1 Global genetic diversity of *Aedes vexans*

- 2
- 3 North America Insect Invades the World: the Case of the Flood Mosquito, *Aedes vexans*
- 4 (Diptera: Culicidae), from Mitochondrial DNA
- 5
- 6 José Heriberto Vargas-Espinosa¹, Oscar Alexander Aguirre-Obando^{1,*}
- 7
- ⁸ ¹Escuela de investigaciones en Biomatemática, Universidad del Quindío. Carrera 15, Calle 12
- 9 Norte. Armenia, Quindío, Colombia
- 10
- 11 *Corresponding author: <u>oaaobando@gmail.com</u>
- 12
- 13 ¹These authors contributed equally to this work.

14 Abstract

15 The flood mosquito, Aedes vexans (Diptera: Culicidae), native of Canada, and currently present in all continents, has a vector competence for 30 arboviruses, being responsible for 16 17 transmitting diseases, like West Nile fever, Rift Valley fever, Saint Louis Encephalitis and Eastern Equine Encephalitis. Hence, knowing the structure and gene flow of A. vexans is 18 important to develop adequate vector control strategies for this species. For this, from partial 19 20 sequences of the mitochondrial COI gene available in Bold and GenBank, it was possible to determine the Haplotypic (*Hd*) and nucleotide (π) gene diversity, genetic structuring and gene 21 flow at global, continental, and country levels. In total, 1184 sequences were recovered, 22 23 distributed between America (88.60%), Europe (7.35%), Asia (3.89%), and Africa (0.17%). From these, 395 haplotypes (H) were detected without presence of pseudogenes (NUMTs), 24 with H1 being the most frequent (24.58%) and between H12 - H395 the least frequent varying 25 between 0.93% (H12) and 0.08% (H395). Phylogenetically, the haplotypes were grouped into 26 six clades. Clade I grouped haplotypes from countries in America and Europe, while clades II 27 28 and III presented haplotypes exclusively from Asia and Europe; clade IV grouped only one haplotype from Africa and the last ultimo clade V grouped haplotypes from America and 29 Africa. The global Hd and π was 0.92 and 0.01, respectively. In addition, evidence was 30 31 obtained of genetic structuring among continents (7.07%), countries (1.62%), and within countries (91.30%; $F_{ST} = 0.08$, p < 0.05) and no isolation by distance was detected (r = 0.003, 32 p > 0.05). These results suggest that the mosquito populations that invaded other continents 33 originate directly from the American continent, where possibly transcontinental commercial 34 routes favored their long-distance dispersion. 35

Key words: Cytochrome oxidase subunit I, genetic diversity, gene flow, genetic structuring,
haplotypes, mitochondrial DNA, pseudogenes, vector competence, vector control.

39 Introduction

40 The flood mosquito, Aedes vexans (Meigen, 1830), is present in subtropical regions of all continents, except for the Antarctic [1,2,3]. In nature this species manages to travel up to 17 41 42 km [4]; however, its global invasion was favored through passive transport mediated by human activities [5]. Like other mosquitos of medical and veterinary importance [6], A. 43 vexans lays its eggs in moist sites with flood probability to guarantee their offspring [7] and 44 45 these can resist drying out and survive up to three years when kept moist [8]. In general, A. vexans females and males feed on nectar, but to mature their ovaries and reproduce, the 46 females feed principally on mammals, like deer, horses, cattle and pigs [9,10,11]. Normally, 47 this species is found in rural zones, but when it inhabits suburban and urban zones, it prefers 48 humans as principal feeding source [12,13]. 49 Morphological and molecular evidence suggest the existence of three subspecies of A. 50

vexans throughout the world: *Aedes vexans vexans* Meigen in eastern Asia and Oceania, *Aedes vexans arabiensis* Patton in Africa and Europe, and *Aedes vexans nipponii* Theobald in
southeast Asia [1,14,15,16,17]. The flood mosquito has vector competence for 30 arbovirus
(Elizondo-Quiroga *et al.* 2018) and is involved in the transmission of important diseases, like
the West Nile fever, Rift Valley fever, Saint Louis encephalitis and Eastern Equine
encephalitis, as well as filarial nematodes [18,19].

Given the epidemiological and sanitary importance of *A. vexans*, understanding the structuring patterns and gene flow of this species' populations is important to develop moreadequate vector control programs [20], as well as understand the transmission of vectors among the human population, given its influence on pathogen transfer and dissemination of characteristics, like vector competence and resistance to insecticides [21,22]. For example, studies on genetic structure in populations of *Aedes aegypti*, dengue, chikungunya, and Zika vector, in two locations of Queensland, Australia, indicated that said locations were partially

isolated genetically, with these two sites being adequate for the release of mosquitos infected
with *Wolbachia pipientis* because it was important to restrict the strain released during the
initial implementation phases [23,24]. Thereafter, mosquitos infected with *Wolbachia pipientis* were released with successful establishment in both locations, thus, suppressing
dengue transmission [25].

Molecular markers are widely used to understand the biology and population 69 70 dynamics of vector species of diseases [26]. Among the molecular markers used in population genetics studies in A. vexans, the mitochondrial DNA (mtDNA) sequences are broadly used 71 due to properties, like their abundance in the organism, size and small genomic structure, 72 rapid rate of evolution, and exclusive maternal inheritance with low genetic recombination 73 [27]. However, one of the disadvantages of using mtDNA in population genetics and 74 phylogenetic studies is NUMTs presence, result of the translocation of mitochondrial 75 sequences of the mitochondrial genome for the nuclear genome [28]. Furthermore, this type 76 of information is freely available in the GenBank and Boldsystem databases. Particularly for 77 78 A. vexans, until now, nobody has analyzed the genetic information available within a global 79 context. This work sought to know the global panorama of genetic diversity and gene flow of A. vexans, using mtDNA sequences available in GenBank and Boldsystem. 80

81 Materials and Methods

A prior search in GenBank permitted detecting that the mtDNA Cytochrome oxidase subunit I 82 (COI) gene was the most representative, and given that Boldsystem is this marker's 83 84 depository, it was also determined to work with it. For this, partial nucleotide sequences were obtained from the mitochondrial (mtDNA) COI gene deposited in GenBank and Boldsystem 85 for A. vexans. The search criteria in GenBank used the words Aedes vexans AND COI, while 86 for Boldsystem, it only used Aedes vexans. The sequences obtained were analyzed by using 87 the BLAST tool in the NCBI website (http://blast.ncbi.nlm.nih.gov/Blast.cgi) to confirm 88 identity with A. vexans and only sequences with identity percentage between 98% and 100% 89 90 were considered in our analysis. Thereafter, the sequences selected were classified according to continent and country, so that analyses listed ahead were performed for each of them. In 91 addition, for each sequence, geographic data were extracted to later geo-reference it on a map; 92 sequences without geographic information were eliminated from the analysis. These data 93 were filtered and organized through the RStudio platform by using Bold packages version 0.9 94 95 [29] and Ape version 5.3 [30].

Then, the sequences were aligned by using the MAFFT software version 7 to later detect haplotypes (H) [31]. Each haplotype was numbered based on its frequency, thus, the most frequent was H1, the following H2, and so forth. To detect potential NUMTs among the H detected, additional stop codons were searched for in the alignment [28]. In case of detecting any NUMT, it was reported and removed from the analysis. With H without NUMTs, the haplotype network was constructed through the Pegas package version 0.11 [32] in the RStudio platform [33].

Diversity and neutrality tests were estimated by using the DnaSP program version 6.0
[34]. The analysis of molecular variance (AMOVA) was conducted by using the Arlequin

program version 3.5 [35], which evaluated the variation between continents and countries.
Population genetic structuring was tested by using the fixation index (F_{ST}) proposed by
Wright [36], and the gene flow (Nm) was calculated through the Arlequin program version
3.5 [35]. In cases in which statistically significant differences were obtained, the Bonferroni
correction was used to verify the existence of significant differences.

To test isolation by distance, Mantel's test was carried out to estimate the correlation 110 between genetic distance (FST) and geographic distance (Km) using the Vegan package 111 version 2.5 [37] on the RStudio platform [33]. The geographic distances were obtained by 112 calculating with the Geographic Distance Matrix Generator program version 1.2.3. To 113 114 estimate the genetic affinity of A. vexans populations, a phylogenetic reconstruction was performed using maximum likelihood (ML) and Bayesian inference (BI) from the haplotypes 115 found. For this, we initially searched for the nucleotide substitution model that best fits our 116 data in the program jModelTest version 2.1.1, which selected the model with the lowest value 117 from the Akaike information criterion, AIC, [38]. Then, the model selected was used for the 118 119 phylogenetic reconstruction under the ML and BI approach. The ML analysis was conducted with the RAxML software [39], under the following parameters: ML+ thorough Bootstrap 120 and 1,000 boot replicas. In turn, the BI analysis was conducted in the Mr.Bayes program 121 122 version 3.2.7, under the following parameters: number of generations = 2,000,000, with σ < 0.01 of the frequencies to indicate robustness of the phylogenetic hypothesis [40]. The 123 visualization and editing of the phylogenetic trees obtained was carried out in Mr.Ent version 124 2.5 [41]. 125

127 **Results**

128	Between April and May 2020, the study recovered 2,420 sequences from the Boldsystem
129	(82.64%) and GenBank (17.35%) databases, distributed among America (94.50%), Europe
130	(3.68%), Asia (1.23%), and Africa (0.58%) with median length of 467 bp, varying between
131	114 and 879 bp. Nevertheless, once the alignment was made, 1,184 sequences were selected
132	from these with a length of 340 bp each, all distributed among the continents mentioned.
133	Among the sequences selected, the American continent had the highest representation
134	(88.60%), followed by Europe (7.35%), Asia (3.89%), and Africa (0.17%). The American
135	continent was represented with sequences from Canada (64.10%) and the United States
136	(24.49%). Europe was represented by Sweden (2.87%), Belgium (1.35%), Spain (1.27%),
137	Netherlands (0.84%), Austria (1.35%), Germany (0.17%), Rumania (0.17%), Germany
138	(0.17%), Kosovo (0.17%), Hungary (0.17%), and Turkey (0.17%). Asia was represented by
139	Japan (1.10%), China (1.10%), Iran (0.59%), Russia (0.42%), Singapore (0.25%), South
140	Korea (0.25%), and India (0.17%). Finally, Africa was represented only by South Africa
141	(0.17%).

142 Table 1 shows the global distribution of the haplotypes observed. In total, 395 H were

observed, with H1 being the most frequent (24.58%), followed by H2 (7.77%), H3 (4.39%),

144 H4 (3.38%), H5 (2.28%), H6 - H11 ranging between 1.86% (H6) and 1.10% (H11), and H112

- H395 varying between 0.93% (H112) and 0.08% (H395). Although H1 was the most

146 frequent, it was only observed in Canada and the USA. Nevertheless, the haplotype with the

147 greatest distribution was H7, which was present in eight countries, that is, Austria (11.76%),

148 Belgium (17.64%), Hungary (11.76%), Kosovo (5.88%), Netherlands (17.64%), Russia

149 (5.88%), Spain (11.76%), and Sweden (17.64%). None of the H had presence of NUMTs

150 (Supplementary material). Figure 1 displays the locations where the genetic material analyzed

151 was extracted (Fig. 1A), as well as the phylogenetic relationships between populations, as

- arrows observed in the haplotype network (Fig. 1B). From this, it may be stated that native
- 153 populations of *A. vexans* from America invaded some countries in Africa and Europe, and
- 154 from there established themselves in other countries in these continents and in Asia.

Hanlet		Contin	Access	D f		
Haplotype -	America	Africa	Asia	Europe	- code	Reference
H1	291	0	0	0	ACMC131-04	[42]
H2	92	0	0	0	ACMC277-04	[42]
Н3	52	0	0	0	CNEIF006-12	[43]
H4	40	0	0	0	ACMC276-04	[42]
Н5	27	0	0	0	CNGSD2112-15	[43]
H6	0	0	0	22	CULBE143-14	[44]
H7	0	0	0	17	GBMIN56980- 17	[44]
H8	15	0	0	0	ASDIP113-15	http://www.boldsystems.org/
Н9	13	0	0	0	ACMC289-04	[42]
H10	12	0	0	0	BBDCP596-10	http://www.boldsystems.org/
H11	13	0	0	0	CNPAD261-13	[43]
H12	11	0	0	0	CNEIF841-12	[43]
H13	10	0	0	0	CNEIF861-12	[43]
H14	9	0	0	0	ASDMT244-11	[43]
H15	9	0	0	0	ACMC290-04	[42]
H16	7	0	0	0	CNGSD6857-15	[43]
H17	7	0	0	0	CNGSD860-15	[43]
H18	7	0	0	0	CNJAE1246-12	[43]
H19	7	0	0	0	CNPAF983-13	[43]
H20	7	0	0	0	SSJAE8713-13	[43]
H21	6	0	0	0	CNJAE1248-12	[43]
H22	0	0	8	0	GBDP47430-19	[45]
H23	5	0	0	0	CNEIF812-12	[43]
H24	5	0	0	0	MBIOI074-13	[43]
H25	5	0	0	0	RRSSA3576-15	[49]
H26	5	0	0	0	SSEIC6245-13	[43]
H27	5	0	0	0	SSJAE8835-13	[43]
H28	0	0	0	4	CULBE132-14	[44]
H29	4	0	0	0	ACMC104-04	[42]
H30	4	0	0	0	CNEIG153-12	[43]
H31	4	0	0	0	CNGSD1517-15	[43]
H32	4	0	0	0	CNPAD244-13	[43]
H33	4	0	0	0	PHJUL2502-11	[43]
H34	4	0	0	0	SSEIC5403-13	[43]
H35	4	0	0	0	SSEIC5955-13	[43]
H36	4	0	0	0	SSEIC6896-13	[43]
H37	4	0	0	0	SSJAE8703-13	[43]

H38	4	0	0	0	SSJAE9027-13	[43]
H39	0	0	0	4	GBDP48120-19	[48]
H40	3	0	0	0	CNEIF014-12	[43]
H41	3	0	0	0	CNEIF817-12	[43]
H42	3	0	0	0	CNEIF830-12	[43]
H43	3	0	0	0	CNEIG182-12	[43]
H44	3	0	0	0	CNGSI1668-15	[43]
H45	3	0	0	0	CNRME208-12	[43]
H46	3	0	0	0	PHAUG1312-11	[43]
H47	3	0	0	0	SMTPJ4980-14	[43]
H48	3	0	0	0	SSEIA4548-13	[43]
H49	3	0	0	0	SSEIA5279-13	[43]
H50	3	0	0	0	SSEIA5341-13	[43]
H51	3	0	0	0	SSJAF9177-13	[43]
H52	3	0	0	0	SSPAC12518- 13	[43]
Н53	3	0	0	0	SSPPA9368-15	[43]
Н54	0	0	3	0	MK962499	[50]
Н55	0	0	3	0	AB738099	[45]
H56	0	0	0	3	GBMIN56959-	[48]
Н57	3	0	0	0	17 IUP1017-14	http://www.boldsystems.org/
H58	0	0	0	2	CULBE140-14	[44]
H59	2	0	0	0	ACMC033-04	[44]
H60	2	0	0	0	BBDCM210-10	[42]
H61	2	0	0	0	CNEIF002-12	[43]
H62	2	0	0	0	CNEIF798-12	[43]
H63	2	0	0	0	CNGSE2411-15	[43]
H64	2	0	0	0	CNGSI1097-15	[43]
H65	2	0	0	0	CNPKO3332-14	[43]
H66	2	0	0	0	CNRME207-12	[43]
					CNRME2449-	
H67	2	0	0	0	12 CNRME4093-	[43]
H68	2	0	0	0	12	[43]
H69	2	0	0	0	CNRMG626-12	[43]
H70	2	0	0	0	CNTIH462-15	[43]
H71	2	0	0	0	GMOKH968-15	[43]
H72	2	0	0	0	SSEIA3424-13	[43]
H73	2	0	0	0	SSEIA3430-13	[43]
H74	2	0	0	0	SSEIA5215-13	[43]
H75	2	0	0	0	SSEIA5266-13	[43]
H76	2	0	0	0	SSJAE1181-13	[43]
H77	2	0	0	0	SSJAE8706-13	[43]
H78	2	0	0	0	SSJAF9208-13	[43]
H79	2	0	0	0	SSPAB8912-13	[43]
H80	2	0	0	0	SSPAC12020- 13	[43]
H81	2	0	0	0	SSPPA5271-15	[43]
H82	2	0	0	0	SSPPA5483-15	[43]

H83	2	0	0	0	SSPPA9400-15	[43]
H84	0	0	2	0	GBDP47423-19	[45]
H85	0	0	2	0	AB738168-	[45]
H86	0	0	0	2	GBMIN56950- 17	[46]
H87	0	0	1	1	LRMQS005-17	[47]
H88	0	0	1	1	GBDP48149-19	[48]
H89	0	0	1	1	GBDP48185-19	[48]
H90	0	0	1	1	GBDP48490-19	[48]
H91	0	0	0	2	GBMIN56961- 17	[48]
H92	2	0	0	0	MOSN025-17	http://www.boldsystems.org/
Н93	2	0	0	0	MOSN050-17	http://www.boldsystems.org/
H94	2	0	0	0	MOSN1411-18	http://www.boldsystems.org/
H95	1	0	0	0	MOSN1957-18	http://www.boldsystems.org/
H96	1	0	0	0	MOSN2259-19	http://www.boldsystems.org/
H97	1	0	0	0	MOSN2970-19	http://www.boldsystems.org/
H98	0	0	0	1	CULBE141-14	[44]
H99	0	0	0	1	CULBE145-14	[44]
H100	0	0	0	1	GMOKH2148-	[43]
H101	0	0	0	1	15 CULBE136-14	[44]
H102	0	0	0	1	CULBE138-14	[44]
H103	0	0	0	1	CULBE139-14	[44]
H104	1	0	0	0	ACMC053-04	[42]
H105	1	0	0	0	ACMC288-04	[42]
H106	1	0	0	0	ASDMT1059-11	[43]
H107	1	0	0	0	BBDCN133-10	[43]
H108	1	0	0	0	BBDCN233-10	[43]
H109	1	0	0	0	BBDCP593-10	[43]
H110	1	0	0	0	CNEIF015-12	[43]
H111	1	0	0	0	CNEIF023-12	[43]
H112	1	0	0	0	CNEIF3339-12	[43]
H113	1	0	0	0	CNEIF793-12	[43]
H114	1	0	0	0	CNEIF813-12	[43]
H115	1	0	0	0	CNEIF849-12	[43]
H116	1	0	0	0	CNEIG1456-12	[43]
H117	1	0	0	0	CNEIG152-12	[43]
H118	1	0	0	0	CNFNH1033-14	[43]
H119	1	0	0	0	CNGRD1138-12	[43]
H120	1	0	0	0	CNGSD1018-15	[43]
H121	1	0	0	0	CNGSD132-15	[43]
H122	1	0	0	0	CNGSD1611-15	[43]
H123	1	0	0	0	CNGSD263-15	[43]
H124	1	0	0	0	CNGSE1406-15	[43]
H125	1	0	0	0	CNGSE2070-15	[43]
H126	1	0	0	0	CNGSE2173-15	[43]
H127	1	0	0	0	CNGSG1207-15	[43]

H128	1	0	0	0	CNGSG122-15	[43]
H129	1	0	0	0	CNGSI1101-15	[43]
H130	1	0	0	0	CNGSI1218-15	[43]
H131	1	0	0	0	CNGSI1988-15	[43]
H132	1	0	0	0	CNGSI246-15	[43]
H133	1	0	0	0	CNGSI326-15	[43]
H134	1	0	0	0	CNGSI582-15	[43]
H135	1	0	0	0	CNJAE1277-12	[43]
H136	1	0	0	0	CNJAE965-12	[43]
H137	1	0	0	0	CNJAF2111-12	[43]
H138	1	0	0	0	CNJAF2114-12	[43]
H139	1	0	0	0	CNJAF2142-12	[43]
H140	1	0	0	0	CNPAD242-13	[43]
H141	1	0	0	0	CNPAD260-13	[43]
H142	1	0	0	0	CNPPC1400-12	[43]
H143	1	0	0	0	CNPPC1722-12	[43]
H144	1	0	0	0	CNRME198-12	[43]
H145	1	0	0	0	CNRME2450- 12	[43]
H146	1	0	0	0	CNRMG169-12	[43]
H147	1	0	0	0	CNROH071-13	[43]
H148	1	0	0	0	CNTIH336-15	[43]
H149	1	0	0	0	CNWBC188-13	[43]
H150	1	0	0	0	CNWBH228-13	[43]
H151	1	0	0	0	CNWBH672-13	[43]
H152	1	0	0	0	GMOKH2148- 15	[43]
H153	1	0	0	0	JSJUN1501-11	[43]
H154	1	0	0	0	MSQ002-04	http://www.boldsystems.org/
H155	1	0	0	0	MSQ003-04	http://www.boldsystems.org/
H156	1	0	0	0	MSQ015-04	http://www.boldsystems.org/
H157	1	0	0	0	MSQ022-04	http://www.boldsystems.org/
H158	1	0	0	0	NCCA889-11	[43]
H159	1	0	0	0	NCCA895-11	[43]
H160	1	0	0	0	PHAUG1277-11	[43]
H161	1	0	0	0	PHAUG1318-11	[43]
H162	1	0	0	0	PHSEP1211-11	[43]
H163	1	0	0	0	PREXP286-14	http://www.boldsystems.org/
H164	1	0	0	0	RRINV213-15	[49]
H165	1	0	0	0	RRINV3712-15	[49]
H166	1	0	0	0	RRINV3721-15	[49]
H167	1	0	0	0	RRINV3723-15	[49]
H168	1	0	0	0	RRINV3798-15	[49]
H169	1	0	0	0	RRMFI4275-15	[49]
H170	1	0	0	0	RRSSA425-15	[49]
H171	1	0	0	0	SMTPI2660-14	[43]
H172	1	0	0	0	SMTPJ3303-14	[43]
H173	1	0	0	0	SSBAE5601-13	[43]

H174	1	0	0	0	SSBAE5713-13	[43]
H175	1	0	0	0	SSEIA3425-13	[43]
H176	1	0	0	0	SSEIA4525-13	[43]
H177	1	0	0	0	SSEIA5135-13	[43]
H178	1	0	0	0	SSEIA5184-13	[43]
H179	1	0	0	0	SSEIA5193-13	[43]
H180	1	0	0	0	SSEIA5225-13	[43]
H181	1	0	0	0	SSEIA5296-13	[43]
H182	1	0	0	0	SSEIA5301-13	[43]
H183	1	0	0	0	SSEIA5335-13	[43]
H184	1	0	0	0	SSEIC5215-13	[43]
H185	1	0	0	0	SSEIC5397-13	[43]
H186	1	0	0	0	SSEIC5788-13	[43]
H187	1	0	0	0	SSEIC5981-13	[43]
H188	1	0	0	0	SSEIC6590-13	[43]
H189	1	0	0	0	SSEIC6788-13	[43]
H190	1	0	0	0	SSEIC6792-13	[43]
H191	1	0	0	0	SSEIC6946-13	[43]
H192	1	0	0	0	SSEID823-13	[43]
H193	1	0	0	0	SSJAE10960-13	[43]
H194	1	0	0	0	SSJAE11005-13	[43]
H195	1	0	0	0	SSJAE5456-13	[43]
H196	1	0	0	0	SSJAE6982-13	[43]
H197	1	0	0	0	SSJAE7467-13	[43]
H198	1	0	0	0	SSJAE8697-13	[43]
H199	1	0	0	0	SSJAE8710-13	[43]
H200	1	0	0	0	SSJAE8721-13	[43]
H201	1	0	0	0	SSJAE8767-13	[43]
H202	1	0	0	0	SSJAE8770-13	[43]
H203	1	0	0	0	SSJAE8773-13	[43]
H204	1	0	0	0	SSJAE8790-13	[43]
H205	1	0	0	0	SSJAE8802-13	[43]
H206	1	0	0	0	SSJAE8804-13	[43]
H207	1	0	0	0	SSJAE8810-13	[43]
H208	1	0	0	0	SSJAE8842-13	[43]
H209	1	0	0	0	SSJAE8865-13	[43]
H210	1	0	0	0	SSJAE8905-13	[43]
H211	1	0	0	0	SSJAE8909-13	[43]
H212	1	0	0	0	SSJAE8962-13	[43]
H213	1	0	0	0	SSJAE8972-13	[43]
H214	1	0	0	0	SSJAE8997-13	[43]
H215	1	0	0	0	SSJAE9009-13	[43]
H216	1	0	0	0	SSJAE9068-13	[43]
H217	1	0	0	0	SSJAF10000-13	[43]
H218	1	0	0	0	SSJAF10014-13	[43]
H219	1	0	0	0	SSJAF10300-13	[43]

H220	1	0	0	0	SSJAF10307-13	[43]
H221	1	0	0	0	SSJAF10358-13	[43]
H222	1	0	0	0	SSJAF10367-13	[43]
H223	1	0	0	0	SSJAF259-13	[43]
H224	1	0	0	0	SSJAF5420-13	[43]
H225	1	0	0	0	SSJAF9159-13	[43]
H226	1	0	0	0	SSJAF9168-13	[43]
H227	1	0	0	0	SSJAF9715-13	[43]
H228	1	0	0	0	SSJAF9963-13	[43]
H229	1	0	0	0	SSPAA9388-13	[43]
H230	1	0	0	0	SSPAA9453-13	[43]
H231	1	0	0	0	SSPAA9670-13	[43]
H232	1	0	0	0	SSPAA9697-13	[43]
H233	1	0	0	0	SSPAA9698-13 SSPAC11523-	[43]
H234	1	0	0	0	13	[43]
H235	1	0	0	0	SSPAC11881- 13	[43]
H236	1	0	0	0	SSPAC12030- 13	[43]
H237	1	0	0	0	SSPAC12040-	[43]
H238	1	0	0	0	13 SSPAC12053-	
					13 SSPAC12068-	[43]
H239	1	0	0	0	13	[43]
H240	1	0	0	0	SSPAC12075- 13	[43]
H241	1	0	0	0	SSPAC12104- 13	[43]
H242	1	0	0	0	SSPAC12117-	[43]
H243	1	0	0	0	13 SSPAC12132-	[43]
					13 SSPAC12142-	
H244	1	0	0	0	13 SSPAC12161-	[43]
H245	1	0	0	0	13	[43]
H246	1	0	0	0	SSPAC12173- 13	[43]
H247	1	0	0	0	SSPAC12503- 13	[43]
H248	1	0	0	0	SSPAC1637-13	[43]
H249	1	0	0	0	SSPPA3871-15	[43]
H250	1	0	0	0	SSPPA4038-15	[43]
H251	1	0	0	0	SSPPA4045-15	[43]
H252	1	0	0	0	SSPPA4260-15	[43]
H253	1	0	0	0	SSPPA4386-15	[43]
H254	1	0	0	0	SSPPA5066-15	[43]
H255	1	0	0	0	SSPPA5187-15	[43]
H256	1	0	0	0	SSPPA5299-15	[43]
H257	1	0	0	0	SSPPA5324-15	[43]
H258	1	0	0	0	SSPPA5593-15	[43]
H259	1	0	0	0	SSPPA5622-15	[43]
H260	1	0	0	0	SSPPA8632-15	[43]
H261	1	0	0	0	SSPPA8661-15	[43]
H262	1	0	0	0	SSPPA8754-15	[43]

H263	1	0	0	0	SSPPA8797-15	[43]
H264	1	0	0	0	SSPPA8894-15	[43]
H265	1	0	0	0	SSPPA8942-15	[43]
H266	1	0	0	0	SSPPA8947-15	[43]
H267	1	0	0	0	SSPPA9373-15	[43]
H268	1	0	0	0	SSPPA9424-15	[43]
H269	1	0	0	0	SSPPA9526-15	[43]
H270	1	0	0	0	TTDBW601-09	[43]
H271	1	0	0	0	TTMDJ190-10	[43]
H272	0	0	1	0	GBDP47418-19	[45]
H273	0	0	1	0	GBDP47419-19	[45]
H274	0	0	1	0	GBDP47420-19	[45]
H275	0	0	1	0	GBDP47421-19	[45]
H276	0	0	1	0	GBDP47422-19	[45]
H277	0	0	1	0	GBDP47424-19	[45]
H278	0	0	1	0	GBDP47425-19	[45]
H279	0	0	1	0	GBDP47427-19	[45]
H280	0	0	1	0	GBDP47428-19	[45]
H281	0	0	1	0	GBDP47429-19	[45]
H282	0	0	0	1	GBMIN56977- 17	[45]
H283	0	0	0	1	GBMIN56977- 18	[49]
H284	0	0	1	0	MK962500	[50]
H285	0	0	1	0	AB738152	[45]
H286	0	0	1	0	AB738264	[45]
H287	0	0	1	0	LC054400	[51]
H288	0	0	1	0	LC054401	[51]
H289	0	0	1	0	LC054402	[51]
H290	0	0	1	0	LC054403	[51]
H291	0	0	1	0	LC054404	[51]
H292	0	0	1	0	GBDCU003-12	[52]
H293	0	0	0	1	GBMNA38704- 19	[52]
H294	0	0	0	1	MK403546	[53]
H295	0	0	0	1	GBMIN56951- 17	[46]
H296	0	0	1	0	GBDP14515-13	[52]
H297	0	0	1	0	GBDP14517-13	[52]
H298	0	1	0	0	CULSA041-19	http://www.boldsystems.org/
H299	0	1	0	0	CULSA043-19	http://www.boldsystems.org/
H300	0	0	1	0	GBDP48513-19	[45]
H301	0	0	1	0	GBMIN56978-	[44]
H302	0	0	1	0	17 GBMIN56979-	[44]
H303	0	0	0	1	17 LRMQS002-17	[47]
H304	0	0	0	1	LRMQS002-17 LRMQS035-17	[47]
H304	0	0	0	1	LRMQS066-17	[47]
H305	0	0	0	1	MLQSR050-17	[47]
H307	0	0	0	1	MLQSR050-17 MLQSR051-17	[47]
11507	v	v	v	1		[יי]

H308	0	0	0	1	MLQSR055-17	[47]
H309	0	0	0	1	GBDP48491-19	[48]
H310	0	0	0	1	GBDP48493-19	[48]
H311	0	0	0	1	GBMIN56957- 17	[48]
H312	0	0	0	1	GBMIN56958-	[48]
H313	0	0	0	1	17 GBMIN56960-	
					17 GBMIN56965-	[48]
H314	0	0	0	1	17	[48]
H315	0	0	0	1	GBMIN56967- 17	[48]
H316	0	0	0	1	GBMIN56969- 17	[48]
H317	0	0	0	1	GBMIN56972- 17	[48]
H318	0	0	0	1	GBMIN56974-	[48]
					17	
H319 H320	1	0	0 0	0	BBDIT1116-11 BBDIT1121-11	http://www.boldsystems.org/
H320 H321	1	0		0	BBDIT1121-11 BBDIT1122-11	http://www.boldsystems.org/
		0	0	0	BBDIT1122-11 BBDIT1123-11	http://www.boldsystems.org/
H322	1	0	0	0		http://www.boldsystems.org/
H323 H324	1	0	0 0	0	BBDIV1558-12 GMGAA514-13	http://www.boldsystems.org/
	1	0		0	GMGAA314-13 GMGCC029-13	http://www.boldsystems.org/
H325 H326	1	0 0	0 0	0	GMGCC029-13 GMGDD139-13	http://www.boldsystems.org/
H326 H327	1	0	0	0 0	IUP1014-14	http://www.boldsystems.org/ http://www.boldsystems.org/
H328	1	0	0	0	IUP1014-14 IUP1016-14	
H329	1	0	0	0	IUP1018-14 IUP1018-14	http://www.boldsystems.org/ http://www.boldsystems.org/
H329	1	0	0	0	IUP675-14	http://www.boldsystems.org/
H331	1	0	0	0	IUP885-14	http://www.boldsystems.org/
H332	1	0	0	0	MOSN019-17	http://www.boldsystems.org/
H333	1	0	0	0	MOSN044-17	http://www.boldsystems.org/
Н334	1	0	0	0	MOSN088-17	http://www.boldsystems.org/
Н335	1	0	0	0	MOSN1014-18	http://www.boldsystems.org/
Н336	1	0	0	0	MOSN1083-18	http://www.boldsystems.org/
Н337	1	0	0	0	MOSN1374-18	http://www.boldsystems.org/
Н338	1	0	0	0	MOSN1382-18	http://www.boldsystems.org/
Н339	1	0	0	0	MOSN1421-18	http://www.boldsystems.org/
H340	1	0	0	0	MOSN1424-18	http://www.boldsystems.org/
H341	1	0	0	0	MOSN1425-18	http://www.boldsystems.org/
H342	1	0	0	0	MOSN1428-18	http://www.boldsystems.org/
H343	1	0	0	0	MOSN1615-18	http://www.boldsystems.org/
H344	1	0	0	0	MOSN1652-18	http://www.boldsystems.org/
H345	1	0	0	0	MOSN179-18	http://www.boldsystems.org/
H346	1	0	0	0	MOSN1869-18	http://www.boldsystems.org/
H347	1	0	0	0	MOSN2115-19	http://www.boldsystems.org/
H348	1	0	0	0	MOSN2116-19	http://www.boldsystems.org/
H349	1	0	0	0	MOSN2480-19	http://www.boldsystems.org/
H350	1	0	0	0	MOSN2487-19	http://www.boldsystems.org/
H351	1	0	0	0	MOSN2647-19	http://www.boldsystems.org/
	-	-	-	-		r

Total	1049	2	46	87	1184	
H395	1	0	0	0	USDIQ1433-10	http://www.boldsystems.org/
H394	1	0	0	0	TDWGB705-10	http://www.boldsystems.org/
H393	1	0	0	0	TDWGB127-10	http://www.boldsystems.org/
H392	1	0	0	0	NEONU309-11	http://www.boldsystems.org/
H391	1	0	0	0	NEONU130-11	http://www.boldsystems.org/
H390	1	0	0	0	NEONU128-11	http://www.boldsystems.org/
H389	1	0	0	0	NEONT275-10	[53]
H388	1	0	0	0	MOSN991-18	http://www.boldsystems.org/
H387	1	0	0	0	MOSN976-18	http://www.boldsystems.org/
H386	1	0	0	0	MOSN972-18	http://www.boldsystems.org/
H385	1	0	0	0	MOSN968-18	http://www.boldsystems.org/
H384	1	0	0	0	MOSN858-18	http://www.boldsystems.org/
H383	1	0	0	0	MOSN853-18	http://www.boldsystems.org/
H382	1	0	0	0	MOSN852-18	http://www.boldsystems.org/
H381	1	0	0	0	MOSN848-18	http://www.boldsystems.org/
H380	1	0	0	0	MOSN503-18	http://www.boldsystems.org/
H379	1	0	0	0	MOSN491-18	http://www.boldsystems.org/
H378	1	0	0	0	MOSN436-18	http://www.boldsystems.org/
H377	1	0	0	0	MOSN360-18	http://www.boldsystems.org/
H376	1	0	0	0	MOSN3523-19	http://www.boldsystems.org/
H375	1	0	0	0	MOSN3499-19	http://www.boldsystems.org/
H374	1	0	0	0	MOSN3490-19	http://www.boldsystems.org/
H373	1	0	0	0	MOSN3403-19	http://www.boldsystems.org/
H372	1	0	0	0	MOSN3402-19	http://www.boldsystems.org/
H371	1	0	0	0	MOSN3381-19	http://www.boldsystems.org/
H370	1	0	0	0	MOSN3321-19	http://www.boldsystems.org/
H369	1	0	0	0	MOSN3319-19	http://www.boldsystems.org/
H368	1	0	0	0	MOSN3318-19	http://www.boldsystems.org/
H367	1	0	0	0	MOSN3228-19	http://www.boldsystems.org/
H366	1	0	0	0	MOSN3182-19	http://www.boldsystems.org/
H365	1	0	0	0	MOSN3165-19	http://www.boldsystems.org/
H364	1	0	0	0	MOSN3136-19	http://www.boldsystems.org/
H363	1	0	0	0	MOSN3127-19	http://www.boldsystems.org/
H362	1	0	0	0	MOSN3126-19	http://www.boldsystems.org/
H361	1	0	0	0	MOSN3117-19	http://www.boldsystems.org/
H360	1	0	0	0	MOSN2978-19	http://www.boldsystems.org/
H359	1	0	0	0	MOSN2953-19	http://www.boldsystems.org/
H358	1	0	0	0	MOSN292-18	http://www.boldsystems.org/
H357	1	0	0	0	MOSN2913-19	http://www.boldsystems.org/
H356	1	0	0	0	MOSN2909-19	http://www.boldsystems.org/
H355	1	0	0	0	MOSN2897-19	http://www.boldsystems.org/
H354	1	0	0	0	MOSN288-18	http://www.boldsystems.org/
H353	1	0	0	0	MOSN2655-19	http://www.boldsystems.org/
H352	1	0	0	0	MOSN2649-19	http://www.boldsystems.org/

156	Figure 1. Locations where genetic material was extracted for the A. vexans
157	populations analyzed (2A), as well as phylogenetic relations among populations, as arrows
158	observed in the haplotype network (2B). In both figures the colors below denote the
159	continents and their respective countries. America + Europe: Canada, United States and
160	Turkey. O Asia: China, India, Japan, Singapore and South Korea. O Europe + Asia: Sweden,
161	Belgium and China. O Europe + Asia: Romania, Sweden, Belgium, Russia, Kosovo, the
162	Netherlands, China, Spain, Germany, Iran, Austria and Hungary. 🗢 Africa: South Africa. 🔍
163	America + Africa: South Africa and the United States.

Table 2 shows, by continent and countries, the results of Hd, π and the different 164 neutrality tests. In general, the global *Hd* was 0.92, while by continents it varied between 0.90 165 (Europe) and 1.0 (Africa). The Hd by countries was between 0.0 (Austria, Turkey, Hungary, 166 Singapore, and India) and 1.0 (Germany, Kosovo, Rumania, Russia, South Korea, and South 167 Africa). In turn, the global π was 0.01, while by continents it varied between 0.005 (Europe) 168 and 0.08 (Africa). The π among countries ranged between 0.0 (Austria, Hungary, Turkey, 169 170 Singapore, and India) and 0.08 (South Africa). Neutrality tests, Tajima's D, and Fu's F, at global level, were negatively significant (D = -2.20, p < 0.001; F = -5.22, p < 0.02); by 171 continent and countries, America (D = -2.46, p < 0.05; F = -5.65, p < 0.02) and all its countries 172 (Canada D = -2.43, p < 0.05; F = -5.13, p < 0.02 and USA D = -2.30, p < 0.05; F = -4.96, p < 173 0.02) were statistically significant and with negative values. 174

Table 2. Results of genetic diversity and neutrality tests at global level and by countries for

 A. vexans.

			Genetic diversity	Neutrality tests		
Contine	Countri	Number of				
			Number of		Tajimas'	Fus's
nt	es	sequences	Hd	π		
			haplotypes		D	F

America		1049		0.97391	0.0299		-5.65202*
			325	3	4	-2.463612*	
	Canada	759	191	0.90113	0.0051 8	-2.435669*	-5.13490*
	USA	290	134	0.93120	0.0108 8	-2.306334*	-4.96645*
Africa		2	2	1.0000	0.0851	N/A	N/A
	South Africa	2	2	1.0000	0.0851 1	N/A	N/A
Asia		46	29	0.91259	0.0213 5	0.7167907	-0.55008
	China	13	9	0.98717	0.0251 5	-0.07488041	-0.51062
	South Korea	3	3	1.0000	0.0117 6	N/A	N/A
	Iran	7	3	0.80952	0.0040 5	0.4024933	0.4229
	India	2	1	0	0	N/A	N/A
	Japan	13	8	0.94871	0.0148 1	-0.3390129	-0.52121
	Russia	5	4	1.0000	0.0058 8	0.2734498	0.27834
	Singapore	3	1	0	0	N/A	N/A
Europe		85	39	0.90983	0.0059 8	-0.2722376	-1.65434
	Germany	2	2	1.0000	0.0029 4	N/A	N/A
	Austria	2	1	0	0	N/A	N/A
	Belgium	16	8	0.89166	0.0145 5	-1.16233	-0.48408
	Spain	15	7	0.88571	0.0057 7	-1.619073	-2.29068
	Hungary	2	1	0.0000	0	N/A	N/A
	Kosovo	2	2	1.0000	0.0029 4	N/A	N/A

	Netherlands	10	4	0.71111	0.0032 0	0.0964613	0.17394
	Rumania	2	1	1.0000	0.0117 6	N/A	N/A
	Sweden	34	12	0.95365	0.0275 9	1.301434	0.12606
	Turkey	2	1	0	0	N/A	N/A
Total		1182	395	0.92853	0.0109 9	-2.208676*	-5.22367*

Hd = Haplotype diversity; π = Nucleotide diversity; N/A = Not available; * = p < 0.05.

175 In Table 3, the AMOVA indicated the existence of genetic structuring at continent and

176 country levels and within countries ($F_{ST} = 0.08$, p < 0.05), where the highest variation

percentage was observed among *A. vexans* individuals within countries (91.30%), followed by

178 7.07% among continents and 1.62% among countries in the same continent. In Figure 2,

179 Mantel's test indicated no isolation by distance (r = 0.003, p > 0.05).

Table 3. Analysis of molecular variance (AMOVA) of populations of A. vexans at

continental level, by countries, and within them.

Variation		Sum of	Variation	Variation	F.	p - value ^a
source	d.f.	Squares	components	percentage	I St	p rune
Between continents	3	10.820	0.03508 Va	7.07	0.08697	0.04059+- 0.00196
Between countries with continents	in 16	11.450	0.00804 Vb	1.62		
Within countries	1164	526.956	0.45271 Vc	91.30		
Total	1183	549.226	0.49584			

^aValue obtained from 10000 random permutations

Figure 2. Global Mantel's correlation test for genetic and geographic distance of the *A. vexans* populations analyzed.

Table 4 shows peer-to-peer comparisons among countries after Bonferroni's
correction. For these, significant genetic structuring was detected within Canada with respect
to Belgium, Sweden, Spain, Hungary, and Netherlands. The USA with respect to Austria,
Belgium, Sweden, Spain, Hungary, and Netherlands. China with respect to Netherlands, the
USA, and Canada. India with respect to the USA and Canada. Iran with respect to the USA
and Canada. Japan with respect to Belgium, Sweden, Spain, and Netherlands. Russia with
respect to the USA and Canada. Singapore with respect to Belgium, Sweden, and Spain.

Table 4. Values by countries of genetic differentiation by peers (F_{ST}) and geographic distance (Km) among *A. vexans* populations. Values in bold are genetically structured populations.

	Au	Bel	Tu	Sw	G	Ru	Neth	Ko	Hu	Ger	Ca	The	CL.	т. I'		T	Ru	Sin	Sout	Sout
	stri	giu	rke	ede	Sp ain	ma	erlan	sov	nga	ma	na	United	na	Indi a	Iran	Jap an	ssi	gap	h Kore	h Afric
	а	m	у	n		nia	ds	0	ry	ny	da	States					а	ore	а	a
Austria		80	19	14	16	813	839.	74	375	503	72	8353.2	714		368	916	15	985	8624	8731
Austria	0	6.8 1	20. 67	28. 80	56. 86	.21	29	0.2 7	.66	.23	60. 85	8	5.3 8	7.5 3	5.8 4	6.6 2	80. 06	2.86	.48	.87
Belgiu	0.1		27	13	12	159	190.	15	116	426	65	7562.3	763	717	446	937	12	105	8930	9205
m	6	0	24. 38	91. 91	86. 86	6.5 6	10	29. 55	0.2 7	.81	69. 97	6	5.7 3	9.4 4	8.5 1	5.4 2	82. 1	62.1 5	.74	.65
T 1	1.0	0.2		26	33	114	2727	12	156	235	88	10193.	595	463	181	853	30	808	7798	7843
Turkey	0	9	0	26. 41	15. 95	5.4 7	.37	72. 91	7.4 2	7.3 5	47. 73	06	6.5 4	6.3 6	4.9 4	7.2 6	26. 34	3.65	.83	.71
Swede	0.1	0.0	0.2		26	163	1211	19	144	112	62	7676.0	638	641	400	798	46	962	7557	1010
n	8	1	3	0	78. 56	3.0 1	.49	56. 96	4.4 2	0.6 6	21. 33	5	5.7 1	1.6 8	5.7 8	4.0 5	6.4 2	0.94	.36	2.98
~ .	0.2	-	0.2	0.0		239	1470	20	200	161	70	7597.4	879	795	512	106	25	113	1019	8371
Spain	0	0.0 2	9	1	0	4.3 1	.75	60. 65	1.7 2	7.1 9	67. 6	2	8.1 1	0.5 5	9.7 5	60. 56	35. 95	96.1 4	6.42	.54

Ruman	0.5	0.0 8	0.5 0	0.0	0.0 8	0	1585 .82	49 3.0	439	121 4.3	78 00.	9055.9 9	648 3.4	562 7.0	287 5.3	871 7.0	19 67.	904 9.68	8097 .49	8518 .7
ia	0	0	0	Z	0		.62	2	.61	3	24	9	9	5	2	8	74	9.08	.49	./
Netherl ands	0.2 2	-	0.4 3	0.0 6	-	0.2 1	0	15 78.	116 1.4	372 .23	64 60.	7514.4 9	749 4.7	711 8.4	443 9.9	919 5.3	10 92.	104 80.8	8760 .3	9364 .94
		2			1			53	4	123	97 79		9	1 589	2 308	5 920	23 22	1		
Kosov	0.0	-0.0	0.5	-0.0	0.0	0.0	0.07	0	519	8.8	83.	9089.5	692	3.5	4.7	920 6.7	16.	933	8577	8147
0	0	1	0	1	1				.44	9	27		5.2	5	4	8	33	6.84	.55	.03
Hungar	0.0	0.1	1.0	0.1	0.2	0.5		0.0		794	74	8661.7	682	606	331	893	16	947	8357	8658
у	0	6	0	8	0	0	0.22	0	0	.56	84.	5	1.4	1.8	4.8	4.0	97.	8.4	.86	.83
-											73 67		7 723	7 675	406	5 905	7 11	101		
Germa	0.5	0.0	0.5	0.0	0.0	0.0	0.21	0.0	0.5	0	58.	7870.2	1.9	9.7	8.9	8.5	53.	36.4	8579	9179
ny	0	8	0	3	8	0		0	0		28	8	8	5	8	5	09	5	.29	.84
a 1	0.2	0.1	0.2	0.0	0.1	0.0		0.0	0.2	0.0		2264.0	939	114	999	809	58	130	8588	1520
Canada	6	0	3	7	0	7	0.17	7	6	7	0	7	6.3	81.	8.9	1.7	36.	82.5	.54	1.01
The													7	96	1	7	54	8		
	0.2	0.0	0.2	0.0	0.0	0.0		0.0	0.2	0.0	0.0		116	135	116	101	72	153	1075	1441
United	4	8	3	5	8	5	0.15	5	4	5	0	0	60.	91.	70.	61.	28.	07.0	4.68	4.9
States													31	88	95	81	03	3		
	0.2	0.0	0.2	0.0	0.0	0.0		0.0	0.2	0.0	0.0			298	461	305	67	384	2120	1124
China	3	6	3	3	6		0.14		3		6	0.04	0	7.1	7.4	0.1	50.		.74	
														4	8	7 596	64 68			
India	10.	0.2	1.0		0.2	0.5	0.43		1.0	0.5	0.2	0.25	0.1	0	283 0.9	5.9	68 74.	344	5022	8264
	00	9	0	3	9	0		0	0	0	6		8		2	8	4	7.51	.33	.28
	0.3	0.0	0.3	0.0	0.1	0.1		0.1	0.3	0.1	0.1		0.0	0.3		752	44	627	6664	7724
Iran	8	8	8	8	0	3	0.18	3	8	3	3	0.11	9	8	0	3.9	63.		.19	.52
																4	71 81			
Japan		0.0	0.2	0.0	0.0	0.0	0.16		0.2	0.0	0.0	0.06	0.0	0.2	0.1	0	83.	525	943.	1410
	6	8	6	4	8	3		3	6	3	7		3	6	1		22	5.67	81	2.62
р :	0.1	-	0.2	-	-	0.0		-	0.1	0.0	0.0		0.0	0.2	0.0	0.0		100	7814	1031
Russia	3	0.0	8	0.0		0	0.00		3	0	6	0.04	0	8	1	2	0	60.8	.24	1.88
		5		2	3			1										3		

Singap	1.0	0.3	1.0	0.2	0.3	0.6	0.48	0.6	1.0	0.6	0.3	0.29						0	4572	9223
ore	0	5	0	9	5	4	0.48	4	0	4	0	0.29	5	0	5	2	8	0	.22	.14
South	0.3	0.0	0.3	0.0	0.0	0.0	0.19	0.0	0.3	0.0	0.0	0.04	0.0	0.3	0.1	0.0	0.0	0.50	0	1318
Korea	6	7	6	3	7	0	0.19	0	6	0	6	0.04	0	6	1	3	0	0.50	0	8
South	0.5	0.0	0.5	0.0	0.0	0.0	0.21	0.0	0.5	0.0	0.0	0.05	0.0	0.5	0.1	0.0	0.0	0.64	0.00	0
Africa	0	8	0	3	8	0	0.21	0	0	0	7	0.05	0	0	3	3	0	0.04	0.00	0

189

Figure 3 shows the results of the phylogenetic analyses by using BI (Fig. 3A) and ML 190 191 (Fig. 3B); both analyses recovered the same six clades, but with distinct topologies: clade I grouped mosquito populations from the United States, Canada, and Turkey (n = 322 H); clade 192 II, populations from China, Japan, Singapore, and South Korea (n = 23); clade III, populations 193 194 from Sweden, Belgium, and China (n = 14 H); clade IV, mosquito populations from Rumania, Sweden, Belgium, Russia, Kosovo, Netherlands, China, Spain, Germany, Iran, Austria, and 195 Hungary (n = 31 H); clade V, populations from South Africa (n = 1 H); and clade VI, 196 populations from the United States and South Africa (n = 4 H). Similar results were observed 197 in the haplotype network (Figure 1B). 198

199 Figure 3. Phylogenetic tree for Aedes vexans populations constructed from 395 haplotypes from the COI gene by using Bayesian Inference, BI, (3A) and Maximum 200 Likelihood, ML, (3B). The evolutionary history for both analyses was inferred by using the 201 202 GTR + G model, as suggested by iModelTest version 2.1.10. The BI tree was obtained by using 2-million generations, while the ML used 1,000 replicas. For BI, the support of the 203 204 branches is indicated by the subsequent probability values, while for ML the bootstrap values are shown. Numbers in blue represent sequences from the A. nipponii subspecies. In both 205 figures the colors below denote the continents and their respective countries. America + 206 Europe: Canada, United States and Turkey. • Asia: China, India, Japan, Singapore and South 207

- 208 Korea. O Europe + Asia: Sweden, Belgium and China. O Europe + Asia: Romania, Sweden,
- 209 Belgium, Russia, Kosovo, the Netherlands, China, Spain, Germany, Iran, Austria and
- 210 Hungary. Africa: South Africa. America + Africa: South Africa and the United States.

211

213 Discussion

214 To our knowledge, this is the first study on the genetic structure of A. vexans using all the genetic information available for the COI gene from the GenBank and Boldsystem databases. 215 216 From this information, both the haplotype network and the phylogenetic tree revealed the existence of six clades; clade I grouped mosquito populations from America and Europe; 217 clade II, populations from Asia; clades III and IV, populations from Europe and Asia; clade 218 V, populations from Africa; and clade VI, populations from America and Africa. For A. 219 vexans, existence is suggested of three subspecies: A. vexans vexans, A. vexans arabiensis, 220 and A. vexans nipponii, from which it was possible to include in our natural population 221 222 analyses of A. vexans and A. vexans nipponii. A. vexans vexans has been reported for east Asia and Oceania, A. vexans arabiensis in Africa and Europe, and A. vexans nipponii in 223 224 southeast Asia [1,14,2,42,15,16,17]. However, our results do not suggest the existence of three subspecies or the geographic relations observed. Nonetheless, it is interesting that with 225 A. vexans being considered native of America [13] its invasion is not hypothesized to other 226 227 latitudes, a pattern observed even with A. vexans nipponii terminals registered in Asia, as suggested by our results. This is why the subspecies observed in countries different from 228 America would probably be populations from their place of origin through passive transport 229 230 (*i.e.*, maritime, air, or land transport), as already observed for other Culicidae invaders [54,55,56,57,58], including A. vexans [59]. Future studies should include information at 231 genome level to try to solve the possible existence of subspecies, given that using a single 232 marker is not sufficient to define the species [60], as was observed even for this species by 233 using the COI gene [48]. 234

Haplotype diversity and number of haplotypes observed in the American continent (Hd = 0.97; H = 325) were higher than in other continents; for example, Europe (Hd = 0.90; H = 39). Various studies suggest that native species have higher genetic diversity when

compared with places different from their native area [61,62,63]. For example, a global study on the Cosmopolitan Asian mosquito, *Aedes albopictus*, principal dengue, Zika and Chikungunya vector in Asia and Europe, observed greater genetic diversity (Hd = 0.94, $\pi =$ 1.60) in its native area with respect to all the areas it has invaded, showing – therein – lower diversity indices (lower *Hd* in Netherlands ($0.059 = \pi = 0.011$) and higher *Hd* in China (0.946 $= \pi = 1.609$)) [63]. The aforementioned supports our hypothesis that *A. vexans* populations may have invaded other latitudes.

The A. vexans mosquito showed significant genetic divergence among some populations from 245 the American continent with respect to some European and Asian populations (Table 4). [64], 246 247 analyzing natural A. vexans populations from the United States and Germany, found that these do not share a common gene pool, proposing that the geographic barriers formed by the 248 Atlantic and Pacific Oceans impede gene flow and cause genetic changes in the evolutionary 249 lineages of A. vexans. However, our results suggest no existence of geographic and genetic 250 isolation. Additionally, for most of the populations, the results of the neutrality tests, Tajima's 251 252 D and Fu's FS were negative (Table 2), suggesting that these have experienced recent 253 bottlenecks and population expansion [65]. This may be due to recent vector-control actions and colonization events, phenomena commonly observed in mosquitos of medical and 254 255 veterinary importance [66]. In the first case, these are used to diminish the population size of A. vexans and other vector species of diseases and, consequently, curtail the epidemiologic 256 257 transmission of the diseases it transmits [67,68,69]. In the second case, recent colonization events may take place in areas from where the A. vexans populations are lost during harsh 258 259 winters or after vector-control actions and can be re-colonized by surviving individuals from 260 neighboring areas [3,70,58].

261 Conclusions

- 262 Finally, our results suggest that the *A. vexans* populations that invaded other continents
- 263 originate directly from America, where possibly transcontinental commercial routes favored
- their long-distance dispersion. Moreover, we consider this study as the base for future
- taxonomic research that address the problem of the existence of subspecies within *A. vexans*,
- 266 given that our results did not recover any of the subspecies suggested by the literature.

267 Acknowledgments

- 268 The authors thank the Vice-rectory of Research at Universidad del Quindío for the funding
- 269 needed to translate the manuscript.

270 Ethical considerations

- 271 This work did not experiment with humans or other living beings; its data were obtained from
- 272 genetic databases freely available on line.

273 Conflicts of interest

The authors have no conflict of interest to declare.

276 **References**

277		Reinert JF. Contributions to the mosquito fauna of Southeast Asia. XVI. Genus
278		Aedes Meigen, subgenus Aedimorphus Theobald in Southeast Asia. Contrib
279		AmEntomol Inst 9:66– 66;1973
280	2.	Johansen CA, Lindsay MDA, Harrington SA, Whelan PI, Russell RC, Broom
281		AK. First Record of Aedes (Aedimorphus) Vexans Vexans (Meigen) in
282		Australia. J Am Mosq Control Assoc. 2005;21(2):222-4.
283	3.	Szalanski AL, Owens CB, Lewter JA, Broce AB. Genetic Structure of Aedes
284		vexans (Diptera: Culicidae) Populations from Central United States Based on
285		Mitochondrial ND5 Sequences. Ann Entomol Soc Am. 2006;99(1):157-63.
286	4.	Briegel H, Waltert A, Kuhn R. Reproductive Physiology of Aedes (
287		Aedimorphus) vexans (Diptera: Culicidae) in Relation to Flight Potential . J
288		Med Entomol. 2001;38(4):557–65.
289	5.	Eritja R, Palmer JRB, Roiz D, Sanpera-Calbet I, Bartumeus F. Direct Evidence
290		of Adult Aedes albopictus Dispersal by Car. Sci Rep. 2017;7(1):1–15.
291	6.	Schaffner S, Medlock JM, Bortel W Van. Public health significance of
292		invasive mosquitoes in Europe. Clin Microbiol Infect [Internet].
293		2013;19(8):685–92.
294	7.	Strickman D. Stimuli Affecting Selection of Oviposition Sites by Aedes
295		Vexans (Diptera: Culicidae): Light1. J Med Entomol. 1982;19(2):181-4.
296	8.	Rey JR, Lounibos P. Ecología de Aedes aegypti y Aedes albopictus en América
297		y transmisión enfermedades. Biomedica. 2015;35(2):177-85.
298	9.	Edman JD. Host-feeding patterns of Florida mosquitoes. I. Aedes, Anopheles,
299		Coquillettidia, Mansonia and Psorophora. J Med Entomol. 1971;8(6):687-95.

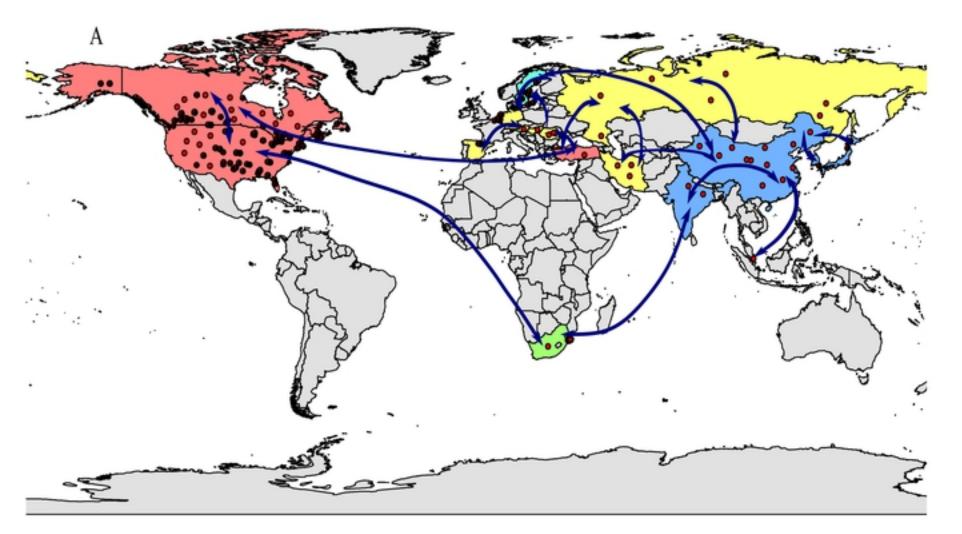
300	10. Brust RA. dispersal behavior of adult aedes sticticus and Aedes vexans
301	(diptera: culicidae) in manitoba. can entomol. 1980;112(01),:31-42.
302	11. Nasci RS. Variations in the blood-feeding patterns of Aedes vexans and Aedes
303	trivittatus (Diptera: Culicidae). J Med Entomol. 1984;21(1):95-9.
304	12. Thompson PH, Dicke RJ. Sampling studies with Aedes vexans and some other
305	Wisconsin Aedes (Diptera: Culcidae). Ann Entomol Soc Am. 1965;58(6):927-
306	30.
307	13. O'Donnell KL, Bixby MA, Morin KJ, Bradley DS, Vaughan JA. Potential of a
308	northern population of Aedes vexans (Diptera: Culicidae) to transmit Zika
309	virus. J Med Entomol. 2017;54(5):1354–9.
310	14. Reinert JF, Harbach RE, Kitching IJ. Phylogeny and classification of Aedini
311	(Diptera: Culicidae), based on morphological characters of all life stages. Zool
312	J Linn Soc. 2004;142(3):289–368.
313	15. Fall AG, Diaïté A, Etter E, Bouyer J, Ndiaye TD, Konaté L. The mosquito
314	Aedes (Aedimorphus) vexans arabiensis as a probable vector bridging the
315	West Nile virus between birds and horses in Barkedji (Ferlo, Senegal). Med
316	Vet Entomol. 2012;26(1):106–11.
317	16. Francuski L, Milankov V, Ludoški J, Krtinić B, Lundström JO, Kemenesi G, et
318	al. Genetic and phenotypic variation in central and northern European
319	populations of Aedes (Aedimorphus) vexans (Meigen, 1830) (Diptera,
320	Culicidae). J Vector Ecol. 2016;41(1):160-71.
321	17. Sanborn MA, Klein TA, Kim HC, Fung CK, Figueroa KL, Yang Y, et al.
322	Metagenomic analysis reveals three novel and prevalent mosquito viruses from
323	a single pool of Aedes vexans nipponii collected in the republic of korea.
324	Viruses. 2019;11(3):1–17.

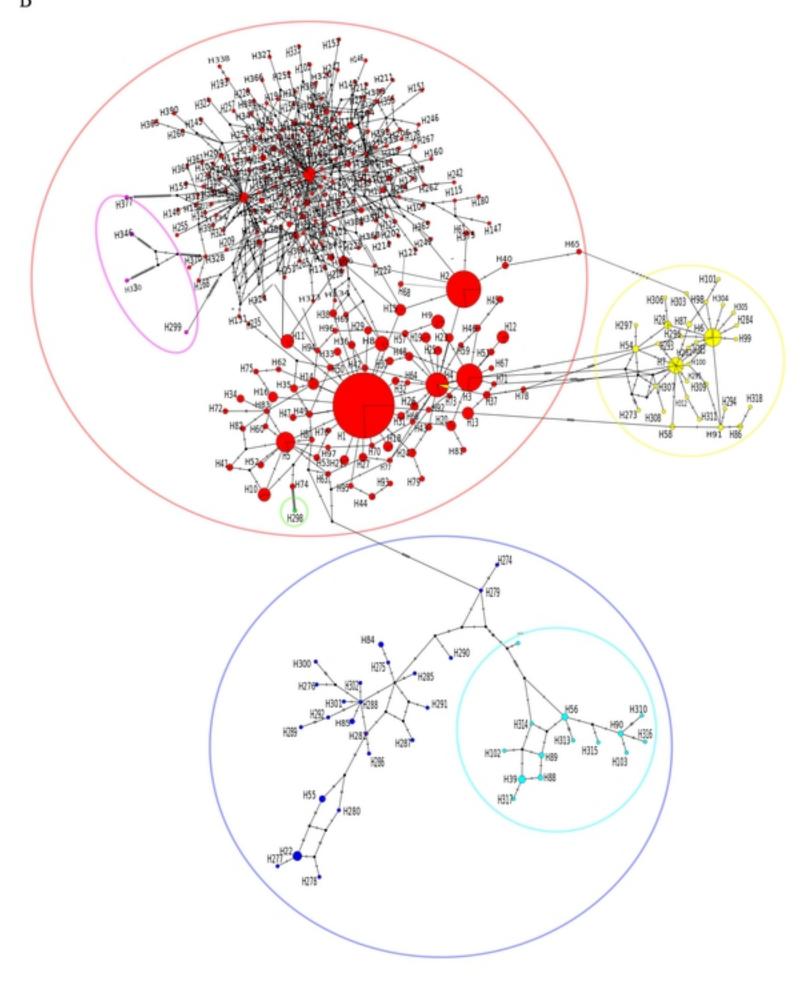
325	18. Turell MJ, Dohm DJ, Sardelis MR, O'Guinn ML, Andreadis TG, Blow JA. An
326	update on the potential of North American mosquitoes (Diptera: Culicidae) to
327	transmit West Nile virus. J Med Entomol. 2005;42(1):57-62.
328	19. Ndiaye EH, Fall G, Gaye A, Bob NS, Talla C, Diagne CT, et al. Vector
329	competence of Aedes vexans (Meigen), Culex poicilipes (Theobald) and Cx.
330	quinquefasciatus Say from Senegal for West and East African lineages of Rift
331	Valley fever virus. Parasites and Vectors [Internet]. 2016;9(1):1-9. Available
332	from: http://dx.doi.org/10.1186/s13071-016-1383-y.
333	20. Baldacchino F, Caputo B, Chandre F, Drago A, della Torre A, Montarsi F, et
334	al. Control methods against invasive Aedes mosquitoes in Europe: A review.
335	Pest Manag Sci. 2015;71(11):1471-85.
336	21. Becker, N., & Ludwig M. Investigations on possible resistance in Aedes
337	vexans field populations after a 10-year application of Bacillus thuringiensis
338	israelensis. J Am Mosq Control Assoc. 1993;9(June):221-4.
339	22. Dunbar MW, Bachmann A, Varenhorst AJ. Reduced Insecticide Susceptibility
340	in Aedes vexans (Diptera: Culicidae) Where Agricultural Pest Management
341	Overlaps With Mosquito Abatement. J Med Entomol. 2018;55(3):747-51.
342	23. Endersby NM, Hoffmann AA, White VL, Lowenstein S, Ritchie S, Johnson
343	PH, et al. Genetic Structure of Aedes aegypti in Australia and Vietnam
344	Revealed by Microsatellite and Exon Primed Intron Crossing Markers
345	Suggests Feasibility of Local Control Options . J Med Entomol.
346	2009;46(5):1074–83.
347	24. Endersby NM, Hoffmann AA, White VL, Ritchie SA, Johnson PH, Weeks
348	AR. Changes in the Genetic Structure of Aedes aegypti (Diptera: Culicidae)

349	Populations in Queensland, Australia, Across Two Seasons: Implications for
350	Potential Mosquito Releases . J Med Entomol. 2011;48(5):999-1007.
351	25. Hoffmann AA, Montgomery BL, Popovici J, Iturbe-Ormaetxe I, Johnson PH,
352	Muzzi F, et al. Successful establishment of Wolbachia in Aedes populations to
353	suppress dengue transmission. Nature [Internet]. 2011;476(7361):454-9.
354	Available from: http://dx.doi.org/10.1038/nature10356
355	26. Rašić G, Filipović I, Weeks AR, Hoffmann AA. Genome-wide SNPs lead to
356	strong signals of geographic structure and relatedness patterns in the major
357	arbovirus vector, Aedes aegypti. BMC Genomics. 2014;15(1):1-12.
358	27. Gupta A, Bhardwaj A, Supriya. Mitochondrial DNA- a Tool for Phylogenetic
359	and Biodiversity Search in Equines. J Homeopath Ayurvedic Med.
360	2014;s1(January).
361	28. Haran J, Koutroumpa F, Magnoux E, Roques A, Roux G. Ghost mtDNA
362	haplotypes generated by fortuitous NUMTs can deeply disturb infra-specific
363	genetic diversity and phylogeographic pattern. J Zool Syst Evol Res.
364	2015;53(2):109–15.
365	29. Chamberlain S. 2017. bold: interface to Bold Systems 'API'. R package version
366	0.4.0. Available in: https://CRAN.R - project.org/package=bold
367	30. Paradis E, Schliep K. ape 5.0: an environment for modern phylogenetics and
368	evolutionary analyses in R. Bioinformatics 35: 526-528. Bioinformatics.
369	2018;35(July):526–8.
370	31. Katoh K, Standley DM. MAFFT multiple sequence alignment software version
371	7: Improvements in performance and usability. Mol Biol Evol.
372	2013;30(4):772–80.

373	32. Paradis E. Pegas: An R package for population genetics with an integrated-
374	modular approach. Bioinformatics. 2010;26(3):419-20.
375	33. RStudio Team. 2020. RStudio: Integrated Development for R. RStudio. PBC,
376	Boston, MA Available en: http://www.rstudio.com/.
377	34. Rozas J, Ferrer-Mata A, Sanchez-DelBarrio JC, Guirao-Rico S, Librado P,
378	Ramos-Onsins SE, et al. DnaSP 6: DNA sequence polymorphism analysis of
379	large data sets. Mol Biol Evol. 2017;34(12):3299-302.
380	35. Excoffier L, Lischer HEL. Arlequin suite ver 3.5: A new series of programs to
381	perform population genetics analyses under Linux and Windows. Mol Ecol
382	Resour. 2010;10(3):564–7.
383	36. Wright S. Systems of Mating. I. the Biometric Relations Between Parent and
384	Offspring. Genetics. 1921;6(3):309–309.
385	37. Oksanen AJ, Blanchet FG, Friendly M, Kindt R, Legendre P, Mcglinn D, et al.
386	Package ' vegan .' 2017;(January).
387	38. Darriba D, Taboada GL, Doallo R, Posada D. JModelTest 2: More models,
388	new heuristics and parallel computing. Nat Methods [Internet]. 2012;9(8):772.
389	Available from: http://dx.doi.org/10.1038/nmeth.2109.
390	39. Stamatakis A. RAxML-VI-HPC: Maximum likelihood-based phylogenetic
391	analyses with thousands of taxa and mixed models. Bioinformatics.
392	2006;22(21):2688–90.
393	40. Ronquist F, Teslenko M, Van Der Mark P, Ayres DL, Darling A, Höhna S, et
394	al. Mrbayes 3.2: Efficient bayesian phylogenetic inference and model choice
395	across a large model space. Syst Biol. 2012;61(3):539-42.
396	41. Zuccon A, Zuccon D. MrEnt: An editor for publication-quality phylogenetic
397	tree illustrations. Mol Ecol Resour. 2014;14(5):1090-4.

398	42. Cywinska A, Hunter FF, Hebert PDN. Identifying Canadian mosquito species
399	through DNA barcodes. Med Vet Entomol. 2006;20(4):413–24.
400	43. Hebert PDN, Ratnasingham S, Zakharov E V., Telfer AC, Levesque-Beaudin
401	V, Milton MA, et al. Counting animal species with DNA barcodes: Canadian
	insects. Philos Trans R Soc B Biol Sci. 2016;371(1702).
402	
403	44. Versteirt V, Nagy ZT, Roelants P, Denis L, Breman FC, Damiens D, et al.
404	Identification of Belgian mosquito species (Diptera: Culicidae) by DNA
405	barcoding. Mol Ecol Resour. 2015;15(2):449–57.
406	45. Wang G, Li C, Guo X, Xing D, Dong Y, Wang Z, et al. Identifying the Main
407	Mosquito Species in China Based on DNA Barcoding. PLoS One.
408	2012;7(10):1-11.
409	46. Török E, Tomazatos A, Cadar D, Horváth C, Keresztes L, Jansen S, et al. Pilot
410	longitudinal mosquito surveillance study in the Danube Delta Biosphere
411	Reserve and the first reports of Anopheles algeriensis Theobald, 1903 and
412	Aedes hungaricus Mihályi, 1955 for Romania. Parasites and Vectors [Internet].
413	2016;9(1):1-13. Available from: http://dx.doi.org/10.1186/s13071-016-1484-7
414	47. Ruiz-Arrondo I, McMahon BJ, Hernández-Triana LM, Santibañez P, Portillo
415	A, Oteo JA. Surveillance of mosquitoes (Diptera, Culicidae) in a northern
416	central region of Spain: Implications for the medical community. Front Vet
417	Sci. 2019;6(MAR).
418	48. Lilja T, Troell K, Kirik H, Lindström A. A distinct group of north European
419	Aedes vexans as determined by mitochondrial and nuclear markers. Med Vet
420	Entomol. 2018;32(3):282–9.


421	49. Telfer AC, Young MR, Quinn J, Perez K, Sobel CN, Sones JE, et al.
422	Biodiversity inventories in high gear: DNA barcoding facilitates a rapid biotic
423	survey of a temperate nature reserve. Biodivers Data J. 2015;3(1).
424	50. Doosti S, Yaghoobi-Ershadi MR, Sedaghat MM, Moosa-Kazemi SH,
425	Akbarzadeh K, Hashemi-Aghdam SS. Genetic population diversity of Aedes
426	<i>caspius</i> in southern provinces of Iran. Bull la Soc Pathol Exot. 2018;11(1):31–
427	7.
428	51. Maekawa Y, Ogawa K, Komagata O, Tsuda Y, Sawabe K. DNA barcoding for
429	molecular identification of Japanese mosquitoes. Med Entomol Zool.
430	2016;67(3):183–98.
431	52. Khrabrova N V., Andreeva Y V., Vaulin O V., Alekseeva SS, Sibataev AK.
432	Variability of the mitochondrial cytochrome oxydase subunit i gene sequence
433	in species of the genera Aedes and Ochlerotatus (Diptera: Culicidae). Russ J
434	Genet Appl Res. 2013;3(4):279–86.
435	53. Hernández-Triana LM, Brugman VA, Nikolova NI, Ruiz-Arrondo I, Barrero
436	E, Thorne L, et al. DNA barcoding of british mosquitoes (diptera, culicidae) to
437	support species identification, discovery of cryptic genetic diversity and
438	monitoring invasive species. Zookeys. 2019;2019(832):57-76.
439	54. Reiter P, Sprenger D. The used tire trade: a mechanism for the worldwide
440	dispersal of container breeding mosquitoes. J Am Mosq Control Assoc.
441	1987;3(3):494–501.
442	55. Sukehiro N, Kida N, Umezawa M, Murakami T, Arai N, Jinnai T, et al. First
443	report on invasion of yellow fever mosquito, Aedes aegypti, at Narita
444	International Airport, Japan in August 2012. Jpn J Infect Dis. 2013;66(3):189-
445	94.


446	56. Brown JE, Evans BR, Zheng W, Obas V, Barrera-Martinez L, Egizi A, et al.
447	Human impacts have shaped historical and recent evolution in Aedes aegypti,
448	the dengue and yellow fever mosquito. Evolution (N Y). 2014;68(2):514-25.
449	57. Fonzi E, Higa Y, Bertuso AG, Futami K, Minakawa N. Human-mediated
450	marine dispersal influences the population structure of Aedes aegypti in the
451	Philippine Archipelago. PLoS Negl Trop Dis. 2015;9(6):1–16.
452	58. Díaz-Nieto LM, Chiappero MB, Díaz de Astarloa C, Maciá A, Gardenal CN,
453	Berón CM. Genetic Evidence of Expansion by Passive Transport of Aedes
454	(Stegomyia) aegypti in Eastern Argentina. PLoS Negl Trop Dis.
455	2016;10(9):10–5.
456	59. Joyce C, Nakagawa P. Aedes vexans nocturnus (Theobald) in Hawaii.
457	1963;XVIII(2):273–80.
458	60. Dupuis JR, Roe AD, Sperling FAH. Multi-locus species delimitation in closely
459	related animals and fungi: One marker is not enough. Mol Ecol.
460	2012;21(18):4422–36.
461	61. Wright AF. Genetic Variation: Polymorphisms and Mutations. Encycl Life Sci.
462	2005;1–10.
463	62. Gloria-Soria A, Ayala D, Bheecarry A, Calderon-Arguedas O, Chadee DD,
464	Chiappero M, et al. Global genetic diversity of Aedes aegypti. Mol Ecol.
465	2016;25(21):5377–95.
466	63. Ruiling Z, Tongkai L, Dezhen M, Zhong Z. Genetic characters of the globally
467	spread tiger mosquito, Aedes albopictus (Diptera, Culicidae): implications
468	from mitochondrial gene COI. J Vector Ecol. 2018;43(1):89-97.
469	64. Krtinić B, Francuski L, Petrić D, Milankov V. Genetic diversity and
470	differentiation between Palearctic and Nearctic populations of Aedimorphus

471	(=Aedes) vexans (Meigen, 1830) (Diptera, Culicidae). J Vector Ecol.
472	2013;38(1):154–62.
473	65. Zawani MKN, Abu HA, Sazaly AB, Zary SY, Darlina MN. Population genetic
474	structure of aedes albopictus in Penang, Malaysia. Genet Mol Res.
475	2014;13(4):8184–96.
476	66. Harris AF, Rajatileka S, Ranson H. Pyrethroid resistance in Aedes aegypti
477	from Grand Cayman. Am J Trop Med Hyg. 2010;83(2):277-84.
478	67. Ocampo CB, Wesson DM. Population dynamics of Aedes aegypti from a
479	dengue hyperendemic urban setting in Colombia. Am J Trop Med Hyg.
480	2004;71(4):506–13.
481	68. Koou SY, Chong CS, Vythilingam I, Lee CY, Ng LC. Insecticide resistance
482	and its underlying mechanisms in field populations of Aedes aegypti adults
483	(Diptera: Culicidae) in Singapore. Parasites and Vectors. 2014;7(1):1–15.
484	69. Zhu F, Lavine L, O'Neal S, Lavine M, Foss C, Walsh D. Insecticide resistance
485	and management strategies in urban ecosystems. Insects. 2016;7(1):1-26.
486	70. Monteiro FA, Shama R, Martins AJ, Gloria-Soria A, Brown JE, Powell JR.
487	Genetic Diversity of Brazilian Aedes aegypti: Patterns following an
488	Eradication Program. PLoS Negl Trop Dis. 2014;8(9):1–10.

489 **Supporting information**

- 490 **S1.** Nucleotide diversity of the COI gene for A. vexans populations. Mafft alignment to
- 491 compare the haplotypes from this study. The amino acid sequence translated is represented by
- 492 capital letters in blue, over the first nucleotide of its corresponding codon. Invariable sites are
- 493 indicated with points, contrary to the alternative nucleotide, and spaces with (-).

Figure 1

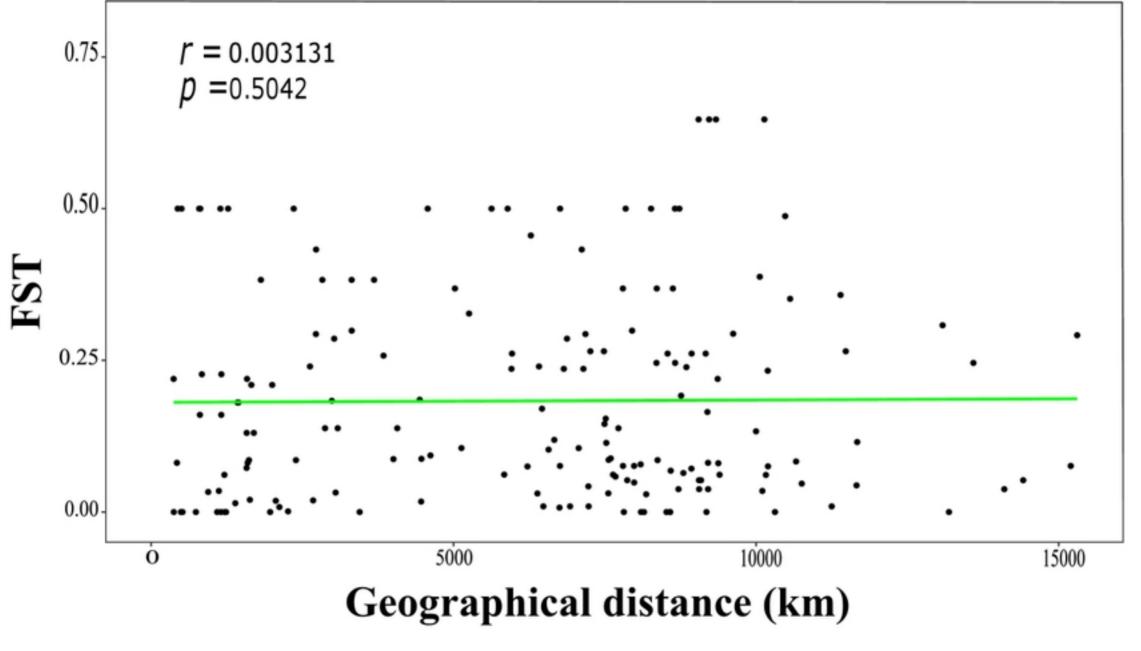
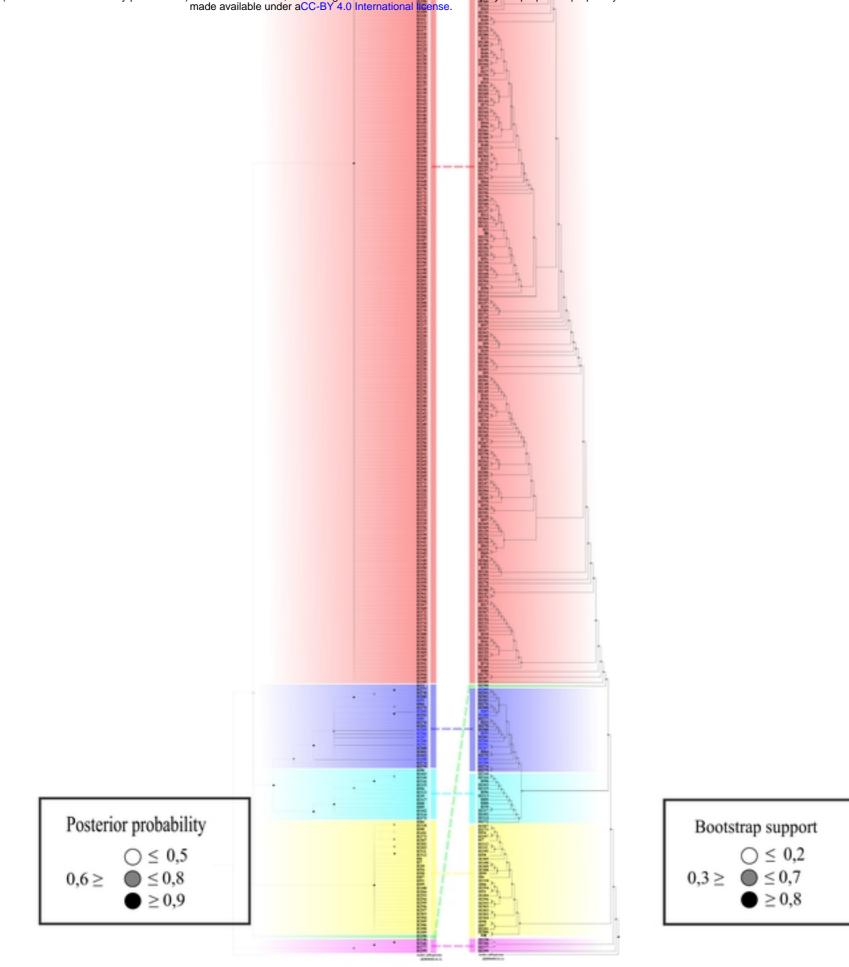



Figure 2

В

bioRxiv preprint doi: https://doi.org/10.1101/2021.04.15.439950; this version posted April 15, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

А

Figure 3