal growth; degree of reduction; anabolism.

[50] O. Kedem and S. R. Caplan. Degree of coupling and its relation to efficiency of energy conversion. Trans.

Faraday Soc., 61:1897–1911, 1965.

[51] Lars Onsager. Reciprocal relations in irreversible processes. i. Phys. Rev., 37:405–426, Feb 1931.

13

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted April 18, 2021. ; https://doi.org/10.1101/2021.04.16.440103doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.16.440103


[52] David A Lipson. The complex relationship between microbial growth rate and yield and its implications

for ecosystem processes. Frontiers in microbiology, 6:615, 2015.
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[59] J-S Liu, V Vojinović, Rodrigo Patiño, Th Maskow, and Urs von Stockar. A comparison of various gibbs

energy dissipation correlations for predicting microbial growth yields. Thermochimica Acta, 458(1-2):38–46,

2007.

[60] Xin Fang, Colton J. Lloyd, and Bernhard O. Palsson. Reconstructing organisms in silico: genome-scale

models and their emerging applications. Nature Reviews Microbiology, 18(December):23–26, 2020.

[61] Jonathan R Karr, Jayodita C Sanghvi, Derek N Macklin, Miriam V Gutschow, Jared M Jacobs, Benjamin

Bolival Jr, Nacyra Assad-Garcia, John I Glass, and Markus W Covert. A whole-cell computational model

predicts phenotype from genotype. Cell, 150(2):389–401, 2012.

[62] Derek N Macklin, Travis A Ahn-Horst, Heejo Choi, Nicholas A Ruggero, Javier Carrera, John C Mason,

Gwanggyu Sun, Eran Agmon, Mialy M DeFelice, Inbal Maayan, et al. Simultaneous cross-evaluation of

heterogeneous e. coli datasets via mechanistic simulation. Science, 369(6502), 2020.

[63] Adam M Feist and Bernhard O Palsson. The biomass objective function. Current opinion in microbiology,

13(3):344–349, 2010.

[64] Ines Thiele and Bernhard Ø Palsson. A protocol for generating a high-quality genome-scale metabolic

reconstruction. Nature protocols, 5(1):93, 2010.

[65] Ronan MT Fleming, Ines Thiele, and Heinz-Peter Nasheuer. Quantitative assignment of reaction direc-

tionality in constraint-based models of metabolism: application to escherichia coli. Biophysical chemistry,

145(2-3):47–56, 2009.

[66] Christopher S Henry, Linda J Broadbelt, and Vassily Hatzimanikatis. Thermodynamics-based metabolic

flux analysis. Biophysical journal, 92(5):1792–1805, 2007.

[67] Michael L Mavrovouniotis. Identification of localized and distributed bottlenecks in metabolic pathways.

In Ismb, volume 93, pages 273–283, 1993.

14

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted April 18, 2021. ; https://doi.org/10.1101/2021.04.16.440103doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.16.440103


[68] Jan Schellenberger, Nathan E Lewis, and Bernhard Ø Palsson. Elimination of thermodynamically infeasible

loops in steady-state metabolic models. Biophysical journal, 100(3):544–553, 2011.

[69] Elad Noor. Removing both internal and unrealistic energy-generating cycles in flux balance analysis. arXiv

preprint arXiv:1803.04999, 2018.

[70] Joshua J Hamilton, Vivek Dwivedi, and Jennifer L Reed. Quantitative assessment of thermodynamic

constraints on the solution space of genome-scale metabolic models. Biophysical journal, 105(2):512–522,

2013.

[71] Siu HJ Chan, Lin Wang, Satyakam Dash, and Costas D Maranas. Accelerating flux balance calculations

in genome-scale metabolic models by localizing the application of loopless constraints. Bioinformatics,

34(24):4248–4255, 2018.

[72] Nathan E Lewis, Kim K Hixson, Tom M Conrad, Joshua A Lerman, Pep Charusanti, Ashoka D Polpitiya,

Joshua N Adkins, Gunnar Schramm, Samuel O Purvine, Daniel Lopez-Ferrer, et al. Omic data from evolved

e. coli are consistent with computed optimal growth from genome-scale models. Molecular systems biology,

6(1):390, 2010.

[73] Abdelmoneim Amer Desouki, Florian Jarre, Gabriel Gelius-Dietrich, and Martin J Lercher. Cyclefreeflux:

efficient removal of thermodynamically infeasible loops from flux distributions. Bioinformatics, 31(13):2159–

2165, 2015.

[74] Meike T Wortel, Elad Noor, Michael Ferris, Frank J Bruggeman, and Wolfram Liebermeister. Metabolic

enzyme cost explains variable trade-offs between microbial growth rate and yield. PLoS computational

biology, 14(2):e1006010, 2018.

[75] Bastian Niebel, Simeon Leupold, and Matthias Heinemann. An upper limit on Gibbs energy dissipation

governs cellular metabolism. Nature Metabolism, 1(1):125–132, 2019.

[76] Daan H De Groot, Julia Lischke, Riccardo Muolo, Robert Planqué, Frank J Bruggeman, and Bas Teusink.
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