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Abstract 

Polygenic risk scores derived from genotype data (PRS) and family history of disease (FH) both 
provide valuable information for predicting disease risk, enhancing prospects for clinical utility. 
PRS perform poorly when applied to diverse populations, but FH does not suffer this limitation.  
Here, we explore methods for combining both types of information (PRS-FH).  We analyzed 10 
complex diseases from the UK Biobank for which family history (parental and sibling history) 
was available for most target samples.  PRS were trained using all British individuals (N=409K), 
and target samples consisted of unrelated non-British Europeans (N=42K), South Asians 
(N=7K), or Africans (N=7K).  We evaluated PRS, FH, and PRS-FH using liability-scale R2, 
focusing on three well-powered diseases (type 2 diabetes, hypertension, depression) with R2 > 
0.05 for PRS and/or FH in each target population.  Averaging across these three diseases, PRS 
attained average prediction R2 of 5.8%, 4.0%, and 0.53% in non-British Europeans, South 
Asians, and Africans, confirming poor cross-population transferability.  In contrast, PRS-FH 
attained average prediction R2 of 13%, 12%, and 10%, respectively, representing a large 
improvement in Europeans and an extremely large improvement in Africans; for each disease 
and each target population, the improvement was highly statistically significant. PRS-FH 
methods based on a logistic model and a liability threshold model performed similarly when 
covariates were not included in predictions (consistent with simulations), but the logistic model 
outperformed the liability threshold model when covariates were included. In conclusion, 
including family history greatly improves the accuracy of polygenic risk scores, particularly in 
diverse populations. 
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Introduction 
Polygenic risk scores derived from genetic data (PRS) can provide valuable information for 
predicting disease risk, enhancing prospects for clinical utility1,2. However, a well-recognized 
limitation of PRS methods is their poor cross-population transferability3–7.  Family history of 
disease (FH) can provide complementary information about disease risk8–11, consistent with the 
rich history of leveraging data from ungenotyped but phenotyped relatives in analyses of 
quantitative traits in livestock11–14. In particular, FH has the potential to alleviate the poor cross-
population transferability suffered by PRS.  Combining PRS and FH information is an appealing 
paradigm for predicting disease risk, but it is currently unclear how to optimally combine these 
two sources of information. Previous studies that combined PRS and FH information restricted 
the PRS component to genome-wide significant loci9,15,16, instead of leveraging genome-wide 
polygenic signals; did not differentially incorporate family history for each type of relative9,15–19, 
to allow for differential environmental effects20 (in particular, ref. 9 relies on external narrow-
sense heritability estimates); and did not model contributions of PRS and FH that vary as a 
function of the target population9,15–17, to optimize cross-population transferability. In addition, 
ref. 9 did not incorporate covariates; is not applicable to UK Biobank data, in which sibling 
history is reported as a binary variable (at least one sibling has the disease), rather than the 
number of affected siblings; and relies on external data to estimate model parameters. Other 
studies only considered PRS and FH information separately10,21. 
 
Here, we develop a framework for predicting an individual’s risk of disease conditional on both 
their PRS and their family history of disease (PRS-FH), using either a logistic model22 or a 
liability threshold model23. We show via simulations and application to complex diseases from 
the UK Biobank24 that incorporating family history using PRS-FH greatly improves the accuracy 
of polygenic risk scores, with a particularly large improvement in diverse populations.  The 
logistic model outperforms the liability threshold model in analyses with covariates, and we thus 
recommend the use of the logistic model. 
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Results 
Overview of methods 
 We considered two PRS-FH methods based on a logistic model (PRS-FHlog) and a 
liability threshold model (PRS-FHliab), respectively (see Methods). Both methods require a large 
training sample to estimate SNP effect sizes for the PRS (in this study, we use European training 
data), and a small additional training sample (e.g. Neff≥500; see Methods) from the target 
population to fit PRS-FH model parameters, which are specific to the target population. Both 
PRS-FHlog and PRS-FHliab allow for sibling history to be reported as the presence or absence of 
at least one affected sibling (together with the total number of siblings), as in the UK Biobank. 
Both PRS-FH methods can be extended to incorporate covariates. We have publicly released 
open-source software implementing both methods as well as model parameters (specific to each 
target population) for both methods (see URLs). 
 The PRS-FHlog method relies on a logistic model and consists of 3 main steps (Figure 1): 
(1) compute PRS in all target population individuals by applying standard methods to training 
data; (2) use the training individuals from the target population to estimate logistic model 
coefficients, and (3) for each target individual, compute their predicted risk of disease, 
conditional on their PRS and the disease status of their first-degree relatives. In step 1, we apply 
BOLT-LMM25,26 to training data to jointly fit SNP effect sizes under a non-infinitesimal model, 
and compute PRS in target population individuals using these SNP effect sizes. In step 2,  we 
estimate the contributions of the PRS and the disease status of first-degree relatives (mother, 
father, siblings; we allow different coefficients for each type of relative, to allow for differential 
environmental effects20) to the log-odds of disease, making a strong assumption that the log-odds 
of disease depends linearly on the PRS and disease status of first-degree relatives (see 
Discussion). These parameters are specific to the target population, requiring an extra layer of 
training data from the target population; in this study, we use 10-fold cross-validation in the 
target population. In step 3, we predict the risk of disease for each target individual as the log-
odds of disease based on the PRS and disease status of first-degree relatives. 
 The PRS-FHliab method relies on a liability threshold model23 and consists of 3 main steps 
(Figure 1): (1) compute PRS in all target population individuals by applying standard methods to 
training data; (2) use the training individuals from the target population to estimate liability 
threshold model parameters, and (3) for each target individual, compute their predicted risk of 
disease, conditional on their PRS and the disease status of their first-degree relatives. In step 1, 
we use BOLT-LMM25,26 (see above).  In step 2, we estimate the variance/covariance matrix for a 
target individual’s total liability, their PRS, and the total liabilities of their first-degree relatives 
(we allow different covariances for each type of relative, analogous to above). As above, these 
target population-specific parameters require an extra layer of training data from the target 
population. In step 3, we predict the risk of disease for each target individual as the posterior 
probability of disease based on the PRS and disease status of first-degree relatives. The 
prevalence of disease (determined by the liability threshold) among target individuals may vary 
as a function of number of siblings, consistent with empirical data. The PRS-FHliab method is 
conceptually related to the method of ref. 9, but key differences include the incorporation of 
genome-wide polygenic risk scores, the incorporation of different covariances for each type of 
relative, the way in which model parameters are estimated, the incorporation of target 
population-specific model parameters, and the way in which covariates are incorporated. 
 We compare PRS-FHlog and PRS-FHliab to PRS alone as well as a predictor based on 
family history (FH) alone. The PRS method (and the PRS used within both PRS-FH methods) 
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can employ any PRS algorithm; in this study, we use BOLT-LMM, which has been shown to 
attain high polygenic prediction accuracy in the UK Biobank25,26. The FH predictor can be 
constructed using a logistic model (FHlog) or a liability threshold model (FHliab). Under a logistic 
model, the disease status of relatives linearly impacts the log-odds of disease for an individual. 
Under a liability threshold model, the posterior risk of disease is computed conditional on family 
history alone. We evaluate all methods using liability-scale R2 (ref. 27). We compute the standard 
error of liability-scale R2, and associated p-values, via a jackknife across individuals. Further 
details of all methods are provided in the Methods section. 
 
Simulations 
We simulated genotypes at 100,000 unlinked SNPs for 400K unrelated PRS training samples and 
40K unrelated target samples from the same population.  We simulated case-control status for 
the PRS training samples, and case-control status plus family history (parental history for both 
parents) for the target samples (we did not include sibling history in these simulations); we 
simulated genotypes for both parents, used these to simulate genotypes for target samples 
(offspring), and simulated case-control status for both parents and target samples using a liability 
threshold model. PRS training samples and target samples were not ascertained for case-control 
status. Our default parameter settings involved 10,000 causal SNPs, total liability-scale 
heritability (ℎ!) equal to 50%, liability-scale SNP-heritability (ℎ"!) equal to 25%, and disease 
prevalence (K) equal to 1% (very low prevalence), 5% (low prevalence) or 25% (high 
prevalence) (implying liability threshold (T) equal to 2.33, 1.64, or 0.67 and total observed-scale 
heritability equal to  4%, 11% or 27%, respectively), with the same prevalence for parents and 
target samples; other parameter settings were also explored. Further details of the simulation 
framework are provided in the Methods section and Supplementary Table 1. We note that 
simulations using real LD patterns are essential for methods impacted by LD between SNPs, and 
that LD can impact the performance of PRS methods1; however, PRS-FHlog and PRS-FHliab are 
not otherwise impacted by LD between SNPs, as no genotype data is used except for computing 
the PRS. We further note that simulations with LD using a subset of individuals from UK 
Biobank would not be feasible, as simulations of family history require genotypes of both target 
samples and relatives (in order to simulate the case-control status of both target samples and 
relatives), but genotypes of relatives are not available for (nearly all) UK Biobank samples.  
 
We assessed the prediction accuracy of PRS, FHlog, FHliab, PRS-FHlog, and PRS-FHliab by 
computing liability-scale R2 (ref. 27). Results are reported in Figure 2 and Supplementary Table 2.  
PRS attained much higher accuracy at higher prevalence, as expected due to higher observed-
scale SNP-heritability (as PRS training samples were not ascertained for case-control status). 
FHlog and FHliab performed similarly, and also attained higher accuracy at higher prevalence; at 
lower prevalence, most individuals have no affected parents, allowing little discrimination of risk 
based on family history. PRS and FH methods (FHlog and FHliab) performed similarly at low 
(5%) prevalence, but PRS outperformed FH at high (25%) prevalence–opposite to the results 
reported in ref. 10; this difference can be explained by the fact that we analyzed unascertained 
case-control data. 
 
PRS-FHlog and PRS-FHliab performed similarly, and substantially outperformed both PRS and 
FH methods at all prevalence values. Given that PRS-FHliab makes assumptions that match the 
generative model used in these simulations, the strong performance of PRS-FHlog is supportive 
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of the flexibility of the logistic model, even though it imposes a strong linearity assumption (on 
the log-odds scale). Differences in prediction R2 between PRS-FHlog (resp. PRS-FHliab) vs. PRS 
were smaller than the prediction R2 achieved by FHlog (resp. FHliab), due to positive correlations 
between PRS and FH predictions (average correlation = 0.03, 0.08, and 0.18 at very low, low, 
and high prevalence, respectively). Due to the poor performance (liability-scale R2	< 0.05) of all 
methods at very low prevalence, we restricted all further analyses to low or high prevalence. 
 
We performed five secondary analyses.  First, we assessed the calibration of each method (PRS, 
FHlog, FHliab, PRS-FHlog, and PRS-FHliab) by regressing observed disease status on the predictor 
(a slope of 1 implies correct calibration28). All methods were well-calibrated in both the low and 
high prevalence scenarios (Supplementary Table 3). Second, we increased the parental 
prevalence to twice the offspring prevalence. In these simulations, the predictive accuracy for all 
methods that incorporate family history (FHlog, FHliab, PRS-FHlog, and PRS-FHliab) increased 
(Supplementary Table 4). Third, we introduced environmental correlation, considering two 
scenarios in which the offspring had either the same or different environmental correlations with 
the mother and father. In both scenarios, the predictive accuracy for methods that incorporate 
family history (FHlog, FHliab, PRS-FHlog, and PRS-FHliab) increased (Supplementary Table 5).  
Fourth, we decreased or increased the heritability. Prediction accuracies increased with 
increasing heritability, but PRS-FH attained similar improvements (Supplementary Table 6). 
Fifth, we decreased or increased the polygenicity (number of causal SNPs) while keeping 
heritability constant. Prediction accuracies decreased with increasing polygenicity for methods 
incorporating a PRS predictor, but again PRS-FH attained similar improvements (Supplementary 
Table 7).  
 
We conclude that, in these simulations, incorporating family history of disease (PRS-FHlog and 
PRS-FHliab) greatly increases prediction accuracy as compared to polygenic risk scores alone 
(PRS).  We further conclude that PRS-FHlog and PRS-FHliab generally perform similarly in these 
simulations. We note that the generative model in all of our simulations was the same as the 
liability threshold model that FHliab and PRS-FHliab use for prediction, and thus these simulations 
should be viewed as a best-case scenario for FHliab and PRS-FHliab. 
 
Analysis of complex diseases from the UK Biobank 
We analyzed data for 10 complex diseases from the UK Biobank24, consisting of genotype data, 
case-control status, and family history information for parents and siblings (Table 1).  PRS were 
trained using all British individuals (N=409K), applying BOLT-LMM to autosomal genotyped 
SNPs with missingness <10% and minor allele frequency (MAF) >0.1% (672,288 SNPs). Target 
samples consisted of unrelated non-British Europeans (N=42K), South Asians (N=7K), or 
Africans (N=7K); target samples were unrelated to training samples and to each other (see 
Methods).  Our primary focus was on three well-powered diseases (type 2 diabetes, depression, 
and hypertension) with (liability-scale) prediction R2 > 0.05 for PRS and/or FH methods in each 
target population; two of these diseases (type 2 diabetes, hypertension) have higher prevalence in 
South Asians and Africans (Table 1). We report averages across the three well-powered diseases.  
We also report results for each of the 10 diseases, defined as the set of diseases in the UK 
Biobank for which (i) family history (parental and sibling history) was available for most target 
samples and (ii) prediction R2 was statistically significant (after Bonferroni correction) for PRS 
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and/or FH methods in the largest target population (non-British Europeans; Supplementary Table 
8). 
 
We assessed the prediction accuracy of PRS, FHlog, FHliab, PRS-FHlog and PRS-FHliab. Results 
are reported in Figure 3a and Supplementary Table 9.  Across the three well-powered diseases, 
PRS attained average prediction R2 of 5.8%, 4.0%, and 0.53% in non-British Europeans, South 
Asians, and Africans, confirming poor cross-population transferability3–7.  In contrast, FHlog 
attained similar prediction R2 across populations: 8.0%, 8.6% and 9.6%, with similar results for 
FHliab. Notably, PRS-FHlog attained average prediction R2 of 13%, 12%, and 10%, with similar 
results for PRS-FHliab. Thus, PRS-FHlog and PRS-FHliab attained a large relative improvement vs. 
PRS in Europeans (consistent with simulations) and an extremely large relative improvement vs. 
PRS in Africans. For each disease and each target population, the difference between PRS-FHlog 
(or PRS-FHliab) and PRS was highly statistically significant (p < 2 × 10-6). Differences in 
prediction R2 between PRS-FHlog (or PRS-FHliab) and PRS were generally slightly smaller than 
the prediction R2 attained by FH, due to slight correlations between PRS and FH predictions 
(average = 0.07 across the three well-powered diseases and 0.05 across all 10 diseases; 
Supplementary Figure 1, Supplementary Table 10). Parameters estimated by PRS-FHlog and 
PRS-FHliab are reported in Supplementary Table 11.  Across the three well-powered diseases, 
sibling history was assigned higher weight than parental history regardless of target population 
(likely due to differential shared environmental effects20), whereas the weight assigned to PRS 
depended on the target population. 
 
More broadly, PRS-FHlog (and PRS-FHliab) consistently attained higher prediction R2 than PRS 
across all 10 diseases (Supplementary Table 9).  The prediction accuracy of PRS increased as a 
function of observed-scale SNP-heritability (which is partly determined by prevalence) 
(Supplementary Figure 2), and the prediction accuracy of FH increased as a function of both the 
covariance between liabilities of target samples and first-degree relatives (which is largely 
determined by total narrow-sense heritability) and the prevalence in first-degree relatives 
(Supplementary Figure 2, Supplementary Tables 4 and 6).  The correlations between PRS and 
FH predictions were low for all diseases (−0.02 to 0.13), but increased as a function of 
prevalence and SNP-heritability (Supplementary Figure 1, Supplementary Table 10).  
 
We performed eight secondary analyses. First, we assessed the calibration of each method.  We 
determined that PRS-FHlog attained better calibration than PRS-FHliab (average regression slope 
of 0.93 vs. 0.60 across 3 well-powered diseases; Supplementary Table 12). Second, we decreased 
the number of training samples from the target population used to fit PRS-FH model parameters 
below its default level (which is based on 10-fold cross-validation; see Overview of methods). 
For both PRS-FHlog and PRS-FHliab, the number of training samples from the target population 
had little impact on predictive accuracy for values of Neff≥500 (Supplementary Figure 3). Third, 
we compared the performance of both FH and PRS-FH methods when incorporating parental 
history only vs. both parental and sibling history. Incorporating both parental and sibling history 
attained moderately higher predictive accuracy (Supplementary Table 13). Fourth, we assessed 
the performance of a simplified logistic regression-based method that used a single binary 
independent variable for overall (parental and sibling) family history. We determined that PRS-
FHlog attained significantly higher prediction accuracy than this method (Supplementary Table 
14). Fifth, we assessed the potential benefit to FHlog and PRS-FHlog of including in the logistic 
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model an interaction term between number of siblings and sibling history. We determined that 
there was no significant benefit (Supplementary Table 15). Sixth, we assessed whether FHlog and 
PRS-FHlog would benefit from incorporating the total number of siblings of each target 
individual using indicator variables in addition to a continuous variable. We determined that 
disease prevalence empirically varied non-linearly as a function of the number of siblings (which 
is known to correlate with socioeconomic factors) (Supplementary Table 16), and that 
accounting for this generally produced non-significant improvements (Supplementary Table 17). 
Seventh, we assessed whether FHliab and PRS-FHliab benefit from allowing the prevalence of 
disease (determined by the liability threshold) among target individuals to vary as a function of 
the number of siblings. We determined that FHliab and PRS-FHliab attained slightly higher 
prediction accuracy than corresponding methods that do not allow the prevalence of disease to 
vary as a function of the number of siblings (Supplementary Table 18); we elected to allow the 
primary FHliab and PRS-FHliab methods to benefit from this information as a conservative choice, 
as they were not ultimately the methods of choice (see below). Eighth, for each of the 5 methods, 
we evaluated the prevalence of disease in each percentile of predicted disease risk2. We 
confirmed that PRS-FHlog and PRS-FHliab also performed best under this metric (Supplementary 
Figure 4).  
 
We conclude that incorporating family history of disease (PRS-FHlog and PRS-FHliab) greatly 
increases prediction accuracy as compared to polygenic risk scores alone (PRS), particularly in 
Africans.  We further conclude that PRS-FHlog and PRS-FHliab generally perform similarly in 
analyses without covariates.  
 
Incorporation of covariates in UK Biobank analyses 
We repeated the analyses of 10 complex diseases from the UK Biobank by incorporating 
covariates into each method: PRS+, FH+log, FH+liab, PRS-FH+log and PRS-FH+liab; the covariates 
included age, sex, BMI and 20 principal components (see Methods). PRS+ incorporates 
covariates by training a logistic model with PRS and all covariates. FH+log and PRS-FH+log  
incorporate covariates by including them as independent variables in the logistic model. FH+liab 
and PRS-FH+liab incorporate covariates by estimating a disease threshold for the liability 
(exclusive of covariates) that varies based on the covariates (see Methods).  We evaluated the 
predictive accuracy of each method using difference in liability-scale R2 (defined as liability-
scale R2 minus the liability-scale R2 attained using covariates alone).  As above, our primary 
focus was on the three well-powered diseases (type 2 diabetes, depression, and hypertension); 
the impact of covariates on these diseases was substantial, as covariates alone attained average 
prediction R2 of 20%, 17%, and 15% in non-British Europeans, South Asians, and Africans, with 
most of the prediction R2 contributed by age and BMI (Supplementary Table 19).  
 
We assessed the prediction accuracy of PRS+, FH+log, FH+liab, PRS-FH+log and PRS-FH+liab. 
Results are reported in Figure 3b and Supplementary Table 20.  Across the three well-powered 
diseases, PRS+ attained average prediction accuracy (difference in liability-scale R2) of 7.4%, 
4.7%, and 0.62% in non-British Europeans, South Asians, and Africans, again reflecting poor 
cross-population transferability3–7.  In contrast, FH+log attained similar prediction accuracy across 
populations: 8.8%, 8.0% and 10%; results were also similar across populations for FH+liab. 
Notably, PRS-FH+log outperformed PRS-FH+liab, with prediction accuracies of 15%, 12%, and 
11% for PRS-FH+log in the three populations vs. 13%, 9.1%, and 8.0% for PRS-FH+liab (most 
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differences were statistically significant: p=0.0001-0.0007 for T2D, p=0.05-0.6 for depression, 
p=6×10-28-5×10-9 for HTN); similarly, FH+log outperformed FH+liab. We note that PRS-FH+log and 
FH+log model the effects of family history and covariates jointly, whereas PRS-FH+liab and FH+liab 
model the effects of covariates marginally (see Methods); as both family history and PRS is 
correlated with covariates (Supplementary Table 21), this may explain the better performance of 
PRS-FH+log and FH+log. The differences in prediction R2 attained by PRS+, FH+log, FH+liab, PRS-
FH+log and PRS-FH+liab vs. a prediction model based on covariates alone were generally similar 
to the absolute predictive R2 attained by PRS, FHlog, FHliab, PRS-FHlog, and PRS-FHliab, with 
limited exceptions (Supplementary Table 9 and 20). Surprisingly, the relative prediction 
accuracy of PRS+ was sometimes larger than the prediction accuracy of PRS alone, which is 
mathematically possible under a logistic model. The pairwise correlations between PRS, FHlog, 
FHliab, and a prediction based on covariates alone ranged from -0.06 to 0.16 (Supplementary 
Table 21).  
 
We performed three secondary analyses. First, we assessed the calibration of each method.  We 
determined that PRS-FH+log attained better calibration than PRS-FH+liab (average regression slope 
of 0.92 vs 0.68 across 3 well-powered diseases; Supplementary Table 22). Second, we compared 
the performance of both FH+ and PRS-FH+ methods when incorporating parental history only vs. 
both parental and sibling history. Incorporating both parental and sibling disease history attained 
moderately higher predictive accuracy for FH+log and PRS-FH+log, but results were mixed for 
FH+liab and PRS-FH+liab (Supplementary Table 23). Third, we assessed the performance of a 
simplified logistic regression-based method (incorporating covariates) that used a single binary 
independent variable for overall (parental and sibling) family history.  We determined that PRS-
FH+log attained significantly higher prediction accuracy than this method  (Supplementary Table 
24; analogous to Supplementary Table 14). 
 
We conclude that when covariates are included in the predictions, incorporating family history of 
disease (PRS-FH+log and PRS-FH+liab) continues to greatly increase prediction accuracy as 
compared to polygenic risk scores alone (PRS+), particularly in Africans.  We further conclude 
that PRS-FH+log outperforms PRS-FH+liab in analyses with covariates. 
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Discussion 
 
We have explored methods for combining polygenic risk scores and family history (PRS-FH) to 
predict risk of disease, using a logistic model or a liability threshold model.  We determined that 
PRS-FH greatly increases prediction accuracy as compared to polygenic risk scores alone across 
a broad set of simulations and empirical analyses, including analyses incorporating covariates.  
We recommend the use of the logistic model, which outperforms the liability threshold model in 
analyses with covariates (however, we note that the liability threshold model has proven valuable 
in other settings23,29–33).  The increase in prediction accuracy attained by PRS-FH is particularly 
large in diverse populations (e.g. Africans), suggesting that PRS-FH will be a method of choice 
for closing the well-documented gap in disease risk prediction accuracy in diverse populations3–

7.  Our findings emphasize the value of collecting and incorporating family history data, as well 
as data on clinical covariates, whenever it is practical to do so. 
 
PRS-FH differs from previous approaches for combining PRS and FH information9,15–19 in 
several key ways.  First, previous methods restricted the PRS component to genome-wide 
significant loci, but PRS-FH leverages genome-wide polygenic signals, which have higher 
predictive value1.  Second, previous methods incorporate each type of relative equally, but PRS-
FH incorporates each type of relative separately, to allow for differential environmental effects20.  
In particular, a recent study that used a single binary independent variable for overall (parental 
and sibling) family history reported no significant improvement from incorporating family 
history in prostate cancer analyses of UK Biobank Europeans34 (AUC = 0.836 vs. 0.833; 
analogous to Supplementary Table 14), whereas PRS-FH+log attained a significant improvement 
from incorporating family history in prostate cancer analyses of UK Biobank Europeans (R2 = 
0.100 vs. 0.069, p=0.029, Supplementary Table 9; p=0.0035 in analyses with covariates, 
Supplementary Table 20). Third, previous methods do not allow the contributions of PRS and 
FH to vary as a function of the target population, but PRS-FH optimizes these contributions as a 
function of the target population, increasing prediction accuracy in diverse populations. Fourth, 
ref.9 did not incorporate covariates; furthermore, in our work all effects of family history and 
covariates are modeled jointly, in contrast to ref. 16 (and the approach for incorporating 
covariates discussed as a future direction in ref.9).  Fifth, ref. 9 is not applicable to UK Biobank 
data, in which sibling history is reported as a binary variable (at least one sibling has the 
disease). Sixth, PRS-FH differs from ref. 9 in that model parameters are estimated within the 
target population of interest, rather than relying on external data sources. 
 
Although PRS-FH greatly increases prediction accuracy, it has several limitations. First, PRS-FH 
requires an additional layer of training data from the target population in order to optimize the 
contributions of PRS and FH to the target population.  However, this requires only a small 
number of training samples from the target population (e.g. Neff≥500; see Supplementary Figure 
3), and the additional training step can be omitted for the diseases and target populations that we 
have analyzed here (for which these model parameters are reported in Supplementary Table 11). 
Second, the logistic model makes a strong assumption that the log-odds of disease depends 
linearly on the PRS and disease status of first-degree relatives—an assumption that lacks a strong 
theoretical justification.  However, simulations and empirical results are strongly supportive of 
the practical ramifications of this assumption. Third, family history may reflect a different 
underlying genetic architecture than case-control status, for example, due to differences in the 
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etiology of early-onset versus late-onset disease or differences in diagnostic criteria over time; 
however, we previously reported very high genetic correlations between case-control and family 
history phenotypes in the UK Biobank33. Fourth, self-reported family history information may be 
inaccurate.  However, we previously determined that self-reported family history is reasonably 
accurate in the UK Biobank (~80% correlation between true and self-reported family history, 
based on sibling concordance33); the imperfect accuracy is explicitly accounted for by PRS-FH 
model parameters, and incorporating self-reported family history clearly improves prediction 
accuracy in our study. Fifth, we did not perform analyses in which we trained and validated in 
different cohorts. We anticipate that this will become possible in the future with the emergence 
of large biobanks collecting a rich set of phenotypes including family history35,36 . Finally, 
incorporating training data from auxiliary traits has substantial potential to improve polygenic 
prediction accuracy37,38, but was not implemented in our study; incorporating auxiliary traits into 
PRS-FH is straightforward under the PRS-FH framework, and remains as a future research 
direction.  Despite these limitations, we anticipate that PRS-FH will attain large increases in 
prediction accuracy in future studies, particularly in diverse populations. 
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Table 1: List of 10 UK Biobank diseases analyzed. For each disease, we report the SNP-
heritability (ℎ"!) in UK Biobank British training data and the number of samples (N) and disease 
prevalence (K) in each UK Biobank training and target population. We note that the sample size 
and prevalence in British training data includes information from related individuals, but SNP-
heritability was estimated using unrelated British individuals. Diseases are listed in order of 
disease prevalence in British training data. Our primary focus was on three well-powered 
diseases (type 2 diabetes, depression, and hypertension; denoted in bold) with (liability-scale) 
prediction R2 > 0.05 for PRS and/or FH in each target population. COPD, chronic obstructive 
pulmonary disease, defined as chronic bronchitis/emphysema; T2D, type 2 diabetes; CAD, 
coronary artery disease; HTN, hypertension. 
 
 
 
  

 PRS Training Data Target Data 
 British Non-British 

European 
South Asian African 

Diseases 𝒉𝒈𝟐  N K N K N K N K 
Lung Cancer 0.096 408903 0.006 41842 0.006 7048 0.002 7087 0.003 
Bowel Cancer 0.160 408903 0.013 41842 0.011 7048 0.005 7087 0.009 
Stroke 0.090 408903 0.024 41842 0.020 7048 0.025 7087 0.025 
COPD 0.172 408903 0.035 41842 0.035 7048 0.022 7087 0.013 
Prostate Cancer 0.296 187889 0.038 18192 0.032 3811 0.014 3096 0.050 
T2D 0.372 407565 0.042 41642 0.040 6881 0.155 6961 0.098 
Breast Cancer 0.204 221014 0.061 23650 0.061 3237 0.036 3991 0.028 
Depression 0.116 408903 0.073 41842 0.075 7048 0.054 7087 0.044 
CAD 0.206 408903 0.085 41842 0.077 7048 0.140 7087 0.063 
HTN 0.311 408903 0.323 41842 0.293 7048 0.377 7087 0.425 
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Figure 1: Overview of PRS-FH methods. We list the 3 steps of PRS-FHlog and PRS-FHliab. 
Although the PRS-FHlog model coefficients and PRS-FHliab prior covariance shown here are the 
same for each parent, they may differ between mother and father. In addition, both methods can 
incorporate sibling history.  
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Figure 2: PRS-FHlog and PRS-FHliab increase prediction accuracy in simulations. We report 
mean liability-scale R2 across 10 simulations for PRS alone, family history alone (FHlog and 
FHliab), and PRS-FH methods (PRS-FHlog and PRS-FHliab), for different values of disease 
prevalence. Error bars denote standard errors. Numerical results (including standard errors for 
FHlog and FHliab) are reported in Supplementary Table 2.  

 
 
 
 
  

1% prevalence 5% prevalence 25% prevalence
PRS Log Liab PRS Log Liab PRS Log Liab

0.00

0.05

0.10

0.15

0.20
Li

ab
ilit

y−
sc

al
e 

R
2

PRS−FH
FH
PRS

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 15, 2021. ; https://doi.org/10.1101/2021.04.15.439975doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.15.439975
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
Figure 3: PRS-FH increases prediction accuracy in analyses of UK Biobank diseases. (a) 
Analyses without covariates. We report liability-scale R2 for PRS alone, family history alone 
(FHlog and FHliab), and PRS-FH methods (PRS-FHlog and PRS-FHliab), for different diseases and 
target populations. (b) Analyses with covariates. We report difference in liability-scale R2 (see 
text) for the corresponding methods incorporating covariates (PRS+, FH+, PRS-FH+), for 
different diseases and target populations. We focus on three well-powered diseases with R2 > 
0.05 for PRS and/or FH in each target population. Numerical results (including standard errors 
for FHlog and FHliab) are reported in Supplementary Table 9 and Supplementary Table 20. 
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Methods 
 
PRS-FHlog method  
The PRS-FHlog method models the PRS and the disease status of relatives as linearly impacting 
the log-odds of disease for an individual, as detailed below. 
 

log
𝑝

1 − 𝑝 = 	𝛽% + 𝛽&𝐷'& + 𝛽!𝐷'! + 𝛽(𝐷)*+ + 𝛽,𝑁-./.)*+ + 𝛽1𝑃𝑅𝑆
(1) 

where 𝐷'&, 𝐷'!, and 𝐷)*+ are the binary disease status variables for an individual’s parents and 
siblings, respectively, 𝑁-./.)*+ is the number of relevant siblings of an individual (number of total 
siblings for non-sex-specific diseases, number of sisters for breast cancer, and number of 
brothers for prostate cancer), and 𝑃𝑅𝑆 is the individual’s PRS. An individual’s PRS is 
constructed as a weighted sum of their genotypes: 

	𝑃𝑅𝑆 = 	9𝛽:*𝑔*
*

(2) 

where 𝑔* are an individual’s genotypes at SNP 𝑖 (0,1,2) and 𝛽:* are the per-allele effect sizes of 
SNP 𝑖 estimated using training data. We note that there are multiple algorithms for constructing 
PRS, however the construction of PRS is not the primary focus of this work. 
 
We considered a logistic model incorporating the PRS (as a continuous covariate), the 3 binary 
indicators for the disease status of mother, father, and siblings, and a continuous covariate for the 
number of relevant siblings (see equation (1)). We elected not to use indicator variables for the 
number of total siblings an individual has (e.g. 𝕀(𝑁)*+ = 1), 𝕀(𝑁)*+ = 2),… , 𝕀(𝑁)*+ ≥ 5)) in the 
primary method as this generally produced non-significant improvements (Supplementary Table 
17) and increased model complexity. 
 
PRS-FHliab 
The PRS-FHliab method models the family history of disease and PRS using a liability threshold 
model23. The liability threshold model assumes an individual has an underlying liability, 𝜖, 
which is normally distribution with a mean of 0 and variance of 1. An individual is a case (𝑧 =
1) if and only if 𝜖 ≥ 𝑇 otherwise the individual is a control (𝑧 = 0). 𝑇 determines the disease 
prevalence 𝐾; 𝐾 = 1 − 	Φ(𝑇) where Φ(𝑇) is the normal cumulative distribution function, i.e. 
Φ(𝑇) = Pr	(𝑁(0,1) ≤ 𝑇). 
  
We assume a multivariate normal distribution for the individual’s liability, the individual’s PRS, 
and the target individual’s relatives’ liabilities. For example, to incorporate the individual’s PRS 
as well as the parental and a sibling’s disease history we assume, 
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, (3) 

 
where 𝜖2 is the total liability of the target individual, 𝑃𝑅𝑆2 is the PRS of the target individual,  
and 𝜖'&, 𝜖'!, and	𝜖) are the liabilities of the parents and the sibling, respectively,	ℎR'&! , ℎR'!! , and 
ℎR)!	are the pseudo-heritabilities of the disease on the liability scale of the parents and the sibling, 
respectively, and 𝑉 is the amount of variance the PRS can explain on the liability scale. The 
pseudo-heritabilities of the disease reflect a combination of heritability and shared environmental 
effects (which may vary across classes of relatives), and can be estimated using maximum-
likelihood methods (see Supplementary Note and Supplementary Table 25 for justification of 
pseudo-heritability and details on its estimation). We can estimate the variance explained by the 
PRS on the liability scale as 

𝑉 = 𝑐𝑜𝑟𝑟(𝑃𝑅𝑆, 𝑍)!
𝐾(1 − 𝐾)
𝜙(𝑇)!

, (4) 

where 𝐾 is the disease prevalence, Z is the disease status, T = 	Φ3&(𝐾), and 𝜙 is the normal 
probability density function. This estimate of 𝑉 is similar to previous derivations converting 
between the observed-scale and the liability-scale (see Supplementary Note)29. After estimating 
the liability-scale variance explained by the PRS (V), the raw PRS is scaled to have mean zero 
and the desired variance prior to being utilized by PRS-FHliab.  Setting ℎR'&! = ℎR'!! = ℎR)! = ℎ! 
models PRS and family history of disease assuming no environmental correlation.  
 
Using the distribution shown in equation (1), we can compute the posterior mean and variance of 
𝜖2, conditional on the individual’s PRS and the disease status of family members (e.g. if parent 1 
is a case we can condition on 𝜖'& ≥ 𝑇'&). Given the mean and variance of the posterior 
distribution, denoted 𝜇4!|⋅ and 𝜎4!|⋅

!  respectively, we assume normality and compute the posterior 
risk of disease for an individual to be: 

𝑟 = 1 − Φ ]
𝑇277)'-*8" − 𝜇4!|⋅

𝜎4!|⋅
^ , (5) 

where 𝑇277)'-*8" is either Φ3&_𝐾277)'-*8"` or a function of covariates, depending on the model 
being implemented (see below). We note that the posterior risk of disease is distinct from the 
posterior mean (and variance) of liability. We elected to use the posterior risk of disease, rather 
than simply the posterior mean or variance, as this appropriately weights the mean and variance 
of the liability for disease. Conditioning on family history will result in a non-normal 
distribution, however, this deviation from normality is generally small9,23.  We elected to have 
𝑇277)'-*8" depend on the number of total siblings an individual has through the use of indicator 
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variables (e.g. 𝕀(𝑁)*+ = 1), 𝕀(𝑁)*+ = 2),… , 𝕀(𝑁)*+ ≥ 5)) as a conservative choice as it optimized 
the performance of PRS-FHliab (Supplementary Table 18), which ultimately was not the 
recommended method.  
 
We use the Pearson-Aitken formula, as well as properties about truncated normal distributions, 
to compute posterior distributions9,39. Sibling history is reported as a binary condition in UK 
Biobank; individuals report whether at least one or none of their siblings are affected. For 
individuals who report at least one of their siblings is affected, the posterior mean and variance is 
estimated analytically (see Supplementary Note).  
 
Missing family history for some relatives is not an issue as the posterior distribution is computed 
conditional on known information, and therefore the number of relatives being modeled is 
reduced when missing family history exists. We use estimates of disease prevalence which differ 
for mother, father, and offspring as well as estimates of pseudo-heritability which differ for 
mother and father. 
 
Simulations 
We simulated genotypes at 100,000 unlinked SNPs and case-control status for 400,000 unrelated 
training samples. For computational simplicity we generated 10 genotype matrices for the 
training data and given these genotype matrices, can then generate 10 different case-control 
vectors represent different scenarios of ranging prevalence, ℎ/!, ℎ"!, and polygenicity (number of 
causal SNPs). To obtain PRS, we computed prediction 𝛽 for all 100,000 unlinked SNPs using 
BOLT-LMM25,26. 
 
We simulated genotypes at 100,000 unlinked SNPs and case-control status plus family history 
(parental history for both parents) for 40,000 unrelated target samples. We simulated genotypes 
for both parents using the same minor allele frequency (MAF) values as the training data, used 
these to simulate genotypes for target samples (offspring), and simulated case-control status for 
both parents and target samples using a liability threshold model; target samples were not 
ascertained for case-control status. Again, for computational simplicity we generated 10 
genotype matrices for the testing data and given these genotype matrices, then generated case-
control and family history information under 16 different scenarios; the same 10 scenarios as the 
training data as well as 4 additional scenarios in which family members shared environmental 
correlation and 2 additional scenarios in which the parental disease prevalence was double that of 
the offspring (Supplementary Table 1). We note that environmental correlation and differing 
parental prevalence does not impact our training data as we are using case-control data only (not 
family history data) to train.   
 
Within the target samples we use 10-fold cross-validation: for each fold we use the remaining 9 
folds to estimate relevant model parameters. Given these parameters, the predicted risk of 
disease can be estimated for each individual within the held-out fold.  
 
UK Biobank data set 
We analyzed 10 complex diseases from the UK Biobank24. To construct PRS, we computed 
prediction 𝛽 for genotyped SNPs using all British individuals using BOLT-LMM25,26. These 
individuals were individuals of European ancestry (based on self-reported white-ethnicity) and 
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British-ancestry individuals passing principal component analysis filters24 . Our PRS consisted of 
672,288 SNPs with missingness <10% and minor allele frequency (MAF) >0.1%; we mean 
normalized PRS based on the allele frequency within the training population. 
 
We considered three distinct testing sets; these consisted of non-British European, South Asian 
(Indian, Pakistani, Bangladeshi), and African individuals (Black or Black British, Caribbean, 
African, Any other Black background). These testing sets were constructed through self-reported 
ethnicity; non-British European were individuals of European ancestry (based on self-reported 
white-ethnicity; White, British, Irish, Any other white background) who did not pass British-
ancestry principal component analysis filters. We restricted to unrelated individuals (both 
unrelated to other individuals within the testing sets as well as unrelated to the training set). We 
use 10-fold cross-validation within the three testing sets to estimate relevant model parameters 
for both PRS-FHlog and PRS-FHliab. In detail, for individuals in a given fold we estimate the 
relevant parameters using the remaining 9-folds and use these parameters to predict risk.    
 
UK Biobank collects family history of disease information for 12 diseases, in this work we 
focused on the 10 diseases for which PRS or FH produces a positive liability-scale R2 with a p-
value less than the nominal 0.05/36 within non-British Europeans (Table 1; Supplementary Table 
8). We primarily focused on three well-powered diseases (type 2 diabetes, depression, and 
hypertension) with (liability-scale) prediction R2 > 0.05 for PRS and/or FH in each target 
population (Supplementary Table 9). We note that depression was included as a well-powered 
disease despite its low SNP-heritability, because the contribution of sibling disease history 
(Supplementary Table 11) led to prediction R2 > 0.05 for FH in each target population.  On the 
other hand, CAD was not included as a well-powered disease, due to poor performance of both 
PRS and FH in the African target population. For any individuals who reported 0 relevant 
siblings, disease status of siblings was set to 0. 
 
Application of PRS-FHlog to UK Biobank data 
We applied PRS-FHlog to 10 complex diseases from the UK Biobank. Prior to model training and 
fitting, individuals with missing parental disease status for a given parental class (mother or 
father) were assigned the mean parental disease status for the respective parental class across the 
9 training folds.  Individuals with missing sibling disease status (for whom the number of 
siblings must be at least one or unknown) were assigned the mean sibling disease status across 
all individuals in the 9 training folds if the number of siblings was unknown, or the mean sibling 
disease status across individuals in the 9 training folds with at least one sibling if the number of 
siblings was known. Individuals with missing number of siblings were assigned the mean 
number of siblings across the 9 training folds if the sibling disease status was unknown, or the 
mean number of siblings subject to the same sibling disease status if known. 
 
Application of PRS-FHliab to UK Biobank data 
We applied PRS-FHliab to 10 complex diseases from the UK Biobank. We used different 
estimates of disease prevalence for mother, father, siblings, and offspring; in any fold, when the 
prevalence of disease was 0 (for mother, father, sibling, or offspring) we set it equal to 
1/(number of individuals within that fold). For all analyses that included sibling history, except 
when otherwise specified, the liability threshold for disease used to predict disease risk 
accounted for number of siblings (indicator variables for 0, 1, 2, 3, 4, ≥5 siblings), as we 
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generally observed a U-shaped relationship between disease prevalence and number of siblings 
(Supplementary Table 16).   
 
We used estimates of pseudo-heritability that differ for mother, father, and siblings; pseudo-
heritability was estimated using maximum-likelihood (see Supplementary Note). If there were 
pairs of individuals with concordant disease status (e.g. both offspring and relative have disease), 
pseudo-heritability was set to 0 and the liability was not conditioned on this relative. UK 
Biobank collects sibling disease history as a binary “at least one” affected indicator, and as such 
we could estimate pseudo-heritability either using individuals with exactly one sibling or using 
all individuals with at least one sibling (see Supplementary Note). We elected to estimate 
pseudo-heritability using all individuals with at least one sibling, as the number of individuals 
with exactly one sibling can be prohibitively low (and may include no concordant disease pairs 
for diseases of low prevalence). In some of our early experiments in this project, we observed 
computational problems when estimated pseudo-heritability > 1.8 (i.e. pseudo-heritability/2 ≥ 
0.9). Our software thus caps estimates of pseudo-heritability at 1.8. However, this did not impact 
any of the analyses reported in the current manuscript.  
 
We estimated the amount of variance explained by the PRS on the liability scale, V, that varied 
based on the target population (Equation (4)). For each fold, we ran a permutation test (1000 
permutations) of 𝐻%:	𝑉 = 0, if we failed to reject the null hypothesis with 𝑝 > 0.05 we set 𝑉 = 0 
(i.e. we did not use PRS to inform posterior disease risk).  
 
Decreasing the number of training samples from the target population  
We decreased the number of training samples from the target population to different values of 
expected effective training sample size (Neff , which can vary with the number of cases sampled; 
see Equation (6)).  For a given value of expected Neff, we constructed multiple independent 
training sample sets of that size by down-sampling individuals from each of the 10 folds, and 
averaged the resulting prediction accuracies across the training sample sets of that size 
(Supplementary Table 26 and Supplementary Figure 3). 
 
The effective sample size (Neff) is computed for a training sample as: 

𝑁.77 =	
4

1
𝑁9:).)

+ 1
𝑁9;-/)

. (6) 

 
Incorporation of covariates in UK Biobank analyses 
We repeated the analyses of 10 complex diseases from the UK Biobank by incorporating 
covariates into each method. We included 23 covariates: age, sex, BMI, and 20 principal 
components. Prior to model training and fitting, individuals with missing BMI, age, or sex were 
assigned the mean age, sex, and BMI across the 9 training folds. The prediction method based 
solely on covariates modeled the 23 covariates linearly impacting the log-odds of disease for an 
individual; PRS+ (the prediction method based on covariates and PRS) models PRS and the 23 
covariates (age, sex, BMI, and 20 principal components) linearly impacting the log-odds of 
disease for an individual. PRS-FHlog simply adds the 23 covariates into the logistic model 
incorporating family history of disease (FHlog) or PRS and family history of disease (PRS-FHlog). 
For FHliab and PRS-FHliab, covariates were modeled as impacting the threshold for disease; a 
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logistic model for disease as a function of covariates (23 covariates as well as indicators for 
number of siblings) was used to predict the risk of disease for an individual, thereby estimating 
the threshold for disease conditional on covariates.  
 
Jackknife standard errors of prediction accuracy and differences in prediction accuracy 
We report estimates of liability-scale R2 (𝑅/!) or the difference in 𝑅/! between two methods 
(Δ𝑅/!). Given predicted disease risks (𝑟) and observed phenotypes (Z), 𝑅2 is estimated as 𝑅f2 =
𝑐𝑜𝑟𝑟(𝑟, 𝑍) and 𝑅/! is estimated as 𝑅/!g = 𝑐𝑜𝑟𝑟(𝑟, 𝑍)! <(&3<)

?(@)"
 (ref. 27) for which 𝑐𝑜𝑟𝑟(𝑟, 𝑍) =

max	(𝑐𝑜𝑟𝑟(𝑟, 𝑍), 0). (When using 10-fold cross-validation within a testing set to estimate 
relevant model parameters, 𝑅/!g  for a method is computed by concatenating across the 10 folds 
and computing a single 𝑅/!g , rather than computing the average of 𝑅/!g	across the 10 folds.) 
 
To test for significantly non-zero prediction accuracy or differences between methods we assess 
whether 𝑅2 or  Δ𝑅2	(where Δ denotes either the difference between 2 prediction methods, or the 
difference versus a covariates-only predictor in the setting with covariates) is significantly 
different from zero. We compute both jackknife standard errors as well as jackknife p-values (for 
𝐻%:	𝑅2 > 	0 or 𝐻%: Δ𝑅2 	= 0), employing a jackknife across individuals (we note that the 
alternative of employing a genomic block-jackknife is of interest for evaluation of PRS methods, 
but is not applicable to evaluation of FH and PRS-FH methods). We let all individuals in fold 
𝑖	be represented by 𝐷* 	and we construct n jackknife samples (n=100 in this study) by deleting 
each of the n folds as follows, 𝐷[*] = {𝐷&, 𝐷!, … , 𝐷*3&, 𝐷*C&, … , 𝐷8}.	 Each of these 𝐷[*] are 
denoted blocks. We then compute  𝑅f2	on each 𝐷[*], denoting each such value as 𝑅f2,*. We then 
define the jackknife variance as  

𝑣𝑎𝑟_𝑅2g` =	 83&
8
∑ _𝑅f2,* −	𝑅f2,⋅`

!8
*E& 	 (7)

where 𝑅f2,⋅ =
&
8
∑ 𝑅f2,*8
*E& . The jackknife variance for the difference in 𝑅2 (or for 𝑅/! ) between two 

methods is computed in a similar manner. We computed a jackknife p-value by constructing 
pseudovalues as  𝑅f2,').FG2H:/F.	* = 𝑛𝑅f2 − (𝑛 − 1)𝑅f2,* and test the hypothesis 𝐻%: 𝑅2 = 0 by 
using the fact that  

√𝑛_𝑅f2,').FG2H:/F.⋅ − 𝑅2`

s 1
𝑛 − 1t∑_𝑅

f2,').FG2H:/F.	* − 𝑅f2,').FG2H:/F.⋅`
!u
→ 𝑁(0,1), 

where 𝑅f2,').FG2H:/F.⋅ =	
&
8
∑𝑅f2,').FG2H:/F.	*. The jackknife p-value for 𝐻%: Δ𝑅2 = 0 between two 

methods is computed in a similar manner. (We note the n folds used when computing jackknife 
standard errors and p-values are unrelated to the 10-folds used during cross-validation: 
individuals are concatenated across the 10 cross-validation-folds and then randomly assigned to 
the n jackknife folds.) 
 
Jackknife assumes independence between blocks, while individuals are independent (by 
construction), individual predictions within a fold could use information from other folds, thus 
potentially inducing a correlation. To determine the potential effect of this we assessed the 
calibration of jackknife standard errors in simulations. For every simulation scenario, we 
computed an estimated variance of 𝑅2	across the 10 simulation replicates (denoted empirical 
variance), as well as the average jackknife variance across the 10 simulation replicates (denoted 
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mean jackknife variance). Across all simulation scenarios, the sum of the empirical variance was 
0.00063 and 0.00059 while the sum of the mean jackknife variance was 0.00060 and 0.00057 for 
PRS-FHlog and PRS-FHliab, respectively . This suggests the standard errors are well-calibrated. 
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