Dstl ©Crown Copyright, 2021

1 Evaluation of the SARS-CoV-2 inactivation efficacy associated with buffers from three kits

- 2 used on high-throughput RNA extraction platforms
- 3 Ruth E. Thom^a, Lin S. Eastaugh^a, Lyn M. O'Brien^a, David O. Ulaeto^a, James S. Findlay^a,
- 4 Sophie J. Smither^a, Amanda L. Phelps^a, Helen L. Stapleton^a, Karleigh A. Hamblin^a, Simon A.
- 5 Weller^{a#}
- ⁶ ^aCBR Division, Dstl Porton Down, Salisbury, United Kingdom
- 7 [#]Address correspondence to Simon A. Weller, sweller@dstl.gov.uk
- 8 © Crown copyright (2021), Dstl. This material is licensed under the terms of the Open
- 9 Government Licence except where otherwise stated. To view this licence, visit
- 10 <u>http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3</u> or write to
- 11 the Information Policy Team, The National Archives, Kew, London TW9 4DU, or email:
- 12 psi@nationalarchives.gov.uk
- 13

14 ABTRACT

Rapid and demonstrable inactivation of SARS-CoV-2 is crucial to ensure operator safety 15 during high-throughput testing of clinical samples. The inactivation efficacy of SARS-CoV-2 16 17 was evaluated using commercially available lysis buffers from three viral RNA extraction kits used on two high-throughput (96-well) RNA extraction platforms (Qiagen QiaCube HT and 18 the ThermoFisher Kingfisher Flex) in combination with thermal treatment. Buffer volumes 19 and sample ratios were chosen for their optimised suitability for RNA extraction rather than 20 inactivation efficacy and tested against a representative sample type; SARS-CoV-2 spiked 21 22 into viral transport medium (VTM). A lysis buffer from the MagMax Pathogen RNA/DNA kit

Dstl ©Crown Copyright, 2021

23	(ThermoFisher), used on the Kingfisher Flex, which included guanidinium isothiocycnate
24	(GITC), a detergent, and isopropanol demonstrated a minimum inactivation efficacy of 1 $ extsf{x}$
25	10^5 TCID ₅₀ /ml. An alternative lysis buffer from the MagMax Viral/Pathogen Nucleic Acid kit
26	(Thermofisher) also used on the Kingfisher Flex and the lysis buffer from QIAamp 96 Virus
27	QIAcube HT Kit (Qiagen) used on the QiaCube HT (both of which contained GITC and a
28	detergent) reduced titres by 1×10^4 TCID ₅₀ /ml but did not completely inactivate the virus.
29	Heat treatment alone (15 minutes, 68 °C) did not completely inactivate the virus,
30	demonstrating a reduction of 1×10^3 TCID ₅₀ /ml. When inactivation methods included both
31	heat treatment and addition of lysis buffer, all methods were shown to completely
32	inactivate SARS-CoV-2 inactivation against the viral titres tested. Results are discussed in
33	the context of the operation of a high-throughput diagnostic laboratory.
24	
34	INTRODUCTION
34 35	Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) belongs to the
34 35 36	Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) belongs to the Coronaviridae family and is the causative agent of the respiratory illness, coronavirus
34 35 36 37	Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) belongs to the Coronaviridae family and is the causative agent of the respiratory illness, coronavirus disease (COVID-19) (1). The enveloped positive-sense single-stranded RNA virus was first
34 35 36 37 38	Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) belongs to the Coronaviridae family and is the causative agent of the respiratory illness, coronavirus disease (COVID-19) (1). The enveloped positive-sense single-stranded RNA virus was first discovered in early 2020 after a cluster of viral pneumonia cases of unknown cause were
34 35 36 37 38 39	Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) belongs to the Coronaviridae family and is the causative agent of the respiratory illness, coronavirus disease (COVID-19) (1). The enveloped positive-sense single-stranded RNA virus was first discovered in early 2020 after a cluster of viral pneumonia cases of unknown cause were reported in the Hubei Province of China (2). The virus is highly contagious in humans and in
 34 35 36 37 38 39 40 	Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) belongs to the Coronaviridae family and is the causative agent of the respiratory illness, coronavirus disease (COVID-19) (1). The enveloped positive-sense single-stranded RNA virus was first discovered in early 2020 after a cluster of viral pneumonia cases of unknown cause were reported in the Hubei Province of China (2). The virus is highly contagious in humans and in March 2020 The World Health Organisation (WHO) declared a global pandemic (3).
 34 35 36 37 38 39 40 41 	Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) belongs to the Coronaviridae family and is the causative agent of the respiratory illness, coronavirus disease (COVID-19) (1). The enveloped positive-sense single-stranded RNA virus was first discovered in early 2020 after a cluster of viral pneumonia cases of unknown cause were reported in the Hubei Province of China (2). The virus is highly contagious in humans and in March 2020 The World Health Organisation (WHO) declared a global pandemic (3). Diagnostic testing is critical in the fight against the COVID-19 pandemic (4), not just for
 34 35 36 37 38 39 40 41 42 	Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) belongs to the Coronaviridae family and is the causative agent of the respiratory illness, coronavirus disease (COVID-19) (1). The enveloped positive-sense single-stranded RNA virus was first discovered in early 2020 after a cluster of viral pneumonia cases of unknown cause were reported in the Hubei Province of China (2). The virus is highly contagious in humans and in March 2020 The World Health Organisation (WHO) declared a global pandemic (3). Diagnostic testing is critical in the fight against the COVID-19 pandemic (4), not just for patients displaying symptoms but also for asymptomatic carriers and pre-symptomatic
 34 35 36 37 38 39 40 41 42 43 	Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) belongs to the Coronaviridae family and is the causative agent of the respiratory illness, coronavirus disease (COVID-19) (1). The enveloped positive-sense single-stranded RNA virus was first discovered in early 2020 after a cluster of viral pneumonia cases of unknown cause were reported in the Hubei Province of China (2). The virus is highly contagious in humans and in March 2020 The World Health Organisation (WHO) declared a global pandemic (3). Diagnostic testing is critical in the fight against the COVID-19 pandemic (4), not just for patients displaying symptoms but also for asymptomatic carriers and pre-symptomatic patients (5). SARS-CoV-2 has been classified in the UK as a Hazard Group (HG) 3 pathogen
 34 35 36 37 38 39 40 41 42 43 44 	Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) belongs to the Coronaviridae family and is the causative agent of the respiratory illness, coronavirus disease (COVID-19) (1). The enveloped positive-sense single-stranded RNA virus was first discovered in early 2020 after a cluster of viral pneumonia cases of unknown cause were reported in the Hubei Province of China (2). The virus is highly contagious in humans and in March 2020 The World Health Organisation (WHO) declared a global pandemic (3). Diagnostic testing is critical in the fight against the COVID-19 pandemic (4), not just for patients displaying symptoms but also for asymptomatic carriers and pre-symptomatic patients (5). SARS-CoV-2 has been classified in the UK as a Hazard Group (HG) 3 pathogen by the Advisory Committee for Dangerous Pathogens (ACDP), meaning that this virus must

Dstl ©Crown Copyright, 2021

and Public Health England, UK (7) has permitted non-propagative diagnostic testing to be
carried out at CL 2 with non-inactivated samples being handled within a Class I microbiology
safety cabinet.

Real-time reverse transcriptase polymerase chain reaction (RT-PCR) is the gold standard test 49 50 to for the detection of SARS-CoV-2 from nasopharyngeal swab samples (8). Inactivation of 51 viral pathogens prior to PCR is typically carried out at the same time as extraction of viral 52 nucleic acids from samples, with chemical or physical methods employed. Typically buffers provided in nucleic acid extraction kits contain chaotropic salts, solvents, and detergents to 53 lyse the virus. Guanidinium salts, such as guanidinium thiocyanate (GITC), are chaotropic 54 agents found in many lysis buffers which in some cases have been demonstrated to 55 56 inactivate viral pathogens, including alphaviruses, flaviviruses, filoviruses and a bunyavirus (9, 10). Other reports though suggest that a combination of a GITC containing extraction 57 buffer (such as Qiagen AVL) and a solvent (such as ethanol), is required for the inactivation 58 of viruses such as Ebola virus (11) and Middle East Respiratory Syndrome coronavirus 59 (MERS-CoV) (12). Detergents such as Tween, SDS and Triton X100 have also been shown to 60 61 disrupt viral envelopes and reduce viral titres (13-15), with a combination of the GITC based reagent (Buffer AVL) and Triton X100 having been reported to inactivate Ebola virus (16). 62 63 Physical processes such as heat can also be incorporated in the nucleic acid extraction 64 workflow and can have an inactivation effect. Some reports suggest that the application of heat alone can inactivate SARS-CoV, MERS-CoV and SARS-CoV-2 following a heat regimen of 65 65 °C for at least 15 minutes (17-19). 66

Due to commercial sensitivity, manufacturers of extraction kits are not required to publish
the full ingredient list of proprietary buffers (with potential viral inactivating components

Dstl ©Crown Copyright, 2021

69	only inferred if they are listed on associated Material Safety Data Sheets(MSDS)) and post-
70	treatment viability test methods vary in stringency across studies. Due to the disparate and
71	varying literature sources describing the efficacy of inactivation methods for the extraction
72	of RNA, a standardised protocol for the inactivation of SARS-CoV-2 was developed and
73	experimental validation of the different approaches was undertaken.
74	Since the pandemic was declared, UK's Defence Science Technology Laboratory (Dstl) and
75	British military clinicians have set up the Defence COVID lab (DCL), which has been awarded
76	an extension to scope (under ISO17025) for the provision of a SARS-COV-2 PCR test by the
77	United Kingdom Accreditation Service (UKAS). The DCL analyses samples from UK military
78	units and operates two automated high-throughput RNA extraction platforms (Qiagen
79	QiaCube HT and the ThermoFisher Kingfisher Flex). In this study we report the inactivation
80	efficacy of SARS-CoV-2 by buffers from three commercially available kits used on these two
81	platforms. Buffer volumes and ratios were chosen for their suitability for RNA extraction
82	(following manufacturer's instructions) rather than their potential inactivation efficacy,
83	however in doing so we have further investigated the inactivation efficacy of combinations
84	of GITC containing buffers, solvents, and/or detergents with and without an additional heat
85	inactivation step. We provide evidence to support protocols for the inactivation of SARS-
86	CoV-2 and the safe use of clinical samples in down-stream RT-PCR in high-throughput
87	diagnostic laboratories.
88	METHODS

89 Virus strains, cell culture and reagents

All cell culture was carried out using confluent monolayers of Vero C1008 cells (European
 Collection of Cell Cultures [ECACC], United Kingdom; catalogue no. 85020206) maintained

Dstl ©Crown Copyright, 2021

92	in Dulbecco's minimal essential medium (DMEM; Sigma, United Kingdom) supplemented
93	with 10% fetal calf serum, 1% L-glutamine and 1% penicillin-streptomycin (Sigma, United
94	Kingdom) and incubated at 37 °C in a 5% CO_2 environment. Prior to virus being added to cell
95	monolayers, 10% DMEM was replaced with Leibovitz's L-15 (to buffer for the lack of CO_2 at
96	CL3), supplemented as described for DMEM, with the exception of 2% fetal calf serum and
97	incubated at 37 °C. All virus manipulations were carried out under BSL/CL 3 conditions using
98	the SARS-CoV-2 England 2 strain (GISAID reference EPI_ISL_407073), provided by Public
99	Health England. Virus stock was propagated in Vero C1008 cell, harvested at day 3 and
100	clarified by centrifugation at 350 x g for 15 minutes (Sigma 3-16K centrifuge). Viral stocks
101	were concentrated by centrifugation at 11, 000 x g for 3 hours at 4 °C to achieve 1×10^8
102	Tissue Culture Infectious Dose (TCID) $_{50}$ /ml. All virus stocks were stored at -80 °C. Buffers
103	and reagents from three different RNA extraction kits were assessed to determine
104	inactivation of SARS-CoV-2 (Table 1). The composition of these initial reagents and their
105	suitability for extraction of SARS-CoV-2 RNA from clinical samples was determined based on
106	manufacture protocols and after discussions with each manufacturer.

107 Viral inactivation

The inactivation efficacy of the lysis buffers in all three protocols was evaluated with and without the inclusion of a heat step. Table 1 summarises the components and volumes used for each lysis buffer preparation. MS2 bacteriophage (10⁶ Plaque Forming Unit (PFU)/ml) was added to each lysis buffer preparation as an internal control in the DCL, Dstl. Test samples for each experiment were set up in triplicate and each experiment was performed on at least three separate occasions.

Dstl ©Crown Copyright, 2021

114	Viral transfer medium (VTM; EO Labs, United Kingdom) was inoculated with SARS-CoV-2 to
115	achieve a starting concentration of 5×10^6 TCID ₅₀ /ml for all experiments. To the lysis buffer
116	preparations, 200 μ l of virus in VTM was added, the samples were briefly vortexed and
117	incubated for 10 minutes at room temperature. For heat treated samples, the tubes were
118	incubated for 25 minutes in a heat block (Eppendorf ThermoMixer C heat) set at 75 °C.
119	Laboratory tests showed that this was the temperature setting required for this individual
120	heat block to heat and maintain the samples at 68 °C for 15 minutes. Heat steps were
121	carried out after the addition of virus to either lysis buffer reagents or to an equivalent
122	volume of tissue culture medium (TCM), to assess the effect of viability following heat in the
123	presence or absence of reagents. Further controls included sham-inactivated virus, where
124	appropriate volume of TCM replaced the lysis buffer reagents and negative controls
125	consisting of VTM-only added to lysis buffer reagents to assess the effect of the reagents on
126	cell monolayers.
127	After inactivation (with or without heat treatment) all samples and controls were pelleted
128	by centrifugation at 6, 000 x g for 5 minutes in a microcentrifuge (Hermle Microlitre
129	Centrifuge Z 160 M). The supernatant was discarded and the pellet resuspended in 1 ml
130	TCM and washed a further 4 times for the Qiagen reagents and 2 times for the Kingfisher
131	reagents in order to remove all traces of the inactivation chemicals from the sample and to
132	avoid toxicity during cell culture. After the final wash the pellets were re-suspended in 1ml
133	of TCM.

134 **Post inactivation viral viability assays**

Dstl ©Crown Copyright, 2021

135	To quantify and determine the viability of the virus following inactivation, the samples were
136	prepared for TCID $_{50}$ end-point dilution assay (20) and the remaining sample underwent
137	three rounds of serial passage in tissue culture flasks.
138	In brief, TCID ₅₀ assay was performed using Vero C1008 cells prepared in 96-well microtitre
139	plates to achieve confluent monolayers on the day of assay. To all wells of column 1 of the
140	plate 100 μl of test sample was added. From column 1, 20 μl of sample was transferred
141	sequentially across the plate to achieve a 10-fold serial dilution to column 9. Cells in
142	columns 11 and 12 were left in TCM as controls. Plates were incubated in a humidified
143	atmosphere for 3 - 4 days at 37 °C, after which they were scored for cytopathic effects (CPE)
144	by microscopic observation. The TCID $_{50}$ value was calculated by the method of Reed and
145	Muench (21).
146	For secondary confirmation of viral inactivation, all of the remaining sample (approx. 180
147	μ l) was added to confluent monolayer of Vero C1008 cells in a 12.5 cm ² tissue culture flask.
148	Flasks were incubated in a humidified atmosphere for 3 - 4 days after which presence or
149	absence of cytopathic effect was recorded. A total of three passages were performed and

150 CPE recorded after each round. To control for cross-contamination a set of un-infected

flasks were also prepared and supernatant passaged in parallel to the experimental samples.
 A 10-fold serially dilution of SARS-CoV-2 was also inoculated into a set of flasks starting from

153 1.7×10^7 TCID₅₀/ml and diluted to 1.1 TCID₅₀/ml to show the Limit of Detection (LOD) of the

154 flask passage assay and demonstrate a suitable environment for the passage and

155 propagation of the virus.

156 Statistical analysis

Dstl ©Crown Copyright, 2021

- 157 All data were graphically represented and statistically analysed using GraphPad Prism 8.
- 158 Kruskal-Wallis analysis of variance (ANOVA) was performed on data sets with Dunn's
- 159 multiple comparison post hoc.

160 **RESULTS**

- 161 The inactivation of SARS-CoV-2 was assessed using three different RNA lysis buffers with and
- 162 without the inclusion of a heat step. The viability of virus was determined quantitatively
- using the TCID₅₀ assay and qualitatively by serially passaging samples in flask.

164 Determination of starting concentration of SARS-CoV-2

- 165 These studies used the highest working concentration of SARS-CoV-2 that was available and
- 166 this ranged from 5.9×10^5 to 3.5×10^6 TCID₅₀/ml (Figure 1). Following the inactivation
- 167 procedure residual toxic lysis buffer components were removed by way of multiple wash
- 168 steps. Residual chemical components would otherwise be toxic to the cell based assays. To
- determine if the multiple wash steps by centrifugation resulted in a loss of virus, virus was
- inoculated into TCM without the addition of lysis reagents (as described in materials and
- 171 methods) and assayed as described. This highlighted there was approximately a 1-Log₁₀ drop
- in titre, providing a mean viral titre of 2.4×10^5 TCID₅₀/ml (Figure 1A, B and C).

173 Chemical inactivation of SARS-CoV-2

- 174 When virus was added to the Qiagen lysis buffer there was a statistically significant 5-Log₁₀
- drop in virus titre from 4.4×10^5 TCID₅₀/ml to below the lower limit of quantification (LLoQ)
- 176 (p=0.002) Complete inactivation was not achieved however, as virus was detected below
- the LLoQ but this was not quantifiable. However by extrapolation it was estimated that the
- titre was 6.2 TCID₅₀/ml (Figure 1A).

Dstl ©Crown Copyright, 2021

179	Similar results were observed when virus was inactivated using the MagMax protocol 2;
180	complete inactivation was not achieved as virus was detected below the LLoQ, and was not
181	quantifiable. The starting titre of virus for these experiments, following washing steps was
182	7.7x10 ⁴ TCID ₅₀ /ml, demonstrating a 4-Log ₁₀ drop in viral titre following inactivation
183	(p<0.0001) (Figure 1C).
184	Virus inactivation following the MagMax protocol 1 resulted in no detectable virus by $TCID_{50}$
185	assay. The starting concentration of virus, following washing steps was calculated to be
186	2×10^5 TCID ₅₀ /ml, thus demonstrating a 5-Log ₁₀ drop in viral titre with this particular protocol

188 Heat inactivation of SARS-CoV-2

(p<0.0001) (Figure 1B).

189 Heat alone or in combination with lysis buffer was also investigated as a means to inactivate

190 SARS-CoV-2. For each experiment, virus in TCM was heated at 68 °C for 15 minutes and

191 centrifuged to maintain consistency with samples in lysis buffer. Although not statistically

significant, at least a 3-Log₁₀ drop in viral titre was observed following heat treatment alone,

193 with an average titre of remaining viable virus across all experiments of 3.2×10^2 TCID₅₀/ml

194 (Figure 1).

187

195 When the virus was added to either of the three lysis buffers and subsequently heated, no

viable virus was detected following TCID₅₀ assay and an average drop in viral titre of 5-Log₁₀

across all experiments (p<0.0001) (Figure 1A, B and C).

198 Confirmation of inactivation by viral propagation

199 To confirm findings by TCID₅₀ assay viral samples were propagated in cell culture flasks over

a total of three passages to identify potential viral break-through. Table 2 shows the results

201 of the presence of CPE after the first passage. The limit of detection for viral propagation

Dstl ©Crown Copyright, 2021

was determined following propagation of serially diluted virus stocks (Table 2 row 1 to 5)

and on average the limit of detection was $1.3 \text{ TCID}_{50}/\text{ml}$.

204 When virus was added to TCM, CPE was present in all flasks as expected (Table 2 row 6,

205 positive control). No cell toxicity was observed from negative control samples were TCM-

206 only was added to lysis buffer and washed as described previously (Table 2 row 10, negative

207 control).

208 When SARS-CoV-2 was inactivated following the Qiagen protocol, 3 out of the 9 flasks were

scored as positive for CPE. Of the flasks where no CPE was observed, no break-through of

virus was seen as a result of serial passage (Table 2 row 7). This data aligns with the TCID₅₀

assays, where Qiagen lysis buffer alone did not completely inactivate the virus. Following

both MagMax protocols, 0 out of the 9 flasks were scored positively for CPE (Table 2 row 7).

213 For the MagMax protocol 1 this confirms the TCID₅₀ results, where no viable virus was also

observed. For the MagMax protocol 2, virus was detected but not quantifiable in the TCID₅₀

assay (below the LLoQ), however subsequent serial passage did not provide evidence of

viability, as all flasks were negative for CPE.

217 When SARS-CoV-2 was added to TCM and heated for 15 minutes at 68 °C, CPE was observed

in all but one flask (Table 2 row 8) confirming the TCID₅₀ results that the heating protocol

219 described here does not completely inactivate the virus.

For all inactivation protocols, when SARS-CoV-2 samples were treated in a two-step manner,
(lysis buffer and heat), no viable virus was detected in either the quantitative or qualitative
assays (Figure 1 and Table 2 row 9). This data provides strong evidence that the lysis buffers
described here in combination with the heat protocol can completely inactivate up to 5Log₁₀ TCID₅₀/ml SARS-CoV-2.

Dstl ©Crown Copyright, 2021

225 DISCUSSION

226	Real-time PCR is the gold standard clinical diagnostic method for the detection of SARS-CoV-
227	2 in patients displaying symptoms of COVID-19. There has been a rapid development in RNA
228	extraction and RT-PCR diagnostic methods in order to help prevent further spread of
229	infection through communities. It is crucial that testing is accurate and efficient, both of
230	which must not compromise safety of those processing the samples (22). Laboratory
231	acquired infections due to incomplete inactivation or incorrect handling of samples have
232	been reported for SARS-CoV (23, 24) as well as many other infectious agents (25). To date,
233	there are only a handful of publications reporting the use of nucleic acid isolation reagents,
234	detergents and heat to inactivate SARS-CoV-2 (18, 26-28).
235	In our study we investigated the SARS-CoV-2 inactivation efficacy of viral lysis buffers from
236	three commercially available kits developed to allow RNA extraction on high-throughput (96
237	well) automated platforms. For each kit the initial lysis buffer mix, developed from
238	manufacturer's instructions, included a guanidine based lysis buffer with additional viral
239	inactivating components such as a solvent and / or a detergent. Each mix was added to 200
240	μl of a representative clinical sample (SARS-CoV-2 in viral transport medium). Furthermore
241	we tested all three protocols with and without the addition of a thermal inactivation step at
242	68 °C for 15 minutes.
243	We started with the highest possible titre of SARS-CoV-2 that we had available and first
244	determined the titre of virus following wash steps, which were required to remove any
245	chemical compounds that would be cytotoxic to the cell based assays. We chose to remove

the reagents from the samples by centrifugation and in doing so, demonstrated a loss of

247 approximately 1-Log₁₀ of virus. Other researchers have used centrifugation columns or

Dstl ©Crown Copyright, 2021

248	filters but again report a similar loss in viral titre (14) or residual toxicity leading to reduced
249	sensitivity of the read-out of the assays (28). The wash steps employed here eliminated all
250	residual toxicity, allowing the sensitivity of our assay read-outs to be unaffected.
251	In our study, the chemicals used to assess the inactivation of SARS-CoV-2 were
252	combinations of GITC, detergent and solvent. The Qiagen protocol (using reagents from the
253	QIAamp 96 Virus QIAcube HT Kit) and the MagMax Protocol 2 (using reagents from the
254	MagMax viral/pathogen nucleic acid isolation kit) both included GITC and a detergent, (SDS
255	or zwittergent, respectively) (Table 1). Both of these inactivation buffers significantly
256	reduced viral titres of SARS-CoV-2 by 4-Log $_{10}$ however complete inactivation of viable virus
257	was not achieved as detectable, but not quantifiable, virus was detected in the $TCID_{50}$ assay
258	(below LLoQ). Subsequent serial passage of viral samples following inactivation using the
259	Qiagen protocol demonstrated virus break-through confirming the results observed in the
260	TCID ₅₀ assay. It was also anticipated that serial passage of virus inactivated following
261	MagMax protocol 2 would have amplified and enabled virus break-through too, but this was
262	not observed. The stated GITC composition of Qiagen Buffer ACL (30-50%) is lower than
263	that of the MagMax Lysis buffer (55-80%) and thus the higher GITC composition in the
264	MagMax buffer may have exerted a greater efficacy of viral inactivation, although we could
265	not demonstrate complete inactivation. As described previously GITC based chemicals
266	alone have been reported to inactivate some viruses (9, 10) but as observed here and by
267	others this is not always the case (11, 12, 16). Studies by Pastorino et al (27), have assessed
268	the inactivation of SARS-CoV-2 using the detergent containing Buffer ATL and in contrast to
269	our findings reported greater than a 6-Log $_{10}$ drop in virus titre. The SDS composition of
270	Buffer ATL used by Pastorino <i>et al</i> (2020) was $1 - 10\%$, however, the SDS composition of ATL
271	buffer in our study, was 1 - <3% SDS (Table 1). Pastorino et al (2020) also used a 1:1 ratio of

Dstl ©Crown Copyright, 2021

272	ATL buffer to sample, where as in our protocol we used a reagent to sample ratio of 0.5 : 1.
273	Thus the work of Pastorino et al (2020) infers a higher concentration of this detergent and
274	larger reagent to sample ratio would be critical for the inactivation process. This also
275	underlines the potential for different concentrations of components in products that are
276	ostensibly the same. Patterson <i>et al</i> (2020) and Welch <i>et al</i> (14, 28) screened a number of
277	detergents for their inactivation efficacy against SARS-CoV-2. Patterson et al (2020)
278	reported that 0.5% SDS inactivated SARS-CoV-2, but used a low starting titre of 10 ² PFU (14),
279	whereas Welch <i>et al</i> (2020) also reported a drop in virus titre of 6.5 Log_{10} TCID ₅₀ /ml but
280	viable virus was still observed (28).
281	In our study, the only protocol that inactivated virus without an additional heat step was
282	MagMax Protocol 1 (using reagents from the MagMax Pathogen RNA/DNA kit), where no
283	CPE was observed from either TCID $_{50}$ assay or following three rounds of serial passage in
284	tissue culture flasks. The MagMax Protocol 1 included the MagMax lysis binding buffer
285	which contained GITC and the detergent Zwittergent. With the addition of 2-propanol
286	within the lysis buffer mix there were, therefore, three components likely to exert a
287	disruptive effect on the SARS-CoV-2 viral envelope. The reagent to sample ratio of 3.8 : 1
288	was also higher, with more than double the volume of lysis buffer mix added to each
289	sample, compared to the other two methods assessed (Table 1).
290	Our results suggest that both a high reagent to sample ratio and the incorporation of a
291	solvent improved the inactivation efficacy of a chemical only method. The SARS-CoV-2
292	inactivation efficacy of the GITC-based Buffer AVL (Qiagen) in combination with ethanol has
293	been assessed in two studies. Complete SARS-CoV-2 inactivation was reported by Welch et
294	al (2020) (28) in contrast to incomplete inactivation by Pastorino et al (2020) (27). This

Dstl ©Crown Copyright, 2021

295	contradiction in findings could be due to the ratios of reagent, solvent and sample used.
296	Both studies used 4 volumes of AVL to 1 volume of sample; however volumes of ethanol
297	used in combination with Buffer AVL may explain the varying results. Welch et al (2020)
298	used 4 volumes of ethanol in combination with AVL and sample, whereas Pastorino et al
299	(2020) only added 1 volume of ethanol to the AVL-sample combination. In our studies using
300	the MagMax Protocol 1 the ratio of lysis buffer and isopropanol were considerably less with
301	1.8 volumes of lysis buffer and 1.5 volumes of solvent, but the addition of the detergent
302	Zwittergent (within the MagMax Lysis Buffer) may have enhanced the inactivation. The
303	addition of the enzyme Proteinase K in both the Qiagen method and MagMax protocol 2 did
304	not appear to have enhanced inactivation efficacy.
305	We also investigated the efficacy of thermal inactivation, by heating the sample to, and then
306	maintaining at, 68 °C for 15 minutes. Heat inactivation alone reduced the viral titre by 3-
307	Log_{10} , although this was not statistically significant compared to the controls, and was not as
308	effective as the use of lysis buffers alone. Burton et al 2021 (26) report similar findings with
309	incomplete inactivation of SARS-CoV-2 at 56 and 60 °C for up to 60 minutes. In contrast,
310	some studies have reported the successful use of heat for complete inactivation of SARS-
311	CoV and SARS-CoV-2 (17, 18). Kim et al 2020 (18) demonstrated the complete inactivation
312	of SARS-CoV-2 in clinical samples following incubation at 65 °C for 30 minutes, although this
313	work was based on quantitativeTCID ₅₀ assays alone. Furthermore, Darnell <i>et al</i> (17)
314	reported complete inactivation of SARS-CoV after heating at 65 °C for 60 minutes, the
315	longer time was required to ensure any viral aggregates were fully exposed and inactivated
316	by the heat treatment.

Dstl ©Crown Copyright, 2021

317	The use of heat to inactivate virus has been reported to reduce viral RNA stability (29, 30)
318	and depending on the target gene used for RT-PCR, incubation at 65 °C for 30 minutes can
319	significantly reduce the target copy numbers leading to false negative results of clinical
320	samples (18, 30). The DCL has an accredited SARS-CoV-2 diagnostic workflow (31) using the
321	Qiagen and Kingfisher (using MagMax protocol 1) extraction platforms each with an
322	additional heat inactivation step. Multiple External Quality Assessment panels and
323	reference standards have been tested during DCL set-up and operation. The E-Gene PCR
324	assay (32) is used in this laboratory and in our hands the heat inactivation regime we
325	employ does not appear to adversely affect PCR results.
326	In determining the practical relevance of our work the viral loads in COVID19 samples likely
327	to be encountered in a high-throughput diagnostic laboratory should be considered.
328	Currently there is little information on the infectious viral load present on a clinical
329	nasal/throat swab. Most of the data report Ct values following RT-PCR (33) but one study
330	has estimated that there is a median titre of 10^3 TCID ₅₀ /ml collected from 90
331	nasopharyngeal or endotracheal clinical samples (34). During DCL validation studies a
332	precisely defined reference standard dilution series of entire SARS-CoV-2 virions (SARS-CoV-
333	2 Analytical Q Panel; Qnostics Ltd, UK) was tested (data not shown). Within this series the
334	highest concentration of material was 6 Log_{10} digital copies (dC)/ml and following RNA
335	extraction using the Qiagen method described in this paper mean E-gene (32) quantification
336	cycle (C_q) values of 22.65 were returned from this concentration. During DCL operation we
337	have commonly tested positive samples with E-gene PCR C_q values in the low teens, with
338	occasional samples returning C_q values <13. Although care must be taken in comparing and
339	extrapolating PCR (C _q), TCID ₅₀ /ml and dC/ml values this is consistent with a study reporting

Dstl ©Crown Copyright, 2021

340	similarly low C_q values from COVID patients early in the infection cycle (35) and indicates
341	that some swab samples can contain very high viral loads.

342	We have demonstrated the SARS-CoV-2 inactivation efficacy of the reagents found in lysis
343	buffers of three commercially available kits used on high-throughput extraction platforms.
344	Only when combined with a heat step did all methods show a complete inactivation of
345	SARS-CoV-2 by both TCID $_{50}$ assay and by sequential passage in tissue culture. Therefore in
346	the DCL samples are sequentially mixed with lysis buffer and then followed with heat
347	treatment. This approach also extends the contact time of lysis buffer to sample which
348	should further enhance the inactivation efficacy of the buffers and mitigates the fact that in
349	this inactivation study we were unable to test samples with a starting concentration greater
350	than 5.9x10 ⁵ TCID ₅₀ /ml (in view of the likely higher concentrations seen in samples
351	received). In our studies, we also did not include samples that contain potential interfering
352	substances or true samples, however Pastorino et al (2020) (27) did include interfering
353	substances and a range of clinical samples and no obvious impact of these sample types
354	were reported on the efficacy of the viral inactivation process.
355	Due to the contrasting literature for inactivation of SARS-CoV-2 (and that of viruses
356	generally) a case-by-case assessment of different inactivation protocols is essential to
357	prevent laboratory acquired infections. To ensure the highest safety standards (and also
358	taking into account the high viral loads of samples tested), in the operational DCL we
359	employ methods that utilise the inactivation efficacies of the chemical components of lysis
360	buffers found in commercial kits with that of the heat. As a result, the high-throughput RNA
361	extraction platforms are performed on the open bench rather than within a Class 1
362	microbiological safety cabinet. All laboratories must make the appropriate assessments

Dstl ©Crown Copyright, 2021

363	regard	ling methods applicable to their unique set of circumstances. The results presented in								
364	this study may help laboratories undertake such assessments, especially if they do not have									
365	access	access to high containment facilities to complete in-house inactivation studies.								
366	ACKN	OWLEDGMENTS								
367	The se	et up and validation of the Defence COVID Laboratory (of which this study was a part)								
368	was fu	inded by the UK Department of Health and Social Care (DHSC). The authors thank								
369	repres	sentatives of Qiagen and ThermoFisher for help in defining suitable RNA extraction								
370	proto	cols.								
371	REFER	ENCES								
372	1.	Gorbalenya AE, Baker SC, Baric RS, de Groot RJ, Drosten C, Gulyaeva AA, Haagmans								
373		BL, Lauber C, Leontovich AM, Neuman BW, Penzar D, Perlman S, Poon LLM,								
374		Samborskiy DV, Sidorov IA, Sola I, Ziebuhr J, Grp CS. 2020. The species Severe acute								
375		respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it								
376		SARS-CoV-2. Nature Microbiology 5:536-544.								
377	2.	Wu F, Zhao S, Yu B, Chen YM, Wang W, Song ZG, Hu Y, Tao ZW, Tian JH, Pei YY, Yuan								
378		ML, Zhang YL, Dai FH, Liu Y, Wang QM, Zheng JJ, Xu L, Holmes EC, Zhang YZ. 2020. A								
379		new coronavirus associated with human respiratory disease in China. Nature								
380		579:265-269.								
381	3.	Chen J. 2020. Pathogenicity and transmissibility of 2019-nCoV-A quick overview and								
382		comparison with other emerging viruses. Microbes Infect 22:69-71.								
383	4.	Patel R, Babady E, Theel ES, Storch GA, Pinsky BA, St George K, Smith TC, Bertuzzi S.								
384		2020. Report from the American Society for Microbiology COVID-19 International								

Dstl ©Crown Copyright, 2021

11.

	385	Summit, 23 Marc	n 2020: Value of	f Diagnostic	Testing for S	SARS-CoV-2/COVI	D-19. mBio
--	-----	-----------------	------------------	--------------	---------------	-----------------	------------

- 387 5. Shental N, Levy S, Wuvshet V, Skorniakov S, Shalem B, Ottolenghi A, Greenshpan Y,
- 388 Steinberg R, Edri A, Gillis R, Goldhirsh M, Moscovici K, Sachren S, Friedman LM,
- 389 Nesher L, Shemer-Avni Y, Porgador A, Hertz T. 2020. Efficient high-throughput SARS-
- 390 CoV-2 testing to detect asymptomatic carriers. Sci Adv 6.
- 391 6. World Health Organization. 2020. Laboratory biosafety guidance related to
- 392 coronavirus disease (COVID-19). WHO/WPE/GIH/20203
- 393 https://www.who.int/publications/i/item/laboratory-biosafety-guidance-related-to-
- 394 <u>coronavirus-disease-(covid-19)</u>.
- 395 7. Public Health England. 2020. COVID-19: guidance for sampling and for diagnostic
- 396 laboratories. <u>https://wwwgovuk/government/publications/wuhan-novel-</u>
- 397 <u>coronavirus-guidance-for-clinical-diagnostic-laboratories</u>.
- 398 8. Tahamtan A, Ardebili A. 2020. Real-time RT-PCR in COVID-19 detection: issues
- affecting the results. Expert Rev Mol Diagn 20:453-454.
- 400 9. Blow JA, Dohm DJ, Negley DL, Mores CN. 2004. Virus inactivation by nucleic acid
- 401 extraction reagents. J Virol Methods 119:195-8.
- 402 10. Ngo KA, Jones SA, Church TM, Fuschino ME, George KS, Lamson DM, Maffei J,
- 403 Kramer LD, Ciota AT. 2017. Unreliable Inactivation of Viruses by Commonly Used
- 404 Lysis Buffers. Applied Biosafety 22:56-59.
- 405 11. Smither SJ, Weller SA, Phelps A, Eastaugh L, Ngugi S, O'Brien LM, Steward J, Lonsdale
- 406 SG, Lever MS. 2015. Buffer AVL Alone Does Not Inactivate Ebola Virus in a
- 407 Representative Clinical Sample Type. J Clin Microbiol 53:3148-54.

Dstl ©Crown Copyright, 2021

- 408 12. Kumar M, Mazur S, Ork BL, Postnikova E, Hensley LE, Jahrling PB, Johnson R,
- 409 Holbrook MR. 2015. Inactivation and safety testing of Middle East Respiratory
- 410 Syndrome Coronavirus. J Virol Methods 223:13-8.
- 411 13. Mayo DR, Beckwith WH. 2002. Inactivation of West Nile virus during serologic testing
- and transport. Journal of Clinical Microbiology 40:3044-3046.
- 413 14. Patterson EI, Prince T, Anderson ER, Casas-Sanchez A, Smith SL, Cansado-Utrilla C,
- 414 Solomon T, Griffiths MJ, Acosta-Serrano A, Turtle L, Hughes GL. 2020. Methods of
- 415 Inactivation of SARS-CoV-2 for Downstream Biological Assays. J Infect Dis 222:1462-
- 416 1467.
- 417 15. van Kampen JJA, Tintu A, Russcher H, Fraaij PLA, Reusken CBEM, Rijken M, van
- 418 Hellemond JJ, van Genderen PJJ, Koelewijn R, de Jong MD, Haddock E, Fischer RJ,
- 419 Munster VJ, Koopmans MPG. 2017. Ebola Virus Inactivation by Detergents Is

420 Annulled in Serum. Journal of Infectious Diseases 216:859-866.

421 16. Burton JE, Easterbrook L, Pitman J, Anderson D, Roddy S, Bailey D, Vipond R, Bruce

422 CB, Roberts AD. 2017. The effect of a non-denaturing detergent and a guanidinium-

- 423 based inactivation agent on the viability of Ebola virus in mock clinical serum
- 424 samples. J Virol Methods 250:34-40.
- 425 17. Darnell ME, Subbarao K, Feinstone SM, Taylor DR. 2004. Inactivation of the
- 426 coronavirus that induces severe acute respiratory syndrome, SARS-CoV. J Virol
- 427 Methods 121:85-91.
- 428 18. Kim YI, Casel MAB, Kim SM, Kim SG, Park SJ, Kim EH, Jeong HW, Poo H, Choi YK. 2020.
- 429 Development of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
- 430 thermal inactivation method with preservation of diagnostic sensitivity. J Microbiol
- 431 58:886-891.

Dstl ©Crown Copyright, 2021

432	19.	Leclercq I, Batejat C, Burguiere AM, Manuguerra JC. 2014. Heat inactivation of the
433		Middle East respiratory syndrome coronavirus. Influenza and Other Respiratory
434		Viruses 8:585-586.
435	20.	Piercy TJ, Smither SJ, Steward JA, Eastaugh L, Lever MS. 2010. The survival of
436		filoviruses in liquids, on solid substrates and in a dynamic aerosol. Journal of Applied
437		Microbiology 109:1531-1539.
438	21.	Reed LJ, Muench H. 1938. A Simple Method of Estimating Fifty per cent Endpoints.
439		American Journal of Epidemiology 27:493-497.
440	22.	Dhamad AE, Abdal Rhida MA. 2020. COVID-19: molecular and serological detection
441		methods. PeerJ 8:e10180.
442	23.	Lim PL, Kurup A, Gopalakrishna G, Chan KP, Wong CW, Ng LC, Se-Thoe SY, Oon L, Bai
443		X, Stanton LW, Ruan Y, Miller LD, Vega VB, James L, Ooi PL, Kai CS, Olsen SJ, Ang B,
444		Leo YS. 2004. Laboratory-acquired severe acute respiratory syndrome. N Engl J Med
445		350:1740-5.
446	24.	Taylor JW, D.; Bernard,K. A.; Masters, P. S.; Trimarchi, C. V. 2005. SARS Coronaviruses
447		and Highly Pathogenic Influenza Viruses: Safety and Occupational Health for
448		Laboratory Workers. Emerg Infect Dis 11:e3.
449	25.	Singh K. 2009. Laboratory-acquired infections. Clin Infect Dis 49:142-7.
450	26.	Burton J, Love H, Richards K, Burton C, Summers S, Pitman J, Easterbrook L, Davies K,
451		Spencer P, Killip M, Cane P, Bruce C, Roberts ADG. 2021. The effect of heat-
452		treatment on SARS-CoV-2 viability and detection. J Virol Methods 290:114087.
453	27.	Pastorino B, Touret F, Gilles M, Luciani L, de Lamballerie X, Charrel RN. 2020.
454		Evaluation of Chemical Protocols for Inactivating SARS-CoV-2 Infectious Samples.
455		Viruses-Basel 12.

Dstl ©Crown Copyright, 2021

456	28.	Welch SR, Davies KA, Buczkowski H, Hettiarachchi N, Green N, Arnold U, Jones M,
457		Hannah MJ, Evans R, Burton C, Burton JE, Guiver M, Cane PA, Woodford N, Bruce CB,
458		Roberts ADG, Killip MJ. 2020. Analysis of Inactivation of SARS-CoV-2 by Specimen
459		Transport Media, Nucleic Acid Extraction Reagents, Detergents, and Fixatives. J Clin
460		Microbiol 58.
461	29.	Pan Y, Long L, Zhang D, Yuan T, Cui S, Yang P, Wang Q, Ren S. 2020. Potential False-
462		Negative Nucleic Acid Testing Results for Severe Acute Respiratory Syndrome
463		Coronavirus 2 from Thermal Inactivation of Samples with Low Viral Loads. Clin Chem
464		66:794-801.
465	30.	Zou J, Zhi S, Chen M, Su X, Kang L, Li C, Su X, Zhang S, Ge S, Li W. 2020. Heat
466		inactivation decreases the qualitative real-time RT-PCR detection rates of clinical
467		samples with high cycle threshold values in COVID-19. Diagn Microbiol Infect Dis
468		98:115109.
469	31.	UKAS. 2020. Schedule of Accreditation issued by United Kingdom Accreditation
470		Service. <u>https://wwwukascom/wp-</u>
471		content/uploads/schedule_uploads/00002/1886Testing-Singlepdf.
472	32.	Corman VM, Landt O, Kaiser M, Molenkamp R, Meijer A, Chu DKW, Bleicker T,
473		Brunink S, Schneider J, Schmidt ML, Mulders DGJC, Haagmans BL, van der Veer B,
474		van den Brink S, Wijsman L, Goderski G, Romette JL, Ellis J, Zambon M, Peiris M,
475		Goossens H, Reusken C, Koopmans MPG, Drosten C. 2020. Detection of 2019 novel
476		coronavirus (2019-nCoV) by real-time RT-PCR. Eurosurveillance 25:23-30.
477	33.	Pan Y, Zhang D, Yang P, Poon LLM, Wang Q. 2020. Viral load of SARS-CoV-2 in clinical
478		samples. Lancet Infect Dis 20:411-412.

Dstl ©Crown Copyright, 2021

479	34.	Bullard J. Dust K. F	unk D. Strong JI	E. Alexander D.	Garnett L	. Boodman C.	Bello A.
., .	0.11			_, ,	ourrett E	, DOOMa O,	00107.9

- 480 Hedley A, Schiffman Z, Doan K, Bastien N, Li Y, Van Caeseele PG, Poliquin G. 2020.
- 481 Predicting infectious SARS-CoV-2 from diagnostic samples. Clin Infect Dis
- 482 doi:10.1093/cid/ciaa638.
- 483 35. Jang S, Rhee JY, Wi YM, Jung BK. 2021. Viral kinetics of SARS-CoV-2 over the
- 484 preclinical, clinical, and postclinical period. Int J Infect Dis 102:561-565.

485 **TABLE 1.** Protocols tested for assessing inactivation using lysis buffers.

Manufacturer,	Reagents	Active virucidal	Reagent :	
RNA extraction kit,	(volume / sample)	components*	Sample ratio	
Platform.				
Qiagen,	ACL buffer (190 μl)	GITC 30 - <50%	1.6 : 1	
QIAamp 96 Virus QIAcube				
HT Kit,	ATL buffer (100	1 - <3% SDS		
Qiagen Qiacube HT.	μl)			
	Proteinase K (20			
(Referred to here as Qiagen	μl)			
protocol)	Carrier RNA (5 μl)			
	MS2 (10 μl)			
ThermoFisher,	Lysis binding	GITC 55-80%	3.8 : 1	
MagMax Pathogen	buffer (350 μl)	<0.001%		
RNA/DNA kit,		Acrylamide		
Kingfisher Flex.		Zwittergent		

Dstl ©Crown Copyright, 2021

	Isopropanol (300	100% 2-propanol	
(Referred to here as	μl)		
MagMax Protocol 1)	Carrier RNA (2 µl)		
	Water (100 µl)		
	MS2 (10 μl)		
ThermoFisher,	Lysis binding	GITC 55-80%	1.4 : 1
MagMax viral/pathogen	buffer (265 μl)	<0.001%	
nucleic acid isolation kit,		Acrylamide	
Kingfisher Flex.		Zwittergent	
	Proteinase K (5 μl)		
(Referred to here as	†Water (Magnetic		
MagMax Protocol 2)	beads) (10 μl)		
	MS2 (10 μl)		

486 *As identified directly from components, manufacturer information, or inferred from the

487 associated MSDS.

- 488 ⁺Water was used to replace the magnetic beads as the washing steps described below
- 489 would not remove the beads and the beads interfered the read-out of the TCID-₅₀ assay.
- 490 GITC: Guanidinium thiocyanate. SDS: Sodium dodecyl sulphate

491**TABLE 2. Summary of results following cell culture passage and TCID**₅₀ assay. Passage results shown are after the third serial. TCID₅₀ titres492are mean titre/ml and standard deviation. * Indicates the TCID₅₀/ml is extrapolated from known starting concentration and calculated based493on number of flasks infected. SARS-2 = SARS-CoV-2. TCM = Tissue culture media. LLoQ = Lower limit of Quantification (< 10 TCID₅₀/ml). SD =

494 Standard deviation.

Inactivation protocol	Qiagen protocol		MagMax protocol 1		MagMax protocol 2	
	Flasks		Flasks		Flasks	
	infacted (TCID ₅₀ /ml	infacted/	TCID ₅₀ /ml	infacted/	TCID ₅₀ /ml
SAMPLE DESCRIPTION	intected/	(SD)	intectedy	(SD)	imectedy	(SD)
	total flasks		total flasks		total flasks	
	7-2 Starting titre 3/3	1.7 x 10 ⁷	3/3	5.9 x 10 ⁶	3/3	3.0 x 10 ⁶
1. SARS-CoV-2 Starting titre		(1.2 x 10 ⁷)		(3.6 x 10 ⁶)		(3.8 x 10 ⁵)
2. SARS-CoV-2 10 ⁻⁴ dilution	3/3	1.7 x 10 ³ *	3/3	5.9 x 10 ² *	3/3	$3.0 \times 10^2 *$
3. SARS-CoV-2 10 ⁻⁵ dilution	3/3	1.7 x 10 ² *	3/3	59.4 *	2/3	20.0 *
4. SARS-CoV-2 10 ⁻⁶ dilution	3/3	17 *	1/3	2.0 *	1/3	0.7 *
5. SARS-CoV-2 10 ⁻⁷ dilution	2/3	1.1 *	0/3	0 *	0/3	0 *

6	SARS-CoV-2 + TCM	9/9	4.4x10 ⁵	2.0x10 ⁵	2.0x10 ⁵	9/9	7.7x10 ⁴
0.		(3	(3.8x10 ⁵)	5,5	(2.3x10 ⁵)	5,5	(4.8x10 ⁴)
7.	SARS-CoV-2 + lysis buffer	3/9	<lloq< td=""><td>0/9</td><td>0</td><td>0/9</td><td><lloq< td=""></lloq<></td></lloq<>	0/9	0	0/9	<lloq< td=""></lloq<>
8	SAPS CoV(2 + boot)	0/0	8.9x10 ²	9/9	41.4	8/9	17.4
0.		575	(8.5x10 ²)	575	(30.0)	0,0	(12.1)
9.	SARS-CoV-2 + lysis buffer +	0/9	0	0/9	0	0/9	0
	heat	0,0	Ū	0,0	Ū	0,0	Ū
10	. TCM + Lysis buffer	0/9	0	0/0	0	0/9	0

FIGURE 1. Titre of SARS-CoV-2 by TCID₅₀ assay following inactivation protocols. A. Qiagen protocol, B. MagMax protocol 1, B. MagMax
 protocol 2. Mean + Standard Deviation collated from triplicate results from three separate occasions (n=9). Dashed line = Lower limit of
 quantification (LLoQ < 10 TCID₅₀/ml); Tissue culture media (TCM). Kruskal-Wallis ANOVA with Dunn's multiple comparison post hoc, where * p
 <0.05, **p<0.01, ***p<0.001, ****p<0.0001; statistical analysis excludes virus stock and lysis only data.

Dstl ©Crown Copyright, 2021