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Highlights

Analyzing Brain Morphology in Alzheimer’s Disease Using Discriminative and Generative Spiral Networks

Emanuel A. Azcona, Pierre Besson, Yunan Wu, Ajay S. Kurani, S. Kathleen Bandt, Todd B. Parrish, Aggelos K. Katsaggelos, for
the Alzheimer’s Disease Neuroimaging Initiative

• Modular geometric deep learning framework for discrimi-
native and generative anatomical shape analysis.

• Novel anisotropic spiral convolution operator is utilized
on direct morphable surface meshes of neuroanatomical
structures to learn shape descriptors, rather than shape
descriptors from intermediate shape representations (i.e.
voxels and point clouds).

• Discriminative framework outperforms state-of-the-art
methods using learned shape descriptors for Alzheimer’s
disease (AD) versus healthy control binary classification.

• Visual interpretability of discriminative model’s decision
making process by localizing areas on subcortical struc-
tures that are indicative of true positive AD classification
results.

• Generative framework uses conditional information to as-
sess shape variations specific to AD diagnosis.

• Extension to joint analysis of multiple anatomical struc-
tures demonstrates stronger discriminative performance
of AD classification in comparison to single structure or
hemisphere isolation.
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Abstract

Several patterns of atrophy have been identified and strongly related to Alzheimer’s disease (AD) pathology and its progression.
Morphological changes in brain shape have been identified up to ten years before clinical diagnoses of AD, making its early di-
agnosis more desirable. We propose novel geometric deep learning frameworks for the analysis of brain shape in the context of
neurodegeneration caused by AD. Our deep neural networks learn low-dimensional shape descriptors of multiple neuroanatomical
structures, instead of handcrafted features for each structure. A discriminative network using spiral convolution on 3D meshes is
constructed for the in-vivo binary classification of AD from healthy controls (HCs) using a fast and efficient “spiral” convolution
operator on 3D triangular mesh surfaces of human brain subcortical structures extracted from T1-weighted magnetic resonance
imaging (MRI). Our network architecture consists of modular learning blocks using residual connections to improve overall classi-
fier performance.

In this work: (1) a discriminative network is used to analyze the efficacy of disease classification using input data from multiple
brain structures and compared to using a single hemisphere or a single structure. It also outperforms prior work using spectral graph
convolution on the same the same tasks, as well as alternative methods that operate on intermediate point cloud representations of
3D shapes. (2) Additionally, visual interpretations for regions on the surface of brain structures that are associated to true positive
AD predictions are generated and fall in accordance with the current reports on the structural localization of pathological changes
associated to AD. (3) A conditional generative network is also implemented to analyze the effects of phenotypic priors given to
the model (i.e. AD diagnosis) in generating subcortical structures. The generated surface meshes by our model indicate learned
morphological differences in the presence of AD that agrees with the current literature on patterns of atrophy associated to the
disease. In particular, our inference results demonstrate an overall reduction in subcortical mesh volume and surface area in the
presence of AD, especially in the hippocampus. The low-dimensional shape descriptors obtained by our generative model are also
evaluated in our discriminative baseline comparisons versus our discriminative network and the alternative shape-based approaches.

Keywords: graph convolutional networks, spiral mesh networks, deep learning, shape analysis, neuroanatomy, morphable meshes

1. Introduction

Advances in magnetic resonance imaging (MRI) have en-
abled a plethora of non-invasive shape analysis tools and tech-
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niques for modeling the human anatomy in high detail, specif-
ically neuroanatomical shape modeling [63]. Methodological
insights in human brain shape analyses have demonstrated pow-
erful utility for their visualization capabilities and valued char-
acterizations of neuropathology and neurodevelopment. Shape-
based descriptors have proven to be effective for a variety of
tasks such as: segmentation, observing and identifying shape
asymmetries, and surface analyses using triangular meshes,
each demonstrated by Brignell et al. [11]. Morphological pat-
terns of change in brain structures have often been predictive
of different neurodevelopmental and neurodegenerative dis-
eases, such as: schizophrenia, epilepsy [45], Lewy bodies, and
Alzheimer’s disease (AD) [72]. Neuroanatomical changes in
structural MRI have been identified up to ten years before clin-
ical diagnoses in AD [78]. Wachinger et al. employ BrainPrint
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[79] to yield extensive characterizations of brain anatomy us-
ing structure-specific shape descriptors with samples from the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset
[65] to identify unique individuals (3000 subjects) with a 99.8%
accuracy. Gutiérrez-Becker et al. [39] demonstrate a strong
performance (0.80/0.79/0.78 performance/recall/F1-score re-
spectively) using BrainPrint to classify scans belonging to sub-
jects with AD apart from healthy controls (HCs), which they
outperform in a baseline using with their own shape descriptors
(0.83/0.84/0.82 precision/recall/F1-score respectively) learned
on point cloud representations of neuroanatomical shapes.

Working with geometric shape descriptors offers a more ro-
bust representation of brain morphology, rather than direct im-
age intensities. The inferences drawn from utilizing shape de-
scriptors are able to remain robust w.r.t intensity changes that
may be caused by differing scanner hardware/protocols. A re-
cent development in deep learning (DL), PointNet [68], intro-
duces artificial neural network (NN) architectures designed for
operating on 3D point clouds for tasks such as object identifica-
tion. Gutiérrez-Becker et al. [39] utilize the point cloud opera-
tions from PointNet [68] to construct deep NNs that are trained
for AD vs. HC classification on unordered 3D point cloud rep-
resentations of subcortical brain structures. Their framework
is also evaluated on the mild cognitive impairment (MCI) vs.
HC classification task, which yields a significant drop in clas-
sifier performance due to the high variability within the MCI
class, since the detection of MCI is more symptomatic and it is
sub-divided into different stages (typically early MCI and late
MCI).

Generalizations of successful convolutional neural network
(CNN) models to non-Euclidean data types, such as point
clouds and triangulated meshes, fall under the wide umbrella
of geometric deep learning [12]. Similar to 3D voxels [82],
point clouds [1] are intermediate representations of 3D shapes,
unlike direct surface representations such as meshes. Despite
their high success, voxel-based DL approaches typically suf-
fer from high computational complexity, and point cloud ap-
proaches suffer from an absence of smoothness of the data rep-
resentation [9]. Polygon meshes are direct and effective sur-
face representations of object shape, when compared to vox-
els. Geometric learning on meshes has only recently been ex-
plored [50, 54, 69, 80, 81] for shape completion, non-linear fa-
cial morphable model generation and classification, 3D surface
segmentation, and reconstruction from 2D/3D images. A novel
representation learning and generative DL framework using spi-
ral convolution on fixed topology meshes, was established with
Neural3DMM [9] and later improved upon with SpiralNet++

[36].
Given the relevance and valued characterizations of brain

shape in neuropathology and neurodevelopment, as well as the
added value of successful DL methods for shape-driven tasks
on 3D point clouds [68, 67], we improve upon the work by
Gutiérrez-Becker et al. [39], which operates on unordered point
clouds of 3D brain structures. We extend their discriminative
networks by working with spiral convolution operators on tri-
angular meshes instead. Similar to Gutiérrez-Becker et al. [39],
we use a conditional generative network framework to intro-

duce non-imaging data, particularly AD diagnosis, to analyze
the learned morphological patterns of generated meshes w.r.t.
diagnostic priors.

Our framework is based upon the spiral convolution opera-
tors defined in SpiralNet++ [36] and the residual NN frame-
work for image recognition established by He et al. [40].
We quantitatively evaluate the performance of our model
in AD/MCI binary classification with an ablation study us-
ing different subcortical structure inputs (all structures, per-
hemisphere, and per-structure) to analyze the efficacy of incor-
porating input data from multiple brain regions. Furthermore,
we perform a baseline comparison with our spiral framework’s
performance with our prior work [2] using spectral graph con-
volution [20], and the point cloud approach by Gutiérrez-
Becker et al. [39] on the same AD/MCI classification tasks. Us-
ing a conditional variational autoencoder (CVAE) [73] frame-
work, our generative model is used to extract low-dimensional
brain shape descriptors that are then used for the same AD/MCI
classification tasks. We also experiment with the learned effects
of conditioning our generative model on AD diagnosis during
training and mesh generation (synthesis).

An interpretation of classifier reasoning is often a desired
quality of DL frameworks that is often neglected but highly
needed, especially in medical image analyses. This paper is an
extension of our preliminary work in [2] where spectral graph
convolutional networks (GCNs) [47] were used for binary AD
classification and we adapted Grad-CAM [71] on triangular
meshes to provide visually interpretable heatmaps that localize
areas on meshes which drive true positive (TP) AD predictions.
Given Grad-CAM’s modularity to work with any CNN model,
we apply a mesh adaptation of Grad-CAM [2] on the discrimi-
native network in this study.

In summary our contributions are as follows:

1. A joint framework for improved in-vivo disease classi-
fication using multiple subcortical structures in a sin-
gle scan. A holistic view of brain subcortical anatomy
is provided to demonstrate stronger discriminative perfor-
mance with multiple brain structures. For AD in particular
[32, 49], correspondences across multiple structures are
often more robust than studying one organ in isolation, es-
pecially in neuroimaging where segmenting multiple sub-
cortical regions is possible from a single MRI volume.

2. Discriminative spiral networks for improved AD clas-
sification on meshes versus prior spectral method. We
demonstrate an improvement in accuracy, precision, re-
call, and F1-score upon our prior work [2] by using spi-
ral convolution on brain surface meshes for AD classifica-
tion. Our discriminative spiral network also outperforms
alternative shape-based descriptor approaches which op-
erate on intermediate shape representations such as point
clouds.

3. Mesh Grad-CAM adaptation to provide visual reason-
ing in localized regions of interest (ROIs) on mesh man-
ifolds that drive TP predictions in AD classification.
Our prior adaptation of Grad-CAM [2] was successful in

2

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 16, 2021. ; https://doi.org/10.1101/2021.04.15.440008doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.15.440008
http://creativecommons.org/licenses/by-nc-nd/4.0/


localizing ROIs on meshes for TP predictions from our
GCNs. Although a different convolution operator is used
in this proposed framework, learned feature maps are still
attainable from convolutional layers for generating class
activation maps (CAMs) onto input mesh surfaces. These
CAMs are a visual interpretation of regions on the along
the surface of subcortical structures whose shape is indica-
tive of TP AD predictions by our spiral networks. Our
obtained CAMs draw direct correspondences with brain
shape deformations tightly correlated with AD pathology.

4. Conditional generative spiral networks for low-
dimensional representation learning on brain mesh
manifolds with diagnostic priors. Our generative CVAE
models are able to learn low-dimensional discriminative
representations of mesh inputs, which are then evaluated
against our proposed discriminative network and prior
baseline methods. The morphological effects of condition-
ing on AD are also analyzed and supported by multiple re-
ports on the neuroanatomical changes in AD progression.

2. Related Work

2.1. BrainPrint

The shape descriptors in BrainPrint are used in multiple tasks
including: (1) subject identification, (2) age and sex classifi-
cation, (3) lateral asymmetry in brain shape, (4) and potential
genetic influences on brain morphology (such as twin analysis)
[79]. Using FreeSurfer [19, 18, 29, 27, 28], subcortical labels
are used to segment subcortical nuclei (i.e. caudate and hip-
pocampi) from whole brain MRI. Then those subject-specific
segmentations are used to create individual triangular meshes
of each anatomical structure’s surface. A shape descriptor, re-
ferred to as shapeDNA [70], computed from the intrinsic geom-
etry of an object by calculating the Laplace-Beltrami spectrum
[64], is used to compactly represent each structure’s mesh, per
scan. Finding shape descriptors that quantify and character-
ize brain shape are often needed for classification or regression
tasks that are dependent on brain shape.

2.2. PointNet on 3D neuroanatomical surfaces

DL networks for the shape analysis of neuroanatomical struc-
tures using point clouds are introduced by Gutiérrez-Becker et
al. [39] as an improvement on BrainPrint regarding AD pathol-
ogy. These types of DL approaches naturally scale and benefit
in the analysis of large datasets, with potential to learn char-
acteristic variations in large populations. Point clouds are a
lightweight representation of 3D surfaces that avoid topological
constraints of shapes and are trivial to obtain given a segmented
surface. Although computationally robust, their method still
operates on and outputs intermediate representations of brain
shape.

Methods that generate intermediate representations of 3D
surfaces (i.e. pixels), are left insensitive to the topological
constraints of 3D objects. The output quality of postprocess-
ing steps taken to generate 3D surfaces, like triangular meshes,

therefore become dependent on the output quality of the inter-
mediate representations [59]. In this work, we improve upon
the framework established by Gutiérrez-Becker et al. [39] by
working with spiral convolution operators that operate directly
on 3D morphable triangular mesh surfaces [9] that are regis-
tered to a common template topology. We also improve upon
their framework by way of residual connections [40] within
our classifier, and demonstrate an improvement in classification
performance using residual connections within each alternative
approach in our baseline classifier comparison.

Additionally, Gutiérrez-Becker et al. [39] demonstrate a
powerful framework for fixed-size point cloud reconstruction
and generation using a PointNet CVAE architecture. Although
point cloud methods can be compact and robust, they can still
lack an underlying smooth structure whose approximation is
dependent on the quality of the cloud, whereas surface meshes
are still more realistic, less sensitive to noise, and are capable of
preserving high-quality 3D geometry generation. In this work,
we construct CVAEs using fixed-size surface meshes that are
registered to a common template during preprocessing.

2.3. Spectral Graph Convolution (ChebyNets)

Morphable meshes [9], specifically triangular meshes [76],
are direct surface representations of 3D volumes that can be
used for 3D visualization, describing 3D texture, and contex-
tualizing shape. By construction, triangular meshes are undi-
rected graphs, with analogous edges, and their intersections are
interpreted as vertices. Several studies [4, 30, 35, 38, 61, 86]
have demonstrated that graphs derived from different types of
brain-related connectivity, functional or structural, are more ro-
bust in accuracy and computation time, versus traditional neu-
roimaging methods.

Modeling convolution on 3D meshes can be more memory
efficient and allow for the processing of higher resolution 3D
structures compared to volumetric approaches using 3D CNNs.
Our prior work [2] demonstrates an improvement in AD clas-
sification with spectral GCNs known as ChebyNets [20], using
a dataset of 3D surface meshes extracted from a subset of T1-
weighted MRIs in the subject population used by Punjabi et al.
[66], a volumetric approach. ChebyNets are also implemented
by Ranjan et al. [69] for a generative framework using convo-
lutional mesh autoencoders (CoMA), for generating 3D human
faces.

Spectral filtering on graphs [20, 47] can come with a number
of caveats. Spectral filters are inherently isotropic since they
particularly rely on the Laplacian operator, which performs
weighted averages of neighboring vertices:

(∆ f )i =
∑

j:(i, j)∈E

wi j( f (i) − f ( j)), (1)

given a shared feature, f , on vertices i and j, and the scalar
edge weight, wi j, corresponding to edge ei j ∈ E, connecting i
and j. Gong et al. [36] point out that the isotropic nature of
spectral filters for undirected graphs is a side effect of needing
to design a permutation-invariant operator with a small number
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of parameters, under the absence of a canonical ordering.

f ∗ g = p(∆) f =

r∑
`=0

θ`∆
` f . (2)

While a “necessary evil” for certain graph learning appli-
cations [9], spectral graph filters are still basis-dependent and
can be rather weak on meshes since they are locally rotational-
invariant. On the other hand, spiral convolutional filters take
advantage of the fact that meshes are locally Euclidean and a
canonical ordering of neighbors for each vertex can be estab-
lished, such as a spiral sequence starting at an arbitrary vertex.
By design, spiral filters are anisotropic and have proven to gen-
eralize functions on 3D meshes better than spectral methods
[9, 36]. In our analysis, an ablation study demonstrates an im-
provement upon AD classification performance with spiral fil-
ters, in comparison to the spectral filters defined by Defferrard
et al. [20]; originally used in our preliminary work [2].

2.4. Generative networks on brain graphs

Several studies have recently investigated using geometric
deep learning [12] for synthesizing brain-related graphs [5, 6,
74, 88] using generative adversarial network (GAN) [37] in-
spired frameworks. Other types of generative networks, namely
autoencoder-based architectures, have also demonstrated suc-
cess for neuroimaging applications, such as the work of Choi et
al. [14], where generative models are developed using chrono-
logical age and apoE4 genetic traits as conditional features for
synthesizing PET scan in relation to AD. In their study vari-
ational autoencoders (VAEs) [46] are used to demonstrate a
significant effect on apoE4 genetic information in predicting
age-related metabolic changes in synthesized PET scans that
are then compared to ground-truth follow-up scans.

Autoencoders are neural networks trained to minimize the re-
construct error between their inputs and outputs, separated by
encoder and decoder halves. Traditionally, autoencoders have
been used for unsupervised dimensionality reduction or feature
learning, since their objective functions for training are typi-
cally designed to minimize the reconstructions of its inputs (i.e.
mean absolute error).

Variational autoencoders (VAEs) [46], similarly aim to re-
construct inputs, while also attempting to constrain the latent
space of the encoder output to an assumed underlying proba-
bilistic distribution (such as a multivariate Gaussian). Using
this assumption, the total objective function used to train VAEs
minimize a reconstruction loss term and a latent space regular-
ization term, typically the Kullback–Leibler (KL) divergence
[43], as a measure of the disparity between the embedding
and assumed prior distribution N(0, I). Once trained, VAEs
are valuable in their utility as a generative framework, where
new samples can be synthesized by sampling from the assumed
prior distribution. CoMA [69] is built upon a VAE framework
for meshes, using spectral GCNs. Their results demonstrate re-
markable performance in synthesizing a diversity of facial ex-
pressions on 3D morphable meshes, all registered to a common
template topology.

As a generative framework, one drawback to VAEs is the
lack of control in targeted data generation. This can be prob-
lematic for tasks dependent on generating specific types of sam-
ples. Conditional variational autoencoders (CVAEs) [73] offer
more control by combining variational inference from VAEs
with additional conditional priors, w.r.t. each sample, using a
simple concatenation step prior to decoding. Based on CoMA
and the success of point cloud generation for neuroanatomical
shapes [39], a CVAE framework composed of spiral convolu-
tional learning blocks is used in this study to generate 3D mesh
surfaces of neuroanatomical structures by conditioning on AD
diagnosis.

3. Methods

Data used in the preparation of this article were obtained
from the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
database (adni.loni.usc.edu). The ADNI was launched in 2003
as a public-private partnership, led by Principal Investigator
Michael W. Weiner, MD. The primary goal of ADNI has been to
test whether serial magnetic resonance imaging (MRI), positron
emission tomography (PET), other biological markers, and
clinical and neuropsychological assessment can be combined
to measure the progression of mild cognitive impairment (MCI)
and early Alzheimer’s disease (AD).

3.1. Mesh notation

The input domain of our data is represented using triangular
mesh manifolds, M = (V,E,F ), for the corresponding finite
set of vertices, edges, and faces for each mesh. In graph sig-
nal processing [84], meshes are treated as undirected graphs,
where a feature vector of F features at vertex i is defined by
a row vector xi ∈ RF , for N vertices. To encapsulate all of
the shared features on the vertices of a single mesh, we use the
vertex feature matrix, X ∈ RN×F .

The shared features on the vertices of the input meshes to
our models are the corresponding x, y, z coordinates (3 features
total) of each vertex in the corresponding subject’s native 3D
space. The meshes used in our study are all registered to a
common mesh template of the subcortical structures utilized in
our prior work [2, 8, 83]. The meshes in this study use a shared
topology (same number of vertices/edges). However, the po-
sitions of vertices vary across samples therefore representing
a span of different 3D morphology for each sample using the
same template of connectivity. An analogous set-up with Eu-
clidean data could be a 3D array of voxels, where the features
at each voxel is the corresponding location of the voxel in the
subject’s native space.

3.2. Mesh extraction

Beginning with the obtained T1-weighted MRIs, FreeSurfer
v6.0 [13] is used to denoise each scan, then followed by B1
field homogeneity corrections and intensity/spatial normaliza-
tion. Seven subcortical structures per hemisphere were seg-
mented (amygdala, nucleus accumbens, caudate, hippocampus,
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Table 1: Number of vertices per subcortical structure per hemisphere.

Structure # Vertices, N
amygdala 512
caudate 1,024

hippocampus 2,048
nucleus accumbens 256

pallidum 512
putamen 1,024
thalamus 2,048

pallidum, putamen, thalamus) and modeled into surfaces using
SPHARM-PDM.

Next, surfaces were inflated, parameterized to a sphere, and
registered to a common spherical surface template using a rigid-
body registration to preserve the subcortical [7, 8] anatomy.
Then, surface templates were converted to triangular meshes
following a triangulation scheme. A scalar edge weight, wi j,
was assigned to each edge, ei j, connecting vertices i and j, us-
ing their geodesic distance, ψi j, along the surface s.t.

wi j = w ji =
1

σ
√

2π
exp

−1
2

(
ψi j

σ

)2
 . (3)

As done in our prior work [2], surface templates were par-
cellated using a hierarchical bipartite partitioning of their corre-
sponding mesh. Beginning with the initial mesh representations
of densely triangulated surfaces, we used spectral clustering to
define two partitions. These two partitions were then each sepa-
rated, yielding four child partitions, and repeated so forth. This
process was repeated until the average distance across neigh-
boring partitions was 2.5mm. Given one partition, we define
the central vertex of a partition as the vertex whose centrality
was the highest. The distance across two partitions was defined
as the geodesic distance (in mm) across the central vertices of
each partition. Two partitions are considered neighbors if at
least one vertex in each partition were connected.

Finally, partitions were numbered so that partitions 2p and
2p + 1 at level L, had the same parent partition p at level L − 1.
Therefore, for each level a mesh was obtained s.t. the vertices
of the mesh were the central vertices of the partitions and the
edges across neighboring vertices were weighted following Eq.
3. This serves as an improvement upon the work of Deffer-
rard et al. [20] to ensure that no singleton is ever produced by
mesh coarsening operations for the subcortical structures. At
the finest level, a single mesh sample had a total of N0 = 14, 848
vertices to represent all the subcortical structures (see Table 1
for vertex counts per structure per hemisphere).

3.3. Spiral sequences on triangular meshes

Next, we provide an illustrated clarification of spiral se-
quences on 3D morphable brain meshes (Figure 1), which are
at the core of the learning framework introduced by Gong et
al. [36]. Given an arbitrary triangular mesh and an arbitrarily-
selected vertex we call the center vertex, a spiral sequence can
be naturally enumerated by following a spiral pattern around the

center vertex. First, a spiral orientation is fixed (clockwise or
counter-clockwise) and a random starting direction is selected
from the center vertex. Following the convention of Gong et
al. [36], orientations for all spiral generations were fixed to
counter-clockwise and an arbitrary starting direction w.r.t. each
vertex was used.

Specifically, a k-ring and a k-disk around a center vertex v is
defined as:

0-ring(v) = {v},

k-disk(v) =
⋃

i=0,...,k

i-ring(v),

(k + 1)-ring(v) = N
(
k-ring(v)

)
\k-disk(v),

whereN(V) is the set of all vertices adjacent to any vertex in set
V . A spiral sequence of length ` at vertex v is defined as S (v, `);
a canonically ordered set of ` vertices from a concatenation of
k-rings. Only part of the last ring is concatenated in this defi-
nition, in order to ensure a fixed-length serialization. Formally,
the spiral sequence is defined as:

S (v, `) ⊂
{
0-ring(v), 1-ring(v), . . . , k-ring(v)

}
(4)

The spiral sequences defined in SpiralNet++ [36] show re-
markable advantages to a high-level feature representation for
each vertex in a consistent and robust way when spirals are
frozen during training. By this we mean that spiral sequences
are generated only once for each vertex on the template mesh,
instead of randomly generated sequences for every vertex per
epoch, as was done by Lim et al. [53]. Since the 3D mesh
samples used in this study are all registered to a common tem-
plate topology, the same spiral sequences can be used for every
sample. By design, this automatically generates the topology
of the convolutional filter on each vertex of the template mesh,

(a) Spiral++ on AD mesh (b) DilatedSpiral++ on HC mesh

Figure 1: Examples of spiral sequences established on left hippocampi triangu-
lar meshes from randomly selected scans of a subject with Alzheimer’s disease
(left) and a healthy control (right). Note that in using dilation, the receptive field
of the kernel supports exponential expansion without increasing the support-
size/length of the spiral kernel [36]. In each example, a spiral sequence of 6
selected vertices are generated including the center vertex.
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analogous to the assumed rectangular topology of convolutional
filters with standard 2D Euclidean CNNs.

3.4. Spiral convolution

Convolutional neural networks (CNNs) applied on 2D/3D
images defined on standard Euclidean grids [21, 51] are de-
signed using 2D/3D rectangular convolutional kernels that slide
across the images and map Fin input feature maps to Fout out-
put feature maps. An extension of this application on data types
in irregular domains such as graphs, is typically expressed us-
ing neighborhood aggregation [17, 85] or message passing [34]
schemes.

Using the convention defined in Section 3.1, with x(k−1)
i ∈

RFin denoting the feature vector of Fin features at vertex i and
ei, j ∈ REin denoting the (optional) Ein features on edge ei, j con-
necting vertex i to vertex j at layer (k − 1), message passing
neural networks are typically defined s.t.

x(k)
i = γ(k)

(
x(k−1)

i ,� j∈N(i)φ
(k)

(
x(k−1)

i , x(k−1)
j , e(k−1)

i, j

))
, (5)

where � represents a differentiable permutation-invariant op-
eration (i.e. sum, mean or max), and γ(k) and φ(k) denote dif-
ferentiable kernel functions such as Multi-Layer Perceptrons
(MLPs) [26]. CNNs defined for data types that exist in stan-
dard Euclidean grids have a clear one-to-one mapping. How-
ever for data types in irregular domains such as graphs, cor-
respondences are defined using neighborhood connectivity for
each vertex and weight matrices dependent on the kernel func-
tions, γ and φ at each layer.

Using the spiral sequence serialization discussed in Section
3.3, we can define convolution on meshes in an equivalent
canonical manner to Euclidean CNNs that is anisotropic by de-
sign. Following the convention of Gong et al. [36], the spiral
convolution operator is defined as

x(k)
i = γ(k)

(
||

j∈S (i,`)
x(k−1)

j

)
, (6)

where γ denotes MLPs and || is the concatenation operation ap-
plied on the shared features of the vertices of spiral sequence
S (i, `) centered at vertex i.

The dilated extension [87] of spiral convolution using the di-
lated spiral sequence (depicted in Figure 1) can also be applied
to meshes by uniformly sub-sampling during spiral generation,
with the preprocessing parameter d denoting a uniform sam-
pling of every d − 1 vertices along the spiral sequence until `
vertices are selected.

3.5. Mesh sampling (down/up-sampling)

Traditional Euclidean CNNs, typically use a hierarchical
multiscale learning structure, typically employed for learning
global and local context, using a combination of convolutional
and pooling/up-sampling layers. To mimic this behavior, we
use mesh sampling/coarsening operators [69] that define analo-
gous down-sampling and up-sampling of mesh vertices within
a neural network.

As mentioned in Section 3.1, vertex feature matrices for
meshes with N vertices and F shared features, are denoted
X ∈ RN×F . The 3D mesh samples in this work use F = 3 input
dimensionality, however convolutions applied on mesh features
within the neural network can result in features with different
dimensionality. Therefore, in this section we use F to general-
ize our definition.

The in-network down-sampling of a mesh, with N vertices,
is performed using the down-sampling matrix, D ∈ {0, 1}M×N ,
and up-sampling with U ∈ RN×M , for N > M. The down-
sampling matrix, a sparse matrix, is obtained by contracting
vertex pairs iteratively that maintain surface error approxima-
tions using quadric matrices [33]. The vertices of the down-
sampled mesh are essentially a subset of the original mesh’s
vertices, Vd ⊂ V. Each element of D(p, q) ∈ {0, 1} denotes
whether the q-th vertex is kept during down-sampling, with
D(p, q) = 1, otherwise discarded with D(p, q) = 0, ∀p.

To remain loss-less, the up-sampling operator is built during
the generation of the down-sampling operator. Vertices retained
during down-sampling are kept for up-sampling s.t. U(q, p) = 1
iff D(p, q) = 1. Vertices q ∈ V that are discarded during down-
sampling, for D(p, q) = 0, ∀p, are mapped into the down-
sampled triangular mesh surface by using barycentric coordi-
nates. This is specifically done by projecting q into the clos-
est triangle (of vertices i, j, and k) of the down-sampled mesh
surface, denoted by p̃, and determining the barycentric coordi-
nates, p̃ = wii+w j j+wkk, where i, j, k ∈ V and wi+w j+wk = 1.
Using these weights, we update U s.t.

U(q, i) = wi, U(q, j) = w j, U(q, k) = wk,

otherwise, U(q, l) = 0.
The features on the vertices retained from a down-sampling

operation for the new mesh are obtained via sparse matrix mul-
tiplication in

Y = DX ∈ RM×F , (7)

for X ∈ RN×F . In a synonymous way, the vertices on the output
mesh of an up-sampling operation are obtained as an inverse
operation to down-sampling via the sparse matrix multiplica-
tion

X = UY ∈ RN×F . (8)

3.6. Spiral brain mesh networks
3.6.1. Residual learning blocks (ResBlocks)

Motivated by the success of residual deep learning frame-
works [40] for image recognition, the NN models used in this
work are based on a residual learning architecture composed
of “residual learning blocks” (ResBlocks) depicted in Figure 2.
These function by adding the output from a previous block to
the output of the current block. This methodology was demon-
strated to allow for the training of deeper NN architectures, with
the intuition that adding more layers allows for progressively
learning more complex features within the architecture [40, 75].

A spiral convolutional layer maps Fin 7→ Fout features for
every vertex in the input mesh using MLPs applied on the spi-
ral sequence, S (i, `) of each vertex, i. Analogous to traditional
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convolution with padding to preserve the size of input feature
maps, spiral convolution on meshes also preserves dimension-
ality since S (i, `) is defined for every input vertex. Therefore,
the number of vertices, N, is still preserved in the output vertex
feature matrix, Xout ∈ RN×Fout .

A frequent problem in DL with training deep NNs is the in-
ternal covariate shift in the distribution of inputs to layers [41]
within a model. Batch normalization (BN) is used after each
spiral convolution operation within our ResBlocks as a way to
prevent our networks from “forever chasing a moving target,”
by standardizing the inputs to layers within the network. This
follows the convention used of other successful DL architec-
tures related to computer vision [40, 75].

An important hyperparameter for training deep networks is
the choice of activation function for the hidden layers and out-
put layer. He et al. [40], used the rectified linear unit (ReLU),
defined as

ReLU(x) = x+ = max(0, x),

for their residual learning framework. DL architectures using
ReLU, are prone to suffering from the common “dying ReLU”
problem where hidden layer outputs heavily saturate to zero
[57], leading to zero-valued gradients, making learning more
difficult. We circumvent this by using the exponential linear
unit (ELU) activation function [15] defined as

ELU(x) =

x, if x > 0
α (ex − 1) , if x ≤ 0

, (9)

for α = 1 in this work.

3.6.2. Convolutional mesh encoder
Using ResBlocks introduced in Section 3.6.1 and mesh

down-sampling, described in Section 3.5, we introduce the
convolutional encoder module used by our discriminative and
generative spiral networks, illustrated by Figure 3. As il-

Figure 2: Residual learning block (ResBlock) module used in this SpiralNet++

inspired architecture. Batch normalization (depicted in orange) is applied after
spiral convolution (depicted in yellow). The top (red) branch of the ResBlock
uses spiral convolution followed by batch normalization as an identity linear
mapping tool to map the Fin features of the input vertices to the Fout features
acquired by the main branch. Otherwise, the input of the ResBlock is added
to the main branch output (green). An element-wise ELU(·) function is used
within the hidden layers and as the final activation of the ResBlock.

G
AP

Figure 3: Convolutional mesh encoder module made up of a sequential stack
of alternating spiral convolution and down-sampling layers (5 each). The i-
th ResBlock maps Fi features onto the vertices of the respective input. Each
down-sampling layer coarsens the input vertex count down by a factor of 2.
After the final down-sampling layer, global-average pooling (GAP) is applied
over the vertex dimension to reduce the output embedding down to RF5 .

lustrated, input feature matrices are embedded to RF5 latent
vectors using the encoder defined as the sequential stack:
{ResBlock(`1, d1, F1) → MS(↓ 2) → ResBlock(`2, d2, F2) →
MS(↓ 2)→ . . . → ResBlock(`5, d5, F5)→MS(↓ 2)→ GAPN},
where

• `r, dr, Fr are the spiral lengths, dilation, and number of
filters for all convolutional layers w.r.t. the r-th ResBlock,

• MS(↓ 2) is shorthand for “mesh-sampling down by a
factor of 2” (down-sampling), and GAPN is the global-
average pooling operation [71].

On meshes, GAPN is essentially just an averaging operation
over the node dimension, as depicted in Figure 3.

Note that since the input mesh is down-sampled 5 times
within the module, each time by a factor of 2, the number of
vertices after the final down-sampling operation is N

25 = N
32 .

This module is used as the first step for both our discrimina-
tive and generative networks, described in Sections 3.6.4 and
3.6.5 respectively.

3.6.3. Convolutional mesh decoder
The convolutional mesh decoder module, depicted in Fig-

ure 4, applies a synonymous backwards transformation of the
encoder module described in Section 3.6.2. Following Fig-
ure 4 and starting with an arbitrary vector z ∈ Rk, first a
fully-connected (FC) layer maps z 7→ R

NF5
32 . This output is

then reshaped to get a feature matrix in R N
32×F5 , representing

the F5 features on the N
32 vertices at the coarsest level of our

meshes. The rest of the decoder module is defined as the se-
quential stack: {MS(↑ 2)→ResBlock(`5, d5, F5)→MS(↑ 2)→
ResBlock(`4, d4, F4)→ . . . →MS(↑ 2)→ ResBlock(`1, d1, F1)
→ SpiralConv(`1, d1, 3)}. Here `r, dr, and Fr are the same corre-
sponding values used in the encoder module. An additional spi-
ral convolutional layer (SpiralConv) with 3 filters is used at the
end (with no activation) to obtain the reconstruction, X̂ ∈ RN×3,
with 3 features per vertex (corresponding x, y, z coordinates).
This module is only utilized within the generative network de-
scribed in Section 3.6.5, where the task is to output 3D meshes.
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Figure 4: The mesh decoder module first uses a FC layer and reshaping to map the input vector, z ∈ Rk to a feature matrix for meshes at the coarsest level in R
N
32 ×F5 .

Alternating up-sampling and ResBlock layers (5 each) are used after. An additional spiral convolutional layer with 3 filters and no activation function is used to
project the penultimate N × F1 feature matrix back to N × 3 for the respective 3D mesh reconstruction.

3.6.4. Discriminative network
Following the point cloud discriminative network convention

established by Gutiérrez-Becker et al. [39], we construct our
discriminative networks using the encoder module (Figure 3)
in series with a MLP that uses BN and a ELU activation func-
tions after each FC layer, as depicted by Figure 5. The goal of
this network is to learn mesh features given an input feature ma-
trix, X ∈ RN×3, and a spiral convolutional operator that exploits
the locally-Euclidean topology of 3D mesh manifolds. These
learned mesh features are then global-average pooled and used
within a MLP for predicting the target variable, y.

In this work, we use the discriminative network for binary
classification, therefore we apply a sigmoid function, σ(y) =

1
1+e−y , on the predicted targets to get the probability of a pos-
itive label given the corresponding 3D mesh manifold. Tradi-
tionally, for binary classification tasks such as disease predic-
tion, the positive binary label, (1), pertaining to the pathology,
is typically the positive class in opposition to the healthy con-
trol label, (0). Our discriminative network can be trained in an
end-to-end supervised manner by optimizing a standard binary
cross-entropy (BCE) loss

LBCE = −
1
B

B∑
i=1

(
yi log (ŷi) + (1 − yi) log (1 − ŷi)

)
, (10)

where yi and ŷi are the ground-truth labels and predicted prob-
abilities (output of sigmoid) respectively, for a given sample, i,
in a batch of B samples.

3.6.5. Generative network (CVAE)
Based on the CoMA [69] architecture, our CVAE model uses

a convolutional decoder on mesh samples that share a topol-
ogy at different hierarchical levels of coarsening, described in
Section 3.6.3. Following Figure 6 , first a convolutional en-
coder, E, (Section 3.6.2) is used to compress input samples,
X ∈ RN×3, down to a latent vector, e = E(X) ∈ RF5 . Next, e
is mapped to a “mean vector,” µ ∈ Rk and a “standard devia-
tion vector,” σ ∈ Rk, using two parallel fully-connected (FC)
layers. These vector outputs are then used for variational in-
ference during training with the “reparameterization trick” for
VAEs [46]. Taking e = E(X) ∈ RF5 , where ei ∈ e, we vary

each component of the latent vector as zi = µi + εσi ∈ Rk,
where ε ∼ N(0, 1), therefore assuming a multivariate Gaussian
distribution, Q (z|X), that can be sampled from.

Next we concatenate a random sample, z, with the associated
conditional vector c, to generate the mesh reconstruction, X̂ =

D([z, c]). As done by Ranjan et al. [69] for CoMA, our spiral
CVAE is trained by minimizing the loss

Lgen =
∥∥∥X − X̂

∥∥∥
1 + wKLKL (N (0, I) ‖Q (z|X)) , (11)

with wKL = 0.001, selected ad-hoc, acting as a weight on the
KL divergence loss. The first term (reconstruction) minimizes
the MAE between the reconstruction and ground truth sample,
and the second term (KL divergence) acts as regularizer on the
latent space by adding the constraint of a unit Gaussian prior
with zero-mean on the latent space distribution, Q(z|X).

Once trained, synthesizing new samples is simple. Since the
KL divergence constrains the latent space to a unit Gaussian,
we generate new samples with our decoder by sampling a Rk

vector from the unit Gaussian prior and concatenating it with
a conditional prior vector, c ∈ Rm, as a “specification mecha-
nism” on the type of sample we want to synthesize.

3.7. Grad-CAM mesh adaptation

In our preliminary work [2], we adapt a visualization tool
known as Grad-CAM [71] to provide an interpretable localized
heatmap, that weighs the “importance” of areas in an image that
are indicative of certain predictions after a model is trained. In
our prior work, class activation maps (CAMs) were extracted
from our discriminative model to highlight areas, directly onto
surfaces, that led to true positive (TP) predictions in AD binary
classification. Wu et al. [83] also use this mesh adaptation of
Grad-CAM to highlight the areas of the cortex and subcortical
structures that were most indicative for predicting fluid intelli-
gence in children and adults.

Following the convention in [71], first the gradients of the
class scores (logits prior to softmax or sigmoid) w.r.t. to the
feature maps at the last convolutional layer (prior to GAP) are
extracted. Using these gradients, GAP is applied on each fea-
ture map, per-class, to extract the “neuron importance weights,”
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Figure 5: End-to-end discriminative spiral network given a 3D mesh input with feature matrix X ∈ RN×3. Batch normalization is used after each MLP layer,
followed by an ELU(·) activation. Given the output of the convolutional encoder, e ∈ RF5 , the MLP predicts the target, y, from the embedding for a particular
sample. For binary classification, we apply a sigmoid function after the final layer to output a probability for each sample.

G
AP

Figure 6: End-to-end generative model based on spiral convolutional CVAE architecture. During inference, a mesh sample, X ∈ RN×3, is first encoded to e ∈ RF5 ,
using the encoder, E. This encoding is then used to sample, z ∈ Rk , from the prior distribution, Q (z|X), assumed to be a multivariate Gaussian. Next z is
concatenated with the conditional vector, c ∈ Rm, and a reconstruction is generated using the decoder D ([z, c]) = X̂ ∈ RN×3. During generation, we sample from
N (0, 1) for each varied component of z, concatenate the sample with a given conditional c, and start at the decoder to generate a new sample, D ([z, c]).

α
( f )
c ∈ Rc× f , whose formulation was readapted for meshes s.t.

α
( f )
c =

1
N

∑
i

∂yc

∂A( f )
i

, (12)

where yc corresponds to the class score of class c, and A( f )
i refers

to the value at vertex i in feature map A( f ) ∈ RN . The set of neu-
ron importance weights, α( f )

c , is then projected back onto each
feature map, A( f ), to compute the CAMs, Mc for each class, c,
s.t.

Mc = ReLU

∑
f

α
( f )
c A( f )

 ∈ RN . (13)

ReLU is applied to the linear combination of maps because we
are only interested in the features that have a positive influence
on the class of interest [71].

As a consequence of multiple down-sampling operations
within our discriminative network’s architecture, extracted
CAMs w.r.t. the number of vertices at the final convolutional

layer are up-sampled back to the same number of vertices as
the input, using a trivial interpolation, for a direct “overlay”
onto the original input mesh.

4. Experiments

We evaluate our discriminative and generative spiral net-
works for several supervised and unsupervised tasks respec-
tively. First, we introduce the 3D structural neuroimaging
dataset and describe our convention for assigning the appro-
priate in-vivo diagnosis labels for each mesh sample (Section
4.1.1). Next we detail the preprocessing parameters used within
our experiments for generating the spiral sequences at each
level of mesh coarsening (Section 4.1.2).

In Section 4.2, we conduct an experiment with our discrimi-
native model to analyze the efficacy of incorporating input data
from multiple subcortical structures for binary AD/MCI classi-
fication. Our results demonstrate a clear advantage to the joint
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modeling of multiple subcortical structures, as opposed to us-
ing a single hemisphere or single structure. In Section 4.2.2, we
provide a baseline comparison to alternative shape-based oper-
ators, in place of spiral convolution, for the same binary classifi-
cation tasks. In Section 4.2.3, CAMs are generated for samples
that are correctly classified as AD by our spiral discriminative
network. These CAMs fall in accordance with previous reports
of morphological changes observed in the brain correlated with
AD. Our CAMs support our classification results by producing
visual transparency into our discriminative network’s reasoning
for true positive AD classification.

Lastly, in Section 4.3, we evaluate the effect of conditioning
on AD diagnosis for our generative models w.r.t. each subcor-
tical structure. Our generative network’s results demonstrate
that our model captures morphological differences in the pres-
ence of AD for some of the subcortical structures, particularly
the hippocampi and amygdala nuclei, which are in accordance
with previous autopsy reports that highlight patterns of atrophy
associated to AD.

4.1. Dataset and pre-processing
4.1.1. ADNI dataset

In this study, we use 8,665 T1-weighted 3D MRI volumes
from the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
dataset, corresponding to 1,266 unique subjects. For each scan,
we associate the healthy control (HC), mild cognitive impair-
ment (MCI), or Alzheimer’s disease (AD) labels given up to 2
months after the corresponding scan in ADNI. This is done as
a precaution to ensure that each diagnosis had clinical justifica-
tion. Our dataset consists of 2,758/3,959/1,948 samples for the
HC/MCI/AD labels respectively.

Each discriminative model in this work is designed to clas-
sify pathological (AD/MCI) scans apart from HCs. To ensure
that scans from the same subject do not appear in different sets,
all data splits (train/test/validation) in this study, shuffle sam-
ples by subject identifiers instead of scan identifiers. We ran-
domly split our data into training/testing sets (85%, 15%) across
subjects, and use a 5-fold cross-validation across the subjects
within the training set in our analyses.

4.1.2. Spiral sequence and mesh-sampling generation
Following the encoder module described in Section 3.6.2 and

depicted in Figure 3, the topology of spiral sequences at each
level of mesh coarsening is only preprocessed once. In-order,
the spiral lengths, `r, used for the spiral filters within the r-th
ResBlock of the encoder are {`r}

5
r=1 = {12, 12, 12, 12, 9}, with

the corresponding dilation parameters, {dr}
5
r=1 = {2, 2, 2, 1, 1}.

These parameters are used in reverse-order for the ResBlocks
within the the convolutional decoder, depicted in Figure 4.

Following the steps in Section 3.5, down/up-sampling ma-
trices were generated once to represent surfaces in this study
at multiple hierarchical levels while still preserving context at
each level. Again following the structure of the encoder (Figure
3), we specifically up/down-sample meshes within the architec-
ture by a factor of 2 for each mesh sampling operation. At each
level of coarsening, spiral sequences are generated once using
the template mesh.

4.2. Discriminative model predictions

Discriminative models and hyperparameter tuning were eval-
uated using the 5-fold cross-validation on the training set, as
explained in Section 4.1.1, for two separate experiments. In our
first experiment, we conduct an experiment with our discrimi-
native model to analyze the efficacy of incorporating input data
from multiple subcortical structures for binary AD/MCI classi-
fication, in comparison to input data from a single hemisphere
or single structure. In our second experiment, we analyze the
performance of alternative shape-based classifiers in compari-
son to our proposed method. We report the results on the test
set for each classification task. The number of filters, per con-
volutional layer, at the r-th ResBlock, within the encoder is
{Fr}

5
r=1 = {32, 64, 64, 128, 128}. A binary cross-entropy (BCE)

objective function was used to train all discriminative mod-
els using the AdamW [56] optimizer with a learning rate of
2× 10−4, learning rate decay of 0.99 for every step, and a batch
size of 16 samples per batch over 200 epochs. In addition to the
BCE loss, the weights of the network were also L2-regularized
with a weight decay of 1 × 10−5.

4.2.1. Subcortical structural ablation study
First, we perform binary classification tasks on different

combinations of subcortical structures to classify scans using
the diagnostic labels provided by ADNI. The first task is to clas-
sify HC scans apart from those belonging to subjects with AD,
meanwhile the second task looks at HC vs. MCI classification.
For each task, we use the same discriminative spiral network
(architecture and number of parameters) from Section 3.6.4,
and train each model on the same task, each with a varied com-
bination of input structures. Classifiers are trained and com-
pared with: (a) single-structure (both hemispheres), (b) single-
hemisphere, and (c) all-structure mesh inputs for each sample.

Table 2a summarizes the results of the experiments on
Alzheimer’s Disease (AD) Classification across variations of
subcortical structure inputs. The discriminative model’s per-
formance gradually improves with the inclusion of more sub-
cortical regions. In particular, an improvement in classifier
performance is observed when an entire hemisphere (an input
with multiple subcortical regions), is used versus using both
hemispheres of a single subcortical region. The discriminative
model performs best when all subcortical regions (the largest
input option) are used as input. The discriminative model
trained on the left hemisphere (LH) slightly outperforms the
model trained on the (RH) in both Area Under the Curve (AUC)
statistics, which may also be indicative of the way AD pathol-
ogy is typically diagnosed. The left hemisphere of the human
brain is tightly associated to language function (i.e. grammar,
vocabulary, and literal meaning) [16], which is often used as a
metric for the clinical diagnosis of AD.

AD follows a different trajectory than normal aging [62].
Language and memory problems like forgetfulness can be cor-
related with normal aging, however the types of memory prob-
lems that occur with AD dementia are more severe and typi-
cally begin to interfere with “everyday” activities, which is not
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Table 2: Binary classification results using same discriminative model. Precision, recall, and F1-score are reported w.r.t. a classification threshold of 0.5. For a global
measure over different thresholds we also report the Area Under the Receiver Operating Characteristic Curve (ROC-AUC) and the Area Under the Precision-Recall
Curve (PR-AUC) for each case.

(a) Healthy control (HC) vs. Alzheimer’s disease (AD)

Structure Threshold = 0.5 AUC
Precision Recall F1 ROC-AUC PR-AUC

all structures 0.877 0.834 0.855 0.906 0.895
left hemisphere 0.827 0.700 0.758 0.893 0.874

right hemisphere 0.737 0.798 0.766 0.887 0.863
amygdala 0.788 0.850 0.818 0.900 0.891
caudate 0.524 0.655 0.582 0.699 0.592

hippocampus 0.682 0.722 0.702 0.812 0.708
nucleus accumbens 0.610 0.674 0.640 0.774 0.690

pallidum 0.543 0.644 0.589 0.700 0.556
putamen 0.642 0.637 0.639 0.780 0.705
thalamus 0.611 0.723 0.662 0.780 0.703

(b) Healthy control (HC) vs. Mild cognitive impairment (MCI)

Structure Threshold = 0.5 AUC
Precision Recall F1 ROC-AUC PR-AUC

all structures 0.613 0.712 0.659 0.612 0.693
left hemisphere 0.629 0.616 0.622 0.589 0.649

right hemisphere 0.645 0.631 0.637 0.622 0.691
amygdala 0.643 0.561 0.599 0.607 0.689
caudate 0.628 0.565 0.595 0.578 0.635

hippocampus 0.597 0.705 0.647 0.549 0.622
nucleus accumbens 0.573 0.625 0.598 0.503 0.597

pallidum 0.597 0.698 0.643 0.533 0.617
putamen 0.602 0.551 0.575 0.529 0.618
thalamus 0.646 0.677 0.661 0.617 0.593

a part of normal aging. One example: forgetting where you
put your glasses, can be indicative of disorganization, forgetful-
ness, or normal aging. However, forgetting what those glasses
are used for (their utility) is not a part of normal aging. Like
many anomaly detection problems in medical imaging, where
it is important to anticipate pathological events that occur less
times than the healthy control, precision-recall statistics (see
Tables 2a and 2b) are often stronger for measuring classifica-
tion performance when there is a class imbalance and the class
of interest belongs to the smaller population.

There exists strong evidence for certain patterns of atrophy
for different neuroanatomical structures at different stages of
AD progression [23]. Early involvement of the entorhinal cor-
tex, hippocampus, and amygdala in AD progression have been
reported consistently in the literature [10, 24, 48, 52]. Our re-
sults in Table 2a suggest a stronger performance in AD classi-
fication given the shape of the amygdala or hippocampus alone
compared to the other subcortical structures. Most importantly,
these results also demonstrate that a holistic approach incorpo-
rating multiple subcortical regions improves AD classification.

Table 2b demonstrates the results of Mild Cognitive Impair-
ment Classification. An expected drop in performance occurs
for MCI classification, compared to AD. This behavior is ex-
pected due to the MCI group’s variability, given its detection

being more symptomatic and it is also sub-divided into several
stages. Detecting MCI is important because people with MCI
are more likely to develop AD than those without. Unlike the
fluidity of the MCI pathological spectrum, AD progression is
endemic and symptoms worsen with time. However, methods
related to neuroplasticity exist to potentially slow/mitigate its
progression, making the early detection of AD desirable.

4.2.2. Spiral discriminator baseline comparison
Given the improvement in AD classification using input

data from multiple subcortical regions for our discriminative
model, we compare our model’s performance with other base-
line shape-based classifiers on the same dataset. We evaluate
four different methods to perform the same discriminative tasks
as Section 4.2.1: (1) the discriminative network in this work, (2)
the same discriminative module with spectral graph convolution
in-place of spiral convolution, (3) the end-to-end discriminative
network from [39], and (4) a MLP trained on the latent space
features of the generative network in this work.

Spectral networks set-up. For the spectral convolutional
(ChebyNet) [20] network comparison, we demonstrate an im-
provement in performance with BN and a residual learning ar-
chitecture by training and evaluating multiple learning architec-
tures. We construct (1) a ChebyNet using the same architecture
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as the discriminative network in Figure 5, but with ChebyNet
layers, BN, and ELU activations in place of the Spiral Res-
Blocks, and another network using “ChebyNet ResBlocks,”
where spiral convolution operations within a ResBlock are re-
placed with ChebyNet layers. For a fair comparison, we use the
same network depth as the spiral discriminator, the same num-
ber of output features per convolutional layer, and a Chebyshev
polynomial of degree K = 6 for each spectral convolutional
layer [20]. The second MLP-half of each ChebyNet model fol-
lows the same MLP architecture used within our spiral discrim-
inative model (Figure 5).

Point cloud networks set-up. To utilize the same dataset on
this method, we drop the edges of our 3D meshes and treat the
surface vertices as point clouds representing the surface/shape
of the subcortical structures. The shared MLPs within the ar-
chitecture of the discriminative model constructed by Gutiérrez
Becker et al. [39] to operate on point clouds, are identically
implemented using 1D convolutional layers with a kernel size
of 1 [68, 67]. For consistency in adopting the PointNet-inspired
model for a fair comparison, we use the PointNet layers de-
scribed in [39], and construct the same discriminative network
in Figure 5, with point cloud operations in place of spiral op-
erations. We construct a PointNet discriminator with (1) 1D
convolutional layers + no activation following [39], in place of
the ResBlocks, (2) the same PointNet model in addition to BN
+ ELU activations after each convolutional layer, and (3) a final
variant with “PointNet ResBlocks” following the same style as
the Spiral ResBlocks and “ChebyNet ResBlocks” in the spectral
set-up. The second MLP-half of each PointNet model follows
the same MLP architecture used within our spiral discrimina-
tive model (Figure 5).

Generative model latent space set-up. A genera-
tive model (Section 3.6.5) was constructed with {Fr}

5
r=1 =

{128, 128, 128, 128, 256} for the corresponding output feature
maps of the model’s encoder and decoder Spiral ResBlocks. We
found it best to compress mesh samples down to a latent space
using R16 components for each subcortical structure, therefore
resulting in z ∈ R112 for all subcortical structures. A binary
one-hot encoding vector is used for the condition vector c ∈ R2,
w.r.t. the diagnosis label for each sample.

The generative network was trained by optimizing the loss
function in Equation 11 and using L2-regularization, weighted
by 1 × 10−5, on the network’s parameters. The AdamW [56]
optimizer is used with a learning rate of 2 × 10−4, learning rate
decay of 0.99 for every step, and a batch size of 8 samples per
batch over 500 epochs of training. Once trained, a MLP follow-
ing the same architecture as the second MLP in the discrimina-
tive network (Figure 5), is trained on the latent space shape de-
scriptors (i.e. z) of the corresponding samples, using the same
data splits as the other baseline comparisons. This MLP is also
trained using the AdamW [56] optimizer, with the same training
parameters as the rest of the discriminative baseline models.

AD model comparison. For the AD binary classification
task, the model comparison results in Table 3a demonstrates
that our spiral discriminative model used in the previous abla-
tion study (Section 4.2.1) outperforms all the baseline models
in precision, recall, and F1 score for a 0.5 binary classifica-

tion threshold. Our model also outperforms the baseline mod-
els in both Area Under the Curve (AUC) statistics, particularly
the Precision-Recall Curve (PR-AUC) indicating an overall im-
provement in precision, recall, and F1 score across multiple
classifier thresholds in [0, 1].

The spectral classifier without residual connections
(ChebyNet in Table 3a) performs the worst overall. However,
with the addition of the residual learning framework by using
“ChebyNet ResBlocks,” we see an improvement in perfor-
mance across all metrics for the ChebyResNet model; in fact,
it ranks second-highest in both AUC scores behind our spiral
model. In our prior work [2], ChebyResNets were used for
the same AD binary classification task on the same subcortical
structures used in this study, in addition to the corresponding
white and pial cortical surface meshes for each sample. In prior
work [2], ChebyResNet outperforms the baseline classifiers,
demonstrating an improvement in performance by directly
learning on surface meshes with spectral graph convolution.
In this work, ChebyResNet still outperforms the PointNet
variants, indicating again an improvement in performance over
non-surface mesh approaches.

The bare PointNet model, without activation functions or a
residual framework, performed better across all metrics (shown
in Table 3a), in comparison to the bare ChebyNet classifier.
The PointNet models progressively improves overall with the
addition of BN + ELU activations, and with the residual learn-
ing framework. The PointResNet model does outperform the
ChebyResNet model in precision, recall, and F1-score given a
0.5 binary classification threshold, however not in AUC statis-
tics taken over several thresholds in [0, 1].

MCI model comparison. Like our structure ablation exper-
iment, we see a drop in performance for all discriminative mod-
els in binary MCI classification. The same network set-up used
for AD classification was used in this evaluation, treating MCI
as the positive label. Our SpiralResNet classifier achieves the
highest PR-AUC in MCI classification when compared to the
baseline methods. The overall drop in performance for MCI
classification for all models in this experiment is the same be-
havior analyzed in the previous experiment.

4.2.3. Class activation maps for AD classification
Using the pre-trained SpiralResNet classifier trained on all

the subcortical structures, we generate class activation maps
(CAMs), using our Grad-CAM adaptation on meshes, for each
AD sample in the test set that is correctly classified by our
model (TP predictions), given a 0.5 classifier threshold. CAMs
for the TP samples are then averaged and projected onto the ver-
tices of the subcortical template [7, 8]. Mesh faces are colored
using an interpolation based off the CAM values at the vertices
of each corresponding triangle (each face has 3 corresponding
vertices). The color-map scale used to visualize the TP CAM
in Figures 7a and 7b highlights areas along the surface by their
magnitude of influence, ordered from least to greatest, in binary
AD classification with our trained discriminative model.

Aligning with our discriminative model’s results in the struc-
ture ablation study, we observe a strong involvement of hip-
pocampus and amygdala shape in AD vs. HC classification. In
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Table 3: Baseline comparison of binary classifiers for HC versus AD/MCI classification.

(a) Healthy control (HC) vs. Alzheimer’s disease (AD)

Model Threshold = 0.5 AUC
Precision Recall F1 ROC-AUC PR-AUC

SpiralResNet (Ours) 0.877 0.834 0.855 0.906 0.895
Generative (Ours) 0.703 0.771 0.735 0.851 0.769

ChebyNet 0.487 0.644 0.555 0.664 0.580
ChebyResNet 0.740 0.757 0.748 0.869 0.837

PointNet 0.791 0.798 0.795 0.803 0.786
PointNet+BN+ELU 0.802 0.776 0.789 0.798 0.774

PointResNet 0.842 0.814 0.828 0.836 0.822

(b) Healthy control (HC) vs. Mild cognitive impairment (MCI)

Model Threshold = 0.5 AUC
Precision Recall F1 ROC-AUC PR-AUC

SpiralResNet (Ours) 0.613 0.712 0.659 0.541 0.693
Generative (Ours) 0.595 0.776 0.673 0.524 0.629

ChebyNet 0.602 0.820 0.694 0.542 0.612
ChebyResNet 0.591 0.827 0.689 0.521 0.610

PointNet 0.590 0.789 0.676 0.528 0.615
PointNet+BN+ELU 0.595 0.826 0.692 0.557 0.639

PointResNet 0.601 0.702 0.648 0.542 0.616

AD, it has been demonstrated that cortical atrophy occurs ear-
lier and progresses faster in the LH than in the RH [55, 77].
Wachinger et al. demonstrated a significant leftward asymme-
try in cortical thinning (mainly in the temporal lobe and su-
perior frontal regions) with an increase in hippocampal asym-
metry, which remains consistent with previous findings demon-
strating an asymmetric distribution of amyloid-β [31], a protein
in the brain that is thought to be toxic and naturally occurs at
abnormal levels in the brains of subjects living with AD.

Both caudate structures are also highlighted as indicative
of TP classifications, again with a similar leftward asymme-
try. In particular, there is an emphasis on the tail of the left
caudate nucleus. This observation falls in line with the find-
ings in [3] where both the left and right caudate nucleus were
smaller in volume for patients with dementia compared to age-
matched healthy controls (HC); in fact, their findings show that
the left caudate volume difference was significant in AD sub-
jects (p < 0.01). In a recent study looking at shape differences
in the ventricles of the brain w.r.t. AD [25], Ferrarini et al. show
that the areas adjacent to the anterior corpus callosum, the sple-
nium of the corpus callosum, the amygdala, the thalamus, the
tails of the caudate nuclei, and the head of the left caudate nu-
cleus are all significantly affected by AD and also highlighted
within our generated CAMs.

Volume reductions in the putamen, hippocampus, and thala-
mus volume were observed in [42], adhering to the potential
left putamen involvement depicted in Figure 7b. On the left
hippocampus structure particularly, we see widespread involve-
ment of the structure with most of the predictive activity occur-
ring at the tail of the left hippocampus and roughly around the
CA1 subfield, also reported by Gutiérrez-Becker et al. [39].

On average, we observe an asymmetry towards the CAMs
of the LH structures as more indicative of AD than the RH,
even with a trained on both hemispheres at once. Our ablation
study also demonstrates an improvement in classifier AUC per-
formance (Table 2a) with using the LH versus the RH in AD
classification. Several studies point towards a left lateralization
of brain atrophy in AD [55, 77], however Derflinger et al. [22]
argue that brain atrophy in AD is asymmetric rather than later-
alized and that data suggesting leftward lateralization may be a
result of selection bias. This may be due to the fact that clinical
scores used to diagnose AD are primarily language-based, re-
sulting in a potential bias towards a selection of patients already
with left-lateralized atrophy [44].

4.3. Diagnostic conditioning on generative model
Differences in output generation w.r.t. to AD diagnosis was

done with the point cloud generative models by Gutiérrez-
Becker et al. [39]. Shape variations their model associates
to the presence of AD are measured with point-to-point met-
rics like L1 distance. Choi et al. [14], also experiment with
modifying their CVAE’s condition vectors to generate synthetic
PET images and forecast future age-related metabolic changes.
Predicted regional metabolic changes were correlated with the
real changes in their follow-up data. In this work, we observe
changes in mesh surface area, A, and volume, V , w.r.t. to the
HC and AD labels, given the same latent vectors for the set of
HC samples. The shape descriptors learned by our generative
model that are used in our discriminative model evaluation (Ta-
ble 3a) demonstrate potential in encoding complex shape vari-
ations using a low-dimensional embedding.

For our final evaluation, we use the same CVAE architecture
used by our generative model in Section 4.2.2 to construct a
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(a) Lateral view of CAM on RH and LH subcortical structures respectively.

(b) Medial view of CAM on LH and RH subcortical structures respectively.

Figure 7: Average of class activation maps (CAM) for true positive predictions by the SpiralResNet discriminative network proposed in this work. A CAM is
generated for each TP prediction and their average is projected onto the subcortical structure template mesh from [7]. Provided are lateral (a) and medial (b) views
of the CAM projected on the template, which follows the color-scale map which at the center of the two subfigures.

generative model w.r.t. each subcortical structure, using z ∈ R16

as the dimension of the latent space for each model. For each
CVAE model we use a binary one-hot encoding w.r.t. to the AD
versus HC labels in our dataset as the condition vector, c ∈ R2,
to analyze the effect of conditioning on AD diagnosis per struc-
ture. Each CVAE model is trained following the same training
parameters and AdamW optimizer used for training the gen-
erative network in our baseline classifier comparison (Section
4.2.2).

First we train each generative network on the entire dataset of
HC and AD samples. Next, we extract latent space embedding
(i.e. z ∈ R16 for each subcortical structure) of each HC sample
in the dataset. With the latent space shape descriptor of each
structure for each HC sample, we analyze the effect of changing
the HC label to AD before the decoding step of each generative
network to see how diagnosis affects the generated output.

Based on the literature regarding changes in the hippocam-
pus shape as a result of AD, Figure 8 qualitatively depicts some

of the hippocampus results in four randomly selected (origi-
nally HC) samples. Qualitatively, we observe a “thinning” in
hippocampus volume for either hemisphere, particularly shown
in the examples of the second (LH) and third (RH) columns in
Figure 8. The histograms spread throughout Figures 9-12 quan-
titatively depict the observed corresponding volumes, V , and
surface areas, A, with using the HC samples and changing the
diagnosis during decoding. The volume of a watertight mesh is
determined using a surface integral, and the surface area is de-
termined as the sum of the areas of all the triangles on a mesh
surface.

Given that the diagnosis labels are categorical and we are an-
alyzing the effect of conditioning the generative shape model
using these labels, we use the non-parametric Kruskal-Wallis
H-test [60] to measure the statistical significance of differences
in the output of the model w.r.t. each label. For each his-
togram, we report the corresponding H-value and p-value. For
the left putamen, left pallidum, and right pallidum, differences
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Figure 8: Dorsal views of the left and right hippocampus surfaces generated
using proposed generative CVAE model on ADNI dataset. For a given latent
space vector, z, a 3D mesh is generated by conditioning on the HC (top row) or
AD (bottom row) label that is passed along to the decoder along with z. Each
column corresponds to a different HC sample.

in the volumes of generated outputs are not statistically signif-
icant (p > 0.05). For the left caudate, left nucleus accumbens,
left/right pallidum, right putamen, and left/right thalamus, there
is no statistical significance (p > 0.05) in the differences in sur-
face area.

For each of the remaining subcortical structures, a reduction
in volume and surface area is the most common observation, es-
pecially in both hippocampi (p � 0.001). We hypothesized our
generative model would learn to reduce the hippocampus and
amygdala structures, areas that are highly correlated with lan-
guage, memory, frontal executive function scores. Our results
for the remaining structures are in accordance with the expected
shrinking of each structure in the presence of AD, coinciding
with previous autopsy reports in AD progression [10, 58].

4.4. Summary of experiments
Our results for in-vivo AD vs. HC classification with spi-

ral networks on brain surface meshes demonstrate the power-
ful discriminative advantage in learning surface representations
of subcortical brain structures. Spiral CNNs are demonstrated
to outperform recent methods which operate on point cloud
representations or use spectral graph convolution on the same
template-registered meshes in this study. To the best of our
knowledge, the spiral network method proposed in this study
is the only state-of-the-art (SOTA) approach that exploits the
locally-Euclidean properties of vertices distributed across a sur-
face to design learnable anistropic filters that improve AD clas-
sification w.r.t. subcortical structure shape. Our results demon-
strate a clear advantage to incorporating multiple subcortical
regions, as opposed to input data from a single subcortical re-
gion or hemisphere.

The CAMs obtained using our discriminative model draw di-
rect correspondences with the literature regarding localized ar-
eas of deformation related to AD pathology. Paired with our
discriminative model, our framework combines localized con-
textual visualization together with classification results. More

often, a modular visualization method that provides context to
a discriminative model’s predictions without making architec-
tural changes to the model, is highly desirable for establishing
appropriate trust in predictive models.

Furthermore, the results of our generative model demonstrate
the potential for using diagnosis in the condition vector, as a
means to add more specificity to the type of output that is gen-
erated. Our generative framework illustrates a potential ap-
plication for generating synthetic training data that would be
beneficial for improving deep learning frameworks that bene-
fit from increased dataset sizes. Significant volume and surface
area changes w.r.t. to AD diagnosis were identified, particu-
larly in the amygdala, caudate, nucleus accumbens, right puta-
men, thalamus, and most importantly the hippocampus, an area
of the brain highly correlated with AD. Our prior work using
spectral filters [2] utilizes the same subcortical structures, in
addition to the cortex, to perform the same AD classification
task. However, during our analysis, we observed frequent GPU
memory issues with training a CVAE model using the cortical
surface. A major degradation in the output quality of recon-
structed/generated cortical surfaces with our generative frame-
work was also observed. As [39] points out, modeling a struc-
ture with a more complex geometry, e.g., the cortex, requires
a larger number of points that may lead to GPU memory con-
straints. Additionally, the gyrification of the cortical surface is
much more complex and may require additional methods that
generalize better to 3D mesh structures with complex sulci and
gyri.

5. Conclusions and Future Work

To the best of our knowledge, no existing works have in-
vestigated brain shape in regards to AD pathology using dis-
criminative and generative networks that learn and operate di-
rectly on surface meshes by way of geometric deep learning.
Our framework is constructed by a variety of modular com-
putational blocks that are used by both our discriminative and
generative models. Notably, our convolutional encoder learns
effective shape descriptors that can be used for AD classifica-
tion by our discriminative model. Our first analysis demon-
strates an improvement in AD classification performance using
the same model with varying input types: (a) single subcorti-
cal region, (b) subcortical regions within a single hemisphere,
and (c) bilateral subcortical regions. Our results demonstrate
a clear advantage to the joint modeling of multiple subcortical
structures for in-vivo AD classification.

Our discriminative model also outperforms alternative shape
descriptor methods in our baseline comparison. Additionally,
our adaptation of Grad-CAM to 3D meshes provides context as
to which subcortical brain regions are driving our AD classifi-
cation results. Our class activation maps (CAMs) are in accor-
dance with the literature on morphological changes observed in
the brains of subjects with AD. Our CAMs make our classifica-
tion results more transparent by producing visual explanations.
Improving clinical confidence and reliability in automated dis-
criminative methods, can be approached by contextualizing a
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Figure 9: Observed changes in output volume and surface area for amygdala (first two rows) and caudate (bottom two rows).
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Figure 10: Observed changes in output volume and surface area for hippocampus (first two rows) and nucelus accumbens (bottom two rows).
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Figure 11: Observed changes in output volume and surface area for pallidum (first two rows) and putamen (bottom two rows).
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Figure 12: Observed changes in output volume and surface area for thalamus.

model’s reasoning about its beliefs and actions for clinicians to
trust and use.

Additionally, our generative model’s decoder module is able
to reconstruct 3D mesh inputs from their low-dimensional
shape descriptors obtained by the encoder. More importantly,
in using a variational approach, we’re able to learn a proba-
bilistic latent space that can be sampled from to generate syn-
thetic samples for each subcortical structure w.r.t. phenotype
information, in particular: AD diagnosis. The endemic nature
of medical imaging data, particularly within neuroimaging, at-
tributes to scarcity of open-access neuroimaging databases. Our
generative model is able to generate realistic-looking synthetic
examples, which may be used to train other deep learning ap-
proaches that often require large datasets and annotated data is
limited.

Our proposed discriminative network can be further tailored
to fuse other phenotypic data for AD classification; including
but not limited to: chronological age, sex assignment at birth,
genotype data, etc. Phenotype features can also be used as ad-
ditional conditional priors in our generative framework, adding
additional constraints for synthesizing personalized samples.
Natural extensions of this work could include (1) expanding the
classification task to sub-typing different stages of mild cogni-
tive impairment (early versus late), (2) using spiral convolution
within a recurrent neural network framework for longitudinal
predictions related to AD, and (3) experimenting with gener-
ating template-registered 3D meshes from MRI volume inputs
using a spiral convolutional decoder framework to automate the
mesh extraction preprocessing steps.
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