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Abstract

EEG has been central to investigations of the time course of various neural func-

tions underpinning visual word recognition. Recently the steady-state visual evoked

potential (SSVEP) paradigm has been increasingly adopted for word recognition stud-

ies due to its high signal-to-noise ratio. Such studies, however, have been typically

framed around a single source in the left ventral occipitotemporal cortex (vOT). Here,

we combine SSVEP recorded from 16 adult native English speakers with a data-driven

spatial filtering approach—Reliable Components Analysis (RCA)—to elucidate distinct

functional sources with overlapping yet separable time courses and topographies that

emerge when contrasting words with pseudofont visual controls. The first component

topography was maximal over left vOT regions with an early latency (approximately

180 msec). A second component was maximal over more dorsal parietal regions with

a longer latency (approximately 260 msec). Both components consistently emerged

across a range of parameter manipulations including changes in the spatial overlap be-

tween successive stimuli, and changes in both base and deviation frequency. We then

contrasted word-in-nonword and word-in-pseudoword to test the hierarchical processing

mechanisms underlying visual word recognition. Results suggest that these hierarchical

contrasts fail to evoke a unitary component that might be reasonably associated with

lexical access.
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1 Introduction1

Reading is a remarkable aspect of human cognitive development and is essential in everyday2

life. Through frequent exposure to printed words, visual specialization for letter strings is3

developed (Maurer et al., 2006), and skilled readers can read around 250 words per minute4

(Rayner, 1998). Such high reading speed requires fast visual word recognition that is depen-5

dent on specialized visual processes and brain sources.6

Functional magnetic resonance imaging (fMRI) studies have reliably localized an area of7

the left lateral ventral occipitotemporal cortex (vOT) that is particularly selective to printed8

words relative to other visual stimuli such as line drawings (Centanni et al., 2017) and faces9

(Baker et al., 2007; Dehaene et al., 2005; Dehaene & Cohen, 2011). The sensitivity of the10

left vOT site to visual words is reproducible across different languages and fonts (Krafnick11

et al., 2016) and individuals (Dehaene et al., 2010; McCandliss et al., 2003), and is invariant12

to font, size, case, and even retinal location (Dehaene et al., 2001, 2004).13

Numerous fMRI studies have proposed that the vOT follows a hierarchical posterior-to-14

anterior progression, with posterior regions being more selective to visual word form pro-15

cessing while anterior parts are more weighted to high-level word features (Dehaene et al.,16

2005; Vinckier et al., 2007). The posterior-to-anterior gradient is accomplished by increasing17

neuron receptive fields from posterior occipital to anterior temporal regions, and as a result,18

the sensitivity of neurons hierarchically increases from letter fragments to individual letters,19

bigrams, trigrams, morphemes, and finally entire word forms (Dehaene et al., 2005). A re-20

cent study by Lerma-Usabiaga et al. (2018) suggested that, in addition to sub-regions within21

the vOT, other regions of the language network (e.g., angular gyrus) are also involved in22

the rapid identification of word forms by transferring and integrating information from and23

towards the vOT. Lerma-Usabiaga et al. (2018) further suggested that the posterior area of24

vOT is structurally connected to the intraparietal sulcus mostly through a bottom-up path-25

Abbreviations: Reliable Components Analysis (RCA); Reliable Component 1 (RC1); Reliable Compo-
nent 2 (RC2); steady-state visual evoked potential (SSVEP).
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way while the middle/anterior area is connected to other language areas most likely through26

both feed-forward and -backward connections (see also Price & Devlin (2011)).27

In contrast to fMRI with its high spatial resolution, electroencephalography (EEG) can28

detect text-related brain electrical activity with high temporal resolution. Event-related29

potentials (ERP) studies have characterized a component that peaks between 150 to 200 ms30

with an occipito-temporally negative and fronto-centrally positive topography, termed N1 (or31

N170). This N1 component is typically larger for word and word-like stimuli than for visually32

controlled symbols (Brem et al., 2006; Maurer et al., 2005, 2006). During development, N133

sensitivity to printed words emerges when children learn print-speech sound correspondences,34

especially in alphabetic languages (Brem et al., 2010) within the first two years of school35

reading education (Maurer et al., 2005).36

More recently, Steady-State Visual Evoked Potential (SSVEP) paradigm have also been37

used to investigate visual word recognition due to its high signal-to-noise (SNR) ratio. In38

contrast to typical ERP approaches demanding long inter-stimulus intervals, the SSVEP39

paradigm presents a sequence of stimuli at a fast periodic rate (e.g., 10 Hz, 100 ms per40

item). The presentation of temporally periodic stimuli elicits periodic responses at the41

predefined stimulation frequency and its harmonics (i.e., integer multiples of the stimulus42

frequency). Those periodic responses are referred to as SSVEP because they are stable in43

amplitude and phase over time (Regan, 1966, 1989). Importantly, the SSVEP paradigm44

can provide high SNR ratio in only a few minutes of stimulation due to its small noise45

bandwidth. However, the SSVEP paradigm has long been limited to the field of low-level46

visual perception and attention (for a review, see Norcia et al. 2015). Only recently, this47

paradigm has been extended to more complex visual stimuli processing, such as objects48

(Stothart et al., 2017), faces (Alonso-Prieto et al., 2013; Farzin et al., 2012; Liu-Shuang et al.,49

2014), numerical quantities (Guillaume et al., 2018; Van Rinsveld et al., 2020), text (Yeatman50

& Norcia, 2016), letters (Barzegaran & Norcia, 2020), and words (Lochy et al., 2015, 2016,51

2018, 2020). These SSVEP studies of higher-level processes have used different presentation52
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paradigms including adaptation and “base/deviant” approaches. The adaptation approach53

has been used to examine whether stimulus presentation locations affect perception, mainly54

in relation to holistic processing of faces, by comparing upright or inverted faces with either55

the same or different identity (Rossion et al., 2012). In the “base/deviant” stimulation56

mode, a sequence of “base” stimuli are presented at a periodic rate (e.g., 6 Hz) with every57

other image being either an intact image that differs from the base in a particular aspect58

or a scrambled one (Farzin et al., 2012; Yeatman & Norcia, 2016). For example, a base of59

6 Hz alternates with a 3 Hz “deviant” (6/2=3 Hz), which is also called “image alternation”60

mode. Alternatively, the base stimuli are regularly interspersed with deviant stimuli at a61

sub-multiple of the base rate that is greater than two (Liu-Shuang et al., 2014; Lochy et62

al., 2015, 2016, 2018)—for example, a base of 10 Hz with every 5th image (instead of every63

other image) being a deviant, i.e., deviant frequency is 2 Hz (base frequency 10 Hz divided64

by 5). However, to our knowledge, no study has directly compared the “image alternation”65

mode and the mode wherein deviant stimuli are presented at a sub-multiple greater than66

twice the base rate. Therefore, the current study compared these two modes to determine67

which of these two modes elicits responses with a higher signal-to-noise ratio. Findings from68

this research would provide an important consideration relevant to designing future studies69

of early readers.70

Of present interest, two SSVEP studies on text and letter recognition have revealed multi-71

ple underlying sources with different temporal dynamics and scalp topography (Barzegaran72

& Norcia, 2020; Yeatman & Norcia, 2016) either by defining different regions of interest73

(Yeatman & Norcia, 2016) or employing a spatial filtering approach (Barzegaran & Norcia,74

2020). Other SSVEP work has focused on only a single source of word-related processing75

in the left hemisphere (Lochy et al., 2015, 2016, 2018) by analyzing periodic responses from76

several pre-selected (literature-based) sensors. In contrast to data analyses of several pre-77

selected sensors that reduced the whole map of evoked data to a restricted and typically78

biased subset (Kilner, 2013), spatial filtering approaches offer a purely data-driven alterna-79
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tive for selecting sensors. These methods compute weighted linear combinations across the80

full montage of sensors to capture and isolate different neural processes arising from different81

underlying cortical sources (M. X. Cohen, 2017). A number of linear spatial filters, such as82

Principal Components Analysis (PCA) and Common Spatial Patterns (CSP) (Blankertz et83

al., 2008), have been applied to SSVEP data, mainly in the brain-computer interface (BCI)84

field (e.g., Mohanchandra et al. 2014). In cognitive neuroscience, a spatial filtering technique85

referred to as Reliable Components Analysis (RCA) has been increasingly used (Barzegaran86

& Norcia, 2020; Dmochowski et al., 2012, 2015). RCA derives a set of spatial components87

(i.e., spatial filters operationalized as topographic weights) that maximize across-trial or88

across-subject correlations (“reliability”) while minimizing noise (“variance”). Specifically,89

RCA first discovers the optimal spatial filter weighting of the signal, then projects the data90

through this spatial filter to enable investigation of phase-locked topographic activities and91

to capture each temporal/topographical source of reliable signal across events and subjects92

(detailed information described in Dmochowski et al. 2012, 2015).93

Moreover, in conjunction with a recently developed RCA approach, Norcia et al. (2020)94

for the first time estimated the latency of the SSVEP Norcia et al. (2020). This was done95

by fitting a line through the phases at harmonics with significant responses; the slope of the96

line is interpreted as the response latency. Latency estimation of component(s) can provide97

insight into temporal dynamics of different processes located at different sources, extending98

on the majority of previous SSVEP studies, which have only focused on topographies and99

amplitudes (Lochy et al., 2015, 2016, 2018).100

Employing the spatial filtering component analysis (RCA) approach used in Barzegaran101

& Norcia (2020) and Norcia et al. (2020), here we reproduced and extended a previous102

SSVEP study of French word processing (Lochy et al., 2015), with 4-letter English word103

versus pseudofont comparisons. Our goal was to determine whether multiple sources could104

be revealed in conditions where only a single source of activity was described. Should this105

prove to be the case, we were further interested in whether these potential sources could be106
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consistently detected at different stimulus presentation rates and retinal locations.107

Specifically, the current study addresses these questions by presenting familiar words108

interspersed periodically among control stimuli (i.e., pseudofonts) in three different styles:109

(1) pseudofont base at a presentation frequency of 10 Hz and word deviant at 2 Hz; (2)110

same presentation rates as in (1) but with stimulus presentation locations jittered around111

the center of the screen; and (3) pseudofont base at a presentation frequency of 6 Hz and112

word deviant at 3 Hz. To investigate the hierarchy of visual word recognition, we included113

two additional stimulus contrasts: word deviant in nonword base, and word deviant in114

pseudoword base.115

Based on the evidence from Lerma-Usabiaga et al. (2018) and Barzegaran & Norcia116

(2020), we hypothesized that word deviants among pseudofont base stimuli would elicit117

more than one neural discrimination source when subjected to RCA, producing at least two118

reliable signal sources with distinct temporal and topographical information. We sought to119

further investigate whether RCA component topographies and time-courses were specific to120

particular experimental parameters or whether similar components could be elicited across121

a wider range of presentation rates and changes in stimulus locations.122

Finally, we wished to test a central assumption in previous reports (e.g., Lochy et al.123

(2015)) based on the notion that hierarchical aspects of visual word processing can be clearly124

isolated based on progressively specific contrasts of word-in-pseudofont, word-in-nonword,125

and word-in-pseudoword. Here, RCA provides a novel opportunity to first investigate distinct126

component topographies elicited from word-in-pseudofont contrasts, and then to investigate127

the hypothesis that word-in-nonword and word-in-pseudoword contrasts successfully isolate128

a subset of these sources.129
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2 Methods130

2.1 Ethics Statement131

This research was approved by the Institutional Review Board of Stanford University. All132

participants delivered written informed consent prior to the study after the experimental133

protocol was explained.134

2.2 Participants135

Data from 16 right-handed, native English speakers (between 18.1 and 54.9 years old, median136

age 20.7 years, 7 males) were analyzed in this study. All participants had normal or corrected-137

to-normal vision and had no reading disabilities. Data from 5 additional non-native English138

speakers were recorded, but not analyzed here. After the study, each participant received139

cash compensation.140

2.3 Stimuli141

The study involved four types of stimuli—words (W), pseudofonts (PF), nonwords (NW),142

and pseudowords (PW)—all comprising 4 elements (letters or pseudoletters). The English143

words were rendered in the Courier New font. Pseudofont letter strings were rendered from144

the Brussels Artificial Character Set font (BACS-2, Vidal & Chetail (2017)), mapping be-145

tween pseudofont glyphs and Courier New word glyphs. Nonwords and pseudowords were146

also built on an item-by-item basis by reordering the letters of the words: nonwords were un-147

pronounceable, statistically implausible letter string combinations, while pseudowords were148

pronounceable and well-matched for orthographic properties of intact words (Keuleers &149

Brysbaert, 2010). Bigram frequencies were matched between words (M (± SD) = 13664 (±150

11007)), pseudowords (M (± SD) = 15177 (± 8549)) and nonwords (M(± SD) = 12775 (±151

6065)) (F (2, 87) < 1, p = 0.57). Stimulus parameters are summarized in Table 1, and exam-152

ple stimuli are shown in Figure 1. All words were common monosyllabic singular nouns. The153
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initial and final letters in all words, pseudowords, and nonwords were consonants. Words154

were chosen to be frequent (average 97.7 per million) with limited orthographic neighbors155

(average 2.3, range from 0 to 4) according to the Children’s Printed Word Database (Mas-156

terson et al., 2010). Words were also chosen with attention to feedforward consistency. All157

words were fully feedforward consistent based on rime according to the database provided158

by Ziegler et al. (1997). When averaging across consistency values for each word’s onset,159

nucleus, and coda in the database provided by Chee et al. (2020), words had an average160

token feedforward consistency of 0.79. All in all, there were 30 exemplars of each type of161

stimulus, for 120 exemplars total. All images were 600 × 160 pixels in size, spanning 7.5162

(horizontal) by 2 (vertical) degrees of visual angle.163

We investigated five experimental conditions. Conditions 1, 2, and 3 involved word164

deviants embedded in a stream of pseudofont base. For conditions 1 and 2, word deviants165

were presented at a rate of 2 Hz and were embedded in a 10-Hz stream of pseudofonts.166

In order to explore the influence of presentation location on word processing, condition 1167

stimuli were presented in the center of the screen, while in condition 2, stimulus positions168

were spatially jittered around the center of the monitor (8 pixels range, visual angle of169

0.1 degrees). Moreover, to directly compare the effect of different base/deviant ratios, in170

condition 3 we used a deviant frequency of 3 Hz (based on the study of Yeatman & Norcia171

(2016)) and a base frequency of 6 Hz; this involved the same word-in-pseudofont contrast172

as condition 1, and was presented at the center of the monitor. Finally, conditions 4 and 5173

presented word-in-nonword and word-in-pseudoword contrasts, respectively (see also Lochy174

et al. (2015)). Like condition 1, word deviants were presented at the center of the monitor175

at 2 Hz, in a base stream of 10 Hz.176

2.4 Experimental Procedure177

Participants were seated in a darkened room 1 m away from the computer monitor. Prior178

to the experiment, a brief practice session was held to familiarize the participant with the179
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Condition 1 Condition 2 Condition 3 Condition 4 Condition 5

Stimuli W in PF W in PF W in PF W in NW W in PW
Deviant / Base 2 Hz / 10 Hz 2 Hz / 10 Hz 3 Hz / 6 Hz 2 Hz / 10 Hz 2 Hz / 10 Hz

Position Centered Jittered Centered Centered Centered

Table 1: Stimulus conditions. Five stimulus conditions were used to probe different types of
processing during word recognition. Conditions 1–3 assessed processing of words (W) relative
to pseudofonts (PF), while conditions 4 and 5 assessed processing of words relative to nonwords
(NW) and pseudowords (PW), respectively. Word-in-pseudofont contrasts were presented with 2-
Hz deviant and 10-Hz base, either centered (condition 1) or jittered (condition 2) around the center
of the monitor. The centered word-in-pseudofont contrast was also presented with 3-Hz deviant
and 6-Hz base (condition 3). Word-in-nonword (condition 4) and word-in-pseudoword (condition
5) contrasts were presented centered on the screen with frequency rates of 2-Hz deviant and 10-Hz
base.

experimental procedure.180

Each stimulation sequence started with a blank screen, the duration of which was jittered181

between 2500 ms and 3500 ms. Then, W deviant stimuli embedded in the stream of base182

stimuli (PF, NW, or PW) were presented at a rate of 2 Hz (i.e., every 500 ms), with a base183

rate of 10 Hz (i.e, every 100 ms) in conditions 1, 2, 4, and 5; in condition 3, W deviant184

were presented at a frequency of 3 Hz (i.e, every 333 ms) with a base rate of 6 Hz (i.e, every185

167 ms), during which deviant and base alternated with each other. Thus, a W deviant186

stimulus was presented every 5 item presentations in conditions 1, 2, 4, and 5, and every 2187

items in condition 3. Each condition comprised four trials (each trial lasted for 12 seconds),188

and was repeated four times, resulting in 16 trials per condition, and 80 trials total in all189

conditions. 20 trials (5 conditions × 4 trials of each) comprised a block, and the order of190

trials in each block and all 4 blocks were randomized.191

In order to maintain participants’ attention throughout the experiment, a fixation color192

change task was used. During the recording, the participant continuously fixated on a193

central cross, which was superimposed over the stimuli of interest and pressed a button194

whenever they detected that the color of the fixation cross changed from blue to red (2195

changes randomly timed per sequence/trial). The color change task was on a “staircase”196

mode, during which the time of color change flashes became faster as the accuracy increased,197
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Con 1: W in PF
center

Con 5: W in PW
center

Con 2: W in PF
jitter

…

…

deviant

…

Con 3: W in PF
center

…
deviant deviant

deviant: 2 Hz
base: 10 Hz

deviant: 3 Hz
base: 6 Hz

deviant

Con 4: W in NW
center

…
deviant

deviant: 2 Hz
base: 10 Hz

Figure 1: Examples of stimuli presented in the experiment. 2-Hz word deviants were
embedded in a 10-Hz stream of pseudofont (W in PF) in conditions 1 and 2. Condition 2 used
the same word and pseudofont stimuli as Condition 1, but spatially jittered their location on the
monitor. Condition 3 presented the same stimuli used in Condition 1 but with 3-Hz deviant and
6-Hz base frequencies. 2-Hz word deviants were embedded in a 10-Hz stream of nonword (W in
NW) and pseudoword (W in PW) base, respectively, in conditions 4 and 5.

or became slower when the accuracy decreased. The whole experiment took around 30198

minutes per participant, including breaks between blocks.199

2.5 EEG Recording and Preprocessing200

The 128-sensor EEG were collected with the Electrical Geodesics, Inc. (EGI) system (Tucker,201

1993), using a Net Amps 300 amplifier and geodesic sensor net. Data were acquired against202

Cz reference, at a sampling rate of 500 Hz. Impedances were kept below 50 kΩ. Stimuli203

were presented using in-house stimulus presentation software. Each recording was bandpass204

filtered offline (zero-phase filter, 0.3–50 Hz) using Net Station Waveform Tools. The data205

were then imported into in-house signal processing software for preprocessing. EEG data206

were re-sampled to 420 Hz to ensure an integer number of time samples per video frame207
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at a frame rate of 60 Hz, as well as an integer number of frames per cycle for the present208

stimulation frequencies. EEG sensors with more than 15% of samples exceeding a 30 µV209

amplitude threshold were replaced by an averaged value from six neighboring sensors. The210

continuous EEG was then re-referenced to average reference (Lehmann & Skrandies, 1980)211

and segmented into 1-second epochs. Epochs with more than 10% of time samples exceeding212

a 30 µV noise threshold, or with any time sample exceeding an artifact threshold of (60 µV)213

(e.g., eye blinks, eye movements, or body movements), were excluded from further analyses on214

a sensor-by-sensor basis. The EEG signals were filtered in the time domain using Recursive215

Least Squares (RLS) filters (Tang & Norcia, 1995) tuned to each of the analysis frequencies216

and converted to complex amplitude values by means of the Fourier transform. Given 1-217

second data epochs, the resulting frequency resolution was 1 Hz. Complex-valued RLS218

outputs were decomposed into real and imaginary coefficients for input to the spatial filtering219

computations, as described below.220

2.6 Analysis of Behavioral Data221

Behavioral responses for the fixation cross color change task served to monitor participants’222

attention during EEG recording. We conducted one-way ANOVAs separately for reaction223

time and accuracy to determine whether participants were highly engaged during the whole224

experiment.225

2.7 Analysis of EEG Data226

2.7.1 Reliable Components Analysis227

Reliable Components Analysis (RCA) is a matrix decomposition technique that derives a228

set of components that maximizes trial-to-trial covariance relative to within-trial covari-229

ance (Dmochowski et al., 2012, 2015). Since response phases of SSVEP are constant over230

repeated stimulations, RCA uses this trial-to-trial reliability to decompose the entire 128-231
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sensor array into a small number of reliable components (RCs), the activations of which232

reflect phase-locked activities. Moreover, RCA achieves higher output SNR with a low trial233

count compared to other spatial filtering approaches such as PCA and CSP (Dmochowski et234

al., 2015).235

Given a sensor-by-feature EEG data matrix (where features could represent e.g., time236

samples or spectral coefficients), RCA computes linear weightings of sensors—that is, linear237

spatial filters—through which the resulting projected data exhibit maximal Pearson Prod-238

uct Moment Correlation Coefficients (Pearson, 1896) across neural response trials. The239

projection of EEG data matrices through spatial filter vectors transforms the data from240

sensor-by-feature matrices to component-by-feature matrices, with each component repre-241

senting a linear combination of sensors. For the present study, EEG features are the real and242

imaginary Fourier coefficients at selected frequencies. As RCA is an eigenvalue decomposi-243

tion (Dmochowski et al., 2012), it returns multiple components, which are sorted according244

to “reliability” explained (i.e., the first component, RC1, explains the most reliability in the245

data). Forward-model projections of the eigenvectors (spatial filter vectors) can be visualized246

as scalp topographies (Parra et al., 2005). As eigenvectors are known to receive arbitrary247

signs (Bro et al., 2008), we manually adjusted the signs of the spatial filters of interest based248

on the maximal correlation between raw sensor data and RCA data. Quantitative com-249

parisons of topographies (e.g., across conditions) were made by correlating these projected250

weight vectors. Finally, we computed the percentage of reliability explained by individual251

components using the corresponding eigenvalues, as described by Dmochowski et al. (2015).252

2.7.2 RCA Calculations253

In order to test whether low-level features were well matched across conditions, we first254

computed RCA at base frequencies only. Specifically, we input as features the real and255

imaginary frequency coefficients of the first four harmonics of the base (i.e, 10 Hz, 20 Hz,256

30 Hz, 40 Hz for conditions 1, 2, 4 and 5; 6 Hz, 12 Hz, 18 Hz, 24 Hz for condition 3). RCA257
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was computed separately for each stimulus condition.258

We next computed RCA at deviant frequencies in order to investigate the processing259

differences between words and control stimuli (herein pseudofonts, nonwords, and pseu-260

dowords). For the deviant analyses, this involved real and imaginary coefficients at the261

first four harmonics (2 Hz, 4 Hz, 6 Hz, and 8 Hz) in conditions 1, 2, 4, and 5. To ex-262

plore whether visual word processing can further be consistently detected under different263

presentation rates, we conducted RCA on data for condition 3. For this, we input frequency264

coefficients of odd harmonics of the deviant, excluding base harmonics (i.e., 3 Hz, 9 Hz,265

15 Hz, 21 Hz—excluding 6 Hz, 12 Hz, 18 Hz, 24 Hz).266

To assess the possible role of local adaptation to the stimulus presentation, we also267

measured responses to word-in-pseudofont using spatially jittered stimuli (condition 2). In268

comparing RCA results of conditions 1 (word-in-pseudofont with centered presentation lo-269

cation) and 2 (word-in-pseudofont with jittered presentation location), we found the RC270

topographies of conditions 1 and 2 to be highly correlated (RC1: r = 0.99; RC2: r = 0.95).271

Therefore, we subsequently computed RCA on these two conditions together to enable direct272

quantitative comparison of the projected data in a shared component space.273

2.7.3 Analysis of Component-Space Data274

For each deviant RCA analysis, we report spatial filter topographies and statistical analysis275

of the projected data for the first two components returned by RCA. For each component, we276

analyzed component-space responses at each harmonic input to the spatial filtering calcula-277

tion. We first projected the sensor-space data through the spatial filter vectors for RCs 1 and278

2. The data were averaged across epochs on a per-participant basis, and statistical analyses279

were performed across the distribution of participants. The distribution of real and imag-280

inary coefficients together at each harmonic formed the basis of a Hotelling’s two-sample281

t2 test (Victor & Mast, 1991) to identify statistically significant responses. We corrected282

for multiple comparisons using False Discovery Rate (FDR; Benjamini & Yekutieli (2001))283
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across 8 comparisons (4 harmonics × 2 components per condition).284

To test whether phase information was consistent with a single phase lag reflected sys-285

tematically across harmonics, we fit linear functions through the corresponding phases of286

successive harmonics, as such a linear relationship would implicate a fixed group delay which287

can be interpreted as an estimated latency in the SSVEPs (Norcia et al., 2020). At har-288

monics with significant responses for both RCs (condition 1, conditions 1 and 2 comparison,289

condition 3), we used the Circular Statistics toolbox (Berens et al., 2009) to compare distri-290

butions of RC1 and RC2 phases at those significant harmonics. The results were corrected291

using FDR across 2 comparisons (2 significant harmonics) for condition 1 and conditions 1292

and 2; condition 3 involved no multiple comparisons as only one harmonic was significant.293

For each of these harmonics, we additionally report each mean RC2-RC1 phase difference in294

msec.295

For each deviant RCA analysis, we present topographic maps of the spatial filtering com-296

ponents, and also visualize the projected data in three ways. First, mean responses are297

visualized as vectors in the 2D complex plane, with amplitude information represented as298

vector length, phase information in the angle of the vector relative to 0 radians (counter-299

clockwise from the 3 o’clock direction), and standard errors of the mean as error ellipses.300

Second, we present bar plots of amplitudes (µV ) across harmonics, with significant responses301

(according to adjusted pFDR values of t2 tests of the complex data) indicated with asterisks.302

Finally, we present phase values (radians) plotted as a function of harmonic; when responses303

are significant for at least two harmonics, this is accompanied by a line of best fit and slope304

(latency estimate).305

For each base RCA analysis, we report spatial filter topographies and statistical analysis306

of the projected data for the first component returned by RCA. As with the deviant RCA307

analysis, we also corrected for multiple comparisons using FDR (Benjamini & Yekutieli, 2001)308

across 4 comparisons (4 harmonics × 1 component per condition). In contrast to deviant309

RCA analysis, we visualize the projected data only in bar plots of amplitudes (µV ) across310
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harmonics, with significant responses (according to adjusted pFDR values) indicated with311

asterisks. Phase information and latency estimation are not included here because temporal312

dynamics are less accurate and less interpretable, especially at high-frequency harmonics313

(e.g., 30 Hz and 40 Hz) (Cottereau et al., 2011; Norcia et al., 2015).314

3 Results315

3.1 Behavioral Results316

For the color change detection task, the mean and standard deviation (SD) of accuracy317

and reaction time across five conditions are summarized in Table 2. Separate one-way318

ANOVAs indicate that there was no significant difference across conditions in either ac-319

curacy (F (4, 70) = 0.09, p = 0.98) or reaction time (F (4, 70) = 0.08, p = 0.99). Thus, we320

concluded that participants were sufficiently engaged throughout the experiment1.321

Condition 1 Condition 2 Condition 3 Condition 4 Condition 5

Stimuli W in PF W in PF W in PF W in NW W in PW
Accuracy(%±SD) 95.2(±12.7) 95.6(±11.4) 94.0(±12.7) 96.5(±10.4) 95.8(±12.0)

Reaction Time (ms±SD) 356.5(±45.1) 350.6(±40.7) 361.4(±38.6) 352.6(±37.2) 356.1(±38.0)

Table 2: Accuracy and reaction time of responses to cross color change. Values are mean
(±SD).

3.2 Base Analyses Results322

We performed RCA on responses at harmonics of the base frequency in order to investigate323

neural activity related to low-level visual processing; results are summarized in Figure 2.324

Panel A displays topographic visualizations of the spatial filters for maximally correlated325

(RC1) components (reliability explained: 37.5%). Here, all topographies show maximal326

1We did find one subject’s accuracy was lower (53.8%) than others. But we still included this participant’s
data in our analysis after confirming that this participant showed a cerebral response to the base stimulation
(as in Van Rinsveld et al. (2020)). We observed that this participant’s responses to the base rate were not
an outlier (i.e., were within one standard deviation) compared with other participants.
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Condition 1 Condition 4 Condition 5Condition 3Condition 2
W in PF center W in NW center W in PW centerW in PF center slow/alternationW in PF jitter

weight

A.

B.

RC1Cnd1 F 
=10_amplitude_F

DR.jpg

Figure 2: Base Analysis: Low-level visual processing. A: Topographic visualizations of the
spatial filters for maximally correlated components (RC1) for all conditions. B: Projected amplitude
for each harmonic and condition in bar charts, *: pFDR < 0.05, **: pFDR < 0.01.

weightings over medial occipital areas; correlations among components for conditions 1, 2, 4,327

and 5 are high (r ≥ 0.84), and correlation for condition 3 is lower but still high (r = 0.78).328

The plots in Panel B present projected amplitudes (i.e., projecting data through the spatial329

filter) in bar plots, with statistically significant responses in the first, second, and fourth330

harmonics (pFDR < 0.01, corrected for 4 comparisons) in condition 1 (word-in-pseudofont331

center); the first harmonic (pFDR < 0.05) in condition 2 (word-in-pseudofont jitter); all four332

harmonics (pFDR < 0.05) in conditions 3 (word-in-pseudofont center slower/alternation) and333

4 (word-in-nonword center); and the first three harmonics (pFDR < 0.05) in condition 5334

(word-in-pseudoword center). Amplitude comparisons across conditions showed that there335

is no significant difference between conditions 1, 2, 4, and 5 (F (3, 60) = 2.21, p = 0.09),336

while amplitudes in condition 3 are significantly higher than other conditions (p < 0.05).337

3.3 Deviant Analyses Results338

Deviant analyses were conducted to investigate the mechanisms and sources underlying visual339

word processing. Given increasing evidence supporting segregations within vOT (Lerma-340

Usabiaga et al., 2018) and the discovery of distinct sources for text and letter recognition341

(Barzegaran & Norcia, 2020), we hypothesized that multiple sources should be captured342
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during word-related processing (word-in-pseudofont). Due to previous observations of an343

apparent posterior-to-anterior gradient of responses to visually versus linguistically related344

sub-regions within vOT (Vinckier et al., 2007; Lerma-Usabiaga et al., 2018), we hypothe-345

sized that different condition manipulations (word-in-pseudofont, word-in-nonword, word-346

in-pseudoword) would evoke different response topographies and phases.347

For word deviant responses appearing in a pseudofont base context (word-in-pseudofont,348

condition 1), the first two reliable components explained the majority (RC1: 34.7%; RC2:349

18.7%) of the reliability in the data. As shown in Figure 3A, the topography of the first350

component (RC1) was maximal over left posterior vOT regions, while the second component351

(RC2) was distributed over more dorsal parietal regions. Significant signals were present in352

the first three harmonics of complex-valued data in RC1 and the first two harmonics of RC2353

(Figure 3B, see Methods). More detailed amplitude and phase information are presented354

in Figure 3C. For RC1, the projected data contained significant responses in the first three355

harmonics (2 Hz, 4 Hz, and 6 Hz; pFDR < 0.01, corrected for 8 comparisons), while the linear356

fit across phase distributions for these three harmonics produced a latency estimate of 180.51357

± 0.7 ms. Data projected through the RC2 spatial filter revealed two significant harmonics358

at 2 Hz and 4 Hz (pFDR < 0.01) and a longer latency estimate of 261.84 ms (standard error359

is unavailable when there are two data points). Circular statistics of RC1 and RC2 phase360

comparisons showed that RC2 phases are significantly longer (2 Hz: 82.9 ms; 4 Hz: 68.1 ms)361

than RC1 (circular t-test; pFDR < 0.01 for both 2 Hz and 4 Hz, corrected for 2 comparisons).362

As mentioned in Methods, we found that when word-in-pseudofont stimuli were pre-363

sented at jittered retinal locations (condition 2), the resulting RC topographies correlated364

highly with those computed from responses in the centered condition 1 (RC1: r = 0.99;365

RC2: r = 0.95). Therefore, in Figure 4 we report RCA results of conditions 1 and 2 in366

a common component space. As expected, the RC1 and RC2 topographies (Panel A) are367

similar to those reported when training the spatial filters on condition 1 alone (as presented368

in Figure 3). The summary plots of the responses in the complex plane (Panel B), show369
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overlapping amplitudes (vector lengths) and phases (vector angles) between these two condi-370

tions, especially at significant harmonics (first three in RC1 and first two in RC2). In Panel C371

response amplitudes did not differ significantly across four harmonics (2 Hz: p = 0.70; 4 Hz:372

p = 0.96; 6 Hz: p = 0.91; 8 Hz: p = 0.65), nor did the derived latency estimations (RC1:373

180.42 ms and 173.72 ms for conditions 1 and 2 respectively; RC2: 260.16 ms and 233.32 ms374

for conditions 1 and 2 respectively). Thus, we did not find evidence that local adaptation is375

appreciable for these stimuli. Additionally, circular statistics of RC1 and RC2 phase com-376

parisons showed that RC2 phases are significantly longer (2 Hz: 83.2 ms; 4 Hz: 42.2 ms)377

than RC1 (pFDR < 0.05 for both 2 Hz and 4 Hz, corrected for 2 comparisons).378

Furthermore, these two RCs were also detected when presenting word-in-pseudofont at a379

slower alternation presentation rate, with 3 Hz deviant and 6 Hz base (condition 3, Figure 5).380

Similar to conditions 1 and 2, topographies between conditions 1 and 3 were highly correlated381

(RC1: r = 0.99; RC2: r = 0.91). Although it was not possible to estimate the latency, as382

responses for condition 3 were significant only at the first harmonic (i.e., 3 Hz) for both383

components (RC1: pFDR < 0.001; RC2: pFDR < 0.01, Panel C), circular statistics showed384

that RC2 phase at 3 Hz is significantly longer (82.0 ms) than RC1 (p < 0.001).385

Finally, for conditions 4 and 5, word deviants appearing in the other two base contexts386

(word-in-nonword, word-in-pseudoword) produced components with weaker responses that387

were associated with distinct topographies, consistent with the hypothesis that each contrast388

was associated with overlapping yet distinct neural sources (Figure 6). Of note, no more389

than one significant harmonic is observed for each component: for condition 4 word-in-390

nonword, only the third harmonic of RC2 is significant (6 Hz, pFDR < 0.05, corrected for 8391

comparisons); for condition 5 word-in-pseudoword no harmonic is significant (pFDR > 0.14,392

corrected for 8 comparisons). Due to the lack of significance at multiple harmonics, it was393

not possible to estimate latencies for these conditions.394
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Figure 3: Deviant Analysis: visual word form processing. A: Topographic visualizations of
the spatial filters for the first two components (RC1 and RC2); B: Response data in the complex
plane, where amplitude information is represented as as the length of the vectors, and phase infor-
mation in the angle of the vector relative to 0 radians (counterclockwise from 3 o’clock direction),
ellipse indicates standard error of the mean for both amplitude and phase; C: Projected amplitude
(left) for each harmonic in bar charts, **: pFDR < 0.01, as well as latency estimations (right) across
successful harmonics.
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Figure 4: Deviant Analysis: visual word form processing responses are similar irrespec-
tive of stimulus location. RCA was trained on response data from conditions 1 and 2 together
as their RCs were highly similar when trained separately. A: Topographic visualizations of the
spatial filters for the first two components (RC1 and RC2); B: Response data in the complex plane,
with condition 1 (W in PF center) in blue and condition 2 (W in PF jitter) in red. Amplitude
(vector length) and phase (vector angle, counterclockwise from 0 radians at 3 o’clock direction)
overlap across conditions especially at significant harmonics (first three harmonics in RC1 and first
two harmonics in RC2). Ellipses indicate standard error of the mean; C: Comparison of projected
amplitude (left) and latency estimation (right) between two conditions. Response amplitudes did
not differ significantly across the four harmonics (p > 0.65), latency estimation derived from phase
slopes across harmonics were also similar between conditions (RC1: 180.42 ms and 173.72 ms for
conditions 1 and 2 respectively; RC2: 260.16 ms and 233.32 ms for conditions 1 and 2 respectively)
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Figure 5: Deviant Analysis: visual word form processing evidenced by changing pre-
sentation rates. A: Topographic visualizations of the spatial filters for the first two components
(RC1 and RC2); B: Response data in the complex plane, where amplitude information is repre-
sented as the length of the vectors, and phase information in the angle of the vector relative to 0
radians (counterclockwise from 3 o’clock direction), ellipse indicates standard error of the mean; C:
Projected amplitude for each harmonic in bar charts, **: pFDR < 0.01, ***:pFDR < 0.001. Only
one significant harmonic prevents us from estimating latency from the phase slope.
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Figure 6: Deviant Analysis: lexical-semantic processing. For condition 4 (W in NW center),
A&D: Topographic visualizations of the spatial filters for the first two components (RC1 and RC2)
for conditions 4 (W in NW center) and 5 (W in PW center), respectively; B&E: Response data
in the complex plane for conditions 4 and 5, respectively. Amplitude information is represented
as the length of the vectors, and phase information in the angle of the vector relative to 0 radians
(3 o’clock direction), ellipse indicates standard error of the mean. Only the third harmonic has
signal for both components in condition 4, while seems the second harmonic for RC1 and the third
harmonic for RC2 have signal for condition 5; C&F: Projected amplitude for each harmonic in bar
charts, *: pFDR < 0.05, for condition 4, only the third harmonic is significant in each component;
for condition 5, only the third harmonic in RC2 is significant. Having a single significant harmonic
prevents us from estimating the phase slope, that’s why no latency estimates were provided.
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4 Discussion395

In this study, we examined the functional and temporal organization of brain sources involved396

in visual word recognition by employing a data-driven component analysis of Steady-State397

Visual Evoked Potential (SSVEP) data. We recorded SSVEP word deviant responses ap-398

pearing in pseudofont base contexts, projecting the multisensor EEG recordings onto single399

components using Reliable Components Analysis (RCA). Results at the first four harmonics400

of the base frequency revealed one component centered on medial occipital cortex. Results at401

harmonics of the deviant frequency revealed two distinct components, with the first compo-402

nent maximal earlier in time over left vOT regions, and the second maximal later in time over403

dorsal parietal regions. These two components are found to generalize across static versus404

jittered presentation locations as well as varying rates of stimulation. In addition, distinct405

topographies were revealed during word deviant responses in the other two base contexts406

(i.e., pseudowords, nonwords), which—compared with word-in-pseudofont contrast—have407

different demands of distinguishing words from visual control stimuli.408

4.1 Low-level visual processing implicates medial occipital areas409

RCA analyses of EEG responses at the first four harmonics of the base frequency revealed a410

maximally reliable component located centered on medial occipital sensors across all condi-411

tions. This scalp topography corresponds to expected activations reported in fMRI literature412

(López-Barroso et al., 2020; Turkeltaub et al., 2003; Szwed et al., 2011) and in EEG source413

localization studies (Rossion et al., 2003; Proverbio & Adorni, 2009). Medial occipital sensors414

are directly over early retinotopic visual areas known to support the first stages of visual415

processing, including of letter strings and objects (Dehaene et al., 2015). Early stages of416

letter/word and object processing primarily involve low-level visual feature analysis, e.g.,417

luminance, shape, contour, line junctions and letter fragments (Ben-Shachar et al., 2007;418

Ostwald et al., 2008; Szwed et al., 2011). In our study, basic low-level visual stimulus prop-419
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erties such as spatial frequency, spatial dimensions and the sets of basic line-junction features420

(Changizi et al., 2006) were well matched across pseudofonts, nonwords and pseudowords421

base contexts, as well as between base and deviants within each contrast. This may ex-422

plain comparable responses in terms of amplitudes and topographies across conditions with423

the same presentation rates. The amplitudes in condition 3 (word-in-pseudofont alternation424

presentation mode) are higher than other conditions, which may result from higher signal-425

to-noise ratio in one stimulation cycle of alternation presentation mode Yeatman & Norcia426

(2016). Nevertheless, consistent responses—in terms of underlying brain sources—across427

different contrasts, and at different image update rates and retinal locations support that428

current medial occipital activation reflects low-level visual features processing rather than429

higher-level word-related processing.430

4.2 Visual word form processing implicates two distinct sources431

and processing times432

RCA of word deviants in the word-in-pseudofont contrast produced two distinct components433

with differing latencies. The first component was maximal over ventral occipito-temporal434

(vOT) regions with slight left lateralization. Phase lag quantification of the first component435

revealed a linear fit of phases across successive harmonics, providing evidence of a latency436

estimation around 180 ms.437

This 180-ms latency is consistent with the timing of the N170 component revealed in ERP438

data, which typically peaks around 140–180 ms especially in adults (Eberhard-Moscicka et439

al., 2015; Maurer et al., 2005). With its characteristic topography over the left occipitotem-440

poral scalp, the N170 is considered to be an electrophysiological correlate of left vOT special-441

ized activation for printed words in fMRI studies, as evidenced by magnetoencephalography442

(MEG, Hirshorn et al. (2016)), EEG source localization (Brem et al., 2009; Maurer et al.,443

2005) and simultaneous EEG-fMRI recordings (Pleisch et al., 2019).444

Word deviant responses attributed over left-lateralized vOT area in the current study are445
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consistent with numerous fMRI studies showing that the left vOT plays a critical role in fast446

and efficient visual recognition of words (Cohen et al., 2000, 2002), indicated by selective447

responses to visually presented words compared with random letter strings and symbols (e.g.,448

pseudofonts) (Dehaene & Cohen, 2011; Rauschecker et al., 2012). This left occipito-temporal449

activation has also been revealed in SSVEP studies of word recognition (Lochy et al., 2015,450

2016). Additionally, using the same RCA approach as in the current study, Barzegaran &451

Norcia (2020) also reported responses at left vOT cortex when viewing images containing452

sets of intact versus scrambled letters (Barzegaran & Norcia, 2020). Consistent findings in453

fMRI, ERP, and SSVEP studies support the reliable involvement of left vOT in processing454

of words and letters. This specificity of left vOT for words and letters over other visual455

stimuli is an outcome of literacy acquisition (Dehaene et al., 2015) and emerges rapidly after456

a short term of reading training (Brem et al., 2010; Chyl et al., 2018; Pleisch et al., 2019), a457

finding which has also been reported in different writing systems (Bolger et al., 2005; Szwed458

et al., 2014).459

In addition to the first component, we also observed a second RC that was maximal460

over dorsal parietal regions. A linear fit across phases of successive harmonics demonstrated461

a latency estimation of around 260 ms, which is consistent with EEG and MEG studies462

showing phonological effects occurring 250–350 ms after the onset of a visual word (Ashby &463

Martin, 2008; Grainger et al., 2006; Sliwinska et al., 2012). Finding of a second component464

is consistent with the increasing evidence showing that visual word recognition is not only465

limited to the left vOT. Instead, other higher-level linguistic representation areas also support466

final word recognition (Long et al., 2020; Lerma-Usabiaga et al., 2018; Price & Devlin, 2011).467

For example, a recent fMRI study showed that, connected with the middle and anterior vOT,468

other language areas (e.g., the supramarginal, angular gyrus, and inferior frontal gyrus) are469

responsible for lexical information processing especially for real words (Lerma-Usabiaga et470

al., 2018). Additionally, anterior vOT is structurally connected to temporo-parietal regions,471

including the angular gyrus (AG, Booth et al. (2004); Yeatman et al. (2013); Lerma-Usabiaga472
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et al. (2018)), the supramarginal gyri (SMG, Kawabata Duncan et al. (2014); Seghier & Price473

(2013)) and the superior temporal gyrus (STS, Stevens et al. (2017)). Those areas have been474

involved in mapping between orthographic, phonological and semantic representations for475

written words and letter strings (Church et al., 2011; Raij et al., 2000; Van Atteveldt et al.,476

2004; Vandermosten et al., 2016). In relation to this, an intracranial EEG study suggested477

the left vOT is involved in at least two distinct stages of word processing: an early stage478

that is dedicated to gist-level word feature extraction, and a later stage involved in accessing479

more precise representations of a word by recurrent interactions with higher-level visual and480

nonvisual regions (Hirshorn et al., 2016). The dorsal parietal brain sources in our study may481

reflect the later stage of integrating information between anterior vOT (Lerma-Usabiaga et482

al., 2018) and other language areas (Kay & Yeatman, 2016; Schurz et al., 2014; Woodhead et483

al., 2014) to enable orthographic-lexical-semantic transformations (Woolnough et al., 2020).484

A leading model, the Local Combination Detector (LCD) model (Dehaene et al., 2005),485

has been proposed to explain the neural mechanisms underlying visual specialization for486

words. This model suggests that the receptive fields of neurons (detectors) especially in487

the left vOT progressively increase from posterior to anterior regions. As a result, the488

sensitivity of neurons increases from familiar letter fragments and fragments combinations489

to more complex letter strings (e.g, bigrams and morphemes) and whole words. However,490

given the functional and structural connections between vOT (especially anterior regions)491

and other language areas mentioned above (i.e., AG, SMG, and STS), a considerable number492

of studies support the interactive theory in which feed-forward and feed-back processing493

mechanisms together contribute to final recognition of a word (Dehaene et al., 2005; Dehaene494

& Cohen, 2011; Dehaene et al., 2015; Long et al., 2020). Specifically, the forward pathway495

conveys bottom-up progression from early visual cortex (e.g., visual area 4, V4) to vOT,496

which accumulates inputs about the elementary forms of words (Schurz et al., 2014), and497

continually from vOT to higher-level linguistic representation areas, which enable integration498

of orthographic stimuli with phonological and lexical representations (Price & Devlin, 2011).499
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Meanwhile, vOT also receives top-down modulations (backward pathways) from higher-level500

language regions, which provide (phonology and/or semantic) predictive feedback to the501

processing of visual attributes.502

To summarize, two components were derived in a data-driven fashion from the SSVEP.503

The first component is located at more left vOT region, while the second component is504

located more at parietal dorsal area. We speculate that the first component reflects more505

hierarchical bottom-up forward projections from early visual cortex to posterior vOT, while506

the second component represents both bottom-up and top-down integration between anterior507

vOT with other areas of language network. However, these interpretations are speculative508

without the evidence of source localization data. Thus, more evidence (e.g., source localiza-509

tion and functional connectivity) are needed for verification in future studies.510

4.3 Reliable Components are invariant to stimulus location and511

presentation rate512

Our results replicated and extended previous work on multiple distinct brain sources involved513

in different stages of word processing. These findings were further corroborated by present-514

ing stimuli at jittered locations. The response invariance we observe is in agreement with515

previous studies, in which left vOT activation was identical whether stimuli were presented516

in the right or left hemifield, suggesting that left vOT activation for words and readable517

pseudowords depends on language-dependent parameters and not visual features of stimuli518

(Cohen et al., 2000, 2002). In line with this, Maurer and colleagues (2008) directly com-519

pared responses to words and faces under two contexts: blocks that alternated faces and520

words versus blocks of only faces or words. Results demonstrated that responses to words521

were consistently left-lateralized and were not manipulated by context in skilled readers. In522

contrast, context (Maurer et al., 2008) and spatial orientation (Jacques & Rossion, 2007)523

systematically influenced the degree to which a face is processed. Findings of this kind524

further suggest that responses to words depend more on linguistic rather than contextual525
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factors (Hauk et al., 2006), which may be driven by the way that words are learned and526

read (Maurer et al., 2008). Anatomically, it has also been proposed that the visual word527

form system is homologous to inferotemporal areas in the monkey, where cells are selective528

to high-level features and invariant to size and position (Cohen et al., 2000). The similar-529

ity of the component structure (brain sources) under different presentation rates suggests a530

fairly broad temporal filter is involved in word vs pseudofont discrimination. Of note, the531

amplitudes when slowing down the presentation rates are stronger than using higher rates,532

which sheds light on the choice of the stimulus frequency for studies with children and for533

examining higher-level visual processes (see also Norcia et al. (2015)).534

4.4 Hierarchy of visual word processing535

Given the word-in-pseudofont contrast results above consistently identified and distinguished536

two components with distinct topographies and time courses—with the possibility of one537

being related to processing word visual forms and the other potentially related to higher538

level integration with language regions—we went on to test whether the hierarchical stimulus539

contrast approach might also clearly isolate one of these components.540

Neither word-in-nonword nor word-in-pseudoword sequences successfully evoke com-541

ponent topographies that resembled either the early or late components of the word-in-542

pseudofont contrast. Specially, word-in-nonword contrast revealed two components over right543

occipito-temporal (RC1) and left centro-parietal (RC2) regions, while word-in-pseudoword544

contrast revealed two components over right centro-frontal (RC1) and left occipito-temporal545

(RC2) regions. However, component-space neural activations for these two conditions were546

much weaker and less robust, so caution is needed in their interpretation.547

Nevertheless, our weak results in word-in-nonword and word-in-pseudoword contrasts are548

consistent with a recent study by Barnes et al. (2021). Barnes and colleagues (2021) also549

used a 4-letter English word vs pseudoword contrast, and the same frequency rates (2 Hz550

word deviants in 10 Hz pseudoword base) as in our study, results finding that only 4 out of551
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40 data sets showing a reliable effect between words and pseudowords. While another study552

by Lochy et al. (2015), which used 5-letter french words and pseudowords with the same553

2 Hz/10 Hz rates, revealed response differences between words and pseudowords in 8 out 10554

readers. Barnes and colleagues argued that the matching of bigram frequency between words555

and pseudowords (matched in their study but not in Lochy et al. (2015)) could explain the556

disparity. Bigram frequency was also matched in our study, which further support Barnes’s557

argument. Additionally, other factors may also play a role in the disparity, such as number of558

letters (4 in ours and Barnes et al. (2021), 5 in Lochy et al. (2015)) and number of syllables559

(monosyllabic in ours and Barnes et al. (2021), monosyllabic and bisyllabic in Lochy et al.560

(2015)).561

Evoked response differences between words and pseudowords and/or nonwords have also562

been studied previously in ERP studies, but the results have been inconsistent (absent in563

Araújo et al. (2012); Bentin et al. (1999); Wydell et al. (2003)); present in Eberhard-Moscicka564

et al. (2015); Kast et al. (2010); McCandliss et al. (1997); Proverbio & Adorni (2009)). Sev-565

eral reasons for the mixed results have been proposed, including but not limited to language566

transparency, presentation modes and task demands. For example, it was found that the567

adult N1/left vOT for words is more sensitive to orthographic than lexical and/or semantic568

contrasts, especially during implicit reading (Bentin et al., 1999; Maurer et al., 2005). Of569

note, an implicit color detection task was used in the present study, and the pseudowords570

and nonwords were created by reordering letters that appeared in the words; these factors,571

in combination, might have led to more difficult discrimination. In addition, words and572

pseudowords have elicited relatively smaller N170 amplitudes in less transparent English573

than in German (Maurer 2005). Compared with more transparent languages (e.g., Italian,574

German and French), English has greater orthographic depth with inconsistent spelling-to-575

sound correspondence, leading to more ambiguous pronunciations. As a consequence of the576

inconsistency of mapping letters to sounds, lexical or semantic processing will be less auto-577

matic and more demanding (Nosarti et al., 2010), which is even more extreme when reading578
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novel pseudowords and nonwords.579

In addition, fast stimulus presentation rates (10 Hz, i.e., 100 ms each item) used in the580

current study may reduce the involvement of higher-level (e.g., semantic) processes (Vinckier581

et al., 2007; Lochy et al., 2018) tapped by the word-in-nonword and word-in-pseudoword582

contrasts, especially during implicit tasks not requiring explicit pronunciation and semantic583

detection of the stimuli. Lower stimulation rates may be necessary to record SSVEP when584

discriminating higher-level lexical properties in word-in-nonword and word-in-pseudoword585

contrasts. By contrast, discrimination of word vs pseudofont is robust over the range of586

presentation rates we examined. Future studies can examine this issue further by varying587

stimulation rates over broader ranges or by manipulating task demands.588

4.5 Future work589

In the present study, visual word recognition (W vs PF) was examined using the SSVEP590

paradigm and a spatial filtering approach, which enabled the identification of robust neural591

sources supporting distinct levels of word processing within only several minutes’ stimula-592

tion. This approach provided a unique extension of existing knowledge on word recognition593

regarding retinal location and stimulation rate and points to avenues for further investigation594

of important questions in reading.595

First of all, given the short stimulation requirement and robust signal detection due596

to the high SNR of SSVEP and the spatial filtering approach, the current study points597

to new possibilities to study individual differences and developmental changes as children598

learn to read. Children’s reading expertise develops dramatically, especially during the599

first year(s) of formal reading acquisition (Eberhard-Moscicka et al., 2015; Maurer et al.,600

2006). The high SNR paradigm used here may allow for more efficient (in terms of less601

time-consuming and less trials requirement) tracing of the developmental changes of brain602

circuitry due to increasing reading expertise in children at different stages of learning to read.603

Additionally, in the course of emerging specialization for printed words, neural component604
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topographies would be expected to be increasingly left-lateralized (Maurer et al., 2005). The605

RCA approach of detecting multiple, distinct brain sources within the same signal response606

can increase understanding of how exactly such lateralization is best developed through607

reading training. Furthermore, high inter-subject variability of vOT print sensitivity was608

revealed in previous studies (Dehaene-Lambertz et al., 2018; Glezer & Riesenhuber, 2013;609

Pleisch et al., 2019; Stevens et al., 2017; van de Walle de Ghelcke et al., 2020). Therefore,610

exploring developmental changes—in terms of activity and topography—at the individual611

subject level will offer a chance to investigate this phenomenon more precisely and deeply.612

This approach would be especially relevant to early autistic and dyslexic readers, who face613

difficulties at the beginning of reading education (Frith & Snowling, 1983) when intervention614

is thought to be most successful.615

Another interesting direction to explore in future research rests upon the accumulating616

evidence that early visual-orthographic (“perceptual”) and later lexicon-semantic (“lexical”)617

processing is located at segregated regions within vOT (Lerma-Usabiaga et al., 2018; Stigliani618

et al., 2015; Vinckier et al., 2007). To our knowledge, different functional components of619

word recognition have been studied using general contrast of words with pseudofonts and/or620

consonant strings (Lerma-Usabiaga et al., 2018), but not yet by directly manipulating ortho-621

graphic regularity and lexical representation(s) separately. Additionally, studies have shown622

that perceptual tuning of posterior vOT to sublexical and lexical orthographic features de-623

velops when reading experience increases (Binder et al., 2006; Zhao et al., 2019). Therefore,624

isolating perceptual and lexical processing experimentally will be interesting to explore to625

understand how children’s brains develop specialized visual-orthographic processing.626

Last but not least, topographic lateralization and amplitudes of responses to text have627

been shown to differ when presenting stimuli with different temporal frequencies (Yeatman628

& Norcia, 2016). In addition, it has been proposed that lower stimulation rates may be629

necessary to record SSVEPs when studying higher-level visual processes (e.g., faces and630

words) (Norcia et al., 2015). The relatively high stimulation frequency (i.e., 10 Hz) used631
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in the current study may underestimate effects especially associated with more complex632

“lexical” contrasts (herein word vs pseudoword and word vs nonword) (Lochy et al., 2018),633

and this may have an even higher impact when it comes to children. Thus, an important634

question for future work is to see how children develop specialized visual-orthographic and635

lexical-semantic processing under lower stimulation rates.636

5 Conclusion637

In conclusion, the present study applied RCA—a data-driven component approach—on638

SSVEPs, showing that two distinct functional processes with different temporal informa-639

tion underlie visual word form recognition, specifically the word in pseudofont contrast.640

Those two processes are found to be robust across manipulations of stimulus location as well641

as stimulation frequency and deviant-base ratio. Moreover, when the same approach was642

applied to other two contrasts (word in nonword and word in pseudoword), distinct neural643

sources were found, though their activations were less robust. Our results have provided644

new evidence that different functional circuits support different stages of word processing.645

These findings point to novel possibilities toward understanding how visual-orthographic and646

lexical-semantic processing are best developed through learning experience, which could hold647

important insights into the acquisition of reading skill.648
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