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Abstract

Noninvasive estimation of axon diameter with di↵usion MRI holds potential to investigate the dynamic
properties of the brain network and pathology of neurodegenerative diseases. Recent methods use powder
averaging to account for complex white matter architectures, such as fibre crossing regions, but these
have not been validated for real axonal geometries. Here, we present 120 � 313 µm long segmented
axons from X-ray nano-holotomography volumes of a splenium and crossing fibre region of a vervet
monkey brain. We show that the axons in the complex crossing fibre region, which contains callosal,
association, and corticospinal connections, are larger and exhibit a wider distribution than those of the
splenium region. To accurately estimate the axon diameter in these regions, therefore, sensitivity to a wide
range of diameters is required. We demonstrate how the q-value, b-value, signal-to-noise ratio and the
assumed intra-axonal parallel di↵usivity influence the range of measurable diameters with powder average
approaches. Furthermore, we show how Gaussian distributed noise results in a wider range of measurable
diameter at high b-values than Rician distributed noise, even at high signal-to-noise ratios of 100. The
number of gradient directions is also shown to impose a lower bound on measurable diameter. Our results
indicate that axon diameter estimation can be performed with only few b-shells, and that additional shells
do not improve the accuracy of the estimate. Through Monte Carlo simulations of di↵usion, we show
that powder averaging techniques succeed in providing accurate estimates of axon diameter across a range
of sequence parameters and di↵usion times, even in complex white matter architectures. At su�ciently
low b-values, the acquisition becomes sensitive to axonal microdispersion and the intra-axonal parallel
di↵usivity shows time dependency at both in vivo and ex vivo intrinsic di↵usivities.
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Introduction

Action potentials propagate along axons and enable communication across di↵erent parts of the central
nervous system. The axonal morphologies are crucial for the signal conduction process [1–3] and determine
the conduction velocity (CV) with which signals are propagated. By electrophysiological modelling of the
axon, Drakesmith et al. showed that axon diameter (AD) is the most important determinant of CV in
myelinated axons [4]. AD is also a potential biomarker of neurodegenerative diseases such as Amyotrophic
Lateral Sclerosis [5] and Multiple Sclerosis (MS) [6], and has been suggested to correlate with clinical
scores of cognitive impairment in MS patients [7]. Thus, AD sheds light on brain health, as well as the
structural and functional properties of the brain network.

Di↵usion Magnetic Resonance Imaging (MRI) non-invasively probes the microstructural brain tissue
environment by measuring the di↵usion of water molecules across millisecond time scales. By fitting bio-
physical models that describe the underlying tissue microstructure to the di↵usion MRI signal, AD can
be estimated [8,9]. The AxCaliber method [10,11] uses pulsed gradient spin echo (PGSE) measurements
with numerous combinations of gradient strengths and di↵usion times to output the AD distribution
(ADD), as demonstrated in vivo in the rat [10] and human [12] brains. AxCaliber requires prior knowl-
edge of the axon orientation since it relies on measurements being made perpendicular to the axons. The
ActiveAx approach has been demonstrated in vivo in humans and ex vivo in primates [13,14] and outputs
a mean AD index. Contrary to AxCaliber, ActiveAx is invariant to the orientation of the main fibre di-
rection and implements an optimised acquisition consisting of three b�value shells, the minimum number
of shells required to fit the three parameters in the signal model used by ActiveAx. These are sampled
in ⇠ 90 unique directions distributed uniformly on the unit sphere. These two methods have in common
that they do not account for non-parallel axons, i.e. orientation dispersion (OD), or multiple bundles of
crossing axons, factors which bias the AD measurement. Zhang et al. extended the ActiveAx approach
in two ways. They relaxed the assumption of a single main fibre direction to enable AD estimation in
regions of the ex vivo monkey brain in which there were crossing axon bundles [15], but the OD within
those bundles was not taken into account. Later, Zhang et al. modelled the OD as a Watson distribution
to fit AD in the in vivo human brain [16], but the method assumed a single main bundle direction. As
such, di↵usion MRI-based AD studies have mostly targeted the corpus callosum (CC), an organised white
matter (WM) region that consists of aligned interhemispheric axonal connections. The CC has also been
the subject of light and electron microscopy (EM) studies on AD, and these have been used as validation
for the di↵usion MRI-based AD metrics [10, 17, 18]. However, recent 3D imaging studies in the monkey
and mouse CC demonstrate the complex morphologies, OD and trajectory variations of axons [19–21],
and show how – even in the highly organised CC – these will bias AD measurements [19, 20, 22, 23].
Di↵usion MRI-based estimates of AD should thus take into account three di↵erent classes of orientation
e↵ects: 1) the macroscopic fibre architecture, describing the relative orientations of di↵erent fibre bundles
e.g. in crossing fibre regions; 2) the OD, describing the average dispersion exhibited by axons within each
bundle; and 3) the microdispersion, describing the changes in trajectory and curvature along individual
axons on the length scale of the measured di↵usion.

The e↵ects of the macroscopic fibre architecture and OD can be removed by powder averaging (PA).
The PA involves calculating the arithmetic mean of the di↵usion MRI signal in isotropically distributed
directions on the unit sphere. Each di↵using spin can be described as probing a micro-domain, a micro-
scopic region of the tissue environment within a voxel. The PA signal thus represents the spherical mean
of the set of micro-domains, regardless of their individual orientation or organisation within the voxel.
Several studies have used the PA to disentangle the e↵ects of fibre architecture and OD from di↵usion
metrics [22,24–33], and it has recently been implemented to estimate AD in the entire brain WM [34,35].
To obtain estimates of AD index in the in vivo human brain, Fan et al. [34] fitted a multi-compartment
spherical mean technique (SMT) model to the PA signal. The signal was sampled in up to 64 uniformly
distributed directions for two di↵usion times. In total, 16 unique b�values up to b =⇠ 20 ms µm�2

were acquired, enabled by the high in vivo gradient strengths of up to 300 mT/m of the Connectom
scanner [36–38]. Veraart et al. [35], on the other hand, modelled only the intra-axonal space (IAS) by
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fitting a power law (PL) to the PA signal at high b�values that suppress the signal from the extra-axonal
space (EAS) [39, 40]. This used b � 20 ms µm�2 for ex vivo experiments and b � 6 ms µm�2 for in
vivo experiments. The signal was measured along 60 uniformly distributed gradient directions at a sin-
gle di↵usion time for up to 18 b-values. AD was calculated for the ex vivo rat brain and, also using a
Connectom scanner, for the in vivo human brain.

Although the PA techniques remove fibre architecture and OD e↵ects, they rely on the assumption that
the micro-domain probed by di↵using spins is cylindrical. With increasing di↵usion times, the spins
di↵use further and increasingly probe the microdispersion of the axons, violating the assumption of
a cylindrical micro-domain and making the AD estimate time-dependent. The e↵ects of diameter and
trajectory variations on estimated AD have been described [22,41,42], but the di↵usion times and b-values
for which the PA-based AD estimate becomes sensitive to the microdispersion in axons is unknown. The
signal-to-noise ratio (SNR) of the signal [43] and the gradient strength of the applied magnetic field [14]
a↵ect the sensitivity profile of the acquisition, placing limits on the upper and lower bounds of measurable
AD. How di↵erent sequence parameters, the number of gradient directions or the SNRs a↵ect these bounds
has not been investigated for PA-based AD estimates.

Validating the estimated ADs from the PA methods for di↵erent sequence parameters and in real axons
is therefore important. The PL implementation from Veraart et al. has been evaluated within axon
segments of length ⇠ 20 µm from electron microscopy (EM) of the mouse CC using Monte Carlo (MC)
simulations of di↵usion [22]. Given that non-axonal structures in the EAS can impact the trajectories of
axons for up to 20 µm [19], longer axonal segments may to a greater extent represent the characteristics
of the IAS. Notably, although the PA is expected to factor out the e↵ects of fibre crossings and OD, it
has only been validated on segments of axons from the CC in which the fibre architecture is simple and
does not contain substantial crossings.

In this study, we adopt a simulation-based modus operandi to validate PA-estimates of AD in real axons
between 120 and 313 µm in length, segmented from large field of view (FOV) X-ray nano-holotomography
(XNH) volumes of two inherently di↵erent WM architectures of the vervet monkey brain. The two
regions are: a) the ordered splenium CC (Fig. 1C) and b) a heterogeneous crossing fibre region (Fig.
1B). Throughout, we restrict the analysis to the IAS to analyse how accurately it is represented by
the PA model at di↵erent b-values, and the results are relevant to both multi-compartment and single-
compartment models that include the IAS. Firstly, we explore how the SNR, gradient strength (hence,
also b-value) and number of unique gradient directions determine the sensitivity profile of the PA AD
estimation method to di↵erent cylinder diameters. Secondly, we demonstrate the impact (or lack thereof)
on estimated AD of using inaccurate assumptions of the parallel di↵usivity for di↵erent b-values. Lastly,
we validate the AD estimates from the SMT and PL at di↵erent di↵usion times, gradient strengths
(typical of pre-clinical or human Connectom scanners), di↵usivities (in vivo/ex vivo) and, pertinently,
within the complex segmented axons of the primate brain where ADs are similar to those of the human
brain [44].
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Fig. 1: Can axon diameter be accurately estimated in di↵erent WM regions using PA approaches,
despite complex axonal morphologies? Validation of PA-estimates of axon diameter was carried out in

two di↵erent fibre architectures of the vervet monkey brain. A) Axons were segmented from XNH volumes of a

heterogeneous crossing fibre region in the anterior semiovale (blue cross) and the splenium (yellow cross). B) 59

segmented crossing fibre axons and C) 58 segmented splenium axons from [19]. The axon diameters are indicated

by the respective colorbars and the black circles represent uniformly distributed directions on the unit sphere.

Theory

To model the IAS, the SMT and PL approaches both assume that the micro-domains probed by spins
within the IAS are cylindrical. Here, we present an outline of the origins of the SMT expression for
cylinders, based on the theory presented elsewhere [45,46]. It is this expression that is used to represent
the IAS in the SMT-based approach used in Fan et al. [34]. From the SMT expression, the assumption
of high b�values entails that the SMT can be formulated as a PL, as that in Veraart et al. [35].

Modelling the powder averaged signal in a cylinder

In a cylinder, the apparent di↵usion coe�cient (ADC) at any angle ↵ to its axis is [47]:

D(↵) = cos2(↵)Dk + sin2 (↵)D? (1)

where Dk is the di↵usivity parallel to the cylinder axis and D? is that perpendicular to it, and carries
the information regarding cylinder diameter. Powder averaging of the di↵usion MRI signal involves
integrating it over an infinite number of uniformly distributed inclination angles ↵ relative to the cylinder
axis to give the powder averaged signal, SSMT [45] :

SSMT(b) =

Z ⇡

0
P (↵)e�b(cos2(↵)Dk+sin2 (↵)D?)d↵

=

✓
e�bD? ·

r
⇡

4b · (Dk �D?)
· erf

⇣q
b · (Dk �D?)

⌘◆ (2)
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where P (↵) = sin(↵)
2 ensures that the weighting of the angles is uniform, erf(x) is the error function of x,

and b is the di↵usion weighting. Eq. 2 is what is here referred to as the ”SMT implementation” and is
the analytical description of the spherically averaged signal within a cylinder. Aside from the b�value,
the signal depends on two variables: Dk and D?. Only a finite number of directions, N , can be used in
practice. As such, N is one of the variables that determines the accuracy of the measurement.

In cylinders, where Dk > D? and at high b�values, it can be assumed that b · (Dk �D?) � 1. In these
conditions, erf(x) = 1 and Eq. 2 can be rearranged to take the form of a PL:

SPL(b) = �e�bD?b�0.5 (3)

where � =
q

⇡
4(Dk�D?) . Eq. 3 is what is here referred to as the ”PL implementation” and is an alternative

representation of the SMT at high b�values.

In practise, whether using single- or multi-compartment models of the WM, the fraction of the total
signal that the IAS represents, fa, is unknown. It thus needs to be included as a multiplicative constant
in Eqs. 2 or 3. This introduces an additional third variable into the SMT implementation in Eq. 2, such
that the signal depends on fa, Dk and D?. In the case of the PL, fa can simply be incorporated into

the existing constant � such that � = fa ·
q

⇡
4(Dk�D?) . This removes the need to fit a third parameter

to the PA signal.

Converting D? into a diameter

By fitting Eqs. 2 or 3 to the PA signal, the ADC perpendicular to the cylindrical micro-domains, D?,
is obtained. The cylinder diameter can be calculated from D? using the formulation in van Gelderen et
al. [47]:

� bD? = lnS? =

lnS0 � 2�2G2
infX

m=1

1

D2
0↵

6
m(R2↵2

m � 1)

· [2D0↵
2
m� � 2 + 2e�D0↵

2
m� + 2e�D0↵

2
m� � e�D0↵

2
m(���) � e�D0↵

2
m(�+�)] (4)

where S? is the di↵usion weighted signal perpendicular to the cylinder, S0 is the signal with no di↵usion
weighting, � is the gyromagnetic ratio, G is the strength of the gradient pulse,D0 is the intrinsic di↵usivity,
� is the duration of the gradient pulse, � is the separation of the gradient pulses, R is the cylinder radius
and ↵m is the mth root of J 0

1(↵mR) = 0 where J 0
1 is the derivative of the first order Bessel function of

the first kind. In this study, Eq. 4 is calculated up to m = 6.

If � � R2

D0
, as can be assumed to be the case for most axons [35], the cylinders are said to fall within the

Neuman limit [48, 49] and Eq. 4 simplifies to:

lnS? = � 7

48

�G2R4

D0
. (5)

Importantly, both the SMT and PL require knowledge – or an assumption – of D0 in order to estimate a
diameter from D?. However, since R ⇠ (D0)

1
4 in Eq. 5, R is relatively insensitive to small inaccuracies

of D0.
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Materials and Methods

Simulations

The simulations in this study are divided into two categories: simulations of the di↵usion MRI signal from
cylinders of di↵erent diameters and simulations in the IAS of segmented axons from XNH volumes of the
vervet monkey brain presented in [19]. By simulating the signal from cylinders, the impact of scanning
parameters, SNR and model assumptions on estimated diameter could be isolated. By simulating di↵usion
within segmented axons from the splenium and crossing fiber regions, the impact on the estimated AD
of real fiber architectures, OD and microdispersion was investigated.

Simulating the di↵usion MRI signal from cylinders

The signals arising from cylinders of di↵erent diameter, aligned with the z-axis, were generated analyt-
ically. For given PGSE parameters �, � and G and radius R, Eq. 4 was used to calculate D? for each
cylinder. From this, the ADC and signal in any normalised gradient direction êG = [ex, ey, ez] could be

calculated from ADC = êG ⇥

0

@
Dk 0 0
0 D? 0
0 0 D?

1

A⇥ êG.

Simulating di↵usion within the real IAS from XNH volumes of the monkey brain

We used segmented axons from the brain of a 32-month old female vervet monkey, imaged with 3D
synchrotron XNH acquired at the European Synchrotron Research Facility, beamline ID16A. The axons
originated from two di↵erent brain regions: the splenium of the CC and a ”crossing fiber region”, located
in a position of the anterior centrum semiovale where the di↵usion MRI data indicated the crossing of
the corticospinal tract, interhemispheric callosal fibers and association fibers [19]. A description of both
XNH volumes, as well as the segmentation and analysis of splenium axons is given in Andersson et al [19].
In short, the XNH volume of the splenium had an isotropic voxel size of 75 nm and cylindrical FOV of
diameter and length 153.6 µm. From the splenium, 54 axons of minimum length 120 µm were segmented
at the native 75 nm image resolution. The XNH volume of the crossing fiber region had an isotropic
voxel size of 100 nm and cylindrical FOV of diameter and length 204.8 µm. The much larger diameters
of axons in this region entailed that the segmentation of 58 axons of minimum length 120 µm could be
manually performed in ITK-SNAP [50] (RRID:SCR 002010) at a downsampled isotropic voxel size of 500
nm. This was significantly less time consuming than segmenting the axons at higher resolution. Smaller
axons were present in both XNH volumes, but could not be segmented due to their small diameters in
comparison to the voxel size and low SNR [19]. After segmentation, the equivalent diameters of the axons
were quantified in the plane perpendicular to their local trajectory [19]. The volume-weighted AD, d,

of each axon was estimated as d =
Pi=1

N 2Ri ·
⇣

⇡R2
iPN

i=1 ⇡R2
i

⌘
where Ri is the ith measured radius of N

equidistant measurement points along the axonal trajectories. The volume-weighted mean diameters of
the population of splenium axons and crossing fiber axons were similarly calculated.

The axon segmentations were converted to triangulated surface meshes, after which the Monte Carlo
Di↵usion and Collision (MCDC) framework [51] was used to simulate di↵usion within each axon mesh.
The simulations used an intrinsic ex vivo di↵usivity of D0 = 0.6 µm2ms�1, 2 · 105 uniformly distributed
spins per axon and 1 · 10�5 seconds per time step, as in Andersson et al [19]. Simulations were also
performed using an in vivo di↵usivity of D0 = 2 µm2ms�1 to mimic di↵usion within the living human
brain, but with 3.4 · 10�6 seconds per time step to ensure the same step length at the higher di↵usivity.
Initialisation of the spins was performed at a minimum distance from the ends of the axons (minimu 20
µm for ex vivo simulations and 30 µm for in vivo di↵usivities), to prevent their escape from the IAS with
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regards to the di↵usivity and the maximum di↵usion times used (⇠ 40 ms for ex vivo simulations and
⇠ 30 ms for in vivo simulations).

Di↵usion MRI scanning parameters

For all experiments, the PGSE waveform was used. Throughout the investigation, di↵erent sequence
parameters were varied to isolate the e↵ects of di↵erent variables on the estimated diameter.

In the simulations on cylinders, a gradient duration of � = 7.1 ms was used, similar to in [34, 35]. The
gradient separation was kept at � = 20 ms, and the e↵ective di↵usion time, td, was given by td = �� �

3 .
The simulations on cylinders used only ex vivo di↵usivities, and b-values were referred to as ”high” if they
surpassed & 20 ms µm�2, the value at which the EAS was said to be suppressed in [35]. Most simulations
in cylinders used high b-values in the range of b = [19.25, 63.62] ms µm�2 to allow a direct comparison
between the SMT and PL implementations, the latter of which required the use of high b-values. Di↵erent
b-values were obtained by varying the gradient strength, G, given that b = q2td where q is the di↵usion
encoding q = ��G [m�1].

In the simulations of the real IAS, � = 7 ms was used. Both G and � were varied to assess the e↵ects
of di↵erent di↵usion times. In these simulations, the SMT and PL were fitted to many di↵erent b-values,
ranging between b = [0.55, 65] ms µm�2 for ex vivo di↵usivities and b = [0.44, 8.73] ms µm�2 for in vivo
di↵usivities.

For the most part, fits of the SMT and PL to the PA signal from several b-values used three shells, similar
to ActiveAx [13,14], since three was the minimum number of shells needed to calculate fa, Dk and D? in
the SMT implementation. Uniformly distributed directions on the unit sphere were generated according
to the electrostatic repulsion method [52,53].

Distinguishing the signal from noise

The e↵ect of noise on the AD estimation was studied by adding Rician noise of variable SNR to the noise-
free, normalised signals. The total variance of the noise was defined as �2 = 1

SNR2 . Rician distributed
noise was simulated calculating the magnitude of complex Gaussian noise in which the real and imaginary
components each had a standard deviation of 1

SNR [54].

To assess whether or not a single signal could be distinguished from noise at a given SNR and a single
b-value, we used the sensitivity criterion of Nilsson et al. [43] for parallel cylinders. The smallest robustly
measurable change of the normalised signal, �S was defined as:

�S =
zs

SNR
p
n

(6)

where n was the number of repeated measurements and zs was the z-threshold for the significance level
s. The signal was thus said to be sensitive between the bounds [�S, 1� �S]. The diameters that gave
rise to the PA signal at these boundaries were defined as the maximum and minimum bounds of the
measurable diameter. Here, we choose s = 0.05, giving zs = 1.64, as in [43].

To predict whether the PA signal could be distinguished from normally distributed noise, the sensitivity
criterion of Nilsson et al. [43] for fully dispersed cylinders was used. It is defined as:

�SPA = bD?(d) ·
r

⇡

4

erf
�p

b(Dk �D?)
�

p
b(Dk �D?)

(7)

where D?(d) is the perpendicular di↵usivity of the diameter, d, that is defined as:
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(8)

When using Eqs. 7 and 8, n in Eq. 6 was set to the number of unique gradient directions. From �SPA,
the theoretical range of measurable diameters was calculated as the diameters with PA signals within the
range [�SPA, Sstick � �S] where Sstick is the signal of a cylinder with diameter equal to zero:

Sstick =
r

⇡

4b ·Dk
· erf(

q
bDk) (9)

Importantly, Eqs. 6-8 are formulated for single b-values only and assume that the noise follows a normal
distribution.

Fitting the Spherical Mean Technique and Power Law to the PA signal

The Spherical Mean Technique implementation

The signal fraction of the IAS, fa, was incorporated into the SMT formulation in Eq. 2 such that:

SSMT = fa

✓
e�bD? ·

r
⇡

4b · (Dk �D?)
· erf

⇣q
b · (Dk �D?

⌘◆
(10)

The SMT was fitted to the PA signals with the non-linear least squares solver lsqnonlin() in Matlab
R2020a. Once D? had been fitted, the diameter was calculated using Eq. 4. We implemented three
di↵erent variations of the SMT fit to assess the robustness when keeping di↵erent variables fixed:

(i) SMT-1: a single-shell fit to obtainD? in the range [0, Dk]. Assumes known fa and ex vivoDk = 0.6
µm2ms�1.

(ii) SMT-2: a multi-shell fit to obtain D? in the range [0, Dk] and fa in the range [0, 1]. Assumes
known ex vivo Dk = 0.6 µm2ms�1, or in vivo Dk = 2 µm2ms�1.

(iii) SMT-3: a multi-shell fit to obtain D? in the range [0, D0 · 1.5], fa in the range [0, 1] and Dk in the
range[D0/2, D0 · 1.5] where D0 was the known intrinsic di↵usivity of the simulations. For ex vivo
and in vivo simulations, D0 = 0.6 µm2ms�1 and D0 = 2 µm2ms�1 were used respectively.

SMT-1 was used to assess the e↵ect of the number of directions and SNR on the estimated diameter
in the best case scenario in which fa and Dk are known. Moving to a more realistic scenario, SMT-2
was used to assess the accuracy of SMT-based diameter estimation at di↵erent, unknown values of fa.
SMT-2 was also used to investigate the consequences of enforcing an incorrect value of Dk at di↵erent
b�values and SNRs. Lastly, SMT-3 placed no assumptions on any of the variables, similarly to the PL
implementation. SMT-3 was used to investigate the ability of the SMT to estimate AD in real axons for
in vivo and ex vivo intrinsic D0, assuming no prior knowledge of di↵usivities (other than their upper and
lower bounds). SMT-3 also outputted estimates of Dk in the axons.

The Power Law implementation

To assess the diameter estimates from the PL formulation, the expression in Eq. 3 was fitted to the
PA signal from cylinders of di↵erent diameters, providing estimates of D? and �. This allowed for a
comparison of the PL-derived diameter, dPL, with those from SMT-2 and SMT-3. To fit the PL the
Matlab-based nonlinear least squares estimator provided by Veraart and Novikov [55] was used. The
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implementation assumed the Neuman limit in Eq. 5 to obtain a diameter estimate, as in Veraart et
al. [35].

Results

The Results section is organised as follows. First, we perform an analysis of the range of diameters to
which the PA maintains sensitivity for di↵erent SNRs and gradient strengths to verify that it would
theoretically be possible to calculate the diameters of the XNH-segmented axons. We proceed to verify
the multi-shell SMT-2 and PL descriptions for di↵erent numbers of shells, and investigate the e↵ects of
both Rican and Gaussian distributed noise on the diameter estimates. The SMT-2 and PL formulations
implement di↵erent assumptions and degrees of a priori knowledge. We therefore evaluate whether
the assumption of a known parallel di↵usivity is valid, using both low and high b-values. Then, we
present segmentations of axons from the splenium and a crossing fiber region of the monkey brain. In
these, we investigate the ability of the SMT-2, SMT-3 and PL implementations to estimate the volume-
weighted ADs within real axonal geometries for in/ex vivo di↵usivities and di↵erent b�values, given by
combinations of di↵erent gradient strengths and di↵usion times between ⇠ 10� 40 ms.

Angular sensitivity of the di↵usion MRI signal in cylinders

Diameter estimates using the PA demand that the di↵usion MRI signal is sensitive to the di↵erent length
scales probed by measuring the signal at inclination angles ↵ relative to the cylinder axis. The range
of diameters that can be measured with the PA can be predicted from Eq. 7, and is shown in Fig. 2B
for a range of SNRs and q-values. The widening/narrowing of the sensitivity range can be explained by
the sensitivity of the PGSE acquisition to di↵erent angles ↵. As shown in Fig. 2C, the range of ↵ to
which there was sensitivity varied with the SNR and the di↵usion encoding q (and hence the gradient
strength). The angular sensitivity profiles also varied according to the diameter of the cylinders. With
increasing SNR (Fig. 2C, top row), the sensitivity to both the high and low ↵ increased. At SNR = 100,
an increasing q increased the sensitivity to high ↵, but the additional attenuation of the signal caused by
the higher di↵usion weighting decreased the sensitivity to small ↵.

Number of gradient directions

The number of gradient directions determines how well the PA signal represents the analytical PA of a
cylinder. Although it would be ideal to use very many directions, a compromise factoring in limited scan
time must be made. To investigate how the angular resolution a↵ects the diameter estimate, the signals
from cylinders of di↵erent diameters with di↵erent numbers of gradient directions (6, 15, 30 and 512)
and levels of Rician noise were generated, emulating the noise distribution present in magnitude di↵usion
MRI images. The sequence parameters were the same as in Fig. 2 and SMT-1 was fitted to the PA signal,
giving a diameter estimate dSMT-1, as shown in Fig. S1. The diameter from the signal measured in the
one direction perpendicular to the cylinders (using Eq. 4), dVG, was also calculated. The theoretical
upper and lower bounds of dSMT-1 were calculated from Eq. 7, while those of dVG were calculated from
Eq. 6.

We found that the number of gradient directions imposed an additional lower bound of measurable diam-
eter separate from that incurred by finite SNR. Of the number of directions investigated, the prediction
of the upper and lower bounds using Eq. 7, which assumes an infinite number of directions, was there-
fore only accurate starting from 30 directions using the given sequence parameters. At SNR= 20, there
was a general underestimation of diameter regardless of the number of gradient directions, as a result
of the Rician bias [54]. This disappeared when Gaussian distributed noise was used, as shown in Fig.
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Fig. 2: Angular sensitivity of the signal with respect to the cylinder axis A) The angle ↵ is defined as

the inclination from the cylinder axis. The PGSE parameters in the table were used for the sensitivity analysis.

B) The range of measurable diameters using the PA signal varies with the SNR, as shown using q = 1.1397 · 106
m

�1
. For SNR = 100, the range of measurable diameters varies with the q-value (G is varied to obtain di↵erent

q, but � and � are as in the table). The sensitivity analysis is based on Eq. 7 and assumes 30 gradient directions.

C) Variation with SNR and q�value of the angular sensitivity range, in terms of ↵, to which the measurement

is sensitive in cylinders of diameter [1, 5, 10] µm for the PGSE parameters in B. This sensitivity criterion is as in

Eq. 6.

S3. Furthermore, we noted a dependence of dSMT-1 on the orientation of the cylinder for fewer gradient
directions than 30, as discussed in Supplementary Information S1 and shown in Fig. S2.

Estimating diameter and intra-axonal signal fraction from multiple high b�value shells

The impact of di↵erent high b-values on diameter estimation was studied by fitting SMT-2 and the PL
to the PA signals from cylinders with ground truth values of fa = 0.8, an approximation of the expected
axonal signal fraction. The b-values were chosen to cover a similar range to those in the ex vivo acquisition
in [35], and all were & 20 ms µm�2 to simulate suppression of the EAS. For one set of ten b-values, Fig.
3 shows the estimated parameters from the SMT-1, SMT-2 and PL fits at SNR = 100 with Rician and
Gaussian distributed noise.

For Rician noise in Fig. 3A, dSMT-2 and dPL dropped to 0 at small and large diameters, in contrast
to the single shell SMT-1 which plateaued at large diameters (Figs. S1, S3). At large diameters, the
underestimation of diameter was accompanied by a reduction of estimated fa for the SMT-2 approach
as the significant attenuation at large diameters was instead attributed to a smaller signal fraction. A
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A. Rician noise SNR = 100

B. Gaussian noise SNR = 100 

Fig. 3: Multi-shell fit of SMT and PL to the signal from cylinders of diameter between 0.2 and 15.0
µm at SNR = 100 and di↵erent fa. Fitted dSMT-1, dSMT-2, dPL, fa and � for ground truth A) fa = 1 B)

fa = 0.8 and C ) fa = 0.5. The signal is generated using Dk = 0.6 µm2
ms

�1
, 30 isotropically distribued directions

and PGSE parameters � = 7.1 ms, � = 20 ms , G = [550, 750, 1000] mT/m, b = [19.25, 35.79, 63.62] ms µm�2
.

All datapoints reflect the mean of N = 50 measurements, and the error bars reflect their standard deviation.

reduction in � was seen for the PL approach. The use of data with Gaussian distributed noise in Fig. 3B
produced dSMT-2, fa and � estimates that were accurate at smaller and larger diameters than with Rician
noise, albeit with a high variance at large diameters. Consequently, at diameters & 8 µm, the estimates
of fa and � could not be robustly estimated, even with the mean of n = 50 repeats. One contributor to
the high variance was that the SMT-2 and PL fits failed for many large diameters, defaulting to 0.

To explore how the b�value range and number of shells a↵ected the diameter estimates, the experi-
ments in Fig. 3 were repeated for A) three shells that spanned the same b�value range range with
b = [19.25, 35.79, 63.62] ms µm�2 , B) three closely spaced b-values at the lower end of the range
b = [19.25, 22.90, 26.88] ms µm�2 and C) three closely spaced b-values at the higher end of the range,
b = [51.54, 57.42, 63.62] ms µm�2. The results are shown in Fig. 4. Other than a small decrease in
variance (likely due to the increased number of sampling points), there seemed to be no clear advantage
to sampling more shells that cover the same range of b�values, as clear from the comparison of the results
using ten shells in Fig. 3A and using three shells in Fig. 4A. Secondly, fitting to the three b-values on the
lower end of the range in Fig. 4B resulted in a wider range of measurable diameters than fitting to three
significantly higher b-values in Fig. 4C. The equivalent experiments using Gaussian noise are shown in
Fig. S4. Here, the use of Gaussian noise widened the range of measurable diameters and provided more
accurate estimates of fa.

How di↵erent noise levels influenced the diameter estimates from the SMT-2 and PL fits was examined by
repeating the experiment in Fig. 4A for SNR = [20,1], as shown in Fig. S5. We also examined whether

11



SNR = 100
∂ = 7.1
∆ = 20
Different G
Rician noise

A

C

B

RICIAN NOISE

Fig. 4: The choice of b-values a↵ects the range of measurable diameters. Multi-shell fit of SMT and PL

to the signal from cylinders of diameters between 0.2 and 15.0 µm at SNR = 100 (Rician noise) and fa = 0.8.
Fitted dSMT-1, dSMT-2, dPL, fa and � for ground truth A) three shells with b = [19.25, 35.79, 63.62] B) three shells

with b = [19.25, 22.90, 26.88] ms µm�2
and C) three shells with b = [51.54, 57.42, 63.62] ms µm�2

. The signal

was generated using Dk = 0.6 µm2
ms

�1
, 30 directions, PGSE parameters � = 7.1 ms, � = 20 ms and varying G.

n = 50 repeats of each acquisition were performed for each diameter.

the slight underestimation of diameter using the PL implementation contra the SMT-2 implementation in
Figs. 3 and 4 could be due to the assumption of the Neuman limit (Eq. 5), as opposed to the full Gaussian
phase approximation formulation from van Gelderen et al. [47] (Eq. 4) by calculating dPL using both
expressions. At SNR = 1, dSMT-2 and fa were accurately estimated up to ⇠ 13 µm, aside from at very
small diameters. Importantly, we found that the underestimation seen in dPL could indeed be explained
by the fact that large diameters � 4 µm could no longer be assumed to fulfil the assumption of � >> R2

D0

in the Neuman limit, and that using the full expression in Eq. 4 ensured equivalent accuracy of dSMT-2

and dPL up to large diameters. As such, the underestimation of diameter in the PL implementation is
not related to the PL signal model in Eq. 3. Rather, it is related to the conversion of D? into a diameter.
As expected, reducing the SNR to 20 increased the variance of the estimates and decreased the range
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of measurable diameters. This e↵ect was particularly prominent for Rician distributed noise, but also
for Gaussian distributed noise where 50 repetitions were not su�cient to robustly estimate the diameter,
fa or � for diameters � 6 µm. Since fa multiplies the signal attenuation, a change of its value directly
determined a change in the SNR and the range of measurable diameters (Fig. S6).

The dependence of estimated diameter on Dk

Whether or not SMT-2 can be fitted to a multi-shell acquisition depends on how robust the estimation of
diameter, dSMT-2, is to inaccuracies in the assumed prior Dk for the given di↵usion time. For cylinders,
the estimated dSMT-2 and dVG for di↵erent assumed values of Dk are shown in Fig. 5, with ground truth
Dk = 0.6 µm2ms�1. For the diameter estimation, it was assumed that D0 = Dk for all Dk. The range
Dk ± 15% is marked.

Using an incorrect value of Dk to within ±15% of the ground truth did not noticeably change dSMT-2 for
cylinders with d > 2 µm at high b�values and infinite SNR in Fig. 5A. For diameters > 2 µm, there was
thus little dependence of dSMT-2 on the value of Dk. For cylinders with d = 2 µm, the use of a larger-than
ground truth Dk caused SMT-2 to fail and diameters of 1 µm could not be resolved, regardless of the
assumed value of Dk. The value of dVG showed some dependence, albeit small, on the assumed value of
D0 for diameters > 1 µm. The inclusion of Rician noise in Fig. 5B caused an increased dependency of
dSMT-2 on the assumed value of Dk, apparent from the increased slope of the plots. As expected from
Fig. 3, the Rician noise caused a general underestimation of all diameters, particularly evident in the
larger diameters for which the fit misattributed the large signal attenuation to a decreased signal fraction
(e.g. 7 µm in Fig. 5B). For the low b�values in Figs. 5C-D, there was a much clearer dependence of
dSMT-2 on Dk. The trends were almost identical for the noise-free/noisy conditions.
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Fig. 5: The sensitivity of dSMT-2 and dVG to assumed value of Dk depends on b-value regime. Estimated

dSMT-2 and dVG in cylinders vs. assumed value of Dk for high di↵usion weighting A) b = [19.25, 35.79, 63.62] ms

µm�2
and SNR = 1 , B) b = [19.25, 35.79, 63.62] ms µm�2

and SNR = 100 (Rician), and lower di↵usion weighting

C) b = [0.636, 2.545, 5.726] ms µm�2
and SNR = 1 and D) b = [0.636, 2.545, 5.726] ms µm�2

and SNR = 100

(Rician). The signal was generated using 30 isotropically distributed directions, fa = 1 and PGSE parameters

� = 7.1 ms and � = 20 ms. The higher b shells use G = [550, 750, 1000] mT/m and the “low b” shells use

G = [100, 200, 300] mT/m. The true Dk = 0.6 µm2
ms

�1
, is marked by the black striped line, and Dk ± 15% is

represented by the green shaded area. The datapoints represent the mean of n = 50 repeats.

Diameter estimation in segmented axons from XNH volumes of the vervet monkey WM

We found that the fiber architecture, axonal OD and axonal microdispersion di↵ered considerably between
the splenium and crossing fiber regions of the vervet monkey brain. The axons segmented from the
splenium region, shown in Fig. 6A, were significantly smaller (mean AD = 2.75 µm, SD = 0.53 µm) and
exhibited a narrower ADD than those from the crossing fiber region (mean AD = 4.00 µm, SD = 1.26
µm) in Fig. 6B. In comparison to axons from the organised CC environment, the axons from the crossing
fiber region were very heterogeneous in terms of length, diameter, shape and OD. The thinnest, thickest
and longest axons are shown in Fig. 6D-F. To measure the axial di↵usivity, the main directions of the
axons were first calculated via a principal component analysis of their trajectories. Intra-axonal di↵usion
of spins was simulated for up to 100 ms and the displacements of the spins were recorded in the respective
main direction of each axon. From the mean-squared-displacements of the spins, the di↵usion coe�cient
in the main direction, here denoted as the z-direction (Dz), was approximated and its variation with
di↵usion time, td, is shown in Fig. 6G-E for the splenium and crossing fiber axons respectively. The
values of Dz in the splenium axons were higher than those in the crossing fiber region, owing to the more
irregular trajectories of the crossing fiber axons as seen in Fig. 6F.
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Fig. 6: Properties of real axons from di↵erent WM fiber architectures in the vervet monkey brain.
3D reconstructions of A) 54 splenium axons (segmented at 75 nm isotropic resolution) and B) 58 crossing fiber

axons (segmented at 500 nm isotropic resolution) in their respective XNH volumes. C) Combined 3D AD distri-

butions over all measured diameters in the splenium (yellow) and crossing fiber region (blue). The striped lines

mark the means, d, or volume-weighted means dw, of the distributions. The D) thinnest, E) thickest and F)

longest axons from the crossing fiber region demonstrate the significant variability of axonal morphology that can

exist on the MRI subvoxel scale. G) and E) show the variation of the di↵usion coe�cient, Dz, in the respective

main direction of each axon with di↵usion time td (data points every 1 ms per axon). Di↵erent colours represent

di↵erent axons.

For evaluation of the SMT and PL implementations in the real IAS and under di↵erent conditions, we
simulated four acquisitions within the axons from the splenium and crossing fiber regions. To isolate
the e↵ects of the real axonal geometries on the estimated diameter, the SNR was set to 1. The four
acquisitions consisted of three shells sampled in 30 gradient directions each due to the similar lower
bounds obtained using 30 and 512 directions in Fig. S1. The acquisitions used either a high or low
gradient strength set, and either a short (td = 12.7 ms) or a long (td = 37.7 ms) di↵usion time. The
intrinsic di↵usivity D0 was set to an ex vivo di↵usivity of 0.6 µm2ms�1. SMT-2, SMT-3 and the PL were
fitted to the PA signals to obtain estimates of dSMT-3, Dk from the SMT-3 fit, dSMT-2 and dPL, as shown
in Fig. 7.

At high b (Fig. 7A,C), dSMT-3 and dSMT-2 provided accurate approximations of both the individual AD
and the volume-weighted mean AD of the splenium/crossing fiber axon populations at short and long
di↵usion times. The estimated dPL was accurate for the splenium axons, but underestimated those of
the larger crossing fiber axons, in agreement with the breaking down of the Neuman limit for large axons
in Fig. S5A. The Dk estimates from the SMT-3 were scattered over the range of possible Dk values. As
shown in Fig. S7, a finite SNR of 100 caused an underestimation of the largest diameters for the high
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Fig. 7: In real axons, a fixed Dk can be assumed for high b�values. The estimated parameters dSMT-3,

Dk, dSMT-2 with assumed ex vivo Dk = 0.6 µm2
ms

�1
and dPL are plotted against the volume-weighted AD of the

54 axons in the splenium (yellow) and the crossing fiber region (blue). The parameters are calculated for di↵erent

combinations of short (� = 15 ms) and long (� = 40 ms) gradient separations with high (G = [500, 600, 700]
mT/m) or low (G = [100, 200, 300] mT/m) gradient strengths, as indicated. This gave three-shell acquisitions

with A) b = [11.11, 16.00, 21.77] ms µm�2
, B) b = [0.549, 2.198, 4.945] ms µm�2

, C) b = [33.03, 47, 56, 64.73] ms

µm�2
and D) b = [0.795, 3.180, 7.155] ms µm�2

. The signals were generated with MC simulations using ex vivo

D0 = 0.6 µm2
ms

�1
and were sampled in 30 gradient directions. For all acquisitions, � = 7 ms and SNR = 1

(barring the intrinsic noise associated with MC simulations). Square marker: volume-weighted AD of splenium

axon population, cross marker: volume-weighted AD of crossing fiber population.

b-value acquisition in Fig. 7C, in line with the underestimation of large diameters in Fig. 3.

Using lower b and short di↵usion times, as in Fig. 7B, dSMT-3 slightly overestimated the diameters of all
axons. There was a subtle positive correlation between d and Dk, the values of which were similar to or
higher than Dz in Fig. 6G-H. dSMT-2 underestimated the diameters of the smaller splenium axons, but
overestimated those from the crossing fiber region. The PL fit failed for all but one of the axons, which
was greatly overestimated (Fig. 7B). Interestingly, at longer di↵usion time, as in Fig. 7D, there was a
further overestimation of dSMT-3 for the crossing fiber axons and a shift in Dk towards lower values. In
dSMT-2, the under- and overestimation of the splenium and crossing fiber axons respectively were both
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enhanced. At this longer di↵usion time, dPL was non-zero for some of the larger crossing fiber axons, but
was significantly underestimated.

To evaluate the methods of AD estimation with in vivo di↵usivities and gradient strengths o↵ered by
Connectom MRI scaners, the simulations were repeated for G = [100, 200, 300] mT/m and two di↵erent
di↵usion times, using an intrinsic di↵usivity of D0 = 2 µm2ms�1. The results are shown in Fig. 8.
Strikingly, the volume-weighted mean diameter of the splenium axon population was only non-zero for
one metric and under one condition: it was accurate for dSMT-3 at the shortest investigated e↵ective
di↵usion time td = 12.7 ms in Fig. 8A. At the longer di↵usion time, dSMT-3 provided accurate estimates
of a subset of the individual axons, but the mean of the population could not be fitted. The individual and
population mean ADs of the splenium axons could not be estimated using the SMT-2 or PL approaches for
any parameter combinations. The ADs of the crossing fiber axons were generally somewhat overestimated
by SMT-3 at all di↵usion times. Contrary to the splenium axons, SMT-2 could fit the ADs of the largest
crossing fiber axons. The PL implementation could fit very few axons at short di↵usion times (Fig. 8A),
but its performance improved with increasing di↵usion time (Fig. 8B). As in the simulations with ex
vivo di↵usivities, the values of of Dk decreased with increasing di↵usion time.
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Fig. 8: Axon diameter estimation in real axons using an in vivo intrinsic di↵usivity, D0 = 2 µm2ms�1
.

The estimated parameters dSMT-3, Dk, dSMT-2 and dPL are plotted against the volume-weighted AD of the 54

axons in the splenium (yellow) and the crossing fiber region (blue). The parameters are calculated for acquisitions

with A) � = 15 ms and b = [0.44, 1.78, 4.00] ms µm�2
and B) � = 30 ms and b = [0.97, 3.88, 8.73] ms µm�2

.

Each acquisition consisted of three shells with 30 gradient directions, G = [100, 200, 300] mT/m, � = 7 ms and

SNR = 1. Square marker: volume-weighted AD of splenium axon population, cross marker: volume-weighted

AD of crossing fiber population.

Discussion

By segmenting axons from synchrotron X-ray nano-nolotomography volumes of a splenium and crossing
fiber region of the vervet monkey brain, we explored the impact of real axonal morphologies on axon
diameter estimation with powder average di↵usion MRI approaches. Simulations of di↵usion within the
segmented axons, using both in vivo and ex vivo di↵usivities, show that accurate measures of mean axon
diameter can be obtained. In the real axonal substrates, we also find that the diameter estimates exhibit
a time dependence, provided that the q-values of the applied sequence are low enough to preserve the
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di↵usion MRI signal arising from large displacements. Given the broad distribution of axon diameters
found in the crossing fiber region, it is imperative that the di↵usion MRI acquisition has sensitivity to
both small (including those too small to be segmented from the XNH volumes) and very large diameters.
We show here how powder average-based methods are subject to upper and lower bounds of measurable
diameter. Although these depend on the gradient strength [14, 56, 57], they also depend on the b-value
and the number of gradient directions. Ultimately, we find that the e↵ective SNR of the measurement is
the key limiting variable of measurable diameter, and we show the importance of removing Rician bias
from the di↵usion MRI signal.

Sequence parameter considerations

The e↵ect of q-value, b�value and the number of gradient directions on the bounds of

measurable diameter

We show that sensitivity profiles of PA-based methods to di↵erent diameters (Fig. 2B) are influenced
by sensitivity of the acquisition to di↵erent angles within the cylindrical micro-domains (Fig. 2C). The
q-value and the di↵usion time of the acquisition act as spatial filters, restricting the maximum detectable
displacements of the spins. A higher q-value increases the sensitivity of the acquisition to smaller length
scales in directions perpendicular to the cylinder. However, we show that if the q-value is high enough to
cause attenuation of the signal from an ensemble of spins before it has di↵used for the entire di↵usion time,
the acquisition loses sensitivity in the axial direction. For a given di↵usion time and SNR, we show that
an increase in q narrows the angular sensitivity profile. Although an increased gradient strength will move
the lower bound to smaller diameters, in accordance with the findings of Dyrby et al. [14] and Sepehrband
et al. [56], the upper bound will also be reduced, narrowing the range of measurable diameters. This is
true also for methods that estimate AD from measurements perpendicular to axons [10,11,13–16], but the
increased attenuation of the PA due to its averaging across many directions and length scales typically
incurs a higher location of the lower bound, as shown in the comparison between dSMT-1 and dVG in Fig.
S1.

We found that the number of uniformly distributed gradient directions influenced the lower bound of
measurable AD, with smaller diameters demanding measurements with higher angular resolution. This is
in line with the findings of Li et al. [58] who show that at SNR= 1, the number of directions determines
how accurately the measured PA signal reflects the ground truth signal. The angular resolution thus
places a lower bound on the measurable AD, separate to that incurred by the sequence parameters and
finite SNR. We demonstrate that with Rician noise, increasing the angular resolution cannot decrease the
SNR-incurred lower bound. For Gaussian noise, however, the higher number of sampling points given by
the higher angular resolution may increase the e↵ective SNR and provide access to smaller diameters. In
practice, it has been shown that it is better to increase the number of directions than to perform many
repeats of the same shell [59]. Furthermore, an increased angular resolution increases the robustness of
the AD estimate to di↵erent underlying fiber configurations and OD, as seen in Fig. S2. This agrees
with other studies that find that more gradient directions lower the variance in parameter estimates
from the PA signal [33,60]. Our results also indicate that an increased angular resolution does not yield
noticeably increased rotational invariance after a certain number of directions, similar to the findings
of [61] where little improvement in the rotational invariance of the fractional anisotropy measurement
was found beyond 20 directions at b = 1 ms µm�2.

All simulations on cylinders in this investigation assume a single cylinder direction. In practise, this is
not realistic even in the CC [19,20]. For methods that assume a single fiber direction [10,11,13,14], this
is a limitation. PA methods, on the other hand, may benefit from fiber dispersion as it has been shown
that the less anisotropy there is on the voxel scale, the fewer directions are required to obtain rotational
invariance of the PA [58,60,61]. It is thus possible that axon diameter estimates in ordered WM regions
such as the CC require the use of more gradient directions than in heterogeneous crossing fiber regions.
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Is it necessary to fit the intra-axonal parallel di↵usivity?

We show here that the need to fit Dk depends on the sequence parameters used. For high b-values, the
signals at low ↵ (roughly parallel to the cylinder axis) were heavily attenuated and contributed little to
the overall PA. The dependency of the estimated diameter on Dk was therefore low and the assumption
of erroneous Dk and D0 to within ±15% of the true value did not have a significant impact on the
estimated diameter (Fig. 5A-B). At lower b, as in Fig. 5C-D, on the other hand, the contribution of the
low ↵ signals to the overall PA was more significant and the dependency on Dk could not be ignored.
Some AD estimation methods, such as ActiveAx [13] and the SMT implementation by Fan et al. [34]
assume a value of Dk. Other methods e.g. AxCaliber [10, 11] and the PL implementation [35] (either
directly or indirectly) fit it. For PA methods, this entails that estimates of Dk calculated by measuring
the signal parallel to axons in the CC are likely to be su�cient at ex vivo intrinsic di↵usivities for b � 20
ms µm2. For methods that implement lower b-values, Dk may need to be fitted (in addition to the signal
from other tissue compartments), especially considering the time-dependence of the intra-axonal axial
di↵usivity [19, 62–64].

Choice, but not number, of b-values a↵ects measurable range of diameter

Fitting the SMT and PL implementations to the signal from di↵erent sets of b-values (all b & 20 ms µm2

to simulate suppression of the EAS signal [35]) showed that there may be little advantage to increasing the
q�value (and thus the b�value) of an acquisition. This supports the trend in Fig. 2B, in which an increase
in q-value after a certain point does little to lower the lower bound, but narrows the range of measurable
diameter. Furthermore, the finding of no noticeable advantage of densely sampling many b-values lends
support to the optimisation framework of Alexander et al. [65] in which the optimal acquisition design
for axon diameter estimation used few shells (3 to 6), and to the approach of ActiveAx [13]. Our results
thus indicate that it may not be necessary to perform a dense sampling of b-values as in the SMT
implementation of Fan et al. [34], AxCaliber [11] and the PL implementation [35]. A similar suggestion
was recently made by Veraart et al. [66]. Moreover, while the sensitivity criteria of Nilsson et al. [43]
provided indications of the range of measurable diameter for SMT-1 fits to a single b�value (Fig. S1,
Fig. S3), no equivalent metric exists for a multi-shell fit, making simulations of the signal important in
predicting the sensitivity of a multi-shell acquisition to diameter.

The drops to zero at small and large diameters resulting from multi-shell fits for Rician distributed
noise in Fig. 3 introduce a problematic degeneracy: axons with diameters above the upper bound of
measurable diameter may instead appear as smaller axons. We show here the existence of axons up to
8 µm in mean diameter in the crossing fiber region. In the Rician regime and high b-values, as in Fig.
3, these are underestimated by both the SMT and PL approaches. Therefore, to work in the Rician
regime one needs to ensure that the upper bound is su�ciently high to prevent the largest axons in the
tissue from being underestimated. Sensitivity to larger axons may be gained by using longer di↵usion
times [14], and – as we show in Fig. 2B – by increasing the e↵ective SNR or reducing the q-value. We
show here that the use of Gaussian distributed noise also ensures improved sensitivity to larger diameters
for both the SMT and PL approaches. As in the results of Fan et al. [34], we observed a relationship
between estimated diameter and IAS signal fraction at large diameters for the SMT-based approach.
This mostly disappeared at infinite SNR, indicating that it may not be an issue at lower b-values, where
the signal attenuation is lower and e↵ective SNR is higher. Our analysis also revealed that the apparent
underestimation of diameter in dPL compared to dSMT-2 in Figs. 3 and 4 is due to large axons falling
outside of the assumed Neuman limit (Eq. 5) which was used to calculate a diameter from D? in the PL
implementation (the SMT implementations instead used the full expression in Eq. 4).
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The importance of the SNR and noise type

For a single b-value, we show here how an increase in SNR (assuming Gaussian distributed noise) increased
the angular sensitivity range of the acquisition (Fig. 2), as expected from the sensitivity criteria presented
in [43]. Similarly, for fits of diameter to multiple high b-value signal sets, we found that Gaussian
distributed noise resulted in a wider range of measurable diameters (Fig. 3) and provided more accurate
estimates of the intra-axonal signal fraction. As such, Gaussian distributed noise also prevented the
systematic underestimation of diameter that is seen with Rician noise. This agrees with the findings of
Fan et al. [34], in which it is also argued that the use of real-valued di↵usion MRI data with Gaussian
noise is more independent of the underlying fiber orientation distributions. The advantages of using
Gaussian distributed noise stem from the fact that powder averaging of signals with a noise distribution
centred around the mean avoids bias in the estimated average of the signal. In light of this, recovery of
the real-valued di↵usion MRI data with Gaussian distributed noise by performing a phase correction [67]
is likely an important step in improving both the range and accuracy of measurable ADs.

Microdispersion a↵ects PA-based axon diameter estimates in segmented axons

from the vervet monkey brain

At high b-values and ex vivo intrinsic di↵usivities (Figs. 7A and C), we show that wide range of ADs from
the splenium and crossing fiber WM regions could be accurately estimated using the SMT implementation,
regardless of di↵usion time. The PL underestimated some of the larger crossing fiber axons, in agreement
with the breaking down of the Neuman limit for large axons that we observe in Fig. S5A. Our simulations
in real axons thus suggest that, in practice, the assumption of the Neuman limit cannot necessarily be
made for all WM voxels and acquisitions; in our data, it was an adequate assumption for the splenium
CC region, but not the crossing fibre region. Hence, even if the acquired di↵usion MRI signals and
calculated D? hold the anatomical information to provide an accurate AD estimate, the method by
which a diameter is calculated from D? may bias the estimate. The formulation by van Gelderen et
al. [47] (Eq. 4) generalises across sequence parameters and diameters and may thus provide a more
optimal sensitivity profile to a broad range of ADs for given acquisition parameters. Furthermore, the
scattered and inaccurate estimates of Dk from SMT-3 (some even surpassing the intrinsic di↵usivity in
Fig. 7A), yet the accurate dSMT�3 estimates of AD, support our finding that the estimated AD is not
very sensitive to inaccuracies in Dk at high b-values (Figs. 5A and B). Unlike Lee et al. [22], we did not
observe an overestimation of AD.

At lower b-values, the e↵ects of axonal microdispersion manifested as a slight overestimation of the crossing
fiber axon ADs that increased with increasing di↵usion time. Fitting Dk was necessary to obtain accurate
AD estimates for the smaller splenium axons. Despite the extremely tortuous trajectories of the crossing
fiber axons, their fitted Dk were generally higher than those of the smaller splenium axons. It is possible
that axons exhibit similar trajectories somewhat independently of the voxel-scale fiber architecture, given
that these are modulated by obstacles in the local environment [19]. If so, the correlation between Dk
and diameter could be due to spins in smaller axons probing the curvature of the IAS to a greater extent.
The curvature could be caused by microdispersion and diameter variations [19,22,63,68]. In contrast to
the PA estimates of Dk, the di↵usivities measured in the single main direction of each axon (Dz) were
markedly lower in the crossing fiber region than in the splenium (Figs. 6G and E). Lastly, we observed a
decrease in Dk at longer di↵usion times, agreeing with the time-dependence of Dz in Fig. 6. The nature
of this time dependence could be indicative of the diameter variations and degree of microdispersion of
the axons [19, 63], and thus also an indication of the density of cells or other extra-axonal structures in
the WM [19]. The time dependence of both Dk and the diameter could potentially act as biomarkers of
situations where the WM cell density is expected to change, such as in pathology or inflammation.

The simulations within the realistic IAS at in vivo di↵usivities (Fig. 8) highlight the importance of
mapping the sensitivity profile of the whole acquisition setup including the model and acquisition param-
eters. Even with gradient strengths accessible to human di↵usion MRI experiments only via Connectom
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scanners, the splenium ADs could be accurately estimated only by SMT-3 at the shortest di↵usion time
and provided that Dk was fitted. At increasing di↵usion times, the volume-weighted mean AD of the
splenium population could not be estimated. Additionally, the overestimation of the ADs of the crosssing
fiber axons at all di↵usion times could be explained by the high in vivo intrinsic di↵usivity entailing that
spins probe larger distances, and thus more microdispersion, than at ex vivo intrinsic di↵usivities. The
lack of time-dependence in the crossing fiber ADs could be due to the spatial filtering e↵ect of the q-value.

Limitations

This investigation restricted the analysis of PA-based AD estimates to the IAS, for di↵erent sequence
parameters and SNRs. At high b-values, the observation of a signal decay proportional to b�0.5 indicates
that the signal mostly arises from thin, cylindrical structures [39,40,69], and that the EAS is suppressed.
However, in the splenium XNH volume, we observed cell clusters and vacuoles that together constituted
6.1% of the total volume fraction [19]. Recent studies show that the cell somas could contribute to
the PA signal at short di↵usion times [70], complicating the SMT and PL fit to the PA signals. The
presence of any restricted or hindered compartment from which the signal remains at high b�values will
complicate the fits, unless it is explicitly modelled. These compartments could include e.g. irregularities
in the axonal myelin or cellular processes. The observed dot compartment in ex vivo tissue [13, 35] –
completely restricted in all directions – will systematically bias PA-based AD measurements, although
its contribution to the signal has been shown to be negligible in vivo [40,71,72].

Furthermore, use of the single-compartment PL implementation as in Veraart et al. [35] requires high
b-values both for the suppression of the EAS and to fulfil the assumptions of the PL model. In Fan
et al. [38] and Veraart et al. [35], the use of Connectom scanners for the in vivo applications enabled
high gradient strengths, and thus high q and b-values. On regular clinical scanners with limited gradient
strengths, high b-values could be achieved with longer di↵usion times, but this would be at the cost of a
reduced sensitivity to small diameters and a long echo time that would reduce the SNR of the acquisition.
Longer e↵ective di↵usion times could alternatively be obtained via stimulated echo acquisitions [73, 74],
but also at the cost of lower SNR.

At lower b-values, the PL is no longer valid and only the SMT implementation provides an adequate
fit to the PA signals. Given that the EAS is not suppressed at such b�values, the signal contributions
from other compartments must be modelled, as in Fan et al. [34]. The accuracy of the AD estimate
thus depends not only on how accurately the geometry of other compartments are modelled, but also
the compartmental T2 relaxation times [75] and potential exchange rates. However, the sensitivity to
microdispersion and Dk at low b-values is higher, and the time-dependence of dSMT-3 and Dk could
provide valuable insight into axonal morphology [20,22,41,43,63,76].

One key challenge to AD estimation with di↵usion MRI is that real WM voxels contain an ADD, and not
single diameters. Here, we have segmented the upper tail of the ADD. Di↵usion MRI-based estimates
of mean diameter are heavily weighted by the tail of the ADD [35, 77] and the larger axons – like those
presented in this study – thus significantly contribute to the signal. In alignment with Dyrby et al. [9,14]
we show that the sequence parameters and the PA model together result in an AD sensitivity profile,
with an upper and lower bound of detectable diameter. Despite the heavier weighting of larger axons,
axons below the lower bound of measurable diameter (or above the upper bound) still contribute to the
total signal and will cause an underestimation of the average AD index, as seen for the splenium axons
at in vivo di↵usivities.

Conclusion

We demonstrate that powder averaging techniques can succeed in providing accurate estimates of axon
diameter, even in a complex crossing fiber region of the vervet monkey brain. To succeed, the acquisition
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must have a broad sensitivity profile to di↵erent length scales. This is important partly due to the many
di↵erent axon sizes present within a voxel, as presented here, but also because the powder average probes
di↵erent length scales in anisotropic micro-domains. Furthermore, we show how the gradient strength,
di↵usion time and number of gradient directions, as well as the SNR and type of noise distribution,
influence the lower and upper bounds of measurable diameter. Finally, at low b-values we show that
the acquisition becomes sensitive to axonal microdispersion, which could be an interesting biomarker of
WM health and pathology. We foresee that this characterisation of the limits and potential of PA-based
approaches to AD estimation will contribute to the development of new methods and models to study
the WM microstructure with di↵usion MRI.
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