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Abstract

Focal adhesions (FAs) and associated actin stress fibers (SFs) form a complex
mechanical system that mediates bidirectional interactions between cells and their
environment. This linked network is essential for mechanosensing, force production and
force transduction, thus directly governing cellular processes like polarization, migration
and extracellular matrix remodeling. We introduce a tool for fast and robust coupled
analysis of both FAs and SFs named the Focal Adhesion Filament Cross-correlation Kit
(FAFCK). Our software can detect and record location, axes lengths, area, orientation,
and aspect ratio of focal adhesion structures as well as the location, length, width and
orientation of actin stress fibers. This enables users to automate analysis of the
correlation of FAs and SFs and study the stress fiber system in a higher degree, pivotal
to accurately evaluate transmission of mechanocellular forces between a cell and its
surroundings. The FAFCK is particularly suited for unbiased and systematic
quantitative analysis of FAs and SFs necessary for novel approaches of traction force
microscopy that uses the additional data from the cellular side to calculate the stress
distribution in the substrate. For validation and comparison with other tools, we provide
datasets of cells of varying quality that are labelled by a human expert. Datasets and
FAFCK are freely available as open source under the GNU General Public License.

Author summary

Our novel Focal Adhesion Filament Cross-correlation Kit (FAFCK) allows for fast,
reliable, unbiased, and systematic detection of focal adhesions and actin stress fibers in
cells and their mutual correlation. Detailed analysis of these structures which are both
key elements in mechano-sensing and force transduction will help tremendously to
improve quantitative analysis of mechanocellular experiments, key to understanding the
complex interplay between cells and the extracellular matrix. In particular,
sophisticated analysis methods such as model-based traction force microscopy will
benefit from correlating the detailed datasets of stress fibers and focal adhesions.
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Introduction 1

The shape and mechanics of biological cells depends largely on the cytoskeleton, a 2

dynamic network that functions as the cellular endoskeleton and produces contractile 3

forces acting on their environment, such as the extracellular matrix (ECM) or 4

neighboring cells. A predominant and essential part of this network is made up of actin 5

filaments that act as structural elements and, importantly, are capable of producing 6

contractile forces when co-assembled with myosin II mini-filaments into contractile 7

stress fibers [1]. 8

Geometry and rearrangement of stress fibers is a critical factor during mechanical 9

interactions between the cell and the ECM in many processes (e.g. adhesion, migration, 10

etc.) and must be quantitatively assessed to elucidate the complex mechanical interplay 11

of cells with their surroundings. Interestingly, the pattern of stress fiber formation in 12

human mesenchymal stem cells reveals an optimal matrix elasticity E yielding an 13

anisotropic and polarized acto-myosin fiber structure, which functions as an early 14

morphological marker of mechano-guided differentiation [2, 3]. This requires a 15

quantitative analysis of the filament structure by an order parameter S, that builds on 16

the unbiased and automated segmentation of stress fibers.Various approaches exist to 17

address this task, among which our recently developed Filament Sensor analysis tool 18

allows for automated detection and quantification of stress fiber structures [4]. However, 19

for a complete functional analysis of cell and matrix mechanics, quantification of both 20

stress fibers and their associated focal adhesions is needed. 21

Cells adhere to the ECM or surrounding cells via cell-matrix and cell-cell contacts, 22

respectively. These structures function as biochemical anchors and are key to the 23

signaling and mechanical interactions of cells with their surroundings. Focal Adhesions 24

(FAs) are cell-matrix anchors based on trans-membrane proteins integrins, with a 25

multitude of associated proteins on the cytosolic side. Serving as the interface between 26

the SFs and the ECM, FAs have several functions, such as providing cellular attachment 27

to the substrate, transducing contractile forces to the ECM and facilitating 28

bi-directional transmembrane signaling [5]. At the cytosolic side, FAs are structurally 29

and dynamically linked to the ends of SFs (see Fig 1A-C). The formation and 30

maturation of FAs is dependent on actomyosin-generated tensile forces applied on them 31

through associated SFs [5]. In turn, signaling pathways that are mechanically triggered 32

at adhesions lead to actin polymerization and elongation of the fibers at their 33

FA-associated termini [6]. Thus, there is an intricate, dynamic association between FAs 34

and SFs that needs to be quantified to fully elucidate their cellular functionality. 35

Fig 1. Stress fibers and focal adhesions. Confocal fluorescence microscopy images
of an MRC5 cell stained for A) actin filaments (phalloidin) and B) focal adhesions
(paxillin). C) Merged color image of the cell with actin filaments in magenta and
adhesions in green. All images are of the ventral plane of the cell, scale bar - 10 µm. D)
Schematic illustration of different stress fiber subtypes and their association with focal
adhesions.

Cellular SFs are broadly classified as transverse arcs, dorsal SFs and ventral SFs 36

based on their FA association, which underlies their varied roles (Figure 1D) [1]. Actin 37

transverse arcs, which are not associated with FA but rather embedded into the cortical 38

actin meshwork at their termini, are contractile structures that contribute to cell shape 39

but not do not directly exert force onto the environment. Dorsal SFs are associated 40

with FAs at one end and with transverse arcs on the other end. Although they are 41

non-contractile due to their negligible myosin II content, they can exert forces on their 42

terminal adhesion through their association with transverse arcs. Ventral SFs, which are 43
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connected to FAs at both ends, are contractile structures that generate majority of 44

cellular traction forces on the substrate [7, 8]. Due to this natural linkage of SFs and 45

FAs, cytoskeletal studies often result in cells with an observed actin SF phenotype 46

having an associated FA phenotype [9–13]. Therefore, incorporating detection of SF-FA 47

coupling in studies would greatly facilitate the complete analysis of their structure and 48

function in cells. 49

Manual evaluation and analysis of FAs and SFs is a laborious, time-intensive process 50

and is always at risk due to the observer’s bias. Recently, this process has been aided by 51

several automated analysis tools and algorithms that are optimized either for focal 52

adhesion analysis (such as the Focal Adhesion Analysis Server [14] and other 53

methods [15,16]), or stress fiber analysis (such as previous version of Filament 54

Sensor [4], CytoSeg [17] and other tools [18,19]). 55

However, a tool for speedy, unbiased quantification of SFs, FAs, and their mutual 56

coupling is yet missing. Here, we present an integrated FA-SF analysis module called 57

the Focal Adhesion Filament Cross-correlation Kit (FAFCK). This tool is based on our 58

previously published Filament Sensor analysis tool, with added capacities for adhesion 59

detection and characterization, filament analysis and coupled FA-SF correlation for 60

stacks or pseudo-stacks of images with similar properties to streamline analysis of huge 61

datasets. FAFCK detects and quantifies FAs and SFs by means of location, area, length, 62

width, aspect ratio and orientation, with capacity for exporting this information 63

enumerated for each frame, allowing for comprehensive further data analysis (e.g. 64

Python, Matlab, etc.) to elucidate cell and matrix mechanics. Our software package will 65

be particularly helpful for sophisticated mechanical measurements and analysis such as 66

model based traction force microscopy (MBTFM) experiments [7] that takes advantage 67

of the a priori determined positions of focal adhesions and stress fibers in addition to 68

the displacement field in the substrate. 69

Results 70

The Focal Adhesion Filament Cross-correlation Kit (FAFCK) is a comprehensive FA-SF 71

analysis software consisting of two modules: the FASensor, for adhesion detection and 72

the Filament Sensor, for actin filament detection, both of which connect through a 73

correlation function for paired characterization of these structures. To correlate an 74

adhesion with the associated actin filament in the cell, the software relates each 75

adhesion object detected by FASensor with corresponding filaments that are detected by 76

the Filament Sensor module. As stand-alone programs with a shared GUI, both 77

routines can be used independently as well. 78

Segmentation of focal adhesions by FASensor 79

The FASensor is the adhesion detection module in the software. It is a robust tool for 80

detection of point-like structures partly based on the Filament Sensor [4]. Based on 81

adapted ImageJ routines (Fig 2), it analyzes the adhesions in an image as objects which 82

can be exported with characteristics and IDs, with multiple customization options to 83

improve accuracy as desired by the user. 84

Fig 2. Workflow of adhesion detection by FASensor.

Adhesion detection analyzes and segments the input image (usually a grayscale 85

immunofluorescence (IF) micrograph) of focal adhesions. The module is split into Main, 86

Pre-processing and Focal Adhesion output sections. All images are shown in panels on 87
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the right- including the original image of adhesions, the pre-processed image, the 88

thresholded image, and the image with overlay of filaments detected from the filament 89

input (Stress Fiber Overlay). The windows can be split from the interface and zoomed 90

in for user ease. The pre-processing tab allows the user to add optional filters to the 91

image in order to improve the signal to noise ratio and normalize the image. Filters 92

included are the Gauss filter, Laplace filter, Line Gauss filter, Cross-correlation filter, 93

and Enhance contrast filter. Filter queues can be saved for reuse. The main tab has 94

thresholding controls with automated protocols. The levels can also be altered manually 95

to produce the desired binarized image. Additional filters are provided for defining the 96

minimum or maximum pixel number per adhesion and the maximum amount of clusters 97

allowed in one image. 98

On clicking ‘Process Focal Adhesions’, the adhesion objects are detected. For each 99

adhesion detected, the outline is derived, and a convex hull is calculated. The main axis 100

is set for the points farthest away on the convex hull and for the points farthest away 101

from the main axis, the side axis is set. The aspect ratio, orientation, and center for 102

each focal adhesion is also calculated. The module also allows for further close 103

customization of the detected objects by the user to obtain the most accurate result. In 104

cases where nearby adhesions have been detected as a single one due to poor 105

signal-to-noise ratio, overlap, artifacts, etc. the user has the option to draw a line on the 106

thresholded image and separate the adhesions at their discretion (see Fig 3C). Once the 107

lines have been drawn to separate all adhesions as desired, the adhesions can be 108

re-processed to get the split objects in a new map. 109

The detected FAs are displayed in the table in the Focal Adhesion tab. The ID, XY 110

center position, Length of main axis, Length of side axis, Angle, Area, and Area ellipse 111

of each adhesion are listed in the table. The user can choose to discard a detected 112

adhesion object by selecting the object in the Focal Adhesion original window, on which 113

the boundary turns red, and clicking the remove button under the table. This allows 114

the user to closely edit the adhesion map obtained from the software to remove any 115

inconsistencies based on their expertise. The output focal adhesion map can be 116

exported as a binary mask with outlines and optional numbering with IDs. The output 117

table can be exported as a ‘CSV’ file and the adhesion detection can be exported as a 118

project ‘XML’ file. 119

We illustrate the usage of FASensor with the input image of an MRC5 human 120

fibroblast cell showing adhesions (paxillin) (see Fig 3A). This input file was 121

preprocessed using Laplace and Gauss filters and thesholded using Intermodes 122

algorithm. With a minimum limit of 10 pixels per adhesion, which corresponds to 123

0.144 µm2, adhesion objects were detected by the software (Fig 3B). 124
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Fig 3. Segmentation of FAs by FASensor and subsequent optimization. A)
Input image of focal adhesions (paxillin) in the ventral plane of an MRC5 cell. B)
Corresponding segmented adhesion objects (outlined in green) from FASensor. C)
Montage of adhesion splitting capacity of the FASensor module. (Top) Thresholded
image of adhesions (white) have objects detected by module (circled by yellow). Red
line is drawn by user to split objects where desired. (Bottom) Before and after images
of objects detected in the IF adhesion input, that are split. Green arrow indicates
splitting objects in Top and Bottom. D) Montage showing the closing and filling holes
function of the module. (Top series) Objects circled by green detected by FASensor
from IF adhesion input. (Bottom series) Objects circled by yellow on thresholded image.
(Left) Pre-detection by module (Center) Objects detected when closing and filling holes
algorithms are not applied. (Right) Objects detected when closing and filling holes
algorithms are applied. Green arrow in the Top and Bottom series indicates the
adhesion which is detected as multiple objects without the algorithm and detected as a
single object with the algorithm.

In the post-thresholding section, there is the option to add or opt-out of the closing 125

and filling holes algorithms, by which seemingly disparate objects can be detected as 126

one, especially in cases of large, single adhesion plaques whose signal is not uniform (Fig 127

3D). A large, boundary adhesion plaque that is detected as split pieces without the 128

closing and fill holes algorithm can be re-processed with this algorithm in order to assign 129

it as a single object, which is accurate with user’s expert perception of the IF image. 130

Evaluation of the FASensor output with user generated output 131

For those using this module to analyze cellular adhesions, it is important to understand 132

how the results compare to their expert opinion and any pre-established routines they 133

already use. To accurately assess the differences between the user expert’s routine and 134

the FASensor output in adhesion detection, our module offers an evaluation option. 135

In the evaluation panel, a binary adhesion map generated by the user can be 136

compared with the adhesion object output generated by FASensor software from the IF 137

image (Suppl Fig 1A). Before comparison, additional pre-processing can be applied, for 138

example thickening of outlines. The comparison is done in two ways - an objectwise 139

fashion, where from both the user mask and software output, objects are generated and 140

overlap is checked, and in a pixelwise fashion, where each pixel of user mask and 141

software output is taken into account. The minimal required overlap for object matching 142

between the user mask and output can be manually set by the user. The ’export results’ 143

option provides images of the comparisons and comparison results in a csv file. The 144

results table lists objects that are found in output when compared with user mask, 145

objects that are false positives (present only in the software output image, labelled ‘eval 146

not matched’) and the missed objects that are present only in the user’s image (labelled 147

‘truth not matched’). The pixel sizes of all objects are given along with the number of 148

pixels that overlap in the common objects. The output table also gives the cases where 149

the sensor detects multiple objects in output for one object in the mask marked by the 150

expert (multiMatchesOneToN) and cases where the sensor detects one object in the 151

output for multiple objects marked in the mask by the expert (multiMatchesNToOne). 152

In the example, the binary mask (Suppl Fig 1B) has been generated by a human 153

expert marking the adhesions from the IF image using Fiji software [20]. On the landing 154

page of the graphic user interface, the user can also import two binary masks to execute 155

evaluation without running the software first. As all parts of the software, the 156

evaluation tool can work on OME-TIFF files to provide fast evaluation of large datasets. 157
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Suppl Fig 1C shows the result maps of objectwise and pixelwise evaluation between 158

FASensor output and the user mask. The evaluation maps are based on the user mask, 159

highlighting the found and missing categories on it and superimposing false positives 160

from output on the mask as well. The tables Suppl Fig 1D and E show the tabulated 161

results for the different categories in objectwise and pixelwise evaluation respectively. 162

The input routine, in terms of filters and thresholding method used, affects 163

similarity of the FASensor output to user mask. Suppl Fig 2 shows how objects detected 164

by FASensor are more similar to the user mask when an appropriate input routine is 165

used. From input of (Suppl Fig 2A), FASensor output is derived in two ways: 166

unoptimized (filter settings and thresholding that is not appropriate for the cell) and 167

optimized (appropriate filter settings and thresholding). Objectwise evaluation of the 168

outputs with user mask (Suppl Fig 2B) is shown in Suppl Fig 2C for unoptimized 169

output andSuppl Fig 2D for optimized output, where found and missing categories as 170

compared to output on the left are highlighted on the user mask and false positives 171

from output are superimposed on the mask as well. In the unoptimized output, the 172

pronounced background signal at the input cell border is fused as large plaques, 173

detected objects deviate from the user mask and many false positives are present. By 174

using an appropriate, optimized input routine, the focal adhesion signal is separated 175

well from the background and adhesions are detected. More detected adhesions match 176

with the user mask and false positives are largely diminished as well. The results are 177

summarized in Suppl Fig 2E. There is an increase in the multiMatchesOneToN 178

parameter for the optimized routine, because the optimized input routine finely detects 179

adhesions in the boundary areas of high background, where some of them have been 180

marked as large single adhesions by the user when the signal couldn’t be distinguished 181

finely by eye. Thus, several objects detected by the output in these areas are matched 182

to one object marked by the user. 183

Conversely, if the output had detected a large object from signal that was 184

distinguished as several objects by the user, that would result in an increase in the 185

multiMatchesNToOne parameter. 186

FASensor output performance with varying imaging conditions 187

and levels of optimization 188

To test FASensor’s robust detection of focal adhesions on a variety of image qualities, 189

we compiled comparison datasets with varying degrees of blur, in which structures were 190

manually labelled by a human expert for comparison. MRC5 cells immunostained for 191

actin filaments and focal adhesions were imaged on a confocal laser-scanning microscope 192

(Suppl Fig 3) in three conditions with blur introduced in images by altering the size of 193

pinhole to include out-of-focus light. For the Confocal in-focus dataset (Suppl Fig 3A), 194

the pinhole size was 1.2 Airy Units (AU), for the Confocal mild blur dataset (Suppl Fig 195

3B), the pinhole size was 3 AU and for the Confocal severe blur dataset (Suppl Fig 3C), 196

the pinhole size was 4.7 AU. 197

Since the Filament Sensor module has been analyzed and published before, we have 198

focused on the FASensor module for manual annotation comparison. We analyzed a set 199

of adhesion images from each imaging condition (in-focus, mild blur and severe blur) in 200

the FASensor software and compared the software results with adhesions manually 201

annotated for the respective images. For manual annotation by the user expert, selected 202

images from the sets were marked for adhesions using the freehand selection tool in Fiji 203

with the aim of being natively user-detected. Images were traced with minimal signal 204

manipulation to compare the base-level manual annotation by eye with the objects 205

traced by FASensor module after processing by software. 206

To further understand whether and how user involvement such as pre-processing 207

April 8, 2021 6/24

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 14, 2021. ; https://doi.org/10.1101/2021.04.14.439781doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.14.439781
http://creativecommons.org/licenses/by/4.0/


each image in a set differently or splitting ROIs and excluding adhesions makes a 208

significant improvement in software results, we used three different optimization levels. 209

In the unoptimized (UN) level, the user sets a single desired input routine with 210

thresholding and pre-processing parameters for all images in the dataset and derives 211

results from the software. There is no optimization for each cell in the dataset and user 212

involvement is low. In the optimized (OP) level, the user sets a custom input routine for 213

each cell with the optimal thresholding and pre-processing parameters and derives 214

results from the software. This optimization uses the software’s capability for 215

pre-processing and thresholding to enhance adhesion recognition for every cell according 216

to user’s discretion. The user involvement is greater than unoptimized in that every cell 217

has a different optimal setting. In the customized (CM) level, the user sets a custom 218

input routine for each cell and further edits the result by splitting ROIs and deleting 219

adhesions detected so that the result is highly customized and similar to the user 220

manually marking the adhesions. Customization is useful for conditions where the user 221

does not have the time to mark adhesions manually but still desires the detected 222

adhesions to exactly fit to their discretion of the adhesion pattern in an image. The user 223

involvement is thus higher than unoptimized and optimized levels. 224

Comparison of the software output with the manually marked adhesions gives result 225

categories of adhesions that are found, missed or false positives. To compare these three 226

results in the three optimization conditions, we created a similarity coefficient (SC) for 227

adhesion detection that is as follows: 228

SC =

∑
FoundFAarea∑

MissedFAarea+
∑
False positive FAarea

The higher the coefficient, the more similar the detected adhesions are to the human 229

expert’s mask. 230

For the cells in the In-Focus dataset (Fig 4A), the similarity coefficients show that 231

adhesions detected in OP (SC = 12.73) and CM (SC = 14.83) sets are significantly more 232

user-similar compared to the UN set (SC = 4.53). The similarity coefficient of the OP 233

and CM sets are not significantly different. Just setting optimal pre-processing settings 234

vastly improves similarity of detected adhesions between cells in the in-focus set, even 235

without further time-intensive customization of splitting and deleting detected objects. 236

Fig 4. Similarity coefficient (SC) for different levels image quality and
optimization. SC on the y-axis (logarithmic scale) for unoptimized ’UN’ (purple
squares), optimized ’OP’ (blue triangles) and for customized ’CM’ (green hexagons)
output of analyzed images of the A) confocal in-focus set (n= 17, UN SC = 4.53, OP
SC = 12.73 and CM SC = 14.83), B) confocal mild-blur set (n= 17, UN SC = 4.47, OP
SC = 7.98 and CM SC = 10.13) and C) confocal severe-blur set (n= 19, UN SC = 3.47,
OP SC = 5.94 and CM SC = 11.74). *** p <0.001; ** p <0.01; * p <0.05 and ns
stands for not significant (p >0.05).

For the cells in the mild-blur dataset (Fig 4B), the similarity coefficients show that 237

OP set (SC = 7.98) is not significantly more similar than UN (SC = 4.47) or CM 238

(SC = 10.13), whereas CM is significantly more similar than UN. Thus, in conditions 239

where images have some blur, doing both optimal pre-processing and user customization 240

by splitting and deleting adhesions makes it significantly more accurate. 241

For cells in the severe-blur dataset (Fig 4C), the similarity coefficients show that OP 242

set (SC = 5.94) is not significantly more similar than UN (SC = 3.47), but again CM 243
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(SC = 11.74) is significantly more similar than both other sets. Thus, in conditions 244

where images are blurred, intensive user customization by splitting and deleting 245

adhesions gives the best result. 246

Aggregate analysis (Suppl Fig 4) of all the adhesions in the sets reveal that false 247

positive adhesions are consistently significantly smaller than found and missed 248

adhesions across optimization levels and missed adhesions are significantly smaller than 249

found adhesions as well. (Fig 5) shows graphs comparing the adhesion objects by area 250

in a set across optimization levels. 251

Fig 5. Comparison of adhesion objects between optimization levels in a set.
Graphs show pooled adhesion objects for un-optimized ’UN’, optimized ’OP’ and
customized ’CM’ analysis. Y axis has adhesion area in µm2 on a logarithmic scale. Left
column shows graphs comparing adhesion objects found in common between user mask
and software output. Middle column shows adhesion objects that were missed in output
and present only in user mask. Right column shows adhesion objects that are false
positive, present only in the software output. A) Graphs for in-focus set B) Graphs for
mild-blur set C) Graphs for severe-blur set. **** p <0.0001; *** p <0.001; ** p <0.01;
* p <0.05 and ns stands for not significant (p >0.05).

Aggregate analysis of the in-focus set (Fig 5A) shows that there is no significant 252

difference between area of the found objects across optimization levels, but both OP 253

(1843) and CM (1802) find more adhesions compared to UN (1451). OP (268) and CM 254

(309) miss less adhesions than UN (660) and CM missed adhesions are significantly 255

smaller than UN. Optimization decreases false positive adhesion area significantly- with 256

CM (Ā=0.33 µm2) and OP (Ā=0.25 µm2) adhesions being significantly smaller than 257

UN (Ā= 0.43 µm2) false positive adhesions. OP shows the largest decrease in false 258

positive adhesion size, but CM (296) has the largest decrease in number over UN (497) 259

and OP (465). Thus, optimization of in-focus images primarily increases the accuracy 260

by finding more objects and decreasing false positives by number and area. 261

Aggregate analysis of the mild blur set (Fig 5B) shows that there is no significant 262

difference between the area of found objects across optimization levels, but both OP 263

(1740) and CM (1700) find more objects compared to UN (1522). In missed objects 264

both OP (Ā= 0.66 µm2) and CM (Ā= 0.64 µm2) have smaller missed adhesion area 265

compared to UN (Ā= 0.83 µm2), and less missed adhesions (OP (361), CM (401)) than 266

UN (579) as well. Comparing the false positive objects, OP has lower Ā (Ā= 0.31 µm2) 267

compared to UN (Ā= 0.42 µm2) and CM (Ā= 0.43 µm2), the number of false positives 268

(560) is lower than UN (791) but higher than CM (188). Thus, in mild blur images, 269

optimization method shows improvement over unoptimized by finding more adhesions 270

and having fewer false positives. Customization shows much fewer false positives 271

compared to other levels. 272

Aggregate analysis of the severe blur set (Fig 5C) shows that there is no significant 273

difference between area of found objects across optimization levels, but both OP (1520) 274

and CM (1577) find more adhesions than UN (1504). In missed objects, both OP (Ā= 275

0.61 µm2) and CM (Ā= 0.60 µm2) are significantly smaller than UN (Ā= 0.85 µm2). 276

More adhesions are missed in UN (355) compared to OP (339) and CM (282) as well. 277

Comparing the false positives, UN (Ā= 0.43 µm2) has the highest mean area Ā 278

compared to OP (Ā= 0.36 µm2) and CM (Ā= 0.36 µm2). OP (745) and CM (231) have 279

lower number of false positives compared to UN (1811) as well. Thus, for severely 280

blurred images, optimization method shows improvement over unoptimized by finding 281

more adhesions and having fewer false positives. Customization shows a greater 282

improvement by having much fewer missed adhesions and false positives compared to 283

other levels. 284
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Thus FASensor offers several levels of desired user optimization in a variety of 285

imaging conditions to derive and evaluate an accurate adhesion map from the input. 286

Detection of Stress Fibers with Filament Sensor 287

The Filament Sensor, as integrated here in the FAFCK, is based on the version 288

published by Eltzner et al in 2015 [4], adjusted to feature stack handling of image 289

sequences and drastically reduced runtime as well as some additions for area calculation. 290

The plugin featured in the FAFCK includes all components included in the stand-alone 291

software, being a preprocessing, line sensor, and filament submenu. The workflow of the 292

software as published before is included in Suppl Fig 5. 293

During preprocessing, contrast and brightness can be adjusted for either individual 294

pictures or a whole stack, if needed. These routines are based on ImageJ [21], which is 295

included as an internal library and used wherever possible, as the ImageJ routines are 296

fast and well tested. The main preprocessing step consists of a filter queue which the 297

user can customize to their needs. This serves as the ’artificial retina’ to prepare the 298

original IF filament image for binarization, tackling the issue of crossing filaments that 299

have to be recognized as individual structures. On this image, the binarization is 300

applied and filament objects extracted according to the flowchart shown in Suppl Fig 5. 301

This is done in parallel threads to improve runtime and subjected to several boundaries 302

the user can determine including minimal and maximal length, maximal curvature, 303

width, restriction to cell area mask, and more. This flexibility allows for the program to 304

be utilized for a wide variety of filament types. Lastly, the filament subsection allows to 305

filter data for export. The Filament Sensor module offers a set of descriptors of the 306

whole cell such as IDs, area, aspect ratio, length of axes, number of filaments, 307

orientation, brightness, and for each individual filament such as xy position, length, 308

curvature, width, and orientation. For each image file, the filament objects are assigned 309

an individual identifier as done for the focal adhesion objects and a variety of export 310

types are available with the option of superimposing filaments as required. 311

Correlation of detected focal adhesions and actin filaments in 312

FAFCK 313

As focal adhesions and actin filaments are linked structures, the FAFCK module offers 314

correlation of detected focal adhesions from FASensor and filaments from Filament 315

Sensor. The software’s workflow is illustrated in Fig 6. 316

Fig 6. Workflow for correlation in FAFCK.

Using the file name of the original images or image stacks loaded, it is first checked 317

whether input data for both adhesions and filaments exist and single sets are ignored. 318

The focal adhesion objects detected from the input image showing paxillin are paired 319

with the filaments derived from the input image depicting actin (see Fig 7A, B). 320

Starting from the ends, for every point in a filament, every focal adhesion in the 321

specified neighborhood is checked with the requirement that the focal adhesion main 322

axis has to be longer than the filament length. For the focal adhesion objects, the user 323

decides whether the convex hull or the fitted ellipse is used for verification purposes. 324

This ellipse is calculated by setting the line between the two points with the greatest 325

distance on the convex hull as long axis and the axis orthogonal to that and with the 326

greatest length as short axis. Furthermore, the area can be artificially increased by 327

increasing the neighborhood in which verification is done. Now, starting from the ends, 328

for each point on the filament, a neighborhood rectangle is created and in the list of 329
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Fig 7. Correlation of focal adhesions and actin filaments by FAFCK. A)
Input images of the ventral plane of a MRC5 cell (left) adhesions (paxillin) and (right)
actin filaments (phalloidin). B) Map of numbered adhesion objects detected by
FASensor (left), map of filaments detected by Filament Sensor (right). C) Color coded
map of correlated adhesions and filaments categorized by association (legend in image).
D) Aggregate graph of lengths of filaments categorized by adhesion association in all
cells of the in-focus dataset. Y axis is in logarithmic scale. MAAF- Multiple adhesion
associated filament, SAAF - Single adhesion associated filament and NAAF - Not
adhesion associated filament. E) Aggregate graph of areas of adhesions categorized by
filament association in all cells of in-focus dataset. Y axis is in logarithmic scale. AAMF
- Adhesion associated with multiple fibers, AASF - Adhesion associated with single fiber
and AANF - Adhesion associated with no fibers.

focal adhesions with main axis length below filament length, intersecting objects are 330

searched. 331

The correlation can be done with condition of either validating all filaments that are 332

attached to at least a single adhesion or only validating those with multiple adhesion 333

structures along the filament. Thus, we can clearly categorize filaments by the number 334

of adhesions associated. The data of adhesions by number of filaments associated can 335

also be derived. 336

The output of the correlation routine consists of the identifier numbers of the 337

respective objects and can consecutively be matched to the data output of the previous 338

routines. Also, verified filaments will be highlighted in the fiber overlay and after 339

verification the fiber data export will be expanded by a ’verification’ column with 340

booleans. As with the individual modules themselves, batch analysis of correlation for 341

pairs of FA and SF images are possible as well. 342

The output is displayed in the Stress Fiber Overlay window in the main tab in 343

FAFCK. The resulting paired filament and focal adhesion IDs are displayed in a table in 344

the Focal Adhesion tab. The results can be exported as a simple overlay or a 345

comprehensive color-coded map (Fig 7C), verifier tables, and grouped CSV files with 346

details of adhesions and filaments by association with each other. 347

We used the FAFCK to correlate detected adhesions with filaments in the in-focus 348

dataset (n=17). We named filaments by adhesion association as MAAF- Multiple 349

adhesion associated filament, SAAF - Single adhesion associated filament and NAAF - 350

Not adhesion associated filament. There were 490 MAAFs, 588 SAAFs and 555 NAAFs, 351

with MAAFs having significantly higher mean fiber length of 13.14 µm compared to 352

SAAFs at 9.29 µm and NAAFs at 7.15 µm (Fig 7D). Thus, filaments attached to 353

multiple adhesions are longer than those attached to only one adhesion or none. We 354

also analyzed adhesions by number of fibers associated with them and grouped them as 355

AAMF - Adhesion associated with multiple fibers, AASF - Adhesion associated with 356

single fiber and AANF - Adhesion associated with no fibers. AAMFs were much fewer 357

(291) than AASFs (1191) and AANFs (1227) and had significantly larger mean adhesion 358

area (Ā= 1.21 µm2) compared to AASFs (Ā= 0.64 µm2) and AANFs (Ā= 0.34 µm2) 359

(Fig 7E). 360

The correlation analysis provides a comprehensive picture of adhesion and filament 361

association in cells, and can be used to streamline quantitative evaluation of the 362

effective mechanical forces in the stress fiber / focal adhesion system. 363
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Discussion 364

Here we present the FAFCK that allows for fast, reliable, unbiased, and systematic 365

detection of fibers and point-like structures and their cross-correlation in cells. While 366

detection and analysis of both types of structures individually is useful, the 367

cross-correlation module will be especially valuable and help to answer many burning 368

questions on the coupled function of these force-transmitting features in cellular 369

mechanosensing. 370

There are several notable advantages to our new tool. Importantly, it allows to 371

identify groups of stress fibers associated with zero, one, or more than one focal adhesion. 372

Such classification can be applied to functional differences of stress fibers in cells of 373

specific morphologies. For example, in migrating cells, this allows for an quantification 374

of the relative number and characteristics of transverse arcs (0 FA per filament), dorsal 375

SFs (1 FA per filament), and ventral SFs (≥2 FAs per filament) in large data sets. This 376

analysis can also be applied to other types of actin organization in specialized cell types. 377

This software functionality allows to recognize different types of actin bundles in 378

2-dimensional images, such as maximum intensity projections of confocal stacks, which 379

significantly quickens the quantification (in comparison with the necessity to detect 380

structures in three-dimensional space, for example, dorsal stress fibers ). Furthermore, 381

individual application of filters and optimization allows for an optimal analysis of 382

wide-field images and images with high blur and/or background noise. 383

There is always a certain degree of error or deviation in computational recognition 384

methods (as false positives and false negatives) as well as bias in the user’s native 385

detection of cellular features. Our software package allows for the systematic, 386

streamlined, and unbiased comparison of large data sets to achieve statistical relevance. 387

We expect that FAFCK will be very useful for analysis of time lapse movies, where many 388

frames need to be analyzed consecutively to quantify the dynamics of stress fibers and 389

adhesions in cells to understand their dynamic organization and how they influence the 390

mechanical coupling of cells and the matrix. Since we provide an option to customize 391

output in each image, this also allows for more precise detection of SF types in smaller 392

data subsets. While our original motivation for this project was the quantitative 393

analysis of focal adhesion structures and their correlation with stress fibers, this tool can 394

be also used for image analysis of other cellular structures from fluorescence microscopy 395

images. This includes but is not limited to membrane organelles such as lysosomes or 396

mitochondria, that can be detected and also tracked to quantify their cellular dynamics. 397

For optimal flexibility and potential comparative studies, we provide an import 398

option of external data sets of filaments and FAs (source may be manual detection or 399

from other software). This feature allows for comparison of the computational 400

recognition with individual user perception of the biological reality and also allows for 401

importing data from other image analysis platforms to be used for the correlation 402

analysis. In the light of the continuous improvement of image recognition software in 403

the field we specifically refrained from employing machine learning and big data 404

algorithms to establish a solid classical analysis tool. That said, the future development 405

of FAFCK can surely benefit from big data and deep learning additions. 406
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Materials and methods 428

Cell culture 429

MRC5 cells (human lung fibroblasts, ATCC® Cat# CCL-171TM, RRID:CVCL 0440) 430

were maintained in MEM media (Cat# 11095080, Thermo Fisher Scientific) 431

supplemented with 10% fetal bovine serum, 100 µM penicillin and 0.1 mg/ml 432

streptomycin in 5% CO2 at 37◦C. Media was supplemented with 5 µg/ml Plasmocin 433

(Cat# ant-mpp, InvivoGen) as a prophylactic against mycoplasma contamination. 434

Fixation and immunostaining 435

MRC5 cells were seeded on glass coverslips (Cat# NC1129240, Fisher Scientific) that 436

had been coated with 10 µg/ml fibronectin (Cat# FC010, EMD Millipore) for 1 hour. 437

After 24 hours, cells were fixed with 4% paraformaldehyde prepared in CB (cytoskeletal 438

buffer - 150mM NaCl, 5mM MgCl2, 5mM EGTA, 5mM glucose, 10mM MES), for 10 439

minutes at room temperature. They were washed with CB after fixation, permeabilized 440

with 0.25% Triton in CB. Antibodies used are as follows: anti-paxillin mouse primary 441

antibody (1:200, BD Biosciences Cat # 610051, RRID:AB 397463), Alexa Fluor 568 442

Phalloidin (1:300, Invitrogen, Cat# A12380) and Alexa Fluor 488 conjugated goat 443

anti-mouse IgG secondary antibody (1:300, Thermo Fisher Scientific Cat# A-11001, 444

RRID:AB 2534069). Coverslips were post-fixed for 10 min with 4% PFA in CB at room 445

temperature. They were mounted with Vectashield Mounting Medium (Cat # 446

H-1000-10, Vector Labs) on glass slides (Cat # 12-550-343, Fisher Scientific). 447

Confocal microscopy 448

Immunostained samples were imaged using a laser scanning confocal microscope- Nikon 449

A1R HD25 configured with a Ti2-E inverted microscope, with a 100× oil immersion 450
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objective (MRD01991, N.A.=1.49). Three different pinhole settings were used to adjust 451

the amount of out-of-focus light in the images- 1.2 AU (small, in-focus), 3 AU 452

(intermediate, mild blur) and 4.7 AU (large, severe blur). Alexa Fluor 488 was excitated 453

with a laser of wavelength 488 nm and Alexa Fluor 568 with 561 nm, respectively. 454

Input files from microscopy images 455

To ensure accurate analysis of the desired cell, we edited the IF images with multiple 456

cells in the field of view by outlining the cell of interest, noting the background value 457

and filling the area outside the cell with the background. This edited image was taken 458

as the input for the FASensor and Filament Sensor modules. In cases where simply 459

cropping the image could isolate the cell of interest, we did so. 460

Manual annotation by human expert 461

Images from all the conditions were completely manually marked for FAs by a human 462

expert (17 images for in-focus set, 17 images for mild blur set, 19 images for severe blur 463

set). FAs were marked using the freehand selection tool in Fiji [20]. The binary mask of 464

marked adhesions were used as input in evaluation against the software’s output. 465

Bulk dataset evaluation analysis 466

To avoid detecting noise and artifacts, we set the lower limit of adhesion detection in 467

the software to 10 pixels which corresponds to 0.144 µm2 and upper limit at 1000 px 468

which corresponds to 14.4 µm2. The unoptimized routine across the imaging sets is as 469

follows- For In-Focus dataset, Gauss filter (Sigma-1) and Laplace filter (1, 4 neighbor) 470

with Intermodes thresholding at 55 was used. For Mild-Blur dataset, Gauss filter 471

(Sigma-1) and Laplace filter (1.5, 8 neighbor) with Intermodes thresholding at 80 was 472

used. For Severe-Blur dataset, Gauss filter (Sigma-1) and Laplace filter (3, 8 neighbor) 473

with Intermodes thresholding at 80 was used. Further optimization and customization 474

was done according to user discretion. Closing and Fill holes function was not used for 475

bulk analysis adhesion detection. We used 1 percent minimum matching pixels for 476

object matching in evaluation. Thicken lines function was not used in evaluation. Areas 477

of found and missed adhesions were derived from the pixels column for the user’s mask 478

in the result table. Areas of false positive adhesions were derived from the pixels column 479

of the software output in the result table. Pixel values from software results were 480

converted to corresponding micron values using the scale of input image and plotted on 481

graphs. Ordinary one-way ANOVA followed by Dunnett’s multiple comparisons test or 482

Tukey’s multiple comparisons test was performed using GraphPad Prism (Ver 9.0.0 for 483

Windows, GraphPad Software, San Diego, California USA, www.graphpad.com). For 484

the in-focus set FA-filament correlation analysis, we used the optimization method 485

where each cell had a custom optimal pre-processing filter setting in FASensor. For 486

Filament Sensor, the default settings were used for all cells. For verification, we chose 487

ellipse and a neighborhood of 1. 488

Batch threshold determination with ThresholdFinder 489

The ThresholdFinder application is an additional software tool that we provide 490

alongside the FAFCK. From a small amount of user-annotated masks, it determines 491

best applicable thresholding algorithm and setting in the FAFCK software. From the 492

input of original images and binary annotations, the software uses the mask to 493

determine desired regions of the image and feeds this into all thresholding algorithms. 494

To determine found, false positive and false negative rates, the images are processed 495
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whole with the selected algorithm. The value that the respective algorithm would chose 496

without mask input is given, too. 497
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