
Pattern Detection in Multiple Genome Sequences

with Applications:

The Case of All SARS-CoV-2 Complete Variants

Konstantinos F. Xylogiannopoulos

Department of Computer Science

University of Calgary

Calgary, AB, Canada

kostasfx@yahoo.gr

Abstract — Pattern detection and string matching are

fundamental problems in computer science and the accelerated

expansion of bioinformatics and computational biology have

made them a core topic for both disciplines. The SARS-CoV-2

pandemic has made such problems more demanding with

hundreds or thousands of new genome variants discovered

every week, because of constant mutations, and the need for fast

and accurate analyses. Medicines and, mostly, vaccines must be

altered to adapt and efficiently address mutations. The need of

computational tools for genomic analysis, such as sequence

alignment, is very important, although, in most cases the

resources and computational power needed is vast. The

presented data structures and algorithms, specifically built for

text mining and pattern detection, can help to address efficiently

several bioinformatics problems. With a single execution of

advanced algorithms, with limited space and time complexity, it

is possible to acquire knowledge on all repeated patterns that

exist in multiple genome sequences and this information can be

used for further meta analyses. The potentials of the presented

solutions are demonstrated with the analysis of more than

55,000 SARS-CoV-2 genome sequences (collected on March 10,

2021) and the detection of all repeated patterns with length up

to 60 nucleotides in these sequences, something practically

impossible with other algorithms due to its complexity. These

results can be used to help provide answers to questions such as

all variants common patterns, sequence alignment, palindromes

and tandem repeats detection, genome comparisons, etc.

Keywords — repeated patterns detection, LERP-RSA, ARPaD,

SPaD, MPaD, SARS-CoV-2, COVID-19

I. INTRODUCTION

The current COVID-19 pandemic has turned all the lights,
commercial, scientific, political towards the biotechnology
industry and its efforts to address as soon as possible the virus
consequences. Major pharmaceutical companies worldwide
have invested enormous amounts in new technologies for the
past couple of decades and the first promising results from
technologies such the mRNA vaccines have become visible.
Indeed, the fast expansion of the biotechnology industry with
the help of advanced computing infrastructures, such as cloud
computing, has opened a new era in the domain.

Since the beginning of computer science some of the most
common problems addressed were related to pattern matching
and searching for bioinformatics. There is a plethora of
completely diverse methodologies and algorithms since early
1970 that were developed to deal with the simplest problems,
such as to determine if a specific string exists in a biological

sequence, to more complex such as multiple sequence
alignment. Furthermore, the development of artificial
intelligence and deep learning provided more sophisticated
tools for image analysis or clinical data analytics.

The analysis of biological sequences such as DNA, RNA,
proteins, etc. it is considered a standard string problem in
computer science since such sequences are built from
predefined discrete alphabets like nucleotides or amino-acids
encoding. What make these string problems to be challenging
in bioinformatics and computational biology, from
mathematical and computer science perspective, is the size of
the strings and the computationally intensive procedures to
answer them, which in some cases cannot provide solutions in
short time and with regular resources. For example, the human
genome, a 3.1GB long string, it was initially sequenced in
2001 [1] and it was practically impossible to be analyzed as a
single piece of information since only supercomputers could
keep on memory such long strings. Nowadays, advanced
hardware and clustering framework systems are used for such
analyses since, for example, the construction of a suffix tree,
just for the first human chromosome with size 270MB,
requires 26GB of memory [4]. New technologies, for instance,
Next Generation Sequencing (NGS) from top leading
companies require advanced computational tools and
algorithms, specifically designed for string matching
problems in order to perform sequence alignment in multiple
(usually millions) genomic fragments simultaneously.

In [31] it was presented for first time the analysis of the
full human genome with the detection of all repeated patterns.
However, that initial attempt was just a proof of concept and
technology. The current work will present that is possible,
with limited resources and in short time, to analyze thousands
of complete genomes and detect all repeated patterns that exist
in them. Moreover, it will be presented how the combination
of an advanced data structure and the results of such analysis
can help to answer many pattern detection related problems.
Finally, the possibilities and the potentials of the tools
described to be used in specific type of string problems with
applications on a large dataset comprised from all SARS-
CoV-2 full genome variants recorded on March 10, 2021, will
be presented.

In order to achieve such results, the Multivariate Longest
Expected Repeated Pattern Reduced Suffix Array (LERP-
RSA) data structure will be used in combination with the All
Repeated Patterns Detection (ARPaD) algorithm [26], [27],
[28]. In brief LERP-RSA is a variation of the standard Suffix
Array [25] data structure using though the actual,
lexicographically sorted, suffix strings. The ARPaD
algorithm, both in its recursive and non-recursive variant, has

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted April 14, 2021. ; https://doi.org/10.1101/2021.04.14.439840doi: bioRxiv preprint

https://doi.org/10.1101/2021.04.14.439840

the ability to scan only once the LERP-RSA and detect every
pattern occurs at least twice in it. Additionally, the algorithm
is pattern agnostic, which means that it requires no input rather
it scans the data structure once and returns all results in a
deterministic way regardless of string or pattern attributes, i.e.,
frequency, length, alphabet, overlapping or not, etc.

So far, LERP-RSA and ARPaD have been extensively
used in many, diversified, domains with exceptional results,
regardless of hardware limitations and the vast datasets in
most cases, making them a state-of-the-art for big data
problems in text mining and pattern detection [28]. As an
example of resource demanding process in the bioinformatics
domain, it is worth mentioning that an alignment between all
complete SARS-CoV-2 genome variants was tried on the
National Center for Biotechnology Information website,
which holds the genome dataset, to receive a message that for
more than 500 sequences alignment the user has to download
the dataset and use own resources to perform the alignment.

The contribution of the current work is the analysis of
more than 55,000 SARS-CoV-2 genome variants discovering
all repeated patterns. These initial results have been used for
further meta analytics, for example, discovering the longest
pattern, with length 15 nucleotides, that exists among every
variant of SARS-CoV-2, comparison among different
organisms such as MERS, SARS and Human, identifying
every frequent and infrequent pattern exists, etc. Additional
applications are sequence alignment, detection of special
attributes patterns such as palindromes and tandem repeats,
etc. The proposed methods though, have also limitations such
as the need for the sequence analyzed to have specific
properties and in cases of simple, specific, problems this
process could also be more time consuming. However, the
benefit of using them on many diverse problems concurrently
can overcome any initial hesitation.

The rest of the paper is organized as follows: Section II
presents related work in string matching. Section III defines
the problem and gives the motivation behind it. Section IV
presents the proposed data structures and algorithms for
pattern detection in biological sequences. Section V presents
several applications conducted on the available dataset of all,
complete SARS-CoV-2 variants and discusses the
corresponding results. Finally, Section VI presents the
conclusions and future extensions of the presented work.

II. RELATED WORK

From the very early stages of bioinformatics and the use
of computers to perform biological sequence analyses, string
matching problems had a crucial role. Many new algorithms
and methodologies are presented every year that improve
older approaches or introduce new [1], [3], [4]. Mainly, these
methods and algorithms can be classified into two broad
categories, the exact matching and the approximate matching
[1], [4]. The first category is related to string problems where
we seek to find patterns matching entirely the input string such
as, for example, specific sequence matching a protein
transcription promoter. The second category can be much
more complicated since many mutations, insertions, deletions
and base changes may have occur making exact matching
difficult, yet, very important, for example, to detect codon
sequences which can produce the same protein.

More precisely, exact matching algorithms have
dominated the field since early ‘70s. Many different

approaches have been developed such as character or index
based. This kind of methodologies include brute force
algorithms where characters of the matching pattern are
directly compared to the reference sequence. This leads to
heavy computational algorithms, mainly because of the
absence of any preprocessing and special data structures. The
standards for such algorithms are the Boyer-Moore algorithm,
usually used as a benchmark for efficiency measurement, that
uses a shifting step based on a table holding information about
mismatch occurrences and the Knuth-Morris-Pratt algorithm
that uses a supplementary table to record temporal information
during execution [1], [3], [4], [5], [6]. Another algorithm,
variation of the first one mentioned, is the Boyer-Moore-
Smith [7] while another extension is the Apostolico-Giancarlo
algorithm based on both of the BM and KMP algorithms [8].
Additionally, we have the Raita algorithm based on
dependencies that occur among successive characters [9].
More recent algorithms are the BBQ algorithm which
introduces parallel pointers that perform searching from
opposite directions [10] and several hybrid methods such as
the KMPBS [11] and Cao et al. using statistical inference [12].

Except the brute force algorithms we have another
important category, the hashed based [1], [3], [4]. Such
algorithms are based on the hashing concept in order to
produce hashing values and compare patterns rather than
performing a direct character comparison. The main benefit
from such approach is the considerable improvement of
calculation time [13], yet, as with most hashing algorithms,
they suffer from the hashing collision problem. Typical
examples of such algorithms is the Karp-Rabin which is based
on modular arithmetic to perform hashing [14] and the Lecroq
algorithm, which first splits the sequence to subsequences and
then the pattern matching is performed on each sequence [15].
Classic algorithms are also the non q-gram algorithms such as
the Wu and Manber [16] where the searching pattern is
completely encoded for pattern matching purposes.
Furthermore, more recently developed algorithms are the
multi-window integer comparison algorithm based on suffix
strings data structures such as the Franek-Jennings-Smyth
string matching algorithm [18] and the automata skipping
algorithm developed by Masaki et al. [17]. More advanced
hybrid approaches have also been presented that combine best
practices from different approaches in order to optimize their
performance such as, for example, Navarro’s algorithm [19]
which can bypass characters using suffix.

A very well known and heavily used algorithm is
implemented and used by the National Center for
Biotechnology Information (NCBI). The Basic Local
Alignment Search Tool (BLAST) and its variants [21] is used
for comparing basic sequences, such as nucleotides
sequences, found in DNA and/or RNA. The algorithm takes
as inputs the desired string to search and the sequence to
search into. Additionally, BLAST can execute inexact string
matching, something usually extremely computationally
intensive, for multiple sequence alignment purposes. Another
algorithm, more accurate than BLAST, yet, more resources
hungry and slower, is the Smith-Waterman algorithm [20].

An important aspect of pattern detection is the discovery
of specific type of patterns in biological sequences such as
palindromes and tandem repeats. The importance of such
discoveries can be presented with one of the latest marbles in
biology, the discovery of the clustered regularly interspaced
short palindromic repeats (CRISPR) in bacteria and the use of

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted April 14, 2021. ; https://doi.org/10.1101/2021.04.14.439840doi: bioRxiv preprint

https://doi.org/10.1101/2021.04.14.439840

CRISPR-Cas9 protein that allows to interfere with DNA in a
molecular level [22]. Another well studied problem is the
detection of short tandem repeats, something very difficult
over whole genome. This kind of repeats are classic examples
of repeats in protein encoding regions and are closely related
to serious diseases, such as the Huntington’s disease [23]. An
example of methods for tandems detection can be found in
[23] which is based on DNA alignment using LAST software.

III. PROBLEM DEFINITION

So far, we have presented several algorithms that are used
in bioinformatics and computational biology. Yet, all these
algorithms have as a common attribute the input pattern that
is under investigation. Such type of algorithms can address
specific problems and require each time to access the full
dataset of one or more sequences to operate and produce
results, which is inefficient.

To address bioinformatics and computational biology
problems, it would be more preferable to have a data structure
or a database of information that can be used for as many as
possible queries and be transformed to valuable knowledge.
Moreover, the full process should be able to (a) be contacted
on commodity computers with limited resources, (b) keep the
cost low, (c) allow scale up to deal with larger datasets and (c)
address several different problems concurrently.

IV. PROPOSED APPROACHES

The approaches on biological problems, which they will
be described in the next sections of the paper, are applications
of the Longest Expected Repeated Pattern Reduced Suffix
Array (LERP-RSA) data structure [26], [27], [28] and the
related family of algorithms such as ARPaD, SPaD and MPaD
that are specifically designed for the LERP-RSA [27], [28].
Several applications of the aforementioned data structure and
algorithms will be presented, as a pipeline of execution, that
can either extract useful information directly from the dataset
or the results generated, or can be used as an input for other
type of meta analytics in biological sequences.

A. LERP-RSA Data Structure

The Longest Expected Repeated Pattern Reduced Suffix
Array (LERP-RSA) is a special purpose data structure for text
mining and pattern detection, which has been developed and
optimized to work with a variety of algorithms, with
applications in many domains. Manber and Myers [25]
defined the suffix array of a string as the array of the indexes
of the lexicographically sorted suffix strings, which allows to
perform several tasks on the string, such as pattern matching.
The LERP-RSA is a variation of the suffix array, yet, it uses
the actual suffix string and not only the position indexes.
Although this type of data structure can have quadratic space
complexity, which was one of the first disadvantage to bypass,
with the use of the LERP reduction the data structure space
complexity can be optimized to log-linear with regard to the
input string. This has been proved with the Probabilistic
Existence of Longest Expected Repeated Pattern Theorem
[27], [28] that can be briefly stated as follows:

Theorem: If a string is considerably long and random and a
pattern is reasonably long then the probability that the pattern
repeats in the string is extremely small.

The theorem builds us the necessary foundation to
calculate the longest expected repeated pattern given a very

small probability that a repeated pattern exists with longer
length. Therefore, the length of the suffix strings used to create
the LERP-RSA, can be reduced significantly by using the
following, briefly stated, Lemma [27], [28]:

Lemma: An upper bound for the Longest Expected Repeated
Pattern (LERP) length given a probability 𝑃(𝑋) in a string of
length n with the use of an alphabet Σ of size m is:

𝐿𝐸𝑅𝑃 = ⌈𝑙𝑜𝑔𝑚
𝑛2

2𝑃(𝑋)
⌉

where 𝐿𝐸𝑅𝑃 ≪ 𝑛 and 𝑃(𝑋) > 0.

The abovementioned Lemma is directly inducted from the
Theorem and it has been proven in [27], [28]. Of course, the
calculation of the longest repeated pattern can be performed
by other methods, however, the use of the Lemma has some
advantages since, e.g., building the suffix tree and determining
the longest repeated pattern of a string on the suffix tree is a
heavy computational process and in most of the cases it is
impossible because of the string size. For example, in [28] the
longest repeated patterns that exist in the first one trillion
digits of π have been calculated, knowing in advance the upper
limit for their length, while any other algorithmic approach is
beyond any possibility with the currently available hardware.
Yet, the Theorem and the Lemma have as a prerequisite that
the string is random which limits the application for strings
that do not have a random behavior. Briefly described,
randomness means that every character of the alphabet occurs
with the same frequency and this property should be valid for
reasonably long substrings, following the normality of
irrational numbers property as presented by the Calude’s
Theorem [24]. Although this is true for most of the cases,
unfortunately, biological sequences do not have random
behavior and this problem can be solved with the MLERP
process as it is described in [26], [28] and it has been used to
analyze the full human genome [31].

The process of constructing the LERP-RSA with the use
of the Lemma can be described with the following example.
Let’s assume that the input string is actactggtgt. If we
construct the array of the suffix strings then we will receive
the structure of Fig.1.a where all suffix strings have been
recorded, without sorting. Obviously, this structure has a
quadratic space complexity of exact size 𝑂(𝑛(𝑛 + 1) 2)⁄ or
𝑂(𝑛2). If the size of the string becomes medium size, e.g.,
10,000 characters, as an average human gene, then the space
needed just to store the suffix strings, without sorting them,
explodes to 100 million. What we can do to bypass the
problem, for the initial example, is to reduce the size of the
suffix strings to an arbitrary size to, e.g., five characters and
create the structure of Fig.1.b. However, in this case we have
the following to consider: (a) if the repeated patterns that exist
and we want to discover are longer then we will miss all of
them with length longer than the five characters and (b) if the
repeated patterns are shorter then we are wasting space and
time for sorting and analysis. This can be solved with the
Lemma and the construction of the LERP-RSA of Fig.1.c,
since if we reduce the size of suffix strings to three characters,
for example, then the longest pattern that exists and is the act
can be located at position 0 and 3. The use of value three is an
example to illustrate the use the Lemma since it is not accurate
for the specific, very sort, example. Since the LERP has length
𝑂(log 𝑛), with regard to the size of the input string, then the
space complexity of the entire LERP-RSA is 𝑂(𝑛 log 𝑛).

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted April 14, 2021. ; https://doi.org/10.1101/2021.04.14.439840doi: bioRxiv preprint

https://doi.org/10.1101/2021.04.14.439840

Fig.1 Suffix Array and Reduced Suffix Array for actactggtgt

The LERP-RSA data structure has some unique features
that allows to be characterized as a state-of-the-art data
structure for pattern detection and text mining purposes [27],
[28]. These attributes are:

a) Classification based on the alphabet. The classification
is determined by the Classification Level which is the power
that the cardinality of the alphabet can be raised. For DNA
sequences using the four nucleotides alphabet A, C, G and T,
the classification can vary from one class, 𝛴𝐶𝐿 = 40 = 1, for
classification level zero to, e.g., 16 classes, 𝛴𝐶𝐿 = 42 = 16,
for classification level two with the construction of subclasses
of suffix strings starting with aa, ac, ag, at, ca, cc, cg, ct, ga,
gc, gg, gt, ta, tc, tg and tt. Therefore, instead of having one
class we can have 16 with significantly smaller size each one,
one sixteenth of the total if we assume equidistribution.

b) Network and cloud distribution based on the classes.
Each class, regardless size, can be constructed or distributed
independently over a local network or on the cloud. The
classes can be stored and accessed when needed.

c) Full and semi parallelism. Since we have several,
separate, classes the analysis and pattern detection algorithms
can be executed on each class in parallel in full mode, all
simultaneously, or semi-parallel mode where a block of
classes is analyzed and when finished the analysis continues
with the second block, etc.

d) Self-compression. When we use classification then we
have in each class those suffix strings that specifically start
with the class string. Therefore, the initial characters defining
the class of the suffix strings in each class can be truncated
and conserve space.

e) Indeterminacy. More space can be conserved for the
cases that we do not care about the positions of the patterns
rather than only for their existence. In this case the position
indexes can be omitted.

f) The LERP-RSA can be constructed to describe multiple
strings and allow the detection of patterns that exist not only
in a single string but also among two or more different strings.

For many real world cases, such as biological sequences
analysis and pattern detection, it is important to perform such
tasks on multiple sequences. The last attribute described above
is very important for these cases since it allows to detect

Fig.2 LERP-RSA construction for actactggtgt

Fig.3 LERP-RSA construction for ctactggtact

patterns that are not repeated per se, yet, they exist once in
several sequences, making them repeated. For this purpose,
we need to construct the Multivariate LERP-RSA data
structure as it can be described with the following example.

Let’s assume that we have two sequences actactggtgt and
ctactggtact and, moreover, the LERP value is five while we
have decided to use Classification Level two. In order to
construct the data structure, we start with the first sequence at
position zero and we use a sliding window of size five to
determine the suffix strings (Fig.2.a). Additionally, for each
position and suffix string we record the first two characters
and we store the suffix string to the corresponding class
(Fig.2.b). For example, the first five characters long substring
of the first sequence is the actac and it will be stored in class
ac with leading numbers to describe the sequence index (1,
blue) and position in the specific sequence (0, black). We
continue with the next substring ctact starting with ct which
will be stored in class ct. We continue the process until
position 9 where the substring gt with length two, exactly as
the classification level, is the last one to be stored. The process
of storing the suffix strings in each class (different colors for
the example) can be performed directly or by sorting them.
The same process repeats for the second sequence (Fig.3.a –
Fig.3.b). Finally, the subclasses are combined together to
create the lexicographically sorted Multivariate LERP-RSA
(Fig.4.a) where each class is presented with different color.

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted April 14, 2021. ; https://doi.org/10.1101/2021.04.14.439840doi: bioRxiv preprint

https://doi.org/10.1101/2021.04.14.439840

Fig.4 Multivariate LERP-RSA and ARPaD results

B. ARPaD Algorithm

After constructing the Multivariate LERP-RSA data
structure we execute the All Repeated Patterns Detection
algorithm. The algorithm has two versions, the recursive left-
to-right and the non-recursive top-to-bottom [28]. Both
versions have the same time complexity 𝑂(𝑛𝑙𝑜𝑔𝑛). Since it is
easier to present with an example the recursive, we will use
the LERP-RSA of the previous subsection example in Fig.4.a.

First, the algorithm starts with the first class it has been
created, ac, and counts how many strings starts with it (Fig.
4.b). Since there are four suffix strings in this class then then
the class itself is a repeated pattern. The algorithm constructs
a longer pattern with the first letter of the nucleotides alphabet,
a, the aca. This does not exist and the algorithm continues
with the other letters of the alphabet until it finds the pattern
act which also appears four times (Fig.4.b). The process is
repeated for longer patterns, starting with acta, until it finds
the actg occurring twice and the longer actgg (Fig.4.b) which
also occurs twice. With this the algorithm has discovered all
repeated patterns of class ac or similarly starting with ac. The
process is executed for each class and the ARPaD algorithm
discovers at the end all repeated patterns (Fig.4.b). The non-
recursive top-to-bottom version works in a similar way by
comparing directly suffix string tuples.

Based on the above presented example, we can observe
that ARPaD is executed on each class independently and,
therefore, it can be executed in parallel. The only constrains
for such execution is the available hardware, processors or

cores and memory. For example, if the available resources do
not allow for full parallel execution, we can start with the
classes ac and ta which have the same number of suffix
strings. Then we observe that class ct has five suffix strings
while classes gg and gt have also five suffix strings combined.
Therefore, we can execute in semi-parallel mode class ct with
gg and when gg finishes, obviously before ct, we continue
with class gt. This order of execution optimizes resources
usage and minimizes idle time for the CPU.

Of course, we can execute ARPaD independently on each
class, assuming enough resources. This can be achieved also
for datasets that significantly exceed the available local
resources by using the network and/or cloud distribution. This
property of LERP-RSA and ARPaD allows to use completely
isolated and diversified hardware, e.g., smartphones, to
analyze each class in complete isolation from other classes
instead of using expensive hardware infrastructure or
clustering frameworks such as Hadoop and Spark.

C. SPaD Algorithm

Another important algorithm of the ARPaD family is the
Single Pattern Detection (SPaD) algorithm [28]. The SPaD
algorithm is mainly used for meta-analyses purposes, when
we want to discover specific information in the ARPaD results
or LERP-RSA, and its correctness has been proven in [28].
Moreover, especially with the LERP-RSA it can be extremely
efficient with time complexity 𝑂(1) with regard to the input
string. Although ARPaD can be executed once to detect all
repeated patterns that can be stored for later meta-analyses
purposes, SPaD has to be used every time we need to, e.g.,
check the existence of non-repeated patterns. For this purpose,
we execute the SPaD directly on the LERP-RSA data structure
since single occurred patterns can exist only in the LERP-
RSA, if they do exist. There are two distinct cases of SPaD
execution with regard to the length of the pattern we need to
find; if a pattern is equal or shorter than LERP or if a pattern
is longer than LERP.

Using the previously stated example we can describe the
SPaD algorithm using two sample patterns with regard to their
size in comparison to the LERP value. The first pattern is the
gtg, which is not repeated pattern since we cannot find it in the
ARPaD results and it is shorter than the LERP value. Since
the pattern starts with gt, SPaD starts in the appropriate gt class
and using the binary search algorithm approach finds the
suffix string in the class, gtact (Fig.5.a-1). Since gtg is
lexicographically after gtact, the algorithm continues in the
second half of the gt class and finds once the pattern in the
suffix string gtgt (Fig.5.a-2). Therefore, the pattern gtg exists
once in the first sequence at position seven.

The next example is the tactggtg pattern which is longer
than the LERP value. The first step is to break down the
pattern under investigation to fragments of size LERP, except,
of course, the last one which can be smaller. Therefore, for the
particular pattern we have two fragments, the tactg and the
gtg. The next step for the SPaD algorithm is to search for each
fragment and record if it exists and where (Fig.5.b). If at least
one of the fragments do not exist in the LERP-RSA then,
obviously, the pattern does not exist in any sequence.
However, if we find all fragments to occur somewhere in the
LERP-RSA then SPaD has to check if the full pattern exists.
In order to perform this SPaD uses the Crossed Minimax
Criterion [22]. For the specific example, we can observe that
the first fragment exists twice in the class tc and, more

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted April 14, 2021. ; https://doi.org/10.1101/2021.04.14.439840doi: bioRxiv preprint

https://doi.org/10.1101/2021.04.14.439840

Fig. 5 SPaD algorithm example for pattern gtg and tactggtg

specifically, for the first sequence at position two and for the
second sequence at position one (Fig.5.b-1). The second
fragment can be found only once in class gt for sequence one
at position seven (Fig.5.b-2). First of all, since the second
fragment does not exist in the second sequence, therefore, the
pattern does not exist in the second sequence. For the first
sequence, the first fragment exists at position two and the
second at position seven. Since the second position (7) is equal
to the first position (2) plus LERP value (5), therefore, the
pattern exists in the first sequence at position two.

The SPaD algorithm except of its straight forward
application described above can also be used with wildcards
or regular expressions, for the detection of more complex
patterns. Let’s assume that we want to detect all patterns with
the form t??tg, where the symbol ? means any character from
the alphabet. Therefore, we care to find patterns such as taatg,
tactg, tagtg, tatgt, tcagt, etc. Executing the SPaD for each
combination or by using regular expressions we can detect the
patterns tactg at positions (1, 2) and (2, 1) and tggtg at position
(1, 5). However, when we use wildcards or we need to detect

multiple patterns, the best option for optimization purposes, is
the use of the MPaD algorithm of the next subsection.

D. MPaD Algorithm

The Multiple Pattern Detection (MPaD) [28] algorithm is
a direct extension of the SPaD. In the case of multiple pattern
detection instead of using one time after the other the SPaD
algorithm the process is optimized with the use of the MPaD.
Practically, the first step of the SPaD is extended by breaking
down all patterns into fragments and adding common
fragments into batches. This can help the algorithm execution
because patterns can have shared fragments that they will be
searched only once and if not existed a complete batch of
patterns can be rejected simultaneously, instead of repeating
the process. As with SPaD, MPaD can also be used with
wildcards for more advanced pattern detection.

E. Metadata Analytics

After the completion of the data analysis several metadata
analyses can be performed. These analyses depend on several
factors and the problems that we want to address such as
sequence alignment, genome comparison, palindromes and
tandem repeats detection, etc. The importance of the full
analysis and repeated patterns detection is that it needs to be
executed only once and our further, detailed, meta analyses in
the results are standalone processes. Moreover, the results can
be stored on external storage media, locally or remotely on the
cloud, and accessed whenever is needed, by class, without the
need to repeat the analysis or access the full dataset.

F. Synopsis

The first step of applying any of the proposed algorithms
is the construction of the Multivariate LERP-RSA data
structure. The LERP-RSA data structure construction has a
space and time complexity of 𝑂(𝑛 log 𝑛) as it has been
already discussed thoroughly. In the case of the Multivariate
LERP-RSA, since we have m sequences of approximate
length n, the total space complexity is 𝑂(𝑚𝑛 log 𝑛) since the
total size of the dataset, if it is considered a single sequence is
𝑚 × 𝑛. However, the logarithmic part of the complexity is not
equally 𝑚 × 𝑛 since the sequences are independent and
according to Calude’s theorem [24] we do not expect such
long repeated patterns.

When LERP-RSA construction is completed then we
execute the All Repeated Patterns Detection (ARPaD)
algorithm which is the second step of the methodology for
data analytics and pattern detection in biological sequences. It
is important to mention that both steps are executed once
during the lifecycle of the data analytics process. ARPaD has
time complexity 𝑂(𝑚𝑛 log 𝑛) and the results can be stored for
any kind of meta-analytics.

Fig. 6 LERP-RSA, ARPaD, SPaD and MPaD process execution

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted April 14, 2021. ; https://doi.org/10.1101/2021.04.14.439840doi: bioRxiv preprint

https://doi.org/10.1101/2021.04.14.439840

Having the LERP-RSA data structure and ARPaD results
stored then we can use SPaD, MPaD or any other algorithm
on the precalculated results to perform any kind of analysis
such as sequence alignment, genomic comparisons, detecting
primers for polymerase chain reaction process, identifying
protein promoters, palindromes and tandem repeats, etc. The
full process can be depicted with Fig.6.

V. EXPERIMENTAL ANALYSES AND APPLICATIONS

For the presentation of possible applications of LERP-
RSA and the ARPaD family algorithms on different use cases
a dataset consisted from all SARS-CoV-2 complete genome
variants has been used. The dataset was recorded on March
10th, 2021, and downloaded from the National Library of
Medicine at the National Center for Biotechnology
Information (NCBI) [30] in its FASTA format (taxid
2697049). The recorded dataset at the specific date consists of
55,733 sequences with an average sequence length of 29,812.
However, there is one sequence, the MT873050.1/USA/MA-
MGH-01491/2020, which has length just 2,859 bases and it
has been removed from the dataset. The total size of the
dataset is approximately 1.7GB, half the size of the total
human genome.

Although SARS-CoV-2 is a single stranded RNA plus
virus, the DNA reverse transcribed sequences have been
recorded in the dataset. For this reason, the standard
nucleotides alphabet {A, C, G, T} has been used and the
sequence strings have been cleaned from many non standard
characters such as N, R, W etc. and replaced with a neutral
symbol $ to help avoid meaningless patterns.

For the analysis a laptop computer with an Intel i7 CPU at
2.6 GHz has been used with 16 GB RAM and an external disk
of 1 TB for a semi-parallel execution, consuming
approximately 7 hours. For a wider semi parallel execution,
four computers with approximately same configuration have
been used in order to execute per computer one master class
of the alphabet (A$$, C$$, G$$ and T$$) and took
approximately 2 hours. The Classification Level used is three,
creating the 64 codon elements used for the translation process
to proteins (AAA, AC, AAG, …, TTG, TTT). The results of
this analysis are enormous and for practical reasons only few,
interesting, use cases and metadata analyses will be presented
here. The LERP value used is 60; 20 codons length. The total
size of the LERP-RSA data structure on disk is 113GB, which
practically means that it cannot be processed as a single class
dataset. The larger class though, using the predefined
classification, is the TTT with size approximately 4GB while
the smallest is the CCG with size approximately 300MB.

A summary of the ARPaD results can be found on Table
I. There are 64 patterns with length three, as many as the
classes, yet, with length four there are 320 instead of the
expected 256. This happens because of the patterns which
include the characters replaced with the neutral symbol $ and
practically alters the alphabet size to five characters. The
cumulative number of patterns with length up to 60 characters
is 36.2 million approximately and the total cumulative
occurrences of these patterns is approximately 96.2 billion
(Table I).

Table II presents the most frequent 60 characters long
patterns from each one of the 64 classes. The patterns in the
table are sorted based on the average positioning in all
sequences (variants).

TABLE I ARPaD Results Pattern and Occurrences Statistics

L. Patterns
Total

Occurrences

Cumulative

Patterns

Cumulative

Occurrences

3 64 1,660,414,227 64 1,660,414,227

4 320 1,660,359,327 384 3,320,773,554

5 1,600 1,660,304,426 1,984 4,981,077,980

6 7,569 1,660,249,245 9,553 6,641,327,225

7 27,438 1,660,190,602 36,991 8,301,517,827

8 70,814 1,660,119,119 107,805 9,961,636,946

9 133,352 1,660,027,964 241,157 11,621,664,910

10 188,260 1,659,926,448 429,417 13,281,591,358

11 224,922 1,659,832,352 654,339 14,941,423,710

12 251,019 1,659,748,345 905,358 16,601,172,055

13 273,082 1,659,669,551 1,178,440 18,260,841,606

14 293,766 1,659,592,547 1,472,206 19,920,434,153

15 314,004 1,659,516,221 1,786,210 21,579,950,374

16 334,066 1,659,439,977 2,120,276 23,239,390,351

17 354,032 1,659,363,717 2,474,308 24,898,754,068

18 373,900 1,659,287,879 2,848,208 26,558,041,947

19 393,726 1,659,212,566 3,241,934 28,217,254,513

20 413,518 1,659,137,358 3,655,452 29,876,391,871

21 433,277 1,659,062,077 4,088,729 31,535,453,948

22 453,004 1,658,986,770 4,541,733 33,194,440,718

23 472,682 1,658,911,339 5,014,415 34,853,352,057

24 492,363 1,658,835,779 5,506,778 36,512,187,836

25 512,003 1,658,760,092 6,018,781 38,170,947,928

26 531,620 1,658,684,241 6,550,401 39,829,632,169

27 551,236 1,658,608,193 7,101,637 41,488,240,362

28 570,837 1,658,531,896 7,672,474 43,146,772,258

29 590,389 1,658,455,338 8,262,863 44,805,227,596

30 609,936 1,658,378,567 8,872,799 46,463,606,163

31 629,469 1,658,301,541 9,502,268 48,121,907,704

32 648,987 1,658,224,306 10,151,255 49,780,132,010

33 668,493 1,658,146,885 10,819,748 51,438,278,895

34 687,992 1,658,069,281 11,507,740 53,096,348,176

35 707,492 1,657,992,526 12,215,232 54,754,340,702

36 726,957 1,657,915,839 12,942,189 56,412,256,541

37 746,422 1,657,839,970 13,688,611 58,070,096,511

38 765,901 1,657,764,229 14,454,512 59,727,860,740

39 785,343 1,657,688,359 15,239,855 61,385,549,099

40 804,752 1,657,612,290 16,044,607 63,043,161,389

41 824,126 1,657,535,758 16,868,733 64,700,697,147

42 843,506 1,657,459,126 17,712,239 66,358,156,273

43 862,863 1,657,382,229 18,575,102 68,015,538,502

44 882,214 1,657,305,261 19,457,316 69,672,843,763

45 901,530 1,657,228,003 20,358,846 71,330,071,766

46 920,835 1,657,150,209 21,279,681 72,987,221,975

47 940,133 1,657,072,148 22,219,814 74,644,294,123

48 959,415 1,656,993,902 23,179,229 76,301,288,025

49 978,666 1,656,915,484 24,157,895 77,958,203,509

50 997,897 1,656,836,870 25,155,792 79,615,040,379

51 1,017,104 1,656,758,090 26,172,896 81,271,798,469

52 1,036,296 1,656,679,189 27,209,192 82,928,477,658

53 1,055,505 1,656,600,251 28,264,697 84,585,077,909

54 1,074,712 1,656,521,257 29,339,409 86,241,599,166

55 1,093,911 1,656,442,200 30,433,320 87,898,041,366

56 1,113,080 1,656,363,054 31,546,400 89,554,404,420

57 1,132,244 1,656,283,873 32,678,644 91,210,688,293

58 1,151,426 1,656,204,674 33,830,070 92,866,892,967

59 1,170,610 1,656,125,433 35,000,680 94,523,018,400

60 1,189,792 1,656,046,122 36,190,472 96,179,064,522

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted April 14, 2021. ; https://doi.org/10.1101/2021.04.14.439840doi: bioRxiv preprint

https://doi.org/10.1101/2021.04.14.439840

The column next to mean positioning is the standard deviation
of the pattern among all sequences, which takes values
between 37 and 40 for all patterns. The next two columns are
the minimum and maximum positions that the patterns have
been detected in the sequences. The next column is the
position that each pattern occurs in the reference sequence
NC_045512.2. As we can observe, we can have some very
interesting qualitative and quantitative information.

For example, for the first pattern in Table II for class CGG,
we have in total 55,473 occurrences where 3,464 happen
exactly at the same position as in the reference sequence while
51,673 happen before and 336 after. This can help us conclude
that up to the specific position most of the variants (51,673)
have more deletions than insertions in the genome while the
rest (336) have more insertions than deletions.

TABLE II Positional descriptive statistics for most frequent patterns per class with length 60

I. Class Most Frequent Pattern with Length 60 per Class
Mean

Pos

St.D

Pos

Min

Pos

Max

Pos

Ref.

Pos
Count Exact Before After

1 CGG CGGAACGTTCTGAAAAGAGCTATGAATTGCAGACACCTTTTGAAATTAAATTGGCAAAGA 953.1 37.0 590 1027 989 55473 3464 51673 336

2 GTA GTATGGAAAAGTTATGTGCATGTTGTAGACGGTTGTAATTCATCAACTTGTATGATGTGT 7404.8 37.8 6491 7479 7441 55580 3423 51801 356

3 GCC GCCTATTAATGTTATAGTTTTTGATGGTAAATCAAAATGTGAAGAATCATCTGCAAAATC 7835.9 37.8 6922 7910 7872 55539 3409 51773 357

4 GGG GGGAAATCCAACAGGTTGTAGATGCAGATAGTAAAATTGTTCAACTTAGTGAAATTAGTA 12514.7 38.2 11451 12589 12551 55521 3318 51847 356

5 CGT CGTCAACGTCTTACTAAATACACAATGGCAGACCTCGTCTATGCTTTAAGGCATTTTGAT 13748.7 38.1 12685 13823 13785 55562 3321 51888 353

6 GTC GTCAACGTCTTACTAAATACACAATGGCAGACCTCGTCTATGCTTTAAGGCATTTTGATG 13749.7 38.1 12686 13824 13786 55563 3321 51889 353

7 TCT TCTTACTAAATACACAATGGCAGACCTCGTCTATGCTTTAAGGCATTTTGATGAAGGTAA 13756.7 38.1 12693 13831 13793 55566 3317 51896 353

8 AAG AAGTTTTGGACCACTAGTGAGAAAAATATTTGTTGATGGTGTTCCATTTGTAGTTTCAAC 14374.7 38.1 13311 14449 14411 55580 3325 51899 356

9 GAC GACCACTAGTGAGAAAAATATTTGTTGATGGTGTTCCATTTGTAGTTTCAACTGGATACC 14382.7 38.2 13319 14457 14419 55577 3325 51896 356

10 ACC ACCACTAGTGAGAAAAATATTTGTTGATGGTGTTCCATTTGTAGTTTCAACTGGATACCA 14383.7 38.2 13320 14458 14420 55577 3325 51896 356

11 CCA CCACTAGTGAGAAAAATATTTGTTGATGGTGTTCCATTTGTAGTTTCAACTGGATACCAC 14384.7 38.2 13321 14459 14421 55579 3325 51898 356

12 CAC CACTAGTGAGAAAAATATTTGTTGATGGTGTTCCATTTGTAGTTTCAACTGGATACCACT 14385.7 38.2 13322 14460 14422 55579 3325 51898 356

13 ACT ACTAGTGAGAAAAATATTTGTTGATGGTGTTCCATTTGTAGTTTCAACTGGATACCACTT 14386.7 38.2 13323 14461 14423 55579 3325 51898 356

14 GAA GAAAAATATTTGTTGATGGTGTTCCATTTGTAGTTTCAACTGGATACCACTTCAGAGAGC 14394.7 38.2 13331 14469 14431 55570 3327 51886 357

15 ATC ATCAGGATGTAAACTTACATAGCTCTAGACTTAGTTTTAAGGAATTACTTGTGTATGCTG 14469.7 38.2 13406 14544 14506 55585 3325 51903 357

16 AGG AGGATGTAAACTTACATAGCTCTAGACTTAGTTTTAAGGAATTACTTGTGTATGCTGCTG 14472.7 38.2 13409 14547 14509 55584 3325 51902 357

17 GGA GGATGTAAACTTACATAGCTCTAGACTTAGTTTTAAGGAATTACTTGTGTATGCTGCTGA 14473.7 38.2 13410 14548 14510 55585 3325 51903 357

18 GAT GATGTAAACTTACATAGCTCTAGACTTAGTTTTAAGGAATTACTTGTGTATGCTGCTGAC 14474.7 38.2 13411 14549 14511 55571 3324 51890 357

19 TCA TCAGCTGGTTTTCCATTTAATAAATGGGGTAAGGCTAGACTTTATTATGATTCAATGAGT 14903.7 38.2 13840 14978 14940 55587 3325 51905 357

20 CAG CAGCTGGTTTTCCATTTAATAAATGGGGTAAGGCTAGACTTTATTATGATTCAATGAGTT 14904.7 38.2 13841 14979 14941 55587 3325 51905 357

21 TTC TTCCATTTAATAAATGGGGTAAGGCTAGACTTTATTATGATTCAATGAGTTATGAGGATC 14913.7 38.2 13850 14988 14950 55552 3325 51870 357

22 CAA CAAAACGTAATGTCATCCCTACTATAACTCAAATGAATCTTAAGTATGCCATTAGTGCAA 14994.7 38.1 13931 15069 15031 55586 3321 51908 357

23 AAA AAAACGTAATGTCATCCCTACTATAACTCAAATGAATCTTAAGTATGCCATTAGTGCAAA 14995.7 38.1 13932 15070 15032 55585 3321 51907 357

24 ACG ACGTAATGTCATCCCTACTATAACTCAAATGAATCTTAAGTATGCCATTAGTGCAAAGAA 14998.7 38.2 13935 15073 15035 55583 3322 51904 357

25 CCG CCGTAGCTGGTGTCTCTATCTGTAGTACTATGACCAATAGACAGTTTCATCAAAAATTAT 15069.6 38.2 14006 15144 15106 55478 3264 51857 357

26 CTC CTCATCAGGAGATGCCACAACTGCTTATGCTAATAGTGTTTTTAACATTTGTCAAGCTGT 15442.7 38.2 14379 15517 15479 55531 3323 51851 357

27 TCG TCGTAAAAACAGATGGTACACTTATGATTGAACGGTTCGTGTCTTTAGCTATAGATGCTT 15942.7 38.1 14879 16017 15979 55488 3318 51813 357

28 CGA CGATAATGTTACTGACTTTAATGCAATTGCAACATGTGACTGGACAAATGCTGGTGATTA 16498.7 38.2 15435 16573 16535 55465 3316 51794 355

29 AAC AACATTAGCTGTACCCTATAATATGAGAGTTATACATTTTGGTGCTGGTTCTGATAAAGG 20791.6 39.2 18809 20866 20828 55585 3324 51907 354

30 TAG TAGCTGTACCCTATAATATGAGAGTTATACATTTTGGTGCTGGTTCTGATAAAGGAGTTG 20796.6 39.2 18814 20871 20833 55578 3323 51901 354

31 AGC AGCTGTACCCTATAATATGAGAGTTATACATTTTGGTGCTGGTTCTGATAAAGGAGTTGC 20797.6 39.2 18815 20872 20834 55578 3323 51901 354

32 GCT GCTGTACCCTATAATATGAGAGTTATACATTTTGGTGCTGGTTCTGATAAAGGAGTTGCA 20798.6 39.2 18816 20873 20835 55577 3323 51900 354

33 CTG CTGTACCCTATAATATGAGAGTTATACATTTTGGTGCTGGTTCTGATAAAGGAGTTGCAC 20799.6 39.2 18817 20874 20836 55578 3323 51901 354

34 TGT TGTACCCTATAATATGAGAGTTATACATTTTGGTGCTGGTTCTGATAAAGGAGTTGCACC 20800.6 39.2 18818 20875 20837 55577 3323 51900 354

35 CCC CCCTATAATATGAGAGTTATACATTTTGGTGCTGGTTCTGATAAAGGAGTTGCACCAGGT 20804.6 39.2 18822 20879 20841 55577 3323 51900 354

36 CCT CCTATAATATGAGAGTTATACATTTTGGTGCTGGTTCTGATAAAGGAGTTGCACCAGGTA 20805.6 39.2 18823 20880 20842 55577 3323 51900 354

37 CTA CTATAATATGAGAGTTATACATTTTGGTGCTGGTTCTGATAAAGGAGTTGCACCAGGTAC 20806.6 39.2 18824 20881 20843 55577 3323 51900 354

38 TAT TATAATATGAGAGTTATACATTTTGGTGCTGGTTCTGATAAAGGAGTTGCACCAGGTACA 20807.6 39.2 18825 20882 20844 55611 3323 51933 355

39 ATA ATAATATGAGAGTTATACATTTTGGTGCTGGTTCTGATAAAGGAGTTGCACCAGGTACAG 20808.6 39.2 18826 20883 20845 55604 3323 51926 355

40 TAA TAATATGAGAGTTATACATTTTGGTGCTGGTTCTGATAAAGGAGTTGCACCAGGTACAGC 20809.6 39.2 18827 20884 20846 55603 3323 51925 355

41 AAT AATATGAGAGTTATACATTTTGGTGCTGGTTCTGATAAAGGAGTTGCACCAGGTACAGCT 20810.6 39.2 18828 20885 20847 55599 3322 51922 355

42 ATG ATGAGAGTTATACATTTTGGTGCTGGTTCTGATAAAGGAGTTGCACCAGGTACAGCTGTT 20813.6 39.2 18831 20888 20850 55600 3323 51922 355

43 TGA TGAGAGTTATACATTTTGGTGCTGGTTCTGATAAAGGAGTTGCACCAGGTACAGCTGTTT 20814.6 39.2 18832 20889 20851 55600 3323 51922 355

44 AGA AGAGTTATACATTTTGGTGCTGGTTCTGATAAAGGAGTTGCACCAGGTACAGCTGTTTTA 20816.6 39.2 18834 20891 20853 55603 3323 51925 355

45 GAG GAGTTATACATTTTGGTGCTGGTTCTGATAAAGGAGTTGCACCAGGTACAGCTGTTTTAA 20817.6 39.2 18835 20892 20854 55603 3323 51925 355

46 AGT AGTTATACATTTTGGTGCTGGTTCTGATAAAGGAGTTGCACCAGGTACAGCTGTTTTAAG 20818.6 39.2 18836 20893 20855 55602 3323 51924 355

47 GTT GTTATACATTTTGGTGCTGGTTCTGATAAAGGAGTTGCACCAGGTACAGCTGTTTTAAGA 20819.6 39.2 18837 20894 20856 55602 3323 51924 355

48 TTA TTATACATTTTGGTGCTGGTTCTGATAAAGGAGTTGCACCAGGTACAGCTGTTTTAAGAC 20820.6 39.2 18838 20895 20857 55603 3323 51925 355

49 TAC TACATTTTGGTGCTGGTTCTGATAAAGGAGTTGCACCAGGTACAGCTGTTTTAAGACAGT 20823.6 39.2 18841 20898 20860 55605 3324 51926 355

50 ACA ACATTTTGGTGCTGGTTCTGATAAAGGAGTTGCACCAGGTACAGCTGTTTTAAGACAGTG 20824.6 39.2 18842 20899 20861 55605 3324 51926 355

51 CAT CATTTTGGTGCTGGTTCTGATAAAGGAGTTGCACCAGGTACAGCTGTTTTAAGACAGTGG 20825.6 39.2 18843 20900 20862 55605 3324 51926 355

52 ATT ATTTTGGTGCTGGTTCTGATAAAGGAGTTGCACCAGGTACAGCTGTTTTAAGACAGTGGT 20826.6 39.2 18844 20901 20863 55605 3324 51926 355

53 TTT TTTTGGTGCTGGTTCTGATAAAGGAGTTGCACCAGGTACAGCTGTTTTAAGACAGTGGTT 20827.6 39.2 18845 20902 20864 55604 3324 51925 355

54 TTG TTGGTGCTGGTTCTGATAAAGGAGTTGCACCAGGTACAGCTGTTTTAAGACAGTGGTTGC 20829.6 39.2 18847 20904 20866 55603 3324 51924 355

55 TGG TGGTGCTGGTTCTGATAAAGGAGTTGCACCAGGTACAGCTGTTTTAAGACAGTGGTTGCC 20830.6 39.2 18848 20905 20867 55603 3324 51924 355

56 GGT GGTGCTGGTTCTGATAAAGGAGTTGCACCAGGTACAGCTGTTTTAAGACAGTGGTTGCCT 20831.6 39.2 18849 20906 20868 55606 3324 51927 355

57 GTG GTGCTGGTTCTGATAAAGGAGTTGCACCAGGTACAGCTGTTTTAAGACAGTGGTTGCCTA 20832.6 39.2 18850 20907 20869 55605 3324 51926 355

58 TGC TGCTGGTTCTGATAAAGGAGTTGCACCAGGTACAGCTGTTTTAAGACAGTGGTTGCCTAC 20833.6 39.2 18851 20908 20870 55565 3323 51891 351

59 GGC GGCTTATAGGTTTAATGGTATTGGAGTTACACAGAATGTTCTCTATGAGAACCAAAAATT 24230.4 39.4 22247 24305 24267 55547 3224 51973 350

60 GCA GCACAAGCTTTAAACACGCTTGTTAAACAACTTAGCTCCAATTTTGGTGCAATTTCAAGT 24390.4 39.4 22407 24465 24427 55556 3221 51986 349

61 CTT CTTTAAACACGCTTGTTAAACAACTTAGCTCCAATTTTGGTGCAATTTCAAGTGTTTTAA 24397.4 39.4 22414 24472 24434 55567 3226 51992 349

62 CGC CGCTTGTTAAACAACTTAGCTCCAATTTTGGTGCAATTTCAAGTGTTTTAAATGATATCC 24406.4 39.3 22423 24481 24443 55556 3225 51981 350

63 TCC TCCTTACTGCGCTTCGATTGTGTGCGTACTGCTGCAATATTGTTAACGTGAGTCTTGTAA 26304.0 40.8 24321 26379 26341 55564 3211 52027 326

64 GCG GCGCTTCGATTGTGTGCGTACTGCTGCAATATTGTTAACGTGAGTCTTGTAAAACCTTCT 26312.3 39.6 24329 26387 26349 55478 3211 51941 326

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted April 14, 2021. ; https://doi.org/10.1101/2021.04.14.439840doi: bioRxiv preprint

https://doi.org/10.1101/2021.04.14.439840

In the same Table II, some patterns are marked with the
same color. These variants are practically overlapping, as we
can observe from their mean position which increments by
one or a few more characters. These patterns can be further
expanded with the use of other 60 characters long patterns or
shorter patterns to form common regions in the sequences
where most of the sequences are identical. Moreover, this
information can be used for sequence alignment purposes,
although it is a more demanding task, which will be presented
in future work. The patterns in Table II create 17 different
blocks in the SARS-CoV-2 sequence. These blocks practically
separate the vast majority of the sequences to common regions
and more blocks can be used with shorter patterns. It needs to
be mentioned that this is not valid for all sequences since some
may not occur in specific sequences due to mutations. Still,
shorter patterns can reveal these blocks.

Another application of the proposed methodology is the
comparison of genomes among different organisms. For
example, in Table III we have all patterns from SARS-CoV-2
that exist at least once in every variant of the virus and has
length greater or equal to 12. These patterns are compared
with other organisms’ genomes such as the MERS virus (610
total variants, taxid 1335626), SARS virus (74,121 variants,

TABLE III Comparison between different organisms

L.

Pattern with Appearance

in Every SARS-CoV-2

Variant

Organism Genome

MERS

|610|

SARS

|74,121|

GRCh38.p12

|1|

13 AAAAGACTGTGTT 0 73,796 177

12 AAAAGACTGTGT 0 73,796 518

13 AAACCTCATAATT 0 73,805 139

12 AAACCTCATAAT 0 73,806 410

12 AAAGACTGTGTT 0 73,805 614

15 AAAGTTGATGGTGTT 0 73,769 8

14 AAAGTTGATGGTGT 0 73,769 20

13 AAAGTTGATGGTG 0 73,769 84

12 AAAGTTGATGGT 0 73,769 279

12 AACCTCATAATT 0 73,805 337

14 AAGTTGATGGTGTT 0 73,769 24

13 AAGTTGATGGTGT 0 73,769 59

12 AAGTTGATGGTG 0 73,769 224

12 AATTGTGTACTT 0 74,089 504

13 ACTCAGAGTAGAA 0 73,817 76

12 ACTCAGAGTAGA 0 73,817 218

12 AGTCATTTTGCT 548 73,814 509

13 AGTTGATGGTGTT 0 73,769 89

12 AGTTGATGGTGT 1 73,769 236

12 CTAAAATGTCAG 0 73,804 584

13 CTAAAATGTCAGA 0 73,804 161

12 CTAGGTTTTTCT 0 73,792 557

13 CTAGGTTTTTCTA 0 73,792 110

12 CTCAGAGTAGAA 0 73,817 328

12 CTTAATGACTTT 1 73,789 480

12 CTTGTTACAATG 0 73,826 235

13 GTTGATGGTGTTG 0 73,772 123

12 GTTGATGGTGTT 0 73,796 342

12 GTTTTAAGGAAT 0 73,784 518

12 TAAAAACACAGT 0 73,987 928

14 TAAAAGACTGTGTT 0 73,796 42

12 TAAAAGACTGTG 0 73,796 422

13 TAAAAGACTGTGT 0 73,796 112

12 TAAAATGTCAGA 0 73,804 905

12 TAGGTTTTTCTA 2 73,792 930

12 TCAAGCTTTTTG 0 73,786 338

13 TCTTAATGACTTT 0 73,789 175

12 TCTTAATGACTT 0 74,060 432

12 TTATGAAGATTT 0 73,810 879

12 TTGATGGTGTTG 0 73,772 445

taxid 694009) [30] and the human genome (GRCH38.p12)
[29]. As we can observe, MERS virus has only one common
pattern with SARS-CoV-2 that occurs in most of its variants.
Yet, there are three more patterns that exist in one or two
variants only, while all patterns exist practically in all variants
of SARS virus, which it can be explained since SARS and
SARS-CoV-2 belong to the same family of viruses. What it
looks impressive is that all patterns exist in the human genome
too, with different number of occurrences varying from 8 up
to 930 but slightly longer patterns cannot be found in human
genome. A possible application of this information is the
determination of primers for PCR analyses. Since the patterns
exist in all SARS-CoV-2 variants they can be used in pairs to
amplify, practically, the largest part of the virus. However, if
used with human DNA sample then PCR is not possible since
human genome could also be amplified. This can be bypassed
for the specific purpose with the use of longer patterns, e.g.,
with length 60 as the pattern in Table II, that do not exist in
the human genome. Yet, since these patterns are not present in
all SARS-CoV-2 variants two couples must be used that cover
all possible cases. This can help to use PCR not just on specific
SARS-CoV-2 proteins but on much larger parts of the
genome. For example, if we use the 30 characters long
patterns GTGCTGGTAGTACATTTATTAGTGATGAAG
and GCGTGTAGCAGGTGACTCAGGTTTTGCTGC
occurring at positions 934 and 27039 respectively, it is
possible to amplify approximately 90% of the genome.

Finally, in Table IV some examples from palindromes and
tandem repeats are presented. All the example patterns have
been identified as repeated patterns and it is very easy to be
filtered from the ARPaD results. The first six patterns present
tandem repeats of total length eight or nine characters,
constructed from tandems of length two, three or four
characters. The next six patterns are palindromes of length

TABLE IV Palindromes and Tandems in SARS-CoV-2

Occ.
Indicative

Pattern
(Indicative) Positions (Sequence; Position)

48 ACT ACT ACT
39416;6680| 39422;6681| 39426;6680| 41863;6680|

42021;6714| 42107;6701| 1872;26193| 2994;26158| …

9 TAC TAC TAC
19934;5142| 47329;4899| 32377;26501| 39416;6679|

39422;6680| 39426;6679| 41863;6679| 42021;6713|

42107;6700

24 TA TA TA TA

52242;29557| 2558;26611| 2574;26619| 3445;26620|

3706;26620| 3707;26650| 15554;26442| 15882;26620|

26339;26620| 26829;26631| 26830;26654|

26831;26654| 26832;26620| 26838;26646|

26839;26638| 26840;26635| 26845;26634|

26846;26620| 35693;26417| 2006;29588| 16287;29540|

12048;4110| 17040;4061| 43147;4073

25 ATT ATT ATT

14753;9283| 1946;3702| 23099;3701| 23100;3700|

11488;27208| 15025;27248| 17567;27223|

17627;27195| 17634;27195| 17637;27195|

22794;27231| 24782;27211| 25013;27213|

25407;27213| 25411;27216| 26451;27215|

27886;27211| 34659;5919| 16881;3651| 1155;2287|

1330;2339| 14441;2287| 16206;2302| 21986;2287|

23491;27348

111,417 GAT GAT GAT
20107;3168| 26403;3196| 29263;3180| 34501;3167|

20669;3151| 29926;3151| 30489;3151| 48216;3151| …

55,768 CATG CATG
349;17621| 431;17621| 487;17621| 1021;17637|

1220;17621| 1372;17672| 1414;17672| 1484;17672| …

55,327 ACGT TGCA
26543;17027| 28626;19409| 44499;19425| 4053;19453|

1255;19409| 1918;19461| 11047;19409| …

55,327 AGCT TCGA
21505;6023| 29833;5980| 177;5980| 1099;6028|

1192;5980| 1583;6031| 2221;6031| 2228;6022| …

166,954 CATG GTAC
23201;10101| 23129;25188| 12444;25158| 5955;25145|

38783;25195| 53572;5678| 12681;5678| 20422;5678| …

2 ACATG GTACA 21320;5677| 21321;5677

54 GCATG GTACG
9550;5676| 44832;5715| 44833;5709| 44848;5709|

44860;5713| 44862;5715| 44879;5715| 44883;5715| …

2 AATTC CTTAA 44737;17648| 17874;1072

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted April 14, 2021. ; https://doi.org/10.1101/2021.04.14.439840doi: bioRxiv preprint

https://doi.org/10.1101/2021.04.14.439840

eight and ten characters. Additionally, the occurring positions
in the sequences are presented, truncated for patterns with
many occurrences.

VI. CONCLUSIONS

The current paper presents data structures and algorithms
specifically created for advanced text mining and pattern
detection on discrete sequences that are adapted for biological
sequences. More particularly, the purpose of the paper is to
present a proof of concept and technology of the
aforementioned algorithms, specifically for use on big data,
with the analysis of more than 55 thousand variants of the
complete SARS-CoV-2 genome. Using ordinary computers, it
has been presented that it is possible to perform advanced
pattern detection and produce results that can be fed as input
to algorithms or used indirectly from other methodologies to
perform even more detailed or diverse meta analyses. More
accurately, it has been presented that with the use of LERP-
RSA data structure and the single execution of ARPaD
algorithm all repeated patterns can be detected, forming a vast
database of results that algorithms such as SPaD and MPaD
can filter and explore to perform several meta analyses. Both
LERP-RSA data structure and ARPaD algorithm are very
efficient and can produce the results in a few hours using
commodity hardware while SPaD and MPaD can perform
various analyses in few seconds.

The purpose of the current work is to unveil the potential
benefits from the use of LERP-RSA and ARPaD for
bioinformatics and computational biology purposes. In future
work a more detailed and thorough description on particular
problems will be presented with more custom-made
methodologies and algorithmic variations.

VII. REFERENCES

[1] International Human Genome Consortium (2001), “Initial sequencing
and analysis of the human genome.” Nature, 409, pp. 860-921

[2] Hakak, S., Kamsin, A., Shivakumara, P., Gilkar, G. A., Khan, W. Z.,
Imran, M. (2017) “Exact String Matching Algorithms: Survey, Issues
and Future Reseach Directions”. Preparation of Papers for IEEE
Transcations and Journals

[3] Faro, S. (2016). “Evaluation and Improvement of Fast Algorithms for
Exact Matching on Genome Sequences.” In Proceedings of the 2016
International Conference on Algorithms for Computational Biology

[4] Chen, Y. (2018). “String Matching in DNA Databases”, Open Access
Biostatistics and Bioinformatics, 1(4)

[5] Boyer, R. S. and Moore, J. S. (1977). “A fast string searching
algorithm.” Communications of the ACM, pp. 762-772

[6] Knuth D.E., Morris J.H., Pratt V.R. (1977). “Fast pattern matching in
strings.” SIAM Journal on Computing, 6(2), pp. 323-350

[7] Smith, P.D. (1991) “Experiments with a Very Fast Substring Search
Algorithm.” Softw., Pract. Exper., 21, 1065-1074

[8] Apostolico, A. and Giancarlo, R. (1986) “The Boyer-Moore-Galil
String Searching Strategies Revisited.” (in English), SIAM Journal on
Computing, 15(1), pp. 98-105

[9] Raita, T. (1992) “Tuning the Boyer-Moore-Horspool string searching
algorithm.” Software: Practice and Experience, pp. 879-884

[10] Ahmad, M. K. (2014) “An Enhanced Boye-Moore Algorithm
(Doctoral dissertation).” Middle East University

[11] Xian-Feng, H., Yu-Bao, Y., Xia, L. (2010) “Hybrid pattern-matching
algorithm based on BM-KMP algorithm.” 3rd International
Conference In Advanced Computer Theory and Engineering
(ICACTE), (5), pp. 310-313

[12] Cao, Z., Zhenzhen, Y., Lihua, L. (2015) “A fast string matching
algorithm based on lowlight characters in the pattern.” 7th International
Conference on Advanced Computational Intelligence (ICACI), pp.
179-182

[13] AbdulRazzaq, A. A., Rashid, N. A. A., Hasan, A. A., Abu-Hashem, M.
A, (2013) “The exact string matching algorithms efficiency review.”
Global Journal on Technology, pp. 576-589.

[14] Karp, R. M. and Rabin, M. O. (1987) “Efficient Randomized Pattern-
Matching Algorithms.” IBM Journal of Research and Development,
31(2), pp. 249-260

[15] Lecroq, T. (2007) “Fast exact string matching algorithms.” Information
Processing Letters, 102(6), pp. 229-235

[16] Wu, S. and Manber, U. (1994) “A fast algorithm for multi-pattern
searching.” Department of Computer Science, University of Arizona,
Tucson, AZ, Report TR-94-17

[17] Masaki, W., Hasuo, I., Suenag, K. (2017) “Efficient online timed
pattern matching by automata-based skipping.” International
Conference on Formal Modeling and Analysis of Timed Systems,
Springer, pp. 224-243

[18] Franek, F. J., Jennings, C.G., Smyth, W.F. (2007) “A simple fast hybrid
pattern matching algorithm." Journal of Discrete Algorithms, pp. 682-
695

[19] Navarro, G. (2001) “NR-grep: a fast and flexible pattern-matching
tool.” Softw., Pract. Exper., 31, 1265-1312

[20] Smith, T. F. and Waterman, M. S. (1981) "Identification of Common
Molecular Subsequences" Journal of Molecular Biology. 147 (1): 195–
197

[21] BLAST, National Center for Biotechnology Information (NCBI),
https://blast.ncbi.nlm.nih.gov/Blast.cgi

[22] M Jinek, K Chylinski, I Fonfara, M Hauer, JA Doudna, E Charpentier,
(2012) “A programmable dual-RNA–guided DNA endonuclease in
adaptive bacterial immunity.” Science 337 (6096), 816-821

[23] Mitsuhashi, S., Frith, M.C., Mizuguchi, T. et al. (2019) “Tandem-
genotypes: robust detection of tandem repeat expansions from long
DNA reads.” Genome Biol 20, 58. https://doi.org/10.1186/s13059-
019-1667-6

[24] Calude, C., (1995) “What is a Random String?” Journal of Universal
Science, 1(1), pp. 48–66

[25] Manber, U. and Myers, G., (1990) “Suffix arrays: a new method for
on-line string searches.” Proceedings of the First Annual ACM-SIAM
Symposium on Discrete Algorithms, pp. 319–327

[26] Xylogiannopoulos, K. F., Karampelas, P., Alhajj, R. (2014)
“Analyzing very large time series using suffix arrays” Appl. Intell.,
41(3), pp.941–955

[27] Xylogiannopoulos, K. F., Karampelas, P., Alhajj, R. (2016) “Repeated
patterns detection in big data using classification and parallelism on
LERP reduced suffix arrays” Appl. Intell., 45(3), pp. 567– 597

[28] Xylogiannopoulos, K. F., (2017) “Data structures, algorithms and
applications for big data analytics: single, multiple and all repeated
patterns detection in discrete sequences.” PhD thesis

[29] GRCh38.p12, National Center for Biotechnology Information (NCBI),
ftp://ftp.ncbi.nlm.nih.gov/genomes/Homo_sapiens/

[30] National Center for Biotechnology Information (NCBI),
https://www.ncbi.nlm.nih.gov/labs/virus/vssi/#/virus

[31] Xylogiannopoulos, K. F., (2019) “Exhaustive exact string matching:
the analysis of the full human genome.” In Proceedings of the 2019
IEEE/ACM International Conference on Advances in Social Networks
Analysis and Mining (ASONAM '19). Association for Computing
Machinery, New York, NY, USA, 801–808.
DOI:https://doi.org/10.1145/3341161.3343517

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted April 14, 2021. ; https://doi.org/10.1101/2021.04.14.439840doi: bioRxiv preprint

https://blast.ncbi.nlm.nih.gov/Blast.cgi
ftp://ftp.ncbi.nlm.nih.gov/genomes/Homo_sapiens/
https://doi.org/10.1101/2021.04.14.439840

