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14 Abstract

15 The flood mosquito, Aedes vexans (Diptera: Culicidae), native of Canada, and currently 

16 present in all continents, has a vector competence for 30 arboviruses, being responsible for 

17 transmitting diseases, like West Nile fever, Rift Valley fever, Saint Louis Encephalitis and 

18 Eastern Equine Encephalitis. Hence, knowing the structure and gene flow of A. vexans is 

19 important to develop adequate vector control strategies for this species. For this, from partial 

20 sequences of the mitochondrial COI gene available in Bold and GenBank, it was possible to 

21 determine the Haplotypic (Hd) and nucleotide (π) gene diversity, genetic structuring and gene 

22 flow at global, continental, and country levels. In total, 1184 sequences were recovered, 

23 distributed between America (88.60%), Europe (7.35%), Asia (3.89%), and Africa (0.17%). 

24 From these, 395 haplotypes (H) were detected without presence of pseudogenes (NUMTs), 

25 with H1 being the most frequent (24.58%) and between H12 - H395 the least frequent varying 

26 between 0.93% (H12) and 0.08% (H395). Phylogenetically, the haplotypes were grouped into 

27 six clades. Clade I grouped haplotypes from countries in America and Europe, while clades II 

28 and III presented haplotypes exclusively from Asia and Europe; clade IV grouped only one 

29 haplotype from Africa and the last ultimo clade V grouped haplotypes from America and 

30 Africa. The global Hd and π was 0.92 and 0.01, respectively. In addition, evidence was 

31 obtained of genetic structuring among continents (7.07%), countries (1.62%), and within 

32 countries (91.30%; FST = 0.08, p < 0.05) and no isolation by distance was detected (r = 0.003, 

33 p > 0.05). These results suggest that the mosquito populations that invaded other continents 

34 originate directly from the American continent, where possibly transcontinental commercial 

35 routes favored their long-distance dispersion.

36 Key words: Cytochrome oxidase subunit I, genetic diversity, gene flow, genetic structuring, 

37 haplotypes, mitochondrial DNA, pseudogenes, vector competence, vector control.
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39 Introduction

40 The flood mosquito, Aedes vexans (Meigen, 1830), is present in subtropical regions of all 

41 continents, except for the Antarctic [1,2,3]. In nature this species manages to travel up to 17 

42 km [4]; however, its global invasion was favored through passive transport mediated by 

43 human activities [5]. Like other mosquitos of medical and veterinary importance [6], A. 

44 vexans lays its eggs in moist sites with flood probability to guarantee their offspring [7] and 

45 these can resist drying out and survive up to three years when kept moist [8]. In general, A. 

46 vexans females and males feed on nectar, but to mature their ovaries and reproduce, the 

47 females feed principally on mammals, like deer, horses, cattle and pigs [9,10,11]. Normally, 

48 this species is found in rural zones, but when it inhabits suburban and urban zones, it prefers 

49 humans as principal feeding source [12,13].

50 Morphological and molecular evidence suggest the existence of three subspecies of A. 

51 vexans throughout the world: Aedes vexans vexans Meigen in eastern Asia and Oceania, 

52 Aedes vexans arabiensis Patton in Africa and Europe, and Aedes vexans nipponii Theobald in 

53 southeast Asia [1,14,15,16,17]. The flood mosquito has vector competence for 30 arbovirus 

54 (Elizondo-Quiroga et al. 2018) and is involved in the transmission of important diseases, like 

55 the West Nile fever, Rift Valley fever, Saint Louis encephalitis and Eastern Equine 

56 encephalitis, as well as filarial nematodes [18,19].

57 Given the epidemiological and sanitary importance of A. vexans, understanding the 

58 structuring patterns and gene flow of this species’ populations is important to develop more-

59 adequate vector control programs [20], as well as understand the transmission of vectors 

60 among the human population, given its influence on pathogen transfer and dissemination of 

61 characteristics, like vector competence and resistance to insecticides [21,22]. For example, 

62 studies on genetic structure in populations of Aedes aegypti, dengue, chikungunya, and Zika 

63 vector, in two locations of Queensland, Australia, indicated that said locations were partially 
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64 isolated genetically, with these two sites being adequate for the release of mosquitos infected 

65 with Wolbachia pipientis because it was important to restrict the strain released during the 

66 initial implementation phases [23,24]. Thereafter, mosquitos infected with Wolbachia 

67 pipientis were released with successful establishment in both locations, thus, suppressing 

68 dengue transmission [25].

69 Molecular markers are widely used to understand the biology and population 

70 dynamics of vector species of diseases [26]. Among the molecular markers used in population 

71 genetics studies in A. vexans, the mitochondrial DNA (mtDNA) sequences are broadly used 

72 due to properties, like their abundance in the organism, size and small genomic structure, 

73 rapid rate of evolution, and exclusive maternal inheritance with low genetic recombination 

74 [27]. However, one of the disadvantages of using mtDNA in population genetics and 

75 phylogenetic studies is NUMTs presence, result of the translocation of mitochondrial 

76 sequences of the mitochondrial genome for the nuclear genome [28]. Furthermore, this type 

77 of information is freely available in the GenBank and Boldsystem databases. Particularly for 

78 A. vexans, until now, nobody has analyzed the genetic information available within a global 

79 context. This work sought to know the global panorama of genetic diversity and gene flow of 

80 A. vexans, using mtDNA sequences available in GenBank and Boldsystem.
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81 Materials and Methods

82 A prior search in GenBank permitted detecting that the mtDNA Cytochrome oxidase subunit I 

83 (COI) gene was the most representative, and given that Boldsystem is this marker’s 

84 depository, it was also determined to work with it. For this, partial nucleotide sequences were 

85 obtained from the mitochondrial (mtDNA) COI gene deposited in GenBank and Boldsystem 

86 for A. vexans. The search criteria in GenBank used the words Aedes vexans AND COI, while 

87 for Boldsystem, it only used Aedes vexans. The sequences obtained were analyzed by using 

88 the BLAST tool in the NCBI website (http://blast.ncbi.nlm.nih.gov/Blast.cgi) to confirm 

89 identity with A. vexans and only sequences with identity percentage between 98% and 100% 

90 were considered in our analysis. Thereafter, the sequences selected were classified according 

91 to continent and country, so that analyses listed ahead were performed for each of them. In 

92 addition, for each sequence, geographic data were extracted to later geo-reference it on a map; 

93 sequences without geographic information were eliminated from the analysis. These data 

94 were filtered and organized through the RStudio platform by using Bold packages version 0.9 

95 [29] and Ape version 5.3 [30].

96 Then, the sequences were aligned by using the MAFFT software version 7 to later 

97 detect haplotypes (H) [31]. Each haplotype was numbered based on its frequency, thus, the 

98 most frequent was H1, the following H2, and so forth. To detect potential NUMTs among the 

99 H detected, additional stop codons were searched for in the alignment [28]. In case of 

100 detecting any NUMT, it was reported and removed from the analysis. With H without 

101 NUMTs, the haplotype network was constructed through the Pegas package version 0.11 [32] 

102 in the RStudio platform [33].

103 Diversity and neutrality tests were estimated by using the DnaSP program version 6.0 

104 [34]. The analysis of molecular variance (AMOVA) was conducted by using the Arlequin 
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105 program version 3.5 [35], which evaluated the variation between continents and countries. 

106 Population genetic structuring was tested by using the fixation index (FST) proposed by 

107 Wright [36], and the gene flow (Nm) was calculated through the Arlequin program version 

108 3.5 [35]. In cases in which statistically significant differences were obtained, the Bonferroni 

109 correction was used to verify the existence of significant differences.

110 To test isolation by distance, Mantel’s test was carried out to estimate the correlation 

111 between genetic distance (FST) and geographic distance (Km) using the Vegan package 

112 version 2.5 [37] on the RStudio platform [33]. The geographic distances were obtained by 

113 calculating with the Geographic Distance Matrix Generator program version 1.2.3. To 

114 estimate the genetic affinity of A. vexans populations, a phylogenetic reconstruction was 

115 performed using maximum likelihood (ML) and Bayesian inference (BI) from the haplotypes 

116 found. For this, we initially searched for the nucleotide substitution model that best fits our 

117 data in the program jModelTest version 2.1.1, which selected the model with the lowest value 

118 from the Akaike information criterion, AIC, [38]. Then, the model selected was used for the 

119 phylogenetic reconstruction under the ML and BI approach. The ML analysis was conducted 

120 with the RAxML software [39], under the following parameters: ML+ thorough Bootstrap 

121 and 1,000 boot replicas. In turn, the BI analysis was conducted in the Mr.Bayes program 

122 version 3.2.7, under the following parameters: number of generations = 2,000,000, with σ < 

123 0.01 of the frequencies to indicate robustness of the phylogenetic hypothesis [40]. The 

124 visualization and editing of the phylogenetic trees obtained was carried out in Mr.Ent version 

125 2.5 [41].

126
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127 Results

128 Between April and May 2020, the study recovered 2,420 sequences from the Boldsystem 

129 (82.64%) and GenBank (17.35%) databases, distributed among America (94.50%), Europe 

130 (3.68%), Asia (1.23%), and Africa (0.58%) with median length of 467 bp, varying between 

131 114 and 879 bp. Nevertheless, once the alignment was made, 1,184 sequences were selected 

132 from these with a length of 340 bp each, all distributed among the continents mentioned. 

133 Among the sequences selected, the American continent had the highest representation 

134 (88.60%), followed by Europe (7.35%), Asia (3.89%), and Africa (0.17%). The American 

135 continent was represented with sequences from Canada (64.10%) and the United States 

136 (24.49%). Europe was represented by Sweden (2.87%), Belgium (1.35%), Spain (1.27%), 

137 Netherlands (0.84%), Austria (1.35%), Germany (0.17%), Rumania (0.17%), Germany 

138 (0.17%), Kosovo (0.17%), Hungary (0.17 %), and Turkey (0.17%). Asia was represented by 

139 Japan (1.10%), China (1.10%), Iran (0.59%), Russia (0.42%), Singapore (0.25%), South 

140 Korea (0.25%), and India (0.17%). Finally, Africa was represented only by South Africa 

141 (0.17%).

142 Table 1 shows the global distribution of the haplotypes observed. In total, 395 H were 

143 observed, with H1 being the most frequent (24.58%), followed by H2 (7.77%), H3 (4.39%), 

144 H4 (3.38%), H5 (2.28%), H6 - H11 ranging between 1.86% (H6) and 1.10% (H11), and H112 

145 - H395 varying between 0.93% (H112) and 0.08% (H395). Although H1 was the most 

146 frequent, it was only observed in Canada and the USA. Nevertheless, the haplotype with the 

147 greatest distribution was H7, which was present in eight countries, that is, Austria (11.76%), 

148 Belgium (17.64%), Hungary (11.76%), Kosovo (5.88%), Netherlands (17.64%), Russia 

149 (5.88%), Spain (11.76%), and Sweden (17.64%). None of the H had presence of NUMTs 

150 (Supplementary material). Figure 1 displays the locations where the genetic material analyzed 

151 was extracted (Fig. 1A), as well as the phylogenetic relationships between populations, as 
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152 arrows observed in the haplotype network (Fig. 1B). From this, it may be stated that native 

153 populations of A. vexans from America invaded some countries in Africa and Europe, and 

154 from there established themselves in other countries in these continents and in Asia.

Continent
Haplotype

America Africa Asia Europe
Access 
code Reference

H1 291 0 0 0 ACMC131-04 [42]

H2 92 0 0 0 ACMC277-04 [42]

H3 52 0 0 0 CNEIF006-12 [43]

H4 40 0 0 0 ACMC276-04 [42]

H5 27 0 0 0 CNGSD2112-15 [43]

H6 0 0 0 22 CULBE143-14 [44]

H7 0 0 0 17 GBMIN56980-
17 [44]

H8 15 0 0 0 ASDIP113-15 http://www.boldsystems.org/

H9 13 0 0 0 ACMC289-04 [42]

H10 12 0 0 0 BBDCP596-10 http://www.boldsystems.org/

H11 13 0 0 0 CNPAD261-13 [43]

H12 11 0 0 0 CNEIF841-12 [43]

H13 10 0 0 0 CNEIF861-12 [43]

H14 9 0 0 0 ASDMT244-11 [43]

H15 9 0 0 0 ACMC290-04 [42]

H16 7 0 0 0 CNGSD6857-15 [43]

H17 7 0 0 0 CNGSD860-15 [43]

H18 7 0 0 0 CNJAE1246-12 [43]

H19 7 0 0 0 CNPAF983-13 [43]

H20 7 0 0 0 SSJAE8713-13 [43]

H21 6 0 0 0 CNJAE1248-12 [43]

H22 0 0 8 0 GBDP47430-19 [45]

H23 5 0 0 0 CNEIF812-12 [43]

H24 5 0 0 0 MBIOI074-13 [43]

H25 5 0 0 0 RRSSA3576-15 [49]

H26 5 0 0 0 SSEIC6245-13 [43]

H27 5 0 0 0 SSJAE8835-13 [43]

H28 0 0 0 4 CULBE132-14 [44]

H29 4 0 0 0 ACMC104-04 [42]

H30 4 0 0 0 CNEIG153-12 [43]

H31 4 0 0 0 CNGSD1517-15 [43]

H32 4 0 0 0 CNPAD244-13 [43]

H33 4 0 0 0 PHJUL2502-11 [43]

H34 4 0 0 0 SSEIC5403-13 [43]

H35 4 0 0 0 SSEIC5955-13 [43]

H36 4 0 0 0 SSEIC6896-13 [43]

H37 4 0 0 0 SSJAE8703-13 [43]
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H38 4 0 0 0 SSJAE9027-13 [43]

H39 0 0 0 4 GBDP48120-19 [48]

H40 3 0 0 0 CNEIF014-12 [43]

H41 3 0 0 0 CNEIF817-12 [43]

H42 3 0 0 0 CNEIF830-12 [43]

H43 3 0 0 0 CNEIG182-12 [43]

H44 3 0 0 0 CNGSI1668-15 [43]

H45 3 0 0 0 CNRME208-12 [43]

H46 3 0 0 0 PHAUG1312-11 [43]

H47 3 0 0 0 SMTPJ4980-14 [43]

H48 3 0 0 0 SSEIA4548-13 [43]

H49 3 0 0 0 SSEIA5279-13 [43]

H50 3 0 0 0 SSEIA5341-13 [43]

H51 3 0 0 0 SSJAF9177-13 [43]

H52 3 0 0 0 SSPAC12518-
13 [43]

H53 3 0 0 0 SSPPA9368-15 [43]

H54 0 0 3 0 MK962499 [50]

H55 0 0 3 0 AB738099 [45]

H56 0 0 0 3 GBMIN56959-
17 [48]

H57 3 0 0 0 IUP1017-14 http://www.boldsystems.org/

H58 0 0 0 2 CULBE140-14 [44]

H59 2 0 0 0 ACMC033-04 [42]

H60 2 0 0 0 BBDCM210-10 [43]

H61 2 0 0 0 CNEIF002-12 [43]

H62 2 0 0 0 CNEIF798-12 [43]

H63 2 0 0 0 CNGSE2411-15 [43]

H64 2 0 0 0 CNGSI1097-15 [43]

H65 2 0 0 0 CNPKO3332-14 [43]

H66 2 0 0 0 CNRME207-12 [43]

H67 2 0 0 0 CNRME2449-
12 [43]

H68 2 0 0 0 CNRME4093-
12 [43]

H69 2 0 0 0 CNRMG626-12 [43]

H70 2 0 0 0 CNTIH462-15 [43]

H71 2 0 0 0 GMOKH968-15 [43]

H72 2 0 0 0 SSEIA3424-13 [43]

H73 2 0 0 0 SSEIA3430-13 [43]

H74 2 0 0 0 SSEIA5215-13 [43]

H75 2 0 0 0 SSEIA5266-13 [43]

H76 2 0 0 0 SSJAE1181-13 [43]

H77 2 0 0 0 SSJAE8706-13 [43]

H78 2 0 0 0 SSJAF9208-13 [43]

H79 2 0 0 0 SSPAB8912-13 [43]

H80 2 0 0 0 SSPAC12020-
13 [43]

H81 2 0 0 0 SSPPA5271-15 [43]

H82 2 0 0 0 SSPPA5483-15 [43]
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H83 2 0 0 0 SSPPA9400-15 [43]

H84 0 0 2 0 GBDP47423-19 [45]

H85 0 0 2 0 AB738168- [45]

H86 0 0 0 2 GBMIN56950-
17 [46]

H87 0 0 1 1 LRMQS005-17 [47]

H88 0 0 1 1 GBDP48149-19 [48]

H89 0 0 1 1 GBDP48185-19 [48]

H90 0 0 1 1 GBDP48490-19 [48]

H91 0 0 0 2 GBMIN56961-
17 [48]

H92 2 0 0 0 MOSN025-17 http://www.boldsystems.org/

H93 2 0 0 0 MOSN050-17 http://www.boldsystems.org/

H94 2 0 0 0 MOSN1411-18 http://www.boldsystems.org/

H95 1 0 0 0 MOSN1957-18 http://www.boldsystems.org/

H96 1 0 0 0 MOSN2259-19 http://www.boldsystems.org/

H97 1 0 0 0 MOSN2970-19 http://www.boldsystems.org/

H98 0 0 0 1 CULBE141-14 [44]

H99 0 0 0 1 CULBE145-14 [44]

H100 0 0 0 1 GMOKH2148-
15 [43]

H101 0 0 0 1 CULBE136-14 [44]

H102 0 0 0 1 CULBE138-14 [44]

H103 0 0 0 1 CULBE139-14 [44]

H104 1 0 0 0 ACMC053-04 [42]

H105 1 0 0 0 ACMC288-04 [42]

H106 1 0 0 0 ASDMT1059-11 [43]

H107 1 0 0 0 BBDCN133-10 [43]

H108 1 0 0 0 BBDCN233-10 [43]

H109 1 0 0 0 BBDCP593-10 [43]

H110 1 0 0 0 CNEIF015-12 [43]

H111 1 0 0 0 CNEIF023-12 [43]

H112 1 0 0 0 CNEIF3339-12 [43]

H113 1 0 0 0 CNEIF793-12 [43]

H114 1 0 0 0 CNEIF813-12 [43]

H115 1 0 0 0 CNEIF849-12 [43]

H116 1 0 0 0 CNEIG1456-12 [43]

H117 1 0 0 0 CNEIG152-12 [43]

H118 1 0 0 0 CNFNH1033-14 [43]

H119 1 0 0 0 CNGRD1138-12 [43]

H120 1 0 0 0 CNGSD1018-15 [43]

H121 1 0 0 0 CNGSD132-15 [43]

H122 1 0 0 0 CNGSD1611-15 [43]

H123 1 0 0 0 CNGSD263-15 [43]

H124 1 0 0 0 CNGSE1406-15 [43]

H125 1 0 0 0 CNGSE2070-15 [43]

H126 1 0 0 0 CNGSE2173-15 [43]

H127 1 0 0 0 CNGSG1207-15 [43]
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H128 1 0 0 0 CNGSG122-15 [43]

H129 1 0 0 0 CNGSI1101-15 [43]

H130 1 0 0 0 CNGSI1218-15 [43]

H131 1 0 0 0 CNGSI1988-15 [43]

H132 1 0 0 0 CNGSI246-15 [43]

H133 1 0 0 0 CNGSI326-15 [43]

H134 1 0 0 0 CNGSI582-15 [43]

H135 1 0 0 0 CNJAE1277-12 [43]

H136 1 0 0 0 CNJAE965-12 [43]

H137 1 0 0 0 CNJAF2111-12 [43]

H138 1 0 0 0 CNJAF2114-12 [43]

H139 1 0 0 0 CNJAF2142-12 [43]

H140 1 0 0 0 CNPAD242-13 [43]

H141 1 0 0 0 CNPAD260-13 [43]

H142 1 0 0 0 CNPPC1400-12 [43]

H143 1 0 0 0 CNPPC1722-12 [43]

H144 1 0 0 0 CNRME198-12 [43]

H145 1 0 0 0 CNRME2450-
12 [43]

H146 1 0 0 0 CNRMG169-12 [43]

H147 1 0 0 0 CNROH071-13 [43]

H148 1 0 0 0 CNTIH336-15 [43]

H149 1 0 0 0 CNWBC188-13 [43]

H150 1 0 0 0 CNWBH228-13 [43]

H151 1 0 0 0 CNWBH672-13 [43]

H152 1 0 0 0 GMOKH2148-
15 [43]

H153 1 0 0 0 JSJUN1501-11 [43]

H154 1 0 0 0 MSQ002-04 http://www.boldsystems.org/

H155 1 0 0 0 MSQ003-04 http://www.boldsystems.org/

H156 1 0 0 0 MSQ015-04 http://www.boldsystems.org/

H157 1 0 0 0 MSQ022-04 http://www.boldsystems.org/

H158 1 0 0 0 NCCA889-11 [43]

H159 1 0 0 0 NCCA895-11 [43]

H160 1 0 0 0 PHAUG1277-11 [43]

H161 1 0 0 0 PHAUG1318-11 [43]

H162 1 0 0 0 PHSEP1211-11 [43]

H163 1 0 0 0 PREXP286-14 http://www.boldsystems.org/

H164 1 0 0 0 RRINV213-15 [49]

H165 1 0 0 0 RRINV3712-15 [49]

H166 1 0 0 0 RRINV3721-15 [49]

H167 1 0 0 0 RRINV3723-15 [49]

H168 1 0 0 0 RRINV3798-15 [49]

H169 1 0 0 0 RRMFI4275-15 [49]

H170 1 0 0 0 RRSSA425-15 [49]

H171 1 0 0 0 SMTPI2660-14 [43]

H172 1 0 0 0 SMTPJ3303-14 [43]

H173 1 0 0 0 SSBAE5601-13 [43]
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H174 1 0 0 0 SSBAE5713-13 [43]

H175 1 0 0 0 SSEIA3425-13 [43]

H176 1 0 0 0 SSEIA4525-13 [43]

H177 1 0 0 0 SSEIA5135-13 [43]

H178 1 0 0 0 SSEIA5184-13 [43]

H179 1 0 0 0 SSEIA5193-13 [43]

H180 1 0 0 0 SSEIA5225-13 [43]

H181 1 0 0 0 SSEIA5296-13 [43]

H182 1 0 0 0 SSEIA5301-13 [43]

H183 1 0 0 0 SSEIA5335-13 [43]

H184 1 0 0 0 SSEIC5215-13 [43]

H185 1 0 0 0 SSEIC5397-13 [43]

H186 1 0 0 0 SSEIC5788-13 [43]

H187 1 0 0 0 SSEIC5981-13 [43]

H188 1 0 0 0 SSEIC6590-13 [43]

H189 1 0 0 0 SSEIC6788-13 [43]

H190 1 0 0 0 SSEIC6792-13 [43]

H191 1 0 0 0 SSEIC6946-13 [43]

H192 1 0 0 0 SSEID823-13 [43]

H193 1 0 0 0 SSJAE10960-13 [43]

H194 1 0 0 0 SSJAE11005-13 [43]

H195 1 0 0 0 SSJAE5456-13 [43]

H196 1 0 0 0 SSJAE6982-13 [43]

H197 1 0 0 0 SSJAE7467-13 [43]

H198 1 0 0 0 SSJAE8697-13 [43]

H199 1 0 0 0 SSJAE8710-13 [43]

H200 1 0 0 0 SSJAE8721-13 [43]

H201 1 0 0 0 SSJAE8767-13 [43]

H202 1 0 0 0 SSJAE8770-13 [43]

H203 1 0 0 0 SSJAE8773-13 [43]

H204 1 0 0 0 SSJAE8790-13 [43]

H205 1 0 0 0 SSJAE8802-13 [43]

H206 1 0 0 0 SSJAE8804-13 [43]

H207 1 0 0 0 SSJAE8810-13 [43]

H208 1 0 0 0 SSJAE8842-13 [43]

H209 1 0 0 0 SSJAE8865-13 [43]

H210 1 0 0 0 SSJAE8905-13 [43]

H211 1 0 0 0 SSJAE8909-13 [43]

H212 1 0 0 0 SSJAE8962-13 [43]

H213 1 0 0 0 SSJAE8972-13 [43]

H214 1 0 0 0 SSJAE8997-13 [43]

H215 1 0 0 0 SSJAE9009-13 [43]

H216 1 0 0 0 SSJAE9068-13 [43]

H217 1 0 0 0 SSJAF10000-13 [43]

H218 1 0 0 0 SSJAF10014-13 [43]

H219 1 0 0 0 SSJAF10300-13 [43]
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H220 1 0 0 0 SSJAF10307-13 [43]

H221 1 0 0 0 SSJAF10358-13 [43]

H222 1 0 0 0 SSJAF10367-13 [43]

H223 1 0 0 0 SSJAF259-13 [43]

H224 1 0 0 0 SSJAF5420-13 [43]

H225 1 0 0 0 SSJAF9159-13 [43]

H226 1 0 0 0 SSJAF9168-13 [43]

H227 1 0 0 0 SSJAF9715-13 [43]

H228 1 0 0 0 SSJAF9963-13 [43]

H229 1 0 0 0 SSPAA9388-13 [43]

H230 1 0 0 0 SSPAA9453-13 [43]

H231 1 0 0 0 SSPAA9670-13 [43]

H232 1 0 0 0 SSPAA9697-13 [43]

H233 1 0 0 0 SSPAA9698-13 [43]

H234 1 0 0 0 SSPAC11523-
13 [43]

H235 1 0 0 0 SSPAC11881-
13 [43]

H236 1 0 0 0 SSPAC12030-
13 [43]

H237 1 0 0 0 SSPAC12040-
13 [43]

H238 1 0 0 0 SSPAC12053-
13 [43]

H239 1 0 0 0 SSPAC12068-
13 [43]

H240 1 0 0 0 SSPAC12075-
13 [43]

H241 1 0 0 0 SSPAC12104-
13 [43]

H242 1 0 0 0 SSPAC12117-
13 [43]

H243 1 0 0 0 SSPAC12132-
13 [43]

H244 1 0 0 0 SSPAC12142-
13 [43]

H245 1 0 0 0 SSPAC12161-
13 [43]

H246 1 0 0 0 SSPAC12173-
13 [43]

H247 1 0 0 0 SSPAC12503-
13 [43]

H248 1 0 0 0 SSPAC1637-13 [43]

H249 1 0 0 0 SSPPA3871-15 [43]

H250 1 0 0 0 SSPPA4038-15 [43]

H251 1 0 0 0 SSPPA4045-15 [43]

H252 1 0 0 0 SSPPA4260-15 [43]

H253 1 0 0 0 SSPPA4386-15 [43]

H254 1 0 0 0 SSPPA5066-15 [43]

H255 1 0 0 0 SSPPA5187-15 [43]

H256 1 0 0 0 SSPPA5299-15 [43]

H257 1 0 0 0 SSPPA5324-15 [43]

H258 1 0 0 0 SSPPA5593-15 [43]

H259 1 0 0 0 SSPPA5622-15 [43]

H260 1 0 0 0 SSPPA8632-15 [43]

H261 1 0 0 0 SSPPA8661-15 [43]

H262 1 0 0 0 SSPPA8754-15 [43]
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H263 1 0 0 0 SSPPA8797-15 [43]

H264 1 0 0 0 SSPPA8894-15 [43]

H265 1 0 0 0 SSPPA8942-15 [43]

H266 1 0 0 0 SSPPA8947-15 [43]

H267 1 0 0 0 SSPPA9373-15 [43]

H268 1 0 0 0 SSPPA9424-15 [43]

H269 1 0 0 0 SSPPA9526-15 [43]

H270 1 0 0 0 TTDBW601-09 [43]

H271 1 0 0 0 TTMDJ190-10 [43]

H272 0 0 1 0 GBDP47418-19 [45]

H273 0 0 1 0 GBDP47419-19 [45]

H274 0 0 1 0 GBDP47420-19 [45]

H275 0 0 1 0 GBDP47421-19 [45]

H276 0 0 1 0 GBDP47422-19 [45]

H277 0 0 1 0 GBDP47424-19 [45]

H278 0 0 1 0 GBDP47425-19 [45]

H279 0 0 1 0 GBDP47427-19 [45]

H280 0 0 1 0 GBDP47428-19 [45]

H281 0 0 1 0 GBDP47429-19 [45]

H282 0 0 0 1 GBMIN56977-
17 [45]

H283 0 0 0 1 GBMIN56977-
18 [49]

H284 0 0 1 0 MK962500 [50]

H285 0 0 1 0 AB738152 [45]

H286 0 0 1 0 AB738264 [45]

H287 0 0 1 0 LC054400 [51]

H288 0 0 1 0 LC054401 [51]

H289 0 0 1 0 LC054402 [51]

H290 0 0 1 0 LC054403 [51]

H291 0 0 1 0 LC054404 [51]

H292 0 0 1 0 GBDCU003-12 [52]

H293 0 0 0 1 GBMNA38704-
19 [52]

H294 0 0 0 1 MK403546 [53]

H295 0 0 0 1 GBMIN56951-
17 [46]

H296 0 0 1 0 GBDP14515-13 [52]

H297 0 0 1 0 GBDP14517-13 [52]

H298 0 1 0 0 CULSA041-19 http://www.boldsystems.org/

H299 0 1 0 0 CULSA043-19 http://www.boldsystems.org/

H300 0 0 1 0 GBDP48513-19 [45]

H301 0 0 1 0 GBMIN56978-
17 [44]

H302 0 0 1 0 GBMIN56979-
17 [44]

H303 0 0 0 1 LRMQS002-17 [47]

H304 0 0 0 1 LRMQS035-17 [47]

H305 0 0 0 1 LRMQS066-17 [47]

H306 0 0 0 1 MLQSR050-17 [47]

H307 0 0 0 1 MLQSR051-17 [47]
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H308 0 0 0 1 MLQSR055-17 [47]

H309 0 0 0 1 GBDP48491-19 [48]

H310 0 0 0 1 GBDP48493-19 [48]

H311 0 0 0 1 GBMIN56957-
17 [48]

H312 0 0 0 1 GBMIN56958-
17 [48]

H313 0 0 0 1 GBMIN56960-
17 [48]

H314 0 0 0 1 GBMIN56965-
17 [48]

H315 0 0 0 1 GBMIN56967-
17 [48]

H316 0 0 0 1 GBMIN56969-
17 [48]

H317 0 0 0 1 GBMIN56972-
17 [48]

H318 0 0 0 1 GBMIN56974-
17 [48]

H319 1 0 0 0 BBDIT1116-11 http://www.boldsystems.org/

H320 1 0 0 0 BBDIT1121-11 http://www.boldsystems.org/

H321 1 0 0 0 BBDIT1122-11 http://www.boldsystems.org/

H322 1 0 0 0 BBDIT1123-11 http://www.boldsystems.org/

H323 1 0 0 0 BBDIV1558-12 http://www.boldsystems.org/

H324 1 0 0 0 GMGAA514-13 http://www.boldsystems.org/

H325 1 0 0 0 GMGCC029-13 http://www.boldsystems.org/

H326 1 0 0 0 GMGDD139-13 http://www.boldsystems.org/

H327 1 0 0 0 IUP1014-14 http://www.boldsystems.org/

H328 1 0 0 0 IUP1016-14 http://www.boldsystems.org/

H329 1 0 0 0 IUP1018-14 http://www.boldsystems.org/

H330 1 0 0 0 IUP675-14 http://www.boldsystems.org/

H331 1 0 0 0 IUP885-14 http://www.boldsystems.org/

H332 1 0 0 0 MOSN019-17 http://www.boldsystems.org/

H333 1 0 0 0 MOSN044-17 http://www.boldsystems.org/

H334 1 0 0 0 MOSN088-17 http://www.boldsystems.org/

H335 1 0 0 0 MOSN1014-18 http://www.boldsystems.org/

H336 1 0 0 0 MOSN1083-18 http://www.boldsystems.org/

H337 1 0 0 0 MOSN1374-18 http://www.boldsystems.org/

H338 1 0 0 0 MOSN1382-18 http://www.boldsystems.org/

H339 1 0 0 0 MOSN1421-18 http://www.boldsystems.org/

H340 1 0 0 0 MOSN1424-18 http://www.boldsystems.org/

H341 1 0 0 0 MOSN1425-18 http://www.boldsystems.org/

H342 1 0 0 0 MOSN1428-18 http://www.boldsystems.org/

H343 1 0 0 0 MOSN1615-18 http://www.boldsystems.org/

H344 1 0 0 0 MOSN1652-18 http://www.boldsystems.org/

H345 1 0 0 0 MOSN179-18 http://www.boldsystems.org/

H346 1 0 0 0 MOSN1869-18 http://www.boldsystems.org/

H347 1 0 0 0 MOSN2115-19 http://www.boldsystems.org/

H348 1 0 0 0 MOSN2116-19 http://www.boldsystems.org/

H349 1 0 0 0 MOSN2480-19 http://www.boldsystems.org/

H350 1 0 0 0 MOSN2487-19 http://www.boldsystems.org/

H351 1 0 0 0 MOSN2647-19 http://www.boldsystems.org/
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H352 1 0 0 0 MOSN2649-19 http://www.boldsystems.org/

H353 1 0 0 0 MOSN2655-19 http://www.boldsystems.org/

H354 1 0 0 0 MOSN288-18 http://www.boldsystems.org/

H355 1 0 0 0 MOSN2897-19 http://www.boldsystems.org/

H356 1 0 0 0 MOSN2909-19 http://www.boldsystems.org/

H357 1 0 0 0 MOSN2913-19 http://www.boldsystems.org/

H358 1 0 0 0 MOSN292-18 http://www.boldsystems.org/

H359 1 0 0 0 MOSN2953-19 http://www.boldsystems.org/

H360 1 0 0 0 MOSN2978-19 http://www.boldsystems.org/

H361 1 0 0 0 MOSN3117-19 http://www.boldsystems.org/

H362 1 0 0 0 MOSN3126-19 http://www.boldsystems.org/

H363 1 0 0 0 MOSN3127-19 http://www.boldsystems.org/

H364 1 0 0 0 MOSN3136-19 http://www.boldsystems.org/

H365 1 0 0 0 MOSN3165-19 http://www.boldsystems.org/

H366 1 0 0 0 MOSN3182-19 http://www.boldsystems.org/

H367 1 0 0 0 MOSN3228-19 http://www.boldsystems.org/

H368 1 0 0 0 MOSN3318-19 http://www.boldsystems.org/

H369 1 0 0 0 MOSN3319-19 http://www.boldsystems.org/

H370 1 0 0 0 MOSN3321-19 http://www.boldsystems.org/

H371 1 0 0 0 MOSN3381-19 http://www.boldsystems.org/

H372 1 0 0 0 MOSN3402-19 http://www.boldsystems.org/

H373 1 0 0 0 MOSN3403-19 http://www.boldsystems.org/

H374 1 0 0 0 MOSN3490-19 http://www.boldsystems.org/

H375 1 0 0 0 MOSN3499-19 http://www.boldsystems.org/

H376 1 0 0 0 MOSN3523-19 http://www.boldsystems.org/

H377 1 0 0 0 MOSN360-18 http://www.boldsystems.org/

H378 1 0 0 0 MOSN436-18 http://www.boldsystems.org/

H379 1 0 0 0 MOSN491-18 http://www.boldsystems.org/

H380 1 0 0 0 MOSN503-18 http://www.boldsystems.org/

H381 1 0 0 0 MOSN848-18 http://www.boldsystems.org/

H382 1 0 0 0 MOSN852-18 http://www.boldsystems.org/

H383 1 0 0 0 MOSN853-18 http://www.boldsystems.org/

H384 1 0 0 0 MOSN858-18 http://www.boldsystems.org/

H385 1 0 0 0 MOSN968-18 http://www.boldsystems.org/

H386 1 0 0 0 MOSN972-18 http://www.boldsystems.org/

H387 1 0 0 0 MOSN976-18 http://www.boldsystems.org/

H388 1 0 0 0 MOSN991-18 http://www.boldsystems.org/

H389 1 0 0 0 NEONT275-10 [53]

H390 1 0 0 0 NEONU128-11 http://www.boldsystems.org/

H391 1 0 0 0 NEONU130-11 http://www.boldsystems.org/

H392 1 0 0 0 NEONU309-11 http://www.boldsystems.org/

H393 1 0 0 0 TDWGB127-10 http://www.boldsystems.org/

H394 1 0 0 0 TDWGB705-10 http://www.boldsystems.org/

H395 1 0 0 0 USDIQ1433-10 http://www.boldsystems.org/

Total 1049 2 46 87 1184  
155
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156 Figure 1. Locations where genetic material was extracted for the A. vexans 

157 populations analyzed (2A), as well as phylogenetic relations among populations, as arrows 

158 observed in the haplotype network (2B). In both figures the colors below denote the 

159 continents and their respective countries. America + Europe: Canada, United States and 

160 Turkey.  Asia: China, India, Japan, Singapore and South Korea.  Europe + Asia: Sweden, 

161 Belgium and China.   Europe + Asia: Romania, Sweden, Belgium, Russia, Kosovo, the 

162 Netherlands, China, Spain, Germany, Iran, Austria and Hungary.  Africa: South Africa.  

163 America + Africa: South Africa and the United States.

164 Table 2 shows, by continent and countries, the results of Hd, π and the different 

165 neutrality tests. In general, the global Hd was 0.92, while by continents it varied between 0.90 

166 (Europe) and 1.0 (Africa). The Hd by countries was between 0.0 (Austria, Turkey, Hungary, 

167 Singapore, and India) and 1.0 (Germany, Kosovo, Rumania, Russia, South Korea, and South 

168 Africa). In turn, the global π was 0.01, while by continents it varied between 0.005 (Europe) 

169 and 0.08 (Africa). The π among countries ranged between 0.0 (Austria, Hungary, Turkey, 

170 Singapore, and India) and 0.08 (South Africa). Neutrality tests, Tajima’s D, and Fu’s F, at 

171 global level, were negatively significant (D = -2.20, p < 0.001; F = -5.22, p < 0.02); by 

172 continent and countries, America (D = -2.46, p < 0.05; F= -5.65, p < 0.02) and all its countries 

173 (Canada D = -2.43, p < 0.05; F = -5.13, p < 0.02 and USA D = -2.30, p < 0.05; F = -4.96, p < 

174 0.02) were statistically significant and with negative values.

Table 2. Results of genetic diversity and neutrality tests at global level and by countries for 

A. vexans.

Genetic diversity Neutrality tests
Contine

nt

Countri

es

Number of 

sequences 
Number of 

haplotypes 
Hd π 

Tajimas' 

D

Fus's 

F
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America  1049
325

0.97391

3

0.0299

4 -2.463612*
-5.65202*

 Canada 759
191

0.90113
0.0051

8
-2.435669* -5.13490*

 USA 290
134

0.93120
0.0108

8
-2.306334* -4.96645*

Africa  2
2

1.0000
0.0851

1
N/A N/A

 South Africa 2
2

1.0000
0.0851

1
N/A N/A

Asia  46
29

0.91259
0.0213

5
0.7167907 -0.55008

 China 13
9

0.98717
0.0251

5
-0.07488041 -0.51062

 South Korea 3
3

1.0000
0.0117

6
N/A N/A

 Iran 7
3

0.80952
0.0040

5
0.4024933 0.4229

 India 2 1 0 0 N/A N/A

 Japan 13
8

0.94871
0.0148

1
-0.3390129 -0.52121

 Russia 5
4

1.0000
0.0058

8
0.2734498 0.27834

 Singapore 3 1 0 0 N/A N/A

Europe  85
39

0.90983
0.0059

8
-0.2722376 -1.65434

 Germany 2
2

1.0000
0.0029

4
N/A N/A

 Austria 2 1 0 0 N/A N/A

 Belgium 16
8

0.89166
0.0145

5
-1.16233 -0.48408

 Spain 15
7

0.88571
0.0057

7
-1.619073 -2.29068

 Hungary 2 1 0.0000 0 N/A N/A

 Kosovo 2

2

1.0000

 

0.0029

4

N/A N/A
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 Netherlands 10
4

0.71111
0.0032

0
0.0964613

0.17394

 Rumania 2
1

1.0000
0.0117

6
N/A N/A

 Sweden 34
12

0.95365
0.0275

9
1.301434 0.12606

 Turkey 2 1 0 0 N/A N/A

Total  1182
395

0.92853
0.0109

9
-2.208676* -5.22367*

Hd = Haplotype diversity; π = Nucleotide diversity; N/A = Not available; * = p < 0.05.

175 In Table 3, the AMOVA indicated the existence of genetic structuring at continent and 

176 country levels and within countries (FST = 0.08, p < 0.05), where the highest variation 

177 percentage was observed among A. vexans individuals within countries (91.30%), followed by 

178 7.07% among continents and 1.62% among countries in the same continent. In Figure 2, 

179 Mantel’s test indicated no isolation by distance (r = 0.003, p > 0.05).

Table 3. Analysis of molecular variance (AMOVA) of populations of A. vexans at 

continental level, by countries, and within them.

Variation 

source d.f.

Sum of 

Squares

Variation 

components 

Variation 

percentage
Fst p - valuea

Between continents
3 10.820 0.03508 Va 7.07

0.08697

0.04059+-

0.00196

Between countries within 

continents
16 11.450 0.00804 Vb 1.62

  

Within countries
 1164 526.956 0.45271 Vc 91.30   

Total 1183 549.226 0.49584    

aValue obtained from 10000 random permutations
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180 Figure 2. Global Mantel’s correlation test for genetic and geographic distance of the 

181 A. vexans populations analyzed.

182 Table 4 shows peer-to-peer comparisons among countries after Bonferroni’s 

183 correction. For these, significant genetic structuring was detected within Canada with respect 

184 to Belgium, Sweden, Spain, Hungary, and Netherlands. The USA with respect to Austria, 

185 Belgium, Sweden, Spain, Hungary, and Netherlands. China with respect to Netherlands, the 

186 USA, and Canada. India with respect to the USA and Canada. Iran with respect to the USA 

187 and Canada. Japan with respect to Belgium, Sweden, Spain, and Netherlands. Russia with 

188 respect to the USA and Canada. Singapore with respect to Belgium, Sweden, and Spain.

Table 4. Values by countries of genetic differentiation by peers (FST) and geographic 

distance (Km) among A. vexans populations. Values in bold are genetically structured 

populations.
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189

190 Figure 3 shows the results of the phylogenetic analyses by using BI (Fig. 3A) and ML 

191 (Fig. 3B); both analyses recovered the same six clades, but with distinct topologies: clade I 

192 grouped mosquito populations from the United States, Canada, and Turkey (n = 322 H); clade 

193 II, populations from China, Japan, Singapore, and South Korea (n = 23); clade III, populations 

194 from Sweden, Belgium, and China (n = 14 H); clade IV, mosquito populations from Rumania, 

195 Sweden, Belgium, Russia, Kosovo, Netherlands, China, Spain, Germany, Iran, Austria, and 

196 Hungary (n = 31 H); clade V, populations from South Africa (n = 1 H); and clade VI, 

197 populations from the United States and South Africa (n = 4 H). Similar results were observed 

198 in the haplotype network (Figure 1B).

199 Figure 3. Phylogenetic tree for Aedes vexans populations constructed from 395 

200 haplotypes from the COI gene by using Bayesian Inference, BI, (3A) and Maximum 

201 Likelihood, ML, (3B). The evolutionary history for both analyses was inferred by using the 

202 GTR + G model, as suggested by jModelTest version 2.1.10. The BI tree was obtained by 

203 using 2-million generations, while the ML used 1,000 replicas. For BI, the support of the 

204 branches is indicated by the subsequent probability values, while for ML the bootstrap values 

205 are shown. Numbers in blue represent sequences from the A. nipponii subspecies. In both 

206 figures the colors below denote the continents and their respective countries. America + 

207 Europe: Canada, United States and Turkey.  Asia: China, India, Japan, Singapore and South 
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208 Korea.  Europe + Asia: Sweden, Belgium and China.   Europe + Asia: Romania, Sweden, 

209 Belgium, Russia, Kosovo, the Netherlands, China, Spain, Germany, Iran, Austria and 

210 Hungary.  Africa: South Africa.  America + Africa: South Africa and the United States.

211

212
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213 Discussion

214 To our knowledge, this is the first study on the genetic structure of A. vexans using all the 

215 genetic information available for the COI gene from the GenBank and Boldsystem databases. 

216 From this information, both the haplotype network and the phylogenetic tree revealed the 

217 existence of six clades; clade I grouped mosquito populations from America and Europe; 

218 clade II, populations from Asia; clades III and IV, populations from Europe and Asia; clade 

219 V, populations from Africa; and clade VI, populations from America and Africa. For A. 

220 vexans, existence is suggested of three subspecies: A. vexans vexans, A. vexans arabiensis, 

221 and A. vexans nipponii, from which it was possible to include in our natural population 

222 analyses of A. vexans and A. vexans nipponii. A. vexans vexans has been reported for east 

223 Asia and Oceania, A. vexans arabiensis in Africa and Europe, and A. vexans nipponii in 

224 southeast Asia [1,14,2,42,15,16,17]. However, our results do not suggest the existence of 

225 three subspecies or the geographic relations observed. Nonetheless, it is interesting that with 

226 A. vexans being considered native of America [13] its invasion is not hypothesized to other 

227 latitudes, a pattern observed even with A. vexans nipponii terminals registered in Asia, as 

228 suggested by our results. This is why the subspecies observed in countries different from 

229 America would probably be populations from their place of origin through passive transport 

230 (i.e., maritime, air, or land transport), as already observed for other Culicidae invaders 

231 [54,55,56,57,58], including A. vexans [59]. Future studies should include information at 

232 genome level to try to solve the possible existence of subspecies, given that using a single 

233 marker is not sufficient to define the species [60], as was observed even for this species by 

234 using the COI gene [48].       

235 Haplotype diversity and number of haplotypes observed in the American continent 

236 (Hd = 0.97; H = 325) were higher than in other continents; for example, Europe (Hd = 0.90; H 

237 = 39). Various studies suggest that native species have higher genetic diversity when 
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238 compared with places different from their native area [61,62,63]. For example, a global study 

239 on the Cosmopolitan Asian mosquito, Aedes albopictus, principal dengue, Zika and 

240 Chikungunya vector in Asia and Europe, observed greater genetic diversity (Hd = 0.94, π = 

241 1.60) in its native area with respect to all the areas it has invaded, showing – therein – lower 

242 diversity indices (lower Hd in Netherlands (0.059 = π = 0.011) and higher Hd in China (0.946 

243 = π = 1.609)) [63]. The aforementioned supports our hypothesis that A. vexans populations 

244 may have invaded other latitudes.

245 The A. vexans mosquito showed significant genetic divergence among some populations from 

246 the American continent with respect to some European and Asian populations (Table 4). [64], 

247 analyzing natural A. vexans populations from the United States and Germany, found that these 

248 do not share a common gene pool, proposing that the geographic barriers formed by the 

249 Atlantic and Pacific Oceans impede gene flow and cause genetic changes in the evolutionary 

250 lineages of A. vexans. However, our results suggest no existence of geographic and genetic 

251 isolation. Additionally, for most of the populations, the results of the neutrality tests, Tajima’s 

252 D and Fu’s FS were negative (Table 2), suggesting that these have experienced recent 

253 bottlenecks and population expansion [65]. This may be due to recent vector-control actions 

254 and colonization events, phenomena commonly observed in mosquitos of medical and 

255 veterinary importance [66]. In the first case, these are used to diminish the population size of 

256 A. vexans and other vector species of diseases and, consequently, curtail the epidemiologic 

257 transmission of the diseases it transmits [67,68,69]. In the second case, recent colonization 

258 events may take place in areas from where the A. vexans populations are lost during harsh 

259 winters or after vector-control actions and can be re-colonized by surviving individuals from 

260 neighboring areas [3,70,58].
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261  Conclusions 

262 Finally, our results suggest that the A. vexans populations that invaded other continents 

263 originate directly from America, where possibly transcontinental commercial routes favored 

264 their long-distance dispersion. Moreover, we consider this study as the base for future 

265 taxonomic research that address the problem of the existence of subspecies within A. vexans, 

266 given that our results did not recover any of the subspecies suggested by the literature.
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