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Abstract  16 

The maximization of lipid productivity in microalgae is crucial for the biofuel industry, and it can 17 

be achieved by manipulating their metabolism. However, little efforts have been made to apply 18 

metabolic models in a dynamic framework to predict possible outcomes to scenarios observed at 19 

an industrial scale. Here, we present a dynamic framework for the simulation of large-scale 20 

photobioreactors. The framework was generated by merging the genome-scale metabolic model 21 

of Chlorella vulgaris (iCZ843) with reactor-scale parameters, thus yielding a multiscale model. 22 

This multiscale model was employed to predict the sensitivity of growth and composition variation 23 

of C. vulgaris on light and nitrogen levels. Simulations of lipid accumulation quantified the 24 

tradeoff between growth and lipid biosynthesis under nitrogen limitation. Moreover, our modeling 25 

approach quantitatively predicted the dependence of microalgal metabolism on light intensity and 26 

circadian oscillations. Finally, we use the model to design a reactor irradiance profile that 27 

maximized lipid accumulation, thus achieving a lipid productivity increase of 46% at a constant 28 

intensity of 966 μE m−2 s−1. Our modeling framework elucidated how metabolism and external 29 

factors can be combined to predict optimized parameters for industrial applications.  30 

Key words – Photobioreactor, reactor design and optimization, microalgae, Chlorella vulgaris, 31 

genome-scale metabolic modeling, kinetic modeling, multiscale modeling. 32 

Background 33 

Microalgae are unicellular photosynthetic organisms that fix carbon dioxide (CO2) in presence of 34 

light to obtain energy and synthesize necessary metabolic precursors for growth. Carbon fixation 35 

of microalgae can be up to ten times higher than that of plants [1,2] and accounts for about 40% 36 
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of the Earth’s CO2 fixation [3]. Their powerful photosynthetic activity caused microalgae to be a 37 

focus of research in ecology, systems biology, and bioengineering. 38 

Oleaginous microalgae are able to store lipids at levels higher than 20% w/w, which is the 39 

minimum threshold for profitable production of biofuels [4,5]. Chlorella vulgaris has drawn 40 

widespread attention, as it can intracellularly concentrate up to 50% w/w of lipids in form of 41 

triacylglycerols (TAGs) [6]. Since TAGs serve as main precursors for biofuel production, C. 42 

vulgaris is a promising lipid producer with potential application at industrial scale. However, 43 

studies about lipid accumulation have shown that stress conditions trigger lipids accumulation at 44 

the expense of decreased growth rate [6,7]. At the industrial scale, reactor lipid productivities are 45 

severely limited by this tradeoff, rendering the study of the interwoven connection among 46 

metabolic and physical drivers of lipid biosynthesis as a field of great significance and research 47 

focus. Different efforts have been made towards manipulating microalgae metabolism, mainly by 48 

varying light, nitrogen, and growth conditions [8]. Nonetheless, the maximization of lipid 49 

productivity in microalgae has remained a challenge for years, due to experimentation being 50 

extremely time- and resource-intensive. Therefore, computational tools appear as a promising 51 

alternative, since they can assess optimal growth conditions time- and cost-effectively. 52 

To date, all but one study on dynamic modeling of the growth of C. vulgaris have been based on 53 

kinetic modeling [2,9–17]. All kinetic models are based on a black-box framework. That is, their 54 

primary focus is fitting experimental data regardless of the structure of underlying phenomena. 55 

These models have been crucial for the development of the chemical and biochemical industry 56 

[18]; however, a more robust approach is necessary to predict not only global reactor dynamics, 57 

but also intracellular metabolic capabilities, namely lipid biosynthesis.  58 
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Microalgal metabolism has been previously studied using genome-scale metabolic (GSM) models, 59 

thus elucidating organelle functionality and pathway coupling, as well as the interactions of 60 

photosynthetic pathways with the rest of the network under different light wavelengths [19,20]. 61 

Some studies on microalgae metabolic modeling have incorporated photon uptake [21,22], 62 

enabling process optimization of light intensity and culture density at the laboratory scale [21]. In 63 

recent studies, experimental time-course biomass compositions were incorporated in the GSM 64 

model to predict the metabolic response to nitrogen depletion [23] and to optimize nitrate supply 65 

in C. vulgaris [24]. Notably, GSM modeling allowed to assess metabolic crosstalk in a C.vulgaris 66 

and Sacharomyces cerevisiae synthetic syntrophic community [25]. Though, there exists no 67 

mathematical framework that combines these metabolic models with reactor-scale dynamics for 68 

the prediction of growth of microalgae, such as C. vulgaris, at a scale relevant to industrial 69 

applications.  70 

Merging mathematical representations of phenomena at the genome and reactor scale would result 71 

in a multiscale model. Separately, each mathematical representation is successful in modeling the 72 

phenomenon they were based upon but cannot individually account for entire reactor dynamics. 73 

For example, a genome-scale metabolic (GSM) network is a powerful tool for understanding 74 

species-specific metabolism. However, without experimental input, a GSM model cannot predict 75 

time-course metabolic changes, as well as reactor-scale growth.  76 

Here, we generated a multiscale model that simulates time-course growth and biomass composition 77 

variations using an available GSM model of C. vulgaris (iCZ843). The model includes light 78 

attenuation and uptake, photoinhibition, nitrogen and carbon uptake kinetics, and carbon allocation 79 

(carbohydrate and lipid accumulation and consumption). We then employed previously reported 80 

experimental growth data under different nitrogen and light conditions to validate our predictions. 81 
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For the former, we employed data by Adesanya et al. [13] as reference, whereas for the latter we 82 

used data by Kim et al. [14]. As different strains can have different metabolic capabilities, we 83 

performed data regression and validation individually for both cases. Finally, we present the 84 

model’s potential for its use in reactor design and optimization by determining light profiles for 85 

maximizing lipid productivity in a photobioreactor. 86 

Results 87 

Prediction of growth trends at two different initial nitrogen concentrations 88 

So far, dynamic modeling of the growth of C. vulgaris has been almost entirely addressed using 89 

kinetic modeling (Table 1). However, this type of modeling lacks the ability to include the effect 90 

of reactor-scale dynamics on microalgal metabolism. Moreover, no model has accounted for the 91 

combined effect of nutrient uptake, circadian oscillations, and light attenuation on the dynamic 92 

growth and biomass composition of microalgae. 93 

Table 1. Existing models for the growth of Chlorella vulgaris. Early models focused on dynamic 94 

modeling through black-box methods.  95 

Study (Year) 

Model characteristics* 

Type D CU NU LD LU CO LA SA 

Iehana (1990) [9] K ✓        

Wijanarko et al. (2004) [10] K ✓ ✓       

Filali et al. (2011) [11] K ✓ ✓   ✓    

Concas et al. (2013) [12] K ✓ ✓  ✓ ✓ ✓   
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Adesanya et al. (2014) [13] K ✓ ✓ ✓ ✓ ✓  ✓  

Kim et al. (2015) [14] K ✓  
 ✓ ✓    

Sakarika et al. (2016) [15] K ✓ ✓     ✓  

Adamczyk et al. (2016) [2] K ✓ ✓       

Chan et al. (2016) [16] K ✓ ✓   ✓    

Zuñiga et al. (2016) [20] GS  ✓ ✓  ✓    

Zuñiga et al. (2017) [6] GS ✓ ✓ ✓  ✓    

Mansouri et al. (2017) [17] K ✓  
  

    

Chien-Ting Li (2019) GS ✓ ✓ ✓ ✓   ✓  

Tibocha-Bonilla et al. (2020, this study) MS ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

Since these methods could not account for the underlying biochemistry of the cell, high complexity models 96 

were not possible. With the generation of a GSM model for C. vulgaris, it was possible to create a multiscale 97 

model that accounts for both reactor dynamics and their impact in the phenotype of the cell. 98 

* Model characteristics are abbreviated as follows: dynamic (D), carbon uptake (CU), nitrogen uptake (NU), 99 

light distribution (LD), light uptake (LU), circadian oscillations (CO), lipid accumulation (LA) and starch 100 

accumulation (SA). Models were classified into three types: kinetic (K), genome-scale (GS) and multiscale 101 

(MS). 102 

We generate a multiscale model capable of predicting this interaction by merging different 103 

mathematical representations (or modules, see Fig 1A) of biological and reactor dynamics at 104 

different scales. Nitrogen availability has been identified as one of the most important drivers of 105 

microalgal growth, as it has a profound impact on the cellular phenotype of phototrophs [6]. To 106 

validate our model’s sensitivity to varying nitrogen concentration, we contrasted predictions of 107 
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our model to experimental data reported in a kinetic study by Adesanya et al., in which C. vulgaris 108 

was cultivated under two different initial nitrogen concentrations (first scenario: 0.021 g L-1, 109 

second scenario: 0.124 g L-1) and macromolecular cellular contents were recorded [13] (markers 110 

in Fig 1B-E). 111 

 112 
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Fig 1. Simulated and reported data of Chlorella vulgaris at two different initial nitrogen 113 

concentrations. 114 

(A) Schematic representation of the numerical algorithm employed in this work for a single timestep and 115 

light interval (see Methods). (B) and (D) correspond to the experiment with an initial nitrogen concentration 116 

of 0.021 g L-1, while (C) and (E) were recorded under one of 0.124 g L-1. All experiments were reported 117 

and simulated under a continuous irradiance of 80 μE m−2 s−1. Continuous lines and markers represent 118 

predicted data by our model and reported data by Adesanya et al. [13], respectively. 119 

We used the first scenario, with an initial nitrogen concentration of 0.021 g L-1 (Fig 1B & D) for 120 

the calculation of strain-specific parameters (shown in Table S1) and simulated a second scenario 121 

(Fig 1C & E) to test for predictive capability. In this scenario, a relatively low initial nitrogen 122 

concentration in the media (half that of standard BBM medium [26]) caused the size of the internal 123 

nitrogen pool to decrease steadily throughout the culture duration (Fig 1D). Since the microalga 124 

was not able to replenish its nitrogen reserves, lipid accumulation was triggered 100 h after 125 

nitrogen was depleted from the medium.  126 

As shown in Fig 1C, under the growth conditions of the second scenario, nitrogen availability was 127 

increased six-fold. Though there were some quantitative differences regarding the starch content 128 

of C. vulgaris, our model was able to capture the overall trends. Our simulations show that a 129 

significant increase in the nitrogen availability allowed the microalga to replenish its nitrogen 130 

reserves for the first 200 h and caused it to deplete nitrogen from the medium 130 h later than the 131 

first scenario (Fig 1E).  132 

The model was able to capture the almost complete inactivation of the lipid metabolism due to this 133 

nitrogen availability. However, despite there being almost no lipid accumulation and high nitrogen 134 

levels, the predicted growth rate was only amplified from an average of 0.0032 to 0.0038 h-1 (19% 135 

increase), similar to an experimentally determined increase of 15%.  136 
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Simulation at different light intensities 137 

We accounted for spatial light distributions, as energy metabolism is sharply hindered for cells 138 

further away from the light source, especially in larger-scale vessels. In addition, we included the 139 

modeling of photoinhibition, since it restricts the maximum amount of light a culture can be 140 

subjected to and the duration of exposure. Although several species have been shown to adapt to 141 

high light conditions in the long term [27,28], photoinhibition still significantly diminishes the 142 

growth capability of phototrophs [29–31], and specifically of C. vulgaris above 2400 μE m−2 s−1 143 

[32].  According to previous reports, electron transfer through the photosystems is controlled by 144 

the fraction of active protein D1 of the photosystem II (PSII). Therefore, we used the model 145 

proposed by Baroli et al. [30] to determine the fraction of active D1 protein as a means to penalize 146 

the effective photon input to the metabolic network. 147 

We employed previously reported data to validate the model’s sensitivity to change in light 148 

intensities. Kim et al. [14] cultured C. vulgaris at six different irradiances and monitored biomass 149 

concentration throughout the timespan of the culture. We used data recorded at 848 μE m−2 s−1 150 

for the regression of parameters (Fig 2), while data at 30, 55, 80, 197, and 476 μE m−2 s−1 were 151 

employed for model validation. 152 

Experimental total biomass concentrations were recapitulated by our model. Even though 153 

intracellular concentrations were not measured by Kim et al. [14], the model could be used to 154 

hypothesize microscopic and macroscopic phenomena that lay underneath, e.g. circadian clock 155 

oscillations, carbon allocation and responses to nitrogen depletion. As opposed to the case of 156 

Adesanya et al. [13], our simulations showed that an elevated irradiance of 848 
𝜇𝐸

𝑚2𝑠
 made 157 

impossible for the microalga to maintain the intracellular nitrogen levels after the nitrogen was 158 
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depleted from the medium at 100 h. This caused the lipid production to be triggered around the 159 

same time point, as intracellular nitrogen levels were already decreasing sharply (Fig 2B).  160 

 161 

Fig 2. Contrast of calculations and reported data at 848 𝛍𝐄 𝐦−𝟐 𝐬−𝟏 by Kim et al [14].  162 

(A) Global reactor concentrations of active (non-storage) biomass, starch, lipids, total biomass and nitrate 163 

contrasted with reported data of total biomass. (B) Intracellular content of starch, lipids and nitrogen. (C) 164 

Contrast of lipid productivity with lipid yield (% of carbon input directed to lipid production). (D) Variation 165 

of cell size. Continuous lines and markers represent predicted data by our model and reported data, 166 

respectively. 167 

According to our simulations, the optimum lipid productivity was achieved shortly after nitrogen 168 

was consumed from the medium but rapidly decreased afterward (Fig 2C). Interestingly, even 169 

though nitrogen depletion from the medium was achieved at 100 h, peak global lipid productivity 170 
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of the photobioreactor took place at 168 h, when internal reserves were running low but were not 171 

yet depleted. Overall lipid productivity decreased steadily for the following 167 h, as growth was 172 

increasingly hindered by internal nitrogen depletion and the cell size was reaching its limit.  173 

Our simulations predicted cell size change as a result of light/dark cycles and long-term nitrogen 174 

depletion (Fig 2D). In general, during the light period, the cell focuses on the accumulation of 175 

starch for later use under dark conditions, causing its size to increase. The opposite behavior occurs 176 

during the dark period, in which starch is consumed for maintenance and growth. In the long term, 177 

nitrogen depletion-induced lipid accumulation yielded bigger cells at the late stage. 178 

Simulations successfully reproduced growth behavior in the photobioreactor at different irradiance 179 

conditions (Fig 3). Even though they underestimated biomass production at low intensities, the 180 

overall growth trends were predicted accurately. Since shading hampers the ability to fix inorganic 181 

carbon, the slope of the growth curves decreased with lower irradiances. At higher intensities, it is 182 

evident that an increase from 476 to 848 μE m−2 s−1 did not signify an improvement in the overall 183 

culture growth. Our simulations show that this was a consequence of a combined effect of shading, 184 

photoinhibition and nitrogen limitation.  185 
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 186 

Fig 3. Growth simulation and experimental validation for  different irradiance conditions reported 187 

by Kim et al. [14] at.  188 

Lines represent model simulations while markers show reported experimental data. Even though the model 189 

underestimated growth at low intensities, growth rate response to varying light intensities was captured by 190 

the model. 191 

Optimization of the lipid productivity in a photobioreactor 192 

In order to illustrate the model’s aptitude for process design and optimization, we predicted the 193 

optimal light strategy to maximize lipid productivity in a stirred tank photobioreactor reactor with 194 

six internal radially distributed fluorescent lamps.  195 

In brief, five variables were manipulated to search for the optimal global lipid productivity 196 

condition: lamp irradiance at time zero I0, lamp irradiance at the end of the culture If, photoperiod 197 

p, culture duration tf, and shape of irradiance temporal profile (see Methods) represented by the 198 

coefficient bI. A hypothetical base case was given to the model as the initial condition of the 199 

optimization, with an irradiance profile within the typical values previously used for experimental 200 
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optimization of lipid accumulation [29]. Fig S3 shows a summary of the simulation results of the 201 

base case, and Table 2 summarizes the base case and optimized values of the manipulated 202 

variables. 203 

Table 2. Initial and final values of the manipulated variables of the optimization. 204 

 

𝐈𝟎 

𝛍𝐄 𝐦−𝟐 𝐬−𝟏 

𝐈𝐟 

𝛍𝐄 𝐦−𝟐 𝐬−𝟏 

𝐩 

𝐡 

𝐭𝐟 

𝐡 

𝐛𝐈 

Base case 400 600 16 300 0.5 

Optimized 966 966 17 374 0.0 

Our model predicted an optimum constant irradiance of 966 μE m−2 s−1. As shown in Fig 4, this 205 

light intensity improves the final biomass concentration from 1.70 to 1.83 g/L in 374 h, which is 206 

roughly a 7% increase in biomass, and 46% increase in final lipid concentration, for a 25% longer 207 

culture timespan.  208 
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 209 

Fig 4. Simulation results of lipid productivity maximization by varying light strategy, photoperiod 210 

and culture time. 211 

(A) Resulting optimal global reactor concentrations of active biomass, starch, lipids, total biomass and 212 

nitrate contrasted. (B) Intracellular content of starch, lipids and nitrogen. (C) Lipid productivity and lipid 213 

yield (% of carbon input directed to lipid production). (D) Variation of cell size.  214 

Even though at the early stage of (0 – 100 h)  a fraction of the culture is subjected to an irradiance 215 

of around 3,000 μE m−2 s−1 (Fig 4), a large portion of it is under a much lower but still significant 216 

irradiance of 200 μE m−2 s−1. This, along with high nitrogen availability, favored higher growth 217 

rates in such a way that photoinhibition was compensated. Moreover, the optimization showed that 218 

a photoperiod of 17:7 is sufficient to satisfy dark period metabolic requirements without negatively 219 

affecting growth or lipid productivity. 220 
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As early as 25 h into the culture, the highest irradiance inside the culture lowers to 2400 221 

μE m−2 s−1. During the medium-growth stage (100 - 200 h) shading rapidly diminished 222 

photoinhibition from approximately 80% to 25%, as highest irradiances were of only 800 223 

μE m−2 s−1, and the average dropped to 200 μE m−2 s−1. 224 

At the low-growth stage (200+ h), shading is so substantial that the average irradiance drops to 225 

142 μE m−2 s−1 and stabilizes there for the rest of the culture. Moreover, as exhibited in Fig 5, at 226 

this point light uptake had almost halted throughout the majority of the reactor, with an average 227 

photon uptake of only 70 mmol gDW−1 h−1, as opposed to an average of 1000 mmol gDW−1 h−1 228 

at the high-growth stage.  229 

 230 

Fig 5. Light and photon uptake distributions at the beginning and end of the culture.  231 

Internal cross-section distributions in the bioreactor are shown for the initial and optimum cases, at the 232 

initial and final concentration. Distributions shown correspond to light intensity (irradiance) and photon 233 

uptake. (Top row) Distributions for the initial case. (Bottom row) Distributions for the found optimum 234 

condition. 235 
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Discussion 236 

The multiscale model accurately predicts dynamic growth and biomass breakdown 237 

In this work, we generated a multiscale metabolic model that predicts the growth dynamics of 238 

Chlorella vulgaris, by coupling mathematical representations for circadian oscillations, substrate 239 

uptake, photoinhibition and light uptake distributions. Kinetics-based dynamic metabolic 240 

modeling has already been conceived [33,34], but only Jeong et al. [35] have applied it on a 241 

complete metabolic network, and one study on a sub-network [36]. Moreover, neither study 242 

accounted for time-dependent carbon allocation or light uptake distributions.  243 

First, we used the reported growth kinetics by Adesanya et al. [13] at two different initial nitrogen 244 

concentrations to test the model’s ability to capture differential reactor behavior when nitrogen 245 

availability changed. In the first scenario, the microalga was subjected to a relatively low nitrogen 246 

availability, thus reducing its uptake rate, and preventing it from replenishing its nitrogen reserves. 247 

Consequently, lipid accumulation was triggered after nitrogen was depleted in the medium; 248 

however, its activation was not significant until days later. This implies that nitrogen depletion 249 

from the medium signifies the beginning of the end of exponential growth, rather than the end 250 

itself. A similar behavior was obtained by Mansouri et al. [17] under a comparable setup. They 251 

reported that exponential growth was maintained for the first 96 h of growth, time after which 252 

growth gradually stopped until their last recorded instance at 168 h.  253 

A second scenario was tested in which the microalga was cultured with a six-fold increase in initial 254 

nitrogen concentration. As expected, lipid accumulation dramatically decreased in both their report 255 

and our predictions, but growth did not increase significantly (19 %). Experimental and predicted 256 

growth rates remained one order of magnitude lower than previously reported maximum growth 257 
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rates of 0.039 [6] and 0.033 h-1 [14,17]. Our simulations show that this was mainly caused by the 258 

comparatively reduced irradiance as opposed to common working irradiances of 648 [6,20], 20 – 259 

1400 [37], and 30 – 848 [14] μE m−2 s−1 . Low light irradiance hindered the overall growth rate 260 

of the microalga, which, in addition to its higher nitrogen availability, allowed it to replenish its 261 

nitrogen reserves for the most part of the culture.  This relatively nitrogen-replete condition caused 262 

storage molecule (lipid and starch) production to drop and rendered lipid accumulation almost 263 

non-present.  264 

A visible over-estimation of starch content in the second scenario was mainly caused by the 265 

prioritization of starch consumption in the dark period of the topology of our carbon allocation 266 

algorithm (Fig S2), which induces error when trying to predict a permanently illuminated culture, 267 

as used by Adesanya et al. [13]. Further work on the generation of a multiscale model for the 268 

mixotrophic growth of C. vulgaris will be necessary for this model to properly include starch 269 

consumption in the light period, with quantitative accounting of carbon allocation and the 270 

differential destination of carbon with concomitant starch breakdown and carbon dioxide 271 

consumption. 272 

Light intensity drives oscillations in biomass components and cell size 273 

As a next step, we used reported data by Kim et al. [14] to show the model’s capability to predict 274 

the effect of varying the light intensity. Our model was able to reproduce the experimental data 275 

and gave insight into the phenomena that caused the growth trends. For example, circadian clock 276 

oscillations are evident in all monitored variables. Fig 2B shows the starch accumulation-277 

consumption cycles, along with a macroscopic interchange of carbon flow between starch and 278 

lipids after nitrogen depletion. This behavior has previously been quantitatively determined for 279 
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other oleaginous microalgae, such as Synechococcus elongatus [38], Chlorella sorokoniana [39] 280 

and Dunalliela salina [40]. In one study, S. elongatus exhibited a peak in ADP-glucose 281 

pyrophosphorylase activity, as well as in glycerol-3-phosphate (G3P) production from ribulose 282 

biphosphate (RuBP) coming from the reductive pentose-phosphate pathway (PPP) close to dawn, 283 

implying high starch production in the light period [38]. The same study found the exact opposite 284 

behavior in the dark, with peak activities of glycogen debranching enzyme (glgX).  285 

The light-induced storage-consumption cycle is visible in the cell size variations through time, 286 

where cells can be expected to increase in size in the light while storing starch and do the opposite 287 

in the dark, as previously reported by Martins et al. for the cyanobacterium Synechococcus 288 

elongatus [41]. Furthermore, our simulations captured the well-known tradeoff behavior between 289 

specific lipid biosynthesis and growth rate, which causes the long-term cell size increase after 290 

nitrogen depletion.  291 

The model can be used to design light strategies for increased lipid productivity 292 

We used the model to maximize the lipid productivity in a case of study to illustrate its potential 293 

for reactor design and optimization. As opposed to previous trials on light strategies, in which 294 

irradiance increases in a stair-step fashion [29], the model predicted an optimal global light 295 

productivity at a constant lamp irradiance of 966 μE m−2 s−1. At this irradiance lipid productivity 296 

was predicted to increase in 46 %, despite global biomass concentration increasing by only 7%. 297 

Even though the optimal irradiance is relatively high, extreme values are only reached at the early 298 

stage of culture, during which high nitrogen availability favored higher growth rates in such a way 299 

that photoinhibition was compensated. Moreover, during the first day of culture the highest 300 
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irradiance inside the culture lowered to 2400 μE m−2 s−1, which, according to Pfendler et al. [32], 301 

is the limit above which photoinhibition seriously reduces light uptake and growth in C. vulgaris. 302 

At the late stage, shading protects most of the cells from excessive irradiances and keeps it at a 303 

level that still favors metabolic activity. At this point, increasing the irradiance of the lamps would 304 

hardly alter the global light availability and uptake, but would critically increase irradiance in the 305 

vicinity of the lamps, where nitrogen-deplete microalgae are no longer capable of compensating 306 

for photoinhibition. This means that, for this case, an individual lamp irradiance of 966 μE m−2 s−1 307 

is high enough to boost growth without excessively hindering photon uptake at all culture stages. 308 

As a result, this irradiance is optimal for overall growth and lipid production in the photobioreactor. 309 

In addition, it is worth noting that our model does not yet include neither the modeling of heat 310 

transfer mechanisms between the lamps, medium and surroundings, nor mixing phenomena which 311 

causes it to assume every cell is subjected to the same temperature. With this, the suggested 312 

optimum is only attainable under a cooling system that is efficient enough to maintain overall 313 

temperature between 22 – 26 °C [42].  314 

Conclusions 315 

Modeling of microalgal growth is key for the industrial production of biofuels, as it allows for the 316 

design and optimization at a reactor- and whole plant-level. For this purpose, it is necessary to 317 

generate a framework including accurate accounting of phenomena at every relevant scale, namely 318 

at the genome scale and reactor scale. In this work, combined a GSM network with mathematical 319 

representations of circadian oscillations, nutrient uptake and light distributions, which yielded a 320 

comprehensive multiscale model of the growth dynamics of Chlorella vulgaris. We included a 321 

detailed framework for the calculation of photon uptake at different irradiances, by considering 322 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 16, 2021. ; https://doi.org/10.1101/2021.04.14.439858doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.14.439858
http://creativecommons.org/licenses/by-nc-nd/4.0/


light attenuation and photoinhibition. The model was tested both at different nitrogen levels and 323 

light irradiances, rendering it capable of being used for the prediction of specific conditions that 324 

maximize lipid productivity.  325 

Methods 326 

All simulations were carried out within the MATLAB 2016b (MathWorks Inc.) environment and 327 

using the COBRA Toolbox v3.0 [43]. Dynamic Flux Balance Analysis (dFBA) was used for time-328 

course flux distribution calculations and concentration updates, and GUROBI 7.5.2 was employed 329 

as the solver for the linear optimization problems. A more detailed explanation of the model’s 330 

algorithms is shown in this section. 331 

The multiscale metabolic model 332 

At the core of our calculations lies the genome-scale metabolic model of the oleaginous microalga 333 

Chlorella vulgaris: iCZ843 [20], with previously proposed modifications for both heterotrophic 334 

and autotrophic growth [6,20]. Overall, the GSM was solved using COBRA Toolbox (dFBA) for 335 

metabolic flux distributions. In addition, a set of additional models were included to account for 336 

secondary phenomena which constrained the solution space of the Linear Programming (LP) 337 

system (GSM in Fig 1A). Phenomena were included according to previous reports of specific 338 

physical and physiological mechanisms significantly affecting growth. Included mechanisms were 339 

light attenuation, light uptake, photoinhibition, nitrogen and carbon uptake kinetics, and carbon 340 

allocation (carbohydrate and lipid accumulation and consumption). Mixing, heat and mass transfer 341 

phenomena were not included in the present model. A simplified representation of the general 342 

numerical algorithm is presented in Fig 1A. 343 
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Light attenuation 344 

Several studies have focused on light attenuation of microalgae [44–49], with a few solely on 345 

Chlorella vulgaris [44,45]. In this work, we decided to use the model for light absorption and 346 

scattering proposed by Naderi et al. [45], which enabled accurate predictions of light distribution 347 

at low and high cell densities. The intensity profile function is shown in Eq. (1). 348 

I(r, X) = I0 exp (−r ∙ Ka ∙ X
rw

pk + rw
) (1) 

For internally illuminated reactors, the distance r was computed as the distance between the edge 349 

of the light source and any given point inside the culture. Several internal sources were accounted 350 

for by taking the sum of the calculated individual light distributions. For externally illuminated 351 

(jacketed) reactors r was calculated as the distance between the illuminated edge of the reactor and 352 

any given point inside the culture. Ka represents the absorption coefficient and is a function of the 353 

biomass concentration X and the maximum absorption coefficient Ka,max, as shown in Eq. (2). In 354 

addition, pk, b and w are model parameters. 355 

Ka(X) =
Ka,max

b + X
 (2) 

The initial intensity 𝐼0 corresponds to either the nominal or measured intensity of the light source, 356 

whichever was reported in the studies. Absorption and scattering coefficients were left unchanged 357 

throughout the culture time, although further studies can compute time-specific coefficients from 358 

absorption spectrum data [21]. 359 

For increased computation speed, we divided the photobioreactor in a finite number of zones with 360 

the same light intensity and calculated the overall reaction rates as a volume-weighted average of 361 

the individual intervals. The number of light intervals (NI) were determined in a logarithmic 362 
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fashion, as shown in Eq. (3). Mesh dependence analyses showed that 10 active (with non-zero 363 

irradiance) intervals were enough for the simulations to be independent of the number of intervals. 364 

Ii = 10
(Imin+

(Imax−Imin)

NI
∗i)

         ∀i ∋ {1, … , NI} 
(3)  

Light uptake 365 

We defined a photon conservation balance over a differential element (Fig S1) to account for 366 

spatial light uptake distribution, as shown in Eq. (4). 367 

(I A)r − (I A)r+Δr = U X ΔV (4)  

The conservation balance is readily converted to the differential equation shown in Eq. (5), and a 368 

cellular uptake profile (U) is obtained in Eq. (6). The magnitude U is at this point a unit-consistent 369 

input to the GSM model of the microalga, which represents the upper bound of specific photon 370 

uptake rate. 371 

∂I

∂r
+

1

r
I + U X = 0 (5) 

U(r, X) = −
1

X
∙ [

∂I

∂r
+

1

r
I] (6) 

 A similar procedure for a planar reactor yields the homologous expression shown in Eq. (7) . 372 

U(r, X) = −
1

X

∂I

∂r
 (7) 

Photoinhibition 373 

Photoinhibition is the reduction of photosynthetic capacity in photoautrotrophic organisms [50], 374 

and has been proven to be controlled by the photodamage – repair dynamics of the protein D1 of 375 
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the photosystem II (PSII) [31,50]. Consequently, an accurate account of the fraction of available 376 

photons that reach the metabolic network can be performed by determining the fraction of active 377 

protein D1. Therefore, the effect of photoinhibition in the model was represented by the fraction 378 

of active D1, employing the model by Han [50], with the coefficients reported by Baroli et al. [30] 379 

(see Eqs. (8) and (9)). The magnitude θ represented the fraction of photons that were used by the 380 

metabolic network, and is a function of time t, the first-order D1 photorepair and photodamage 381 

coefficients, kr and kd, and light intensity I. Moreover, kr is a function of light intensity, which 382 

follows a linear behavior described by the slope mk and intersect bk. 383 

dθ

dt
= kr(1 − θ) − kd I θ (8) 

kd = m𝑘 I + bk (9)  

At every timestep and light interval, metabolic flux distributions are first calculated assuming θ =384 

0. The ideal photon uptake rate is then multiplied by θ and set as the new upper boundary for 385 

further calculation steps. 386 

Nitrogen and carbon uptake kinetics 387 

The uptake rate of nitrogen rN is a function of nitrogen quota (Qn), growth rate μ, and extracellular 388 

nitrogen concentration (N), as proposed by Adesanya et al. [13] and shown in Eqs. (10) and (11). 389 

Other parameters include: the minimum and maximum nitrogen quotas, qn and qnm, the maximum 390 

nitrogen uptake rate νnm, and nitrogen uptake half-saturation coefficient νnh. 391 

rN =
qnm − Qn

qnm − qn
[

νnm N

N + νnh
] (10) 

A simple mass balance on including growth-induced depletion and replenishment yields Eq. (11). 392 
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dQn

dt
= rN − Qnμ (11) 

Similarly, we used the inorganic carbon uptake kinetics model proposed by Filali [11] to calculate 393 

the maximum carbon uptake rate rCO2

max at any given moment, as shown in Eq. (12). In this model, 394 

carbon uptake is a function of the concentration of carbon dioxide CCO2
, the maximum carbon 395 

uptake rate from the GSM model rCO2

max,GSM
, the minimum cell size Zmin, the size increase T, 396 

biomass concentration X, and carbon uptake half-saturation coefficient KC. 397 

rCO2

max = rCO2

max,GSM (
CCO2

CCO2
+ KC ∗

X

ZminT
  
) (12) 

Carbon allocation 398 

Nutrient availability in the media directly alters the way carbon is distributed across the cell. 399 

During nutrient-sufficient conditions, microalgae tend to allocate carbon on amino acid and nucleic 400 

acid biosynthesis (herein active biomass or X); on the other hand, nutrient-depletion, and in general 401 

stress conditions, causes metabolism to shift carbon flow towards lipid biosynthesis. In 402 

photobioreactors, the nitrogen poses as bottleneck for overall growth, but also as trigger for lipid 403 

accumulation [6,13,17,20,51]. 404 

We proposed a simple flow distribution algorithm, with cell size (Z) and nitrogen quota (Qn) as 405 

coefficients for the estimation of carbon allocation. Increased nitrogen quota favored biosynthesis 406 

of active biomass and starch, whereas low nitrogen levels shifted carbon flow towards lipid 407 

production. We defined a magnitude n, which played the role of a penalty function on active 408 

biomass production and followed the Michaelis-Menten-type function shown in Eq. (13). 409 
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n = 1 −
q

q + qh
  

(13)  

Relative intracellular nitrogen levels are represented by q = Qn/qnm, and qh is the half-saturation 410 

coefficient. In a similar fashion, decreased cell sizes favored the uptake of inorganic carbon and 411 

the accumulation of storage molecules, while bigger cells were assumed to lower carbon uptake 412 

levels, as previously reported by the studies of Taguchi et al. [52]  and Thompson et al. [53]. 413 

Therefore, we defined a penalty function 𝑧 on inorganic carbon uptake, presented in Eq. (14). 414 

z =
T − 1

Tmax  − 1
 

(14)  

Where T is the size increase, calculated as a function of the intracellular content of starch (xstarch) 415 

and lipids (xlipid), as shown in Eq. (15).  416 

T =
1

1 − xstarch − xlipid
 

(15)  

Finally, storage starch consumption is limited by a third penalty function based on the intracellular 417 

starch concentration cstarch and K as a half-saturation coefficient. 418 

s =
cstarch

cstarch + K
 

(16)  

In the end, the penalty functions were used to constrain the solution space of the GSM, as upper 419 

or lower boundaries, as shown in Eq. (17) to (20). Every variable with superscript max is internally 420 

calculated in the algorithm as the maximum possible value at any given time point and light 421 

interval. During light and dark periods, the objective functions were, respectively, starch 422 

accumulation and biomass production, following previous reports of peak activities of starch 423 

production and consumption in light and dark periods, respectively [38–40]. An overview of the 424 

carbon allocation algorithm is illustrated in Fig S2. 425 
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rTAG = rTAG
max ∙ n (17)  

rCO2

light
= rCO2

max ∙ (1 − z) (18)  

rStarch
dark,max = rStarch

max ∙ (z) ∙ (s) (19)  

μlight = μmax ∙ (1 − n) ∙ (𝑧) (20)  

Parameter estimation 426 

Metabolic capabilities across species and even strains do not remain constant. This has been one 427 

of the most significant drawbacks when trying to generate a wide-spectrum biological model. 428 

However, in this work we were able to identify five strain-specific parameters which are assumed 429 

to be inherent in the microorganism: maximum size increase 𝑧max, maximum oxygen evolution 430 

rO2

max maximum carbon uptake rCO2

max, nitrogen quota half-saturation coefficient qh, and starch 431 

accumulation half-saturation coefficient K. Parameter estimation was done with MATLAB 432 

Optimization Toolbox, using the active-set algorithm. As a result, this model is capable of 433 

predicting the macroscopic outcome of a photobioreactor under different conditions for a single 434 

strain if these parameters are known. For each study we used one of the available sets of kinetic 435 

data to calculate these parameters, specifically data at an initial nitrogen concentration of 0.021 g 436 

L-1 for Adesanya et al. [13] and data at an irradiance of 848 μmol m−2 s−1 for Kim et al. [14]. 437 

Regression parameter values are shown in Table S1, and a summary of all other parameters is 438 

shown in Table S2. 439 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 16, 2021. ; https://doi.org/10.1101/2021.04.14.439858doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.14.439858
http://creativecommons.org/licenses/by-nc-nd/4.0/


Maximization of lipid productivity 440 

Five variables were manipulated to search for the optimal global lipid productivity (𝑅𝐿 in Eq. (21)) 441 

condition: initial lamp irradiance I0, final lamp irradiance If, photoperiod p, culture duration tf, 442 

and a coefficient bI which represents the shape of the light profile, as shown in Eq. (22). 443 

RL =
CLipids

𝑡𝑓
 

(21)  

I(t) = aI ∗ tbI + I0 (22)  

In Eq. (22), only bI is used as an optimization variables, as aI is dependent on the variables I0, If 444 

and bI itself, as presented in Eq. (23). 445 

aI =
𝐼𝑓 − 𝐼0

(𝑡𝑓)
𝑏𝐼

 
(23)  
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