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Abstract — Pattern detection and string matching are 

fundamental problems in computer science and the accelerated 

expansion of bioinformatics and computational biology have 

made them a core topic for both disciplines. The SARS-CoV-2 

pandemic has made such problems more demanding with 

hundreds or thousands of new genome variants discovered 

every week, because of constant mutations, and the need for fast 

and accurate analyses. Medicines and, mostly, vaccines must be 

altered to adapt and efficiently address mutations. The need of 

computational tools for genomic analysis, such as sequence 

alignment, is very important, although, in most cases the 

resources and computational power needed is vast. The 

presented data structures and algorithms, specifically built for 

text mining and pattern detection, can help to address efficiently 

several bioinformatics problems. With a single execution of 

advanced algorithms, with limited space and time complexity, it 

is possible to acquire knowledge on all repeated patterns that 

exist in multiple genome sequences and this information can be 

used for further meta analyses. The potentials of the presented 

solutions are demonstrated with the analysis of more than 

55,000 SARS-CoV-2 genome sequences (collected on March 10, 

2021) and the detection of all repeated patterns with length up 

to 60 nucleotides in these sequences, something practically 

impossible with other algorithms due to its complexity. These 

results can be used to help provide answers to questions such as 

all variants common patterns, sequence alignment, palindromes 

and tandem repeats detection, genome comparisons, etc. 

Keywords — repeated patterns detection, LERP-RSA, ARPaD, 
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I. INTRODUCTION 

The current COVID-19 pandemic has turned all the lights, 
commercial, scientific, political towards the biotechnology 
industry and its efforts to address as soon as possible the virus 
consequences. Major pharmaceutical companies worldwide 
have invested enormous amounts in new technologies for the 
past couple of decades and the first promising results from 
technologies such the mRNA vaccines have become visible. 
Indeed, the fast expansion of the biotechnology industry with 
the help of advanced computing infrastructures, such as cloud 
computing, has opened a new era in the domain. 

Since the beginning of computer science some of the most 
common problems addressed were related to pattern matching 
and searching for bioinformatics. There is a plethora of 
completely diverse methodologies and algorithms since early 
1970 that were developed to deal with the simplest problems, 
such as to determine if a specific string exists in a biological 

sequence, to more complex such as multiple sequence 
alignment. Furthermore, the development of artificial 
intelligence and deep learning provided more sophisticated 
tools for image analysis or clinical data analytics. 

The analysis of biological sequences such as DNA, RNA, 
proteins, etc. it is considered a standard string problem in 
computer science since such sequences are built from 
predefined discrete alphabets like nucleotides or amino-acids 
encoding. What make these string problems to be challenging 
in bioinformatics and computational biology, from 
mathematical and computer science perspective, is the size of 
the strings and the computationally intensive procedures to 
answer them, which in some cases cannot provide solutions in 
short time and with regular resources. For example, the human 
genome, a 3.1GB long string, it was initially sequenced in 
2001 [1] and it was practically impossible to be analyzed as a 
single piece of information since only supercomputers could 
keep on memory such long strings. Nowadays, advanced 
hardware and clustering framework systems are used for such 
analyses since, for example, the construction of a suffix tree, 
just for the first human chromosome with size 270MB, 
requires 26GB of memory [4]. New technologies, for instance, 
Next Generation Sequencing (NGS) from top leading 
companies require advanced computational tools and 
algorithms, specifically designed for string matching 
problems in order to perform sequence alignment in multiple 
(usually millions) genomic fragments simultaneously. 

In [31] it was presented for first time the analysis of the 
full human genome with the detection of all repeated patterns. 
However, that initial attempt was just a proof of concept and 
technology. The current work will present that is possible, 
with limited resources and in short time, to analyze thousands 
of complete genomes and detect all repeated patterns that exist 
in them. Moreover, it will be presented how the combination 
of an advanced data structure and the results of such analysis 
can help to answer many pattern detection related problems. 
Finally, the possibilities and the potentials of the tools 
described to be used in specific type of string problems with 
applications on a large dataset comprised from all SARS-
CoV-2 full genome variants recorded on March 10, 2021, will 
be presented. 

In order to achieve such results, the Multivariate Longest 
Expected Repeated Pattern Reduced Suffix Array (LERP-
RSA) data structure will be used in combination with the All 
Repeated Patterns Detection (ARPaD) algorithm [26], [27], 
[28]. In brief LERP-RSA is a variation of the standard Suffix 
Array [25] data structure using though the actual, 
lexicographically sorted, suffix strings. The ARPaD 
algorithm, both in its recursive and non-recursive variant, has 
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the ability to scan only once the LERP-RSA and detect every 
pattern occurs at least twice in it. Additionally, the algorithm 
is pattern agnostic, which means that it requires no input rather 
it scans the data structure once and returns all results in a 
deterministic way regardless of string or pattern attributes, i.e., 
frequency, length, alphabet, overlapping or not, etc. 

So far, LERP-RSA and ARPaD have been extensively 
used in many, diversified, domains with exceptional results, 
regardless of hardware limitations and the vast datasets in 
most cases, making them a state-of-the-art for big data 
problems in text mining and pattern detection [28]. As an 
example of resource demanding process in the bioinformatics 
domain, it is worth mentioning that an alignment between all 
complete SARS-CoV-2 genome variants was tried on the 
National Center for Biotechnology Information website, 
which holds the genome dataset, to receive a message that for 
more than 500 sequences alignment the user has to download 
the dataset and use own resources to perform the alignment. 

The contribution of the current work is the analysis of 
more than 55,000 SARS-CoV-2 genome variants discovering 
all repeated patterns. These initial results have been used for 
further meta analytics, for example, discovering the longest 
pattern, with length 15 nucleotides, that exists among every 
variant of SARS-CoV-2, comparison among different 
organisms such as MERS, SARS and Human, identifying 
every frequent and infrequent pattern exists, etc. Additional 
applications are sequence alignment, detection of special 
attributes patterns such as palindromes and tandem repeats, 
etc. The proposed methods though, have also limitations such 
as the need for the sequence analyzed to have specific 
properties and in cases of simple, specific, problems this 
process could also be more time consuming. However, the 
benefit of using them on many diverse problems concurrently 
can overcome any initial hesitation. 

The rest of the paper is organized as follows: Section II 
presents related work in string matching. Section III defines 
the problem and gives the motivation behind it. Section IV 
presents the proposed data structures and algorithms for 
pattern detection in biological sequences. Section V presents 
several applications conducted on the available dataset of all, 
complete SARS-CoV-2 variants and discusses the 
corresponding results. Finally, Section VI presents the 
conclusions and future extensions of the presented work. 

II. RELATED WORK 

From the very early stages of bioinformatics and the use 
of computers to perform biological sequence analyses, string 
matching problems had a crucial role. Many new algorithms 
and methodologies are presented every year that improve 
older approaches or introduce new [1], [3], [4]. Mainly, these 
methods and algorithms can be classified into two broad 
categories, the exact matching and the approximate matching 
[1], [4]. The first category is related to string problems where 
we seek to find patterns matching entirely the input string such 
as, for example, specific sequence matching a protein 
transcription promoter. The second category can be much 
more complicated since many mutations, insertions, deletions 
and base changes may have occur making exact matching 
difficult, yet, very important, for example, to detect codon 
sequences which can produce the same protein. 

More precisely, exact matching algorithms have 
dominated the field since early ‘70s. Many different 

approaches have been developed such as character or index 
based. This kind of methodologies include brute force 
algorithms where characters of the matching pattern are 
directly compared to the reference sequence. This leads to 
heavy computational algorithms, mainly because of the 
absence of any preprocessing and special data structures. The 
standards for such algorithms are the Boyer-Moore algorithm, 
usually used as a benchmark for efficiency measurement, that 
uses a shifting step based on a table holding information about 
mismatch occurrences and the Knuth-Morris-Pratt algorithm 
that uses a supplementary table to record temporal information 
during execution [1], [3], [4], [5], [6]. Another algorithm, 
variation of the first one mentioned, is the Boyer-Moore-
Smith [7] while another extension is the Apostolico-Giancarlo 
algorithm based on both of the BM and KMP algorithms [8]. 
Additionally, we have the Raita algorithm based on 
dependencies that occur among successive characters [9]. 
More recent algorithms are the BBQ algorithm which 
introduces parallel pointers that perform searching from 
opposite directions [10] and several hybrid methods such as 
the KMPBS [11] and Cao et al. using statistical inference [12]. 

Except the brute force algorithms we have another 
important category, the hashed based [1], [3], [4]. Such 
algorithms are based on the hashing concept in order to 
produce hashing values and compare patterns rather than 
performing a direct character comparison. The main benefit 
from such approach is the considerable improvement of 
calculation time [13], yet, as with most hashing algorithms, 
they suffer from the hashing collision problem. Typical 
examples of such algorithms is the Karp-Rabin which is based 
on modular arithmetic to perform hashing [14] and the Lecroq 
algorithm, which first splits the sequence to subsequences and 
then the pattern matching is performed on each sequence [15]. 
Classic algorithms are also the non q-gram algorithms such as 
the Wu and Manber [16] where the searching pattern is 
completely encoded for pattern matching purposes. 
Furthermore, more recently developed algorithms are the 
multi-window integer comparison algorithm based on suffix 
strings data structures such as the Franek-Jennings-Smyth 
string matching algorithm [18] and the automata skipping 
algorithm developed by Masaki et al. [17]. More advanced 
hybrid approaches have also been presented that combine best 
practices from different approaches in order to optimize their 
performance such as, for example, Navarro’s algorithm [19] 
which can bypass characters using suffix. 

A very well known and heavily used algorithm is 
implemented and used by the National Center for 
Biotechnology Information (NCBI). The Basic Local 
Alignment Search Tool (BLAST) and its variants [21] is used 
for comparing basic sequences, such as nucleotides 
sequences, found in DNA and/or RNA. The algorithm takes 
as inputs the desired string to search and the sequence to 
search into. Additionally, BLAST can execute inexact string 
matching, something usually extremely computationally 
intensive, for multiple sequence alignment purposes. Another 
algorithm, more accurate than BLAST, yet, more resources 
hungry and slower, is the Smith-Waterman algorithm [20]. 

An important aspect of pattern detection is the discovery 
of specific type of patterns in biological sequences such as 
palindromes and tandem repeats. The importance of such 
discoveries can be presented with one of the latest marbles in 
biology, the discovery of the clustered regularly interspaced 
short palindromic repeats (CRISPR) in bacteria and the use of 
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CRISPR-Cas9 protein that allows to interfere with DNA in a 
molecular level [22]. Another well studied problem is the 
detection of short tandem repeats, something very difficult 
over whole genome. This kind of repeats are classic examples 
of repeats in protein encoding regions and are closely related 
to serious diseases, such as the Huntington’s disease [23]. An 
example of methods for tandems detection can be found in 
[23] which is based on DNA alignment using LAST software. 

III. PROBLEM DEFINITION 

So far, we have presented several algorithms that are used 
in bioinformatics and computational biology. Yet, all these 
algorithms have as a common attribute the input pattern that 
is under investigation. Such type of algorithms can address 
specific problems and require each time to access the full 
dataset of one or more sequences to operate and produce 
results, which is inefficient. 

To address bioinformatics and computational biology 
problems, it would be more preferable to have a data structure 
or a database of information that can be used for as many as 
possible queries and be transformed to valuable knowledge. 
Moreover, the full process should be able to (a) be contacted 
on commodity computers with limited resources, (b) keep the 
cost low, (c) allow scale up to deal with larger datasets and (c) 
address several different problems concurrently. 

IV. PROPOSED APPROACHES 

The approaches on biological problems, which they will 
be described in the next sections of the paper, are applications 
of the Longest Expected Repeated Pattern Reduced Suffix 
Array (LERP-RSA) data structure [26], [27], [28] and the 
related family of algorithms such as ARPaD, SPaD and MPaD 
that are specifically designed for the LERP-RSA [27], [28]. 
Several applications of the aforementioned data structure and 
algorithms will be presented, as a pipeline of execution, that 
can either extract useful information directly from the dataset 
or the results generated, or can be used as an input for other 
type of meta analytics in biological sequences. 

A. LERP-RSA Data Structure 

The Longest Expected Repeated Pattern Reduced Suffix 
Array (LERP-RSA) is a special purpose data structure for text 
mining and pattern detection, which has been developed and 
optimized to work with a variety of algorithms, with 
applications in many domains. Manber and Myers [25] 
defined the suffix array of a string as the array of the indexes 
of the lexicographically sorted suffix strings, which allows to 
perform several tasks on the string, such as pattern matching. 
The LERP-RSA is a variation of the suffix array, yet, it uses 
the actual suffix string and not only the position indexes. 
Although this type of data structure can have quadratic space 
complexity, which was one of the first disadvantage to bypass, 
with the use of the LERP reduction the data structure space 
complexity can be optimized to log-linear with regard to the 
input string. This has been proved with the Probabilistic 
Existence of Longest Expected Repeated Pattern Theorem 
[27], [28] that can be briefly stated as follows: 

Theorem: If a string is considerably long and random and a 
pattern is reasonably long then the probability that the pattern 
repeats in the string is extremely small. 

The theorem builds us the necessary foundation to 
calculate the longest expected repeated pattern given a very 

small probability that a repeated pattern exists with longer 
length. Therefore, the length of the suffix strings used to create 
the LERP-RSA, can be reduced significantly by using the 
following, briefly stated, Lemma [27], [28]: 

Lemma: An upper bound for the Longest Expected Repeated 
Pattern (LERP) length given a probability 𝑃(𝑋) in a string of 
length n with the use of an alphabet Σ of size m is: 

𝐿𝐸𝑅𝑃 = ⌈𝑙𝑜𝑔𝑚
𝑛2

2𝑃(𝑋)
⌉ 

where 𝐿𝐸𝑅𝑃 ≪ 𝑛 and 𝑃(𝑋) > 0. 

The abovementioned Lemma is directly inducted from the 
Theorem and it has been proven in [27], [28]. Of course, the 
calculation of the longest repeated pattern can be performed 
by other methods, however, the use of the Lemma has some 
advantages since, e.g., building the suffix tree and determining 
the longest repeated pattern of a string on the suffix tree is a 
heavy computational process and in most of the cases it is 
impossible because of the string size. For example, in [28] the 
longest repeated patterns that exist in the first one trillion 
digits of π have been calculated, knowing in advance the upper 
limit for their length, while any other algorithmic approach is 
beyond any possibility with the currently available hardware. 
Yet, the Theorem and the Lemma have as a prerequisite that 
the string is random which limits the application for strings 
that do not have a random behavior. Briefly described, 
randomness means that every character of the alphabet occurs 
with the same frequency and this property should be valid for 
reasonably long substrings, following the normality of 
irrational numbers property as presented by the Calude’s 
Theorem [24]. Although this is true for most of the cases, 
unfortunately, biological sequences do not have random 
behavior and this problem can be solved with the MLERP 
process as it is described in [26], [28] and it has been used to 
analyze the full human genome [31]. 

The process of constructing the LERP-RSA with the use 
of the Lemma can be described with the following example. 
Let’s assume that the input string is actactggtgt. If we 
construct the array of the suffix strings then we will receive 
the structure of Fig.1.a where all suffix strings have been 
recorded, without sorting. Obviously, this structure has a 
quadratic space complexity of exact size 𝑂(𝑛(𝑛 + 1) 2)⁄  or 
𝑂(𝑛2). If the size of the string becomes medium size, e.g., 
10,000 characters, as an average human gene, then the space 
needed just to store the suffix strings, without sorting them, 
explodes to 100 million. What we can do to bypass the 
problem, for the initial example, is to reduce the size of the 
suffix strings to an arbitrary size to, e.g., five characters and 
create the structure of Fig.1.b. However, in this case we have 
the following to consider: (a) if the repeated patterns that exist 
and we want to discover are longer then we will miss all of 
them with length longer than the five characters and (b) if the 
repeated patterns are shorter then we are wasting space and 
time for sorting and analysis. This can be solved with the 
Lemma and the construction of the LERP-RSA of Fig.1.c, 
since if we reduce the size of suffix strings to three characters, 
for example, then the longest pattern that exists and is the act 
can be located at position 0 and 3. The use of value three is an 
example to illustrate the use the Lemma since it is not accurate 
for the specific, very sort, example. Since the LERP has length 
𝑂(log 𝑛), with regard to the size of the input string, then the 
space complexity of the entire LERP-RSA is 𝑂(𝑛 log 𝑛). 
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Fig.1 Suffix Array and Reduced Suffix Array for actactggtgt 

The LERP-RSA data structure has some unique features 
that allows to be characterized as a state-of-the-art data 
structure for pattern detection and text mining purposes [27], 
[28]. These attributes are: 

a) Classification based on the alphabet. The classification 
is determined by the Classification Level which is the power 
that the cardinality of the alphabet can be raised. For DNA 
sequences using the four nucleotides alphabet A, C, G and T, 
the classification can vary from one class, 𝛴𝐶𝐿 = 40 = 1, for 
classification level zero to, e.g., 16 classes, 𝛴𝐶𝐿 = 42 = 16, 
for classification level two with the construction of subclasses 
of suffix strings starting with aa, ac, ag, at, ca, cc, cg, ct, ga, 
gc, gg, gt, ta, tc, tg and tt. Therefore, instead of having one 
class we can have 16 with significantly smaller size each one, 
one sixteenth of the total if we assume equidistribution. 

b) Network and cloud distribution based on the classes. 
Each class, regardless size, can be constructed or distributed 
independently over a local network or on the cloud. The 
classes can be stored and accessed when needed. 

c) Full and semi parallelism. Since we have several, 
separate, classes the analysis and pattern detection algorithms 
can be executed on each class in parallel in full mode, all 
simultaneously, or semi-parallel mode where a block of 
classes is analyzed and when finished the analysis continues 
with the second block, etc. 

d) Self-compression. When we use classification then we 
have in each class those suffix strings that specifically start 
with the class string. Therefore, the initial characters defining 
the class of the suffix strings in each class can be truncated 
and conserve space. 

e) Indeterminacy. More space can be conserved for the 
cases that we do not care about the positions of the patterns 
rather than only for their existence. In this case the position 
indexes can be omitted. 

f) The LERP-RSA can be constructed to describe multiple 
strings and allow the detection of patterns that exist not only 
in a single string but also among two or more different strings. 

For many real world cases, such as biological sequences 
analysis and pattern detection, it is important to perform such 
tasks on multiple sequences. The last attribute described above 
is very important for these cases since it allows to detect  

 

Fig.2 LERP-RSA construction for actactggtgt 

Fig.3 LERP-RSA construction for ctactggtact 

patterns that are not repeated per se, yet, they exist once in 
several sequences, making them repeated. For this purpose, 
we need to construct the Multivariate LERP-RSA data 
structure as it can be described with the following example. 

Let’s assume that we have two sequences actactggtgt and 
ctactggtact and, moreover, the LERP value is five while we 
have decided to use Classification Level two. In order to 
construct the data structure, we start with the first sequence at 
position zero and we use a sliding window of size five to 
determine the suffix strings (Fig.2.a). Additionally, for each 
position and suffix string we record the first two characters 
and we store the suffix string to the corresponding class 
(Fig.2.b). For example, the first five characters long substring 
of the first sequence is the actac and it will be stored in class 
ac with leading numbers to describe the sequence index (1, 
blue) and position in the specific sequence (0, black). We 
continue with the next substring ctact starting with ct which 
will be stored in class ct. We continue the process until 
position 9 where the substring gt with length two, exactly as 
the classification level, is the last one to be stored. The process 
of storing the suffix strings in each class (different colors for 
the example) can be performed directly or by sorting them. 
The same process repeats for the second sequence (Fig.3.a – 
Fig.3.b). Finally, the subclasses are combined together to 
create the lexicographically sorted Multivariate LERP-RSA 
(Fig.4.a) where each class is presented with different color. 
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Fig.4 Multivariate LERP-RSA and ARPaD results 

B. ARPaD Algorithm 

After constructing the Multivariate LERP-RSA data 
structure we execute the All Repeated Patterns Detection 
algorithm. The algorithm has two versions, the recursive left-
to-right and the non-recursive top-to-bottom [28]. Both 
versions have the same time complexity 𝑂(𝑛𝑙𝑜𝑔𝑛). Since it is 
easier to present with an example the recursive, we will use 
the LERP-RSA of the previous subsection example in Fig.4.a. 

First, the algorithm starts with the first class it has been 
created, ac, and counts how many strings starts with it (Fig. 
4.b). Since there are four suffix strings in this class then then 
the class itself is a repeated pattern. The algorithm constructs 
a longer pattern with the first letter of the nucleotides alphabet, 
a, the aca. This does not exist and the algorithm continues 
with the other letters of the alphabet until it finds the pattern 
act which also appears four times (Fig.4.b). The process is 
repeated for longer patterns, starting with acta, until it finds 
the actg occurring twice and the longer actgg (Fig.4.b) which 
also occurs twice. With this the algorithm has discovered all 
repeated patterns of class ac or similarly starting with ac. The 
process is executed for each class and the ARPaD algorithm 
discovers at the end all repeated patterns (Fig.4.b). The non-
recursive top-to-bottom version works in a similar way by 
comparing directly suffix string tuples. 

Based on the above presented example, we can observe 
that ARPaD is executed on each class independently and, 
therefore, it can be executed in parallel. The only constrains 
for such execution is the available hardware, processors or 

cores and memory. For example, if the available resources do 
not allow for full parallel execution, we can start with the 
classes ac and ta which have the same number of suffix 
strings. Then we observe that class ct has five suffix strings 
while classes gg and gt have also five suffix strings combined. 
Therefore, we can execute in semi-parallel mode class ct with 
gg and when gg finishes, obviously before ct, we continue 
with class gt. This order of execution optimizes resources 
usage and minimizes idle time for the CPU. 

Of course, we can execute ARPaD independently on each 
class, assuming enough resources. This can be achieved also 
for datasets that significantly exceed the available local 
resources by using the network and/or cloud distribution. This 
property of LERP-RSA and ARPaD allows to use completely 
isolated and diversified hardware, e.g., smartphones, to 
analyze each class in complete isolation from other classes 
instead of using expensive hardware infrastructure or 
clustering frameworks such as Hadoop and Spark. 

C. SPaD Algorithm 

Another important algorithm of the ARPaD family is the 
Single Pattern Detection (SPaD) algorithm [28]. The SPaD 
algorithm is mainly used for meta-analyses purposes, when 
we want to discover specific information in the ARPaD results 
or LERP-RSA, and its correctness has been proven in [28]. 
Moreover, especially with the LERP-RSA it can be extremely 
efficient with time complexity 𝑂(1) with regard to the input 
string. Although ARPaD can be executed once to detect all 
repeated patterns that can be stored for later meta-analyses 
purposes, SPaD has to be used every time we need to, e.g., 
check the existence of non-repeated patterns. For this purpose, 
we execute the SPaD directly on the LERP-RSA data structure 
since single occurred patterns can exist only in the LERP-
RSA, if they do exist. There are two distinct cases of SPaD 
execution with regard to the length of the pattern we need to 
find; if a pattern is equal or shorter than LERP or if a pattern 
is longer than LERP.  

Using the previously stated example we can describe the 
SPaD algorithm using two sample patterns with regard to their 
size in comparison to the LERP value. The first pattern is the 
gtg, which is not repeated pattern since we cannot find it in the 
ARPaD results and it is shorter than the LERP value. Since 
the pattern starts with gt, SPaD starts in the appropriate gt class 
and using the binary search algorithm approach finds the 
suffix string in the class, gtact (Fig.5.a-1). Since gtg is 
lexicographically after gtact, the algorithm continues in the 
second half of the gt class and finds once the pattern in the 
suffix string gtgt (Fig.5.a-2). Therefore, the pattern gtg exists 
once in the first sequence at position seven. 

The next example is the tactggtg pattern which is longer 
than the LERP value. The first step is to break down the 
pattern under investigation to fragments of size LERP, except, 
of course, the last one which can be smaller. Therefore, for the 
particular pattern we have two fragments, the tactg and the 
gtg. The next step for the SPaD algorithm is to search for each 
fragment and record if it exists and where (Fig.5.b). If at least 
one of the fragments do not exist in the LERP-RSA then, 
obviously, the pattern does not exist in any sequence. 
However, if we find all fragments to occur somewhere in the 
LERP-RSA then SPaD has to check if the full pattern exists. 
In order to perform this SPaD uses the Crossed Minimax 
Criterion [22]. For the specific example, we can observe that 
the first fragment exists twice in the class tc and, more  
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Fig. 5 SPaD algorithm example for pattern gtg and tactggtg 

specifically, for the first sequence at position two and for the 
second sequence at position one (Fig.5.b-1). The second 
fragment can be found only once in class gt for sequence one 
at position seven (Fig.5.b-2). First of all, since the second 
fragment does not exist in the second sequence, therefore, the 
pattern does not exist in the second sequence. For the first 
sequence, the first fragment exists at position two and the 
second at position seven. Since the second position (7) is equal 
to the first position (2) plus LERP value (5), therefore, the 
pattern exists in the first sequence at position two. 

The SPaD algorithm except of its straight forward 
application described above can also be used with wildcards 
or regular expressions, for the detection of more complex 
patterns. Let’s assume that we want to detect all patterns with 
the form t??tg, where the symbol ? means any character from 
the alphabet. Therefore, we care to find patterns such as taatg, 
tactg, tagtg, tatgt, tcagt, etc. Executing the SPaD for each 
combination or by using regular expressions we can detect the 
patterns tactg at positions (1, 2) and (2, 1) and tggtg at position 
(1, 5). However, when we use wildcards or we need to detect 

multiple patterns, the best option for optimization purposes, is 
the use of the MPaD algorithm of the next subsection. 

D. MPaD Algorithm 

The Multiple Pattern Detection (MPaD) [28] algorithm is 
a direct extension of the SPaD. In the case of multiple pattern 
detection instead of using one time after the other the SPaD 
algorithm the process is optimized with the use of the MPaD. 
Practically, the first step of the SPaD is extended by breaking 
down all patterns into fragments and adding common 
fragments into batches. This can help the algorithm execution 
because patterns can have shared fragments that they will be 
searched only once and if not existed a complete batch of 
patterns can be rejected simultaneously, instead of repeating 
the process. As with SPaD, MPaD can also be used with 
wildcards for more advanced pattern detection. 

E. Metadata Analytics 

After the completion of the data analysis several metadata 
analyses can be performed. These analyses depend on several 
factors and the problems that we want to address such as 
sequence alignment, genome comparison, palindromes and 
tandem repeats detection, etc. The importance of the full 
analysis and repeated patterns detection is that it needs to be 
executed only once and our further, detailed, meta analyses in 
the results are standalone processes. Moreover, the results can 
be stored on external storage media, locally or remotely on the 
cloud, and accessed whenever is needed, by class, without the 
need to repeat the analysis or access the full dataset. 

F. Synopsis 

The first step of applying any of the proposed algorithms 
is the construction of the Multivariate LERP-RSA data 
structure. The LERP-RSA data structure construction has a 
space and time complexity of 𝑂(𝑛 log 𝑛)  as it has been 
already discussed thoroughly. In the case of the Multivariate 
LERP-RSA, since we have m sequences of approximate 
length n, the total space complexity is 𝑂(𝑚𝑛 log 𝑛) since the 
total size of the dataset, if it is considered a single sequence is 
𝑚 × 𝑛. However, the logarithmic part of the complexity is not 
equally 𝑚 × 𝑛  since the sequences are independent and 
according to Calude’s theorem [24] we do not expect such 
long repeated patterns. 

When LERP-RSA construction is completed then we 
execute the All Repeated Patterns Detection (ARPaD) 
algorithm which is the second step of the methodology for 
data analytics and pattern detection in biological sequences. It 
is important to mention that both steps are executed once 
during the lifecycle of the data analytics process. ARPaD has 
time complexity 𝑂(𝑚𝑛 log 𝑛) and the results can be stored for 
any kind of meta-analytics. 

 

Fig. 6 LERP-RSA, ARPaD, SPaD and MPaD process execution 
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Having the LERP-RSA data structure and ARPaD results 
stored then we can use SPaD, MPaD or any other algorithm 
on the precalculated results to perform any kind of analysis 
such as sequence alignment, genomic comparisons, detecting 
primers for polymerase chain reaction process, identifying 
protein promoters, palindromes and tandem repeats, etc. The 
full process can be depicted with Fig.6. 

V. EXPERIMENTAL ANALYSES AND APPLICATIONS 

For the presentation of possible applications of LERP-
RSA and the ARPaD family algorithms on different use cases 
a dataset consisted from all SARS-CoV-2 complete genome 
variants has been used. The dataset was recorded on March 
10th, 2021, and downloaded from the National Library of 
Medicine at the National Center for Biotechnology 
Information (NCBI) [30] in its FASTA format (taxid 
2697049). The recorded dataset at the specific date consists of 
55,733 sequences with an average sequence length of 29,812. 
However, there is one sequence, the MT873050.1/USA/MA-
MGH-01491/2020, which has length just 2,859 bases and it 
has been removed from the dataset. The total size of the 
dataset is approximately 1.7GB, half the size of the total 
human genome.  

Although SARS-CoV-2 is a single stranded RNA plus 
virus, the DNA reverse transcribed sequences have been 
recorded in the dataset. For this reason, the standard 
nucleotides alphabet {A, C, G, T} has been used and the 
sequence strings have been cleaned from many non standard 
characters such as N, R, W etc. and replaced with a neutral 
symbol $ to help avoid meaningless patterns. 

For the analysis a laptop computer with an Intel i7 CPU at 
2.6 GHz has been used with 16 GB RAM and an external disk 
of 1 TB for a semi-parallel execution, consuming 
approximately 7 hours. For a wider semi parallel execution, 
four computers with approximately same configuration have 
been used in order to execute per computer one master class 
of the alphabet (A$$, C$$, G$$ and T$$) and took 
approximately 2 hours. The Classification Level used is three, 
creating the 64 codon elements used for the translation process 
to proteins (AAA, AC, AAG, …, TTG, TTT). The results of 
this analysis are enormous and for practical reasons only few, 
interesting, use cases and metadata analyses will be presented 
here. The LERP value used is 60; 20 codons length. The total 
size of the LERP-RSA data structure on disk is 113GB, which 
practically means that it cannot be processed as a single class 
dataset. The larger class though, using the predefined 
classification, is the TTT with size approximately 4GB while 
the smallest is the CCG with size approximately 300MB. 

A summary of the ARPaD results can be found on Table 
I. There are 64 patterns with length three, as many as the 
classes, yet, with length four there are 320 instead of the 
expected 256. This happens because of the patterns which 
include the characters replaced with the neutral symbol $ and 
practically alters the alphabet size to five characters. The 
cumulative number of patterns with length up to 60 characters 
is 36.2 million approximately and the total cumulative 
occurrences of these patterns is approximately 96.2 billion 
(Table I). 

Table II presents the most frequent 60 characters long 
patterns from each one of the 64 classes. The patterns in the 
table are sorted based on the average positioning in all 
sequences (variants). 

TABLE I ARPaD Results Pattern and Occurrences Statistics 

L. Patterns 
Total 

Occurrences 

Cumulative 

Patterns 

Cumulative 

Occurrences 

3 64 1,660,414,227 64 1,660,414,227 

4 320 1,660,359,327 384 3,320,773,554 

5 1,600 1,660,304,426 1,984 4,981,077,980 

6 7,569 1,660,249,245 9,553 6,641,327,225 

7 27,438 1,660,190,602 36,991 8,301,517,827 

8 70,814 1,660,119,119 107,805 9,961,636,946 

9 133,352 1,660,027,964 241,157 11,621,664,910 

10 188,260 1,659,926,448 429,417 13,281,591,358 

11 224,922 1,659,832,352 654,339 14,941,423,710 

12 251,019 1,659,748,345 905,358 16,601,172,055 

13 273,082 1,659,669,551 1,178,440 18,260,841,606 

14 293,766 1,659,592,547 1,472,206 19,920,434,153 

15 314,004 1,659,516,221 1,786,210 21,579,950,374 

16 334,066 1,659,439,977 2,120,276 23,239,390,351 

17 354,032 1,659,363,717 2,474,308 24,898,754,068 

18 373,900 1,659,287,879 2,848,208 26,558,041,947 

19 393,726 1,659,212,566 3,241,934 28,217,254,513 

20 413,518 1,659,137,358 3,655,452 29,876,391,871 

21 433,277 1,659,062,077 4,088,729 31,535,453,948 

22 453,004 1,658,986,770 4,541,733 33,194,440,718 

23 472,682 1,658,911,339 5,014,415 34,853,352,057 

24 492,363 1,658,835,779 5,506,778 36,512,187,836 

25 512,003 1,658,760,092 6,018,781 38,170,947,928 

26 531,620 1,658,684,241 6,550,401 39,829,632,169 

27 551,236 1,658,608,193 7,101,637 41,488,240,362 

28 570,837 1,658,531,896 7,672,474 43,146,772,258 

29 590,389 1,658,455,338 8,262,863 44,805,227,596 

30 609,936 1,658,378,567 8,872,799 46,463,606,163 

31 629,469 1,658,301,541 9,502,268 48,121,907,704 

32 648,987 1,658,224,306 10,151,255 49,780,132,010 

33 668,493 1,658,146,885 10,819,748 51,438,278,895 

34 687,992 1,658,069,281 11,507,740 53,096,348,176 

35 707,492 1,657,992,526 12,215,232 54,754,340,702 

36 726,957 1,657,915,839 12,942,189 56,412,256,541 

37 746,422 1,657,839,970 13,688,611 58,070,096,511 

38 765,901 1,657,764,229 14,454,512 59,727,860,740 

39 785,343 1,657,688,359 15,239,855 61,385,549,099 

40 804,752 1,657,612,290 16,044,607 63,043,161,389 

41 824,126 1,657,535,758 16,868,733 64,700,697,147 

42 843,506 1,657,459,126 17,712,239 66,358,156,273 

43 862,863 1,657,382,229 18,575,102 68,015,538,502 

44 882,214 1,657,305,261 19,457,316 69,672,843,763 

45 901,530 1,657,228,003 20,358,846 71,330,071,766 

46 920,835 1,657,150,209 21,279,681 72,987,221,975 

47 940,133 1,657,072,148 22,219,814 74,644,294,123 

48 959,415 1,656,993,902 23,179,229 76,301,288,025 

49 978,666 1,656,915,484 24,157,895 77,958,203,509 

50 997,897 1,656,836,870 25,155,792 79,615,040,379 

51 1,017,104 1,656,758,090 26,172,896 81,271,798,469 

52 1,036,296 1,656,679,189 27,209,192 82,928,477,658 

53 1,055,505 1,656,600,251 28,264,697 84,585,077,909 

54 1,074,712 1,656,521,257 29,339,409 86,241,599,166 

55 1,093,911 1,656,442,200 30,433,320 87,898,041,366 

56 1,113,080 1,656,363,054 31,546,400 89,554,404,420 

57 1,132,244 1,656,283,873 32,678,644 91,210,688,293 

58 1,151,426 1,656,204,674 33,830,070 92,866,892,967 

59 1,170,610 1,656,125,433 35,000,680 94,523,018,400 

60 1,189,792 1,656,046,122 36,190,472 96,179,064,522 
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The column next to mean positioning is the standard deviation 
of the pattern among all sequences, which takes values 
between 37 and 40 for all patterns. The next two columns are 
the minimum and maximum positions that the patterns have 
been detected in the sequences. The next column is the 
position that each pattern occurs in the reference sequence 
NC_045512.2. As we can observe, we can have some very 
interesting qualitative and quantitative information.  

For example, for the first pattern in Table II for class CGG, 
we have in total 55,473 occurrences where 3,464 happen 
exactly at the same position as in the reference sequence while 
51,673 happen before and 336 after. This can help us conclude 
that up to the specific position most of the variants (51,673) 
have more deletions than insertions in the genome while the 
rest (336) have more insertions than deletions. 

TABLE II Positional descriptive statistics for most frequent patterns per class with length 60  

I. Class Most Frequent Pattern with Length 60 per Class 
Mean 

Pos 

St.D 

Pos 

Min 

Pos 

Max 

Pos 

Ref. 

Pos 
Count Exact Before After 

1 CGG CGGAACGTTCTGAAAAGAGCTATGAATTGCAGACACCTTTTGAAATTAAATTGGCAAAGA 953.1 37.0 590 1027 989 55473 3464 51673 336 

2 GTA GTATGGAAAAGTTATGTGCATGTTGTAGACGGTTGTAATTCATCAACTTGTATGATGTGT 7404.8 37.8 6491 7479 7441 55580 3423 51801 356 

3 GCC GCCTATTAATGTTATAGTTTTTGATGGTAAATCAAAATGTGAAGAATCATCTGCAAAATC 7835.9 37.8 6922 7910 7872 55539 3409 51773 357 

4 GGG GGGAAATCCAACAGGTTGTAGATGCAGATAGTAAAATTGTTCAACTTAGTGAAATTAGTA 12514.7 38.2 11451 12589 12551 55521 3318 51847 356 

5 CGT CGTCAACGTCTTACTAAATACACAATGGCAGACCTCGTCTATGCTTTAAGGCATTTTGAT 13748.7 38.1 12685 13823 13785 55562 3321 51888 353 

6 GTC GTCAACGTCTTACTAAATACACAATGGCAGACCTCGTCTATGCTTTAAGGCATTTTGATG 13749.7 38.1 12686 13824 13786 55563 3321 51889 353 

7 TCT TCTTACTAAATACACAATGGCAGACCTCGTCTATGCTTTAAGGCATTTTGATGAAGGTAA 13756.7 38.1 12693 13831 13793 55566 3317 51896 353 

8 AAG AAGTTTTGGACCACTAGTGAGAAAAATATTTGTTGATGGTGTTCCATTTGTAGTTTCAAC 14374.7 38.1 13311 14449 14411 55580 3325 51899 356 

9 GAC GACCACTAGTGAGAAAAATATTTGTTGATGGTGTTCCATTTGTAGTTTCAACTGGATACC 14382.7 38.2 13319 14457 14419 55577 3325 51896 356 

10 ACC ACCACTAGTGAGAAAAATATTTGTTGATGGTGTTCCATTTGTAGTTTCAACTGGATACCA 14383.7 38.2 13320 14458 14420 55577 3325 51896 356 

11 CCA CCACTAGTGAGAAAAATATTTGTTGATGGTGTTCCATTTGTAGTTTCAACTGGATACCAC 14384.7 38.2 13321 14459 14421 55579 3325 51898 356 

12 CAC CACTAGTGAGAAAAATATTTGTTGATGGTGTTCCATTTGTAGTTTCAACTGGATACCACT 14385.7 38.2 13322 14460 14422 55579 3325 51898 356 

13 ACT ACTAGTGAGAAAAATATTTGTTGATGGTGTTCCATTTGTAGTTTCAACTGGATACCACTT 14386.7 38.2 13323 14461 14423 55579 3325 51898 356 

14 GAA GAAAAATATTTGTTGATGGTGTTCCATTTGTAGTTTCAACTGGATACCACTTCAGAGAGC 14394.7 38.2 13331 14469 14431 55570 3327 51886 357 

15 ATC ATCAGGATGTAAACTTACATAGCTCTAGACTTAGTTTTAAGGAATTACTTGTGTATGCTG 14469.7 38.2 13406 14544 14506 55585 3325 51903 357 

16 AGG AGGATGTAAACTTACATAGCTCTAGACTTAGTTTTAAGGAATTACTTGTGTATGCTGCTG 14472.7 38.2 13409 14547 14509 55584 3325 51902 357 

17 GGA GGATGTAAACTTACATAGCTCTAGACTTAGTTTTAAGGAATTACTTGTGTATGCTGCTGA 14473.7 38.2 13410 14548 14510 55585 3325 51903 357 

18 GAT GATGTAAACTTACATAGCTCTAGACTTAGTTTTAAGGAATTACTTGTGTATGCTGCTGAC 14474.7 38.2 13411 14549 14511 55571 3324 51890 357 

19 TCA TCAGCTGGTTTTCCATTTAATAAATGGGGTAAGGCTAGACTTTATTATGATTCAATGAGT 14903.7 38.2 13840 14978 14940 55587 3325 51905 357 

20 CAG CAGCTGGTTTTCCATTTAATAAATGGGGTAAGGCTAGACTTTATTATGATTCAATGAGTT 14904.7 38.2 13841 14979 14941 55587 3325 51905 357 

21 TTC TTCCATTTAATAAATGGGGTAAGGCTAGACTTTATTATGATTCAATGAGTTATGAGGATC 14913.7 38.2 13850 14988 14950 55552 3325 51870 357 

22 CAA CAAAACGTAATGTCATCCCTACTATAACTCAAATGAATCTTAAGTATGCCATTAGTGCAA 14994.7 38.1 13931 15069 15031 55586 3321 51908 357 

23 AAA AAAACGTAATGTCATCCCTACTATAACTCAAATGAATCTTAAGTATGCCATTAGTGCAAA 14995.7 38.1 13932 15070 15032 55585 3321 51907 357 

24 ACG ACGTAATGTCATCCCTACTATAACTCAAATGAATCTTAAGTATGCCATTAGTGCAAAGAA 14998.7 38.2 13935 15073 15035 55583 3322 51904 357 

25 CCG CCGTAGCTGGTGTCTCTATCTGTAGTACTATGACCAATAGACAGTTTCATCAAAAATTAT 15069.6 38.2 14006 15144 15106 55478 3264 51857 357 

26 CTC CTCATCAGGAGATGCCACAACTGCTTATGCTAATAGTGTTTTTAACATTTGTCAAGCTGT 15442.7 38.2 14379 15517 15479 55531 3323 51851 357 

27 TCG TCGTAAAAACAGATGGTACACTTATGATTGAACGGTTCGTGTCTTTAGCTATAGATGCTT 15942.7 38.1 14879 16017 15979 55488 3318 51813 357 

28 CGA CGATAATGTTACTGACTTTAATGCAATTGCAACATGTGACTGGACAAATGCTGGTGATTA 16498.7 38.2 15435 16573 16535 55465 3316 51794 355 

29 AAC AACATTAGCTGTACCCTATAATATGAGAGTTATACATTTTGGTGCTGGTTCTGATAAAGG 20791.6 39.2 18809 20866 20828 55585 3324 51907 354 

30 TAG TAGCTGTACCCTATAATATGAGAGTTATACATTTTGGTGCTGGTTCTGATAAAGGAGTTG 20796.6 39.2 18814 20871 20833 55578 3323 51901 354 

31 AGC AGCTGTACCCTATAATATGAGAGTTATACATTTTGGTGCTGGTTCTGATAAAGGAGTTGC 20797.6 39.2 18815 20872 20834 55578 3323 51901 354 

32 GCT GCTGTACCCTATAATATGAGAGTTATACATTTTGGTGCTGGTTCTGATAAAGGAGTTGCA 20798.6 39.2 18816 20873 20835 55577 3323 51900 354 

33 CTG CTGTACCCTATAATATGAGAGTTATACATTTTGGTGCTGGTTCTGATAAAGGAGTTGCAC 20799.6 39.2 18817 20874 20836 55578 3323 51901 354 

34 TGT TGTACCCTATAATATGAGAGTTATACATTTTGGTGCTGGTTCTGATAAAGGAGTTGCACC 20800.6 39.2 18818 20875 20837 55577 3323 51900 354 

35 CCC CCCTATAATATGAGAGTTATACATTTTGGTGCTGGTTCTGATAAAGGAGTTGCACCAGGT 20804.6 39.2 18822 20879 20841 55577 3323 51900 354 

36 CCT CCTATAATATGAGAGTTATACATTTTGGTGCTGGTTCTGATAAAGGAGTTGCACCAGGTA 20805.6 39.2 18823 20880 20842 55577 3323 51900 354 

37 CTA CTATAATATGAGAGTTATACATTTTGGTGCTGGTTCTGATAAAGGAGTTGCACCAGGTAC 20806.6 39.2 18824 20881 20843 55577 3323 51900 354 

38 TAT TATAATATGAGAGTTATACATTTTGGTGCTGGTTCTGATAAAGGAGTTGCACCAGGTACA 20807.6 39.2 18825 20882 20844 55611 3323 51933 355 

39 ATA ATAATATGAGAGTTATACATTTTGGTGCTGGTTCTGATAAAGGAGTTGCACCAGGTACAG 20808.6 39.2 18826 20883 20845 55604 3323 51926 355 

40 TAA TAATATGAGAGTTATACATTTTGGTGCTGGTTCTGATAAAGGAGTTGCACCAGGTACAGC 20809.6 39.2 18827 20884 20846 55603 3323 51925 355 

41 AAT AATATGAGAGTTATACATTTTGGTGCTGGTTCTGATAAAGGAGTTGCACCAGGTACAGCT 20810.6 39.2 18828 20885 20847 55599 3322 51922 355 

42 ATG ATGAGAGTTATACATTTTGGTGCTGGTTCTGATAAAGGAGTTGCACCAGGTACAGCTGTT 20813.6 39.2 18831 20888 20850 55600 3323 51922 355 

43 TGA TGAGAGTTATACATTTTGGTGCTGGTTCTGATAAAGGAGTTGCACCAGGTACAGCTGTTT 20814.6 39.2 18832 20889 20851 55600 3323 51922 355 

44 AGA AGAGTTATACATTTTGGTGCTGGTTCTGATAAAGGAGTTGCACCAGGTACAGCTGTTTTA 20816.6 39.2 18834 20891 20853 55603 3323 51925 355 

45 GAG GAGTTATACATTTTGGTGCTGGTTCTGATAAAGGAGTTGCACCAGGTACAGCTGTTTTAA 20817.6 39.2 18835 20892 20854 55603 3323 51925 355 

46 AGT AGTTATACATTTTGGTGCTGGTTCTGATAAAGGAGTTGCACCAGGTACAGCTGTTTTAAG 20818.6 39.2 18836 20893 20855 55602 3323 51924 355 

47 GTT GTTATACATTTTGGTGCTGGTTCTGATAAAGGAGTTGCACCAGGTACAGCTGTTTTAAGA 20819.6 39.2 18837 20894 20856 55602 3323 51924 355 

48 TTA TTATACATTTTGGTGCTGGTTCTGATAAAGGAGTTGCACCAGGTACAGCTGTTTTAAGAC 20820.6 39.2 18838 20895 20857 55603 3323 51925 355 

49 TAC TACATTTTGGTGCTGGTTCTGATAAAGGAGTTGCACCAGGTACAGCTGTTTTAAGACAGT 20823.6 39.2 18841 20898 20860 55605 3324 51926 355 

50 ACA ACATTTTGGTGCTGGTTCTGATAAAGGAGTTGCACCAGGTACAGCTGTTTTAAGACAGTG 20824.6 39.2 18842 20899 20861 55605 3324 51926 355 

51 CAT CATTTTGGTGCTGGTTCTGATAAAGGAGTTGCACCAGGTACAGCTGTTTTAAGACAGTGG 20825.6 39.2 18843 20900 20862 55605 3324 51926 355 

52 ATT ATTTTGGTGCTGGTTCTGATAAAGGAGTTGCACCAGGTACAGCTGTTTTAAGACAGTGGT 20826.6 39.2 18844 20901 20863 55605 3324 51926 355 

53 TTT TTTTGGTGCTGGTTCTGATAAAGGAGTTGCACCAGGTACAGCTGTTTTAAGACAGTGGTT 20827.6 39.2 18845 20902 20864 55604 3324 51925 355 

54 TTG TTGGTGCTGGTTCTGATAAAGGAGTTGCACCAGGTACAGCTGTTTTAAGACAGTGGTTGC 20829.6 39.2 18847 20904 20866 55603 3324 51924 355 

55 TGG TGGTGCTGGTTCTGATAAAGGAGTTGCACCAGGTACAGCTGTTTTAAGACAGTGGTTGCC 20830.6 39.2 18848 20905 20867 55603 3324 51924 355 

56 GGT GGTGCTGGTTCTGATAAAGGAGTTGCACCAGGTACAGCTGTTTTAAGACAGTGGTTGCCT 20831.6 39.2 18849 20906 20868 55606 3324 51927 355 

57 GTG GTGCTGGTTCTGATAAAGGAGTTGCACCAGGTACAGCTGTTTTAAGACAGTGGTTGCCTA 20832.6 39.2 18850 20907 20869 55605 3324 51926 355 

58 TGC TGCTGGTTCTGATAAAGGAGTTGCACCAGGTACAGCTGTTTTAAGACAGTGGTTGCCTAC 20833.6 39.2 18851 20908 20870 55565 3323 51891 351 

59 GGC GGCTTATAGGTTTAATGGTATTGGAGTTACACAGAATGTTCTCTATGAGAACCAAAAATT 24230.4 39.4 22247 24305 24267 55547 3224 51973 350 

60 GCA GCACAAGCTTTAAACACGCTTGTTAAACAACTTAGCTCCAATTTTGGTGCAATTTCAAGT 24390.4 39.4 22407 24465 24427 55556 3221 51986 349 

61 CTT CTTTAAACACGCTTGTTAAACAACTTAGCTCCAATTTTGGTGCAATTTCAAGTGTTTTAA 24397.4 39.4 22414 24472 24434 55567 3226 51992 349 

62 CGC CGCTTGTTAAACAACTTAGCTCCAATTTTGGTGCAATTTCAAGTGTTTTAAATGATATCC 24406.4 39.3 22423 24481 24443 55556 3225 51981 350 

63 TCC TCCTTACTGCGCTTCGATTGTGTGCGTACTGCTGCAATATTGTTAACGTGAGTCTTGTAA 26304.0 40.8 24321 26379 26341 55564 3211 52027 326 

64 GCG GCGCTTCGATTGTGTGCGTACTGCTGCAATATTGTTAACGTGAGTCTTGTAAAACCTTCT 26312.3 39.6 24329 26387 26349 55478 3211 51941 326 
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In the same Table II, some patterns are marked with the 
same color. These variants are practically overlapping, as we 
can observe from their mean position which increments by 
one or a few more characters. These patterns can be further 
expanded with the use of other 60 characters long patterns or 
shorter patterns to form common regions in the sequences 
where most of the sequences are identical. Moreover, this 
information can be used for sequence alignment purposes, 
although it is a more demanding task, which will be presented 
in future work. The patterns in Table II create 17 different 
blocks in the SARS-CoV-2 sequence. These blocks practically 
separate the vast majority of the sequences to common regions 
and more blocks can be used with shorter patterns. It needs to 
be mentioned that this is not valid for all sequences since some 
may not occur in specific sequences due to mutations. Still, 
shorter patterns can reveal these blocks. 

Another application of the proposed methodology is the 
comparison of genomes among different organisms. For 
example, in Table III we have all patterns from SARS-CoV-2 
that exist at least once in every variant of the virus and has 
length greater or equal to 12. These patterns are compared 
with other organisms’ genomes such as the MERS virus (610 
total variants, taxid 1335626), SARS virus (74,121 variants,  

TABLE III Comparison between different organisms 

L. 

Pattern with Appearance 

in Every SARS-CoV-2 

Variant 

Organism Genome 

MERS 

|610| 

SARS 

|74,121| 

GRCh38.p12 

|1| 

13 AAAAGACTGTGTT 0 73,796 177 

12 AAAAGACTGTGT 0 73,796 518 

13 AAACCTCATAATT 0 73,805 139 

12 AAACCTCATAAT 0 73,806 410 

12 AAAGACTGTGTT 0 73,805 614 

15 AAAGTTGATGGTGTT 0 73,769 8 

14 AAAGTTGATGGTGT 0 73,769 20 

13 AAAGTTGATGGTG 0 73,769 84 

12 AAAGTTGATGGT 0 73,769 279 

12 AACCTCATAATT 0 73,805 337 

14 AAGTTGATGGTGTT 0 73,769 24 

13 AAGTTGATGGTGT 0 73,769 59 

12 AAGTTGATGGTG 0 73,769 224 

12 AATTGTGTACTT 0 74,089 504 

13 ACTCAGAGTAGAA 0 73,817 76 

12 ACTCAGAGTAGA 0 73,817 218 

12 AGTCATTTTGCT 548 73,814 509 

13 AGTTGATGGTGTT 0 73,769 89 

12 AGTTGATGGTGT 1 73,769 236 

12 CTAAAATGTCAG 0 73,804 584 

13 CTAAAATGTCAGA 0 73,804 161 

12 CTAGGTTTTTCT 0 73,792 557 

13 CTAGGTTTTTCTA 0 73,792 110 

12 CTCAGAGTAGAA 0 73,817 328 

12 CTTAATGACTTT 1 73,789 480 

12 CTTGTTACAATG 0 73,826 235 

13 GTTGATGGTGTTG 0 73,772 123 

12 GTTGATGGTGTT 0 73,796 342 

12 GTTTTAAGGAAT 0 73,784 518 

12 TAAAAACACAGT 0 73,987 928 

14 TAAAAGACTGTGTT 0 73,796 42 

12 TAAAAGACTGTG 0 73,796 422 

13 TAAAAGACTGTGT 0 73,796 112 

12 TAAAATGTCAGA 0 73,804 905 

12 TAGGTTTTTCTA 2 73,792 930 

12 TCAAGCTTTTTG 0 73,786 338 

13 TCTTAATGACTTT 0 73,789 175 

12 TCTTAATGACTT 0 74,060 432 

12 TTATGAAGATTT 0 73,810 879 

12 TTGATGGTGTTG 0 73,772 445 

taxid 694009) [30] and the human genome (GRCH38.p12) 
[29]. As we can observe, MERS virus has only one common 
pattern with SARS-CoV-2 that occurs in most of its variants. 
Yet, there are three more patterns that exist in one or two 
variants only, while all patterns exist practically in all variants 
of SARS virus, which it can be explained since SARS and 
SARS-CoV-2 belong to the same family of viruses. What it 
looks impressive is that all patterns exist in the human genome 
too, with different number of occurrences varying from 8 up 
to 930 but slightly longer patterns cannot be found in human 
genome. A possible application of this information is the 
determination of primers for PCR analyses. Since the patterns 
exist in all SARS-CoV-2 variants they can be used in pairs to 
amplify, practically, the largest part of the virus. However, if 
used with human DNA sample then PCR is not possible since 
human genome could also be amplified. This can be bypassed 
for the specific purpose with the use of longer patterns, e.g., 
with length 60 as the pattern in Table II, that do not exist in 
the human genome. Yet, since these patterns are not present in 
all SARS-CoV-2 variants two couples must be used that cover 
all possible cases. This can help to use PCR not just on specific 
SARS-CoV-2 proteins but on much larger parts of the 
genome. For example, if we use the 30 characters long 
patterns GTGCTGGTAGTACATTTATTAGTGATGAAG 
and GCGTGTAGCAGGTGACTCAGGTTTTGCTGC 
occurring at positions 934 and 27039 respectively, it is 
possible to amplify approximately 90% of the genome. 

Finally, in Table IV some examples from palindromes and 
tandem repeats are presented. All the example patterns have 
been identified as repeated patterns and it is very easy to be 
filtered from the ARPaD results. The first six patterns present 
tandem repeats of total length eight or nine characters, 
constructed from tandems of length two, three or four 
characters. The next six patterns are palindromes of length  

TABLE IV Palindromes and Tandems in SARS-CoV-2 

Occ. 
Indicative 

Pattern 
(Indicative) Positions (Sequence; Position) 

48 ACT ACT ACT 
39416;6680| 39422;6681| 39426;6680| 41863;6680| 

42021;6714| 42107;6701| 1872;26193| 2994;26158| … 

9 TAC TAC TAC 
19934;5142| 47329;4899| 32377;26501| 39416;6679| 

39422;6680| 39426;6679| 41863;6679| 42021;6713| 

42107;6700 

24 TA TA TA TA 

52242;29557| 2558;26611| 2574;26619| 3445;26620| 

3706;26620| 3707;26650| 15554;26442| 15882;26620| 

26339;26620| 26829;26631| 26830;26654| 

26831;26654| 26832;26620| 26838;26646| 

26839;26638| 26840;26635| 26845;26634| 

26846;26620| 35693;26417| 2006;29588| 16287;29540| 

12048;4110| 17040;4061| 43147;4073 

25 ATT ATT ATT 

14753;9283| 1946;3702| 23099;3701| 23100;3700| 

11488;27208| 15025;27248| 17567;27223| 

17627;27195| 17634;27195| 17637;27195| 

22794;27231| 24782;27211| 25013;27213| 

25407;27213| 25411;27216| 26451;27215| 

27886;27211| 34659;5919| 16881;3651| 1155;2287| 

1330;2339| 14441;2287| 16206;2302| 21986;2287| 

23491;27348 

111,417 GAT GAT GAT 
20107;3168| 26403;3196| 29263;3180| 34501;3167| 

20669;3151| 29926;3151| 30489;3151| 48216;3151| … 

55,768 CATG CATG 
349;17621| 431;17621| 487;17621| 1021;17637| 

1220;17621| 1372;17672| 1414;17672| 1484;17672| … 

55,327 ACGT TGCA 
26543;17027| 28626;19409| 44499;19425| 4053;19453| 

1255;19409| 1918;19461| 11047;19409| … 

55,327 AGCT TCGA 
21505;6023| 29833;5980| 177;5980| 1099;6028| 

1192;5980| 1583;6031| 2221;6031| 2228;6022| … 

166,954 CATG GTAC 
23201;10101| 23129;25188| 12444;25158| 5955;25145| 

38783;25195| 53572;5678| 12681;5678| 20422;5678| … 

2 ACATG GTACA 21320;5677| 21321;5677 

54 GCATG GTACG 
9550;5676| 44832;5715| 44833;5709| 44848;5709| 

44860;5713| 44862;5715| 44879;5715| 44883;5715| … 

2 AATTC CTTAA 44737;17648| 17874;1072 
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eight and ten characters. Additionally, the occurring positions 
in the sequences are presented, truncated for patterns with 
many occurrences. 

VI. CONCLUSIONS 

The current paper presents data structures and algorithms 
specifically created for advanced text mining and pattern 
detection on discrete sequences that are adapted for biological 
sequences. More particularly, the purpose of the paper is to 
present a proof of concept and technology of the 
aforementioned algorithms, specifically for use on big data, 
with the analysis of more than 55 thousand variants of the 
complete SARS-CoV-2 genome. Using ordinary computers, it 
has been presented that it is possible to perform advanced 
pattern detection and produce results that can be fed as input 
to algorithms or used indirectly from other methodologies to 
perform even more detailed or diverse meta analyses. More 
accurately, it has been presented that with the use of LERP-
RSA data structure and the single execution of ARPaD 
algorithm all repeated patterns can be detected, forming a vast 
database of results that algorithms such as SPaD and MPaD 
can filter and explore to perform several meta analyses. Both 
LERP-RSA data structure and ARPaD algorithm are very 
efficient and can produce the results in a few hours using 
commodity hardware while SPaD and MPaD can perform 
various analyses in few seconds. 

The purpose of the current work is to unveil the potential 
benefits from the use of LERP-RSA and ARPaD for 
bioinformatics and computational biology purposes. In future 
work a more detailed and thorough description on particular 
problems will be presented with more custom-made 
methodologies and algorithmic variations. 
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