
MVD-Fuse: Detection of White Matter Degeneration
via Multi-View Learning of Diffusion Microstructure

Shreyas Fadnavisa,b, Pablo Poloseckia, Eleftherios Garyfallidisb,
Eduardo Castroa, Guillermo Cecchia

IBM T.J. Watson Research Centera, Indiana Univeristy Bloomingtonb

Abstract

Detecting neuro-degenerative disorders in early-stage and asymptomatic patients
is challenging. Diffusion MRI (dMRI) has shown great success in generating
biomarkers for cellular organization at the microscale level using complex bio-
physical models, but there has never been a consensus on a clinically usable stan-
dard model. Here, we propose a new framework (MVD-Fuse) to integrate mea-
sures of diverse diffusion models to detect alterations of white matter microstruc-
ture. The spatial maps generated by each measure are considered as a different
diffusion representation (view), the fusion of these views being used to detect dif-
ferences between clinically distinct groups. We investigate three different strate-
gies for performing intermediate fusion: neural networks (NN), multiple kernel
learning (MKL) and multi-view boosting (MVB). As a proof of concept, we ap-
plied MVD-Fuse to a classification of premanifest Huntington’s disease (pre-HD)
individuals and healthy controls in the TRACK-ON cohort. Our results indicate
that the MVD-Fuse boosts predictive power, especially with MKL (0.90 AUC vs
0.85 with the best single diffusion measure). Overall, our results suggest that an
improved characterization of pathological brain microstructure can be obtained by
combining various measures from multiple diffusion models.

1 Introduction
Diffusion-weighted magnetic resonance imaging (dMRI) exploits the diffusion of water along white
matter pathways in the brain to quantify its microstructure and reconstruct its major tracts in the liv-
ing human brain [4]. To probe microstructure using DWI, the signal representations are typically ob-
tained by decomposing the 4-dimensional signal (at a voxel scale) using tensor, multi-compartmental
or spherical harmonic models. Measures derived from modeling DWI typically reveal information
related to degree of coherence of neuronal fiber alignment, microstructural integrity, demyelination
and corruption of microtubules.

A wide range of models have been proposed to probe the tissue microstructure, yet, there has
been no consensus on a particular standard model and no single model can provide an accurate
description of the underlying signal structure to detect pathological changes of white matter [9, 12].
Each microstructure model provides unique information about the tissue structure describing the
same tissue degeneracy. This represents our primary motivation for fusing information derived from
multiple models: to learn measures specific to particular diseases. In this work, we investigate multi-
view machine learning methods to integrate the predictive information from all DWI models in the
diagnosis and stratification of neurological disorders.

We propose a new framework, Multi-View learning of Diffusion Microstructure (MVD-Fuse),
which contains the following innovations: (1) MVD-Fuse aims at characterizing white matter al-
terations by optimizing for predictive accuracy for specific disorders, as opposed to the massive
univariate analyses that historically dominated the field [13]. (2) The proposed framework fuses
measures from all models exploiting state-of-the-art multi-view fusion approaches. In terms of the
ability to learn optimal fused representations, we compared the performance of algorithms from two
broad categories: early and intermediate fusion (EF and IF, respectively). EF consists of concatenat-
ing all views into a single feature vector for training, while IF implies learning linear combinations
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of the input views in the latent space, which better captures the interaction between individual views.
Additionally, IF allows the ranking of model contributions by inspecting the view-specific weights
of the learnt representations. We explored three fundamental approaches to IF: Multiple Kernel
Learning (MKL) [7], Muli-View Boosting (MVB) [8] and Neural Networks (NN) [3].

In this paper, we work with Huntington’s disease (HD) as a case study. HD is a monogenic
disease which can be detected via genetic tests, enabling large observational studies on the HD-gene
carrying subjects before diagnosis based on symptom manifestation [11]. Specifically, we evaluate
MVD-Fuse’s ability to detect differences in white matter microstructure between premanifest HD
individuals (pre-HD) and healthy controls.
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Figure 1: MVD-Fuse framework. (A) MKL, (B) MVB and (C) NN intermediate fusion algorithms
are used to integrate different measures (views) derived from DWI modeling and improve the detec-
tion of pathological patterns of white matter microstructure in a disorder of interest (pre-HD in our
proof-of-concept validation).

2 Data and Methods
Data: We evaluate the ability of MVD-Fuse to distinguish pre-HD subjects from controls in the
TrackON dataset [10]. The data in this work contained 140 subjects (68 healthy controls, 72 pre-
HD). dMRI data was acquired using a single-shell acquisition protocol with 41 gradient directions
at b-value 1000 each. The data came from four different imaging sites. Therefore we followed a
cross-site cross-validation approach to ensure robust generalization across sites [1].

Methods: The proposed framework starts by fitting the dMRI data with different microstructure
models. Here, we fit the data with three widely used microstructure models, namely, constrained
spherical deconvolution (CSD) [16], diffusion tensor (DTI) [4] and the single-shell free-water dif-
fusion tensor models (FW-DTI) [14]. FW-DTI is a two-compartmental model that provides infor-
mation about signal contributions from extracellular free water (FW). DTI on the other hand is a
single compartment model aimed at deriving information about intrinsic mean diffusivity (MD) and
fractional anisotropy (FA) of the diffusion process. As opposed to phenomenological models like
DTI and FW-DTI, CSD takes a mechanistic approach to deconvolve the signal and derive fiber Ori-
entation Distribution Function (fODF) using spherical harmonic expansions, giving measures such
as Generalized FA (GFA) and Apparent Fiber Density (AFD) [see Fig. 2A].

After model fitting, subjects are registered to a standard WM FA template [15]. Then, a common
WM skeleton is computed (tract-based spatial statistics, TBSS) and all measures are projected onto
it. We additionally removed skeleton voxels where FA had an inter-subject coefficient of variation
above 0.3, retaining a core with minimal anatomical heterogeneity. Measures from all models along
the WM skeleton are then fed into the multi-view learning framework to perform the binary classi-
fication task of distinguishing pre-HD subjects from healthy controls. When using an EF approach,
all the derived measures are concatenated into a single feature vector, discarding information about
the diffusion model from which each feature originates. We applied standard linear classifiers to
train the concatenated features, mainly Support Vector Machines (SVM) and Elastic Net Logistic
Regression.

As a first IF approach, we explored a dense 2-layer linear NN, where features from each view
feed a view-specific unit in an intermediate layer. These intermediate layers learn a view-specific
representation, which is fused by an output unit. In MKL, each of the microstructure measures were
input to linear kernels (K1,K2, . . .Kn) as shown in Fig. 1A. Then, all the kernels corresponding to
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Figure 2: Depiction of analyzed measures and extracted features. (A) Models fitted to the data and
microstructure maps derived as outputs from them. (B) Nonlinear registration of each model fit to a
white matter template, which is in turn fed to the multi-view learning algorithm as input.

the different views were fused together using the EasyMKL [2] algorithm to learn the optimal linear
combination of these kernels. Next, we used the SVM classifier [5] to perform the classification us-
ing the resulting composite kernel. Lastly, we explored MVB [8], which is an extension of Adaboost
[6] for multiview integration. MVB uses a hierarchical strategy: it first estimates weights for each of
the base weak-learners (here decision trees) generated within a given view, and then estimates view-
specific weights. This is done by controlling a trade-off between classification error and prediction
diversity among views. We use the receiver operator characteristic (ROC) curves along with area
under the ROC curve (AUC) scores to assess the performance of these classification approaches.
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Figure 3: Overall performance of the models and assessment of informative dMRI measures. (A)
AUC performance of single measures (Table 1) and the different strategies for multi-view learning
(Table 2). (B) View-specific contributions learnt from each of the multi-view methods in MVD-Fuse.
(C) ROC curves of different methods.

3 Experiments and Results
First, we evaluated the predictive power of single measures as a baseline for comparing against
multi-view models (Fig. 3A, Table 1). Each individual measure had significant discriminative abil-
ity. Next, we used MVD-Fuse with different multi-view methods (IF) and compared them against
EF-based classifiers. For EF, elastic net logistic regression gave an AUC score of 0.77 and the sup-
port vector classifier gave an AUC score of 0.83. NN and MVB did not outperform the SVM (EF)
classifier but. On the other hand, MKL improved the predictive accuracy by 5% points (AUC score
of 0.90), showing better performance than any single model and EF approach.

4 Conclusions
In this work, we propose a novel way of integrating microstructure information that differs from tra-
ditional model selection, in a way akin to how multivariate machine learning differs from univariate
tests. This not only avoids the need for separate rounds of model selection and prediction, which
are prone to ”double dipping”, but enables integration of complementary information, thus boost-
ing predictive power. Moreover, our results are interpretable, as shown by view-specific weights
that were consistent across IF approaches. Detailed future work will investigate how this multi-
view integration can produce composite voxel-level measures optimally sensitive to alterations from
specific disorders.
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5 Broader Impacts

This work introduces information fusion via multi-view learning enabling disease detection and po-
tentially can be used for predicting progressions. This approach can naturally be extended to incor-
porate other modalities such as Perfusion MRI, Functional MRI, MEG/ EEG, etc. Relatively, there
is lack of methods to perform multi-modal analyses and this work sheds light upon its usefulness
from an application standpoint. Beyond the medical imaging community, MVD-Fuse implements
the general idea of decomposing the same data to generate embeddings with unique information that
can be used as features for any downstream machine learning task.
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