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ABSTRACT 31 

Genetic variation is the driving force of plant-pathogen co-evolution. Large-scale 32 

genetic variations such as structural variations (SVs) often alter genome stability and 33 

organismal fitness. However, the pangenomic landscape and functional implications 34 

of SVs remain largely unexplored in plant pathogens. Here, we characterized the 35 

pangenomic and SV landscape in wheat head blight fungus Fusarium graminearum 36 

by producing and comparing chromosome-level (average contig N50 of 8.9 Mb) 37 

genome assemblies of 98 accessions using a reference-guided approach. Accounting 38 

for 29.05% and 19.01% of F. graminearum pangenome, respectively, accessory and 39 

private genomes are enriched with functions related to membrane trafficking, 40 

metabolism of fatty acids and tryptophans, with the private also enriched with 41 

putative effectors. Furthermore, using chromosome-level assemblies, we detected 42 

52,420 SVs, 69.51% of which are inaccessible using read-mapping based approach. 43 

Over a half (55.65%) of 52,645 merged SVs affected 1,660 protein-coding genes, the 44 

most variable of which are involved in fungal virulence, cellular contact and 45 

communications. Interestingly, highly variable effectors and secondary metabolic 46 

enzymes are co-localized with SVs at subtelomeric and centromeric regions. 47 

Collectively, this landmark study shows the prevalence and functional relevance of 48 

SVs in F. graminearum, providing a valuable resource for future pangenomic studies 49 

in this cosmopolitan pathogen of cereal crops. 50 

 51 

Keywords: Fusarium graminearum, head blight, genome evolution, population 52 

genomics, genome assembly, next-generation sequencing 53 
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INTRODUCTION 61 

Fungal pathogens contribute to a substantial fraction of crop diseases and challenge 62 

global food safety, economic and social stability (Savary & Willocquet, 2020). For 63 

example, rice blast disease caused by Magnaporthe oryzae threatens rice productions 64 

worldwide (Dean et al., 2012). Fusarium head blight caused by Fusarium 65 

graminearum is a devastating disease of wheat and barley causing huge yield and 66 

economic losse (Goswami & Kistler, 2004). FHB also threatens human and animal 67 

health through mycotoxins such as trichothecenes and the estrogenic zearalenone 68 

(Chanda et al., 2016). A major obstacle of battling against many devastating crop 69 

diseases including FHB is the constant and rapid evolution of pathogen virulence and 70 

drug resistance through gene mutation and natural selection, an inevitable problem 71 

further deteriorated by fungicide abuses and resistant cultivar monoculture widely 72 

adopted in modern agriculture. Drug resistance in agricultural pathogens also poses 73 

dangers to human health through opportunistic fungal infections in 74 

immunocompromised individuals (Benitez & Carver, 2019). It is thus necessary to 75 

investigate the landscape and function of genetic mutations leading to evolution of 76 

fungal traits such as virulence and antifungal resistance, so that effective and 77 

environment-friendly strategies can be developed for plant disease prevention and 78 

management.  79 

Genetic variants arisen from DNA mutations are the driving force behind evolution 80 

(Kronenberg et al., 2018) including host-pathogen co-evolution with a boom-and-bust 81 

cycle (De la Concepcion et al., 2018). Genetic variations come in various forms 82 

including single nucleotide polymorphisms (SNPs), small (<50bp) deletions or 83 

insertions (Indels) and structural variations (SVs) (>50bp) (Mahmoud et al., 2019). 84 

Generally, genetic variants modify gene coding or non-coding sequences leading to 85 

altered gene functions and ultimately organismal fitness (Kronenberg et al., 2018). 86 

Because these variants contribute to the formation of genetically diverse populations, 87 

any reference genome assembly of a single individual hardly represents the complete 88 

genetic information of any species known as pangenome (Parfrey et al., 2008). 89 
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Pangenome represents a non-redundant complement of genome sequences for all 90 

individuals within a species (Tettelin et al., 2005). First defined in bacteria, 91 

pangenome has been conceptually recognized and explored across all major kingdoms 92 

ranging from human (Li et al., 2010), animals (Li et al., 2017; Tian et al., 2020), 93 

plants (Bayer et al., 2020) to bacteria (Ding et al., 2018) and fungi such as 94 

Saccharomyces cerevisiae, Candida albicans, Cryptococcus neoformans, Aspergillus 95 

fumigatus (Golicz et al., 2016; Peter et al., 2018), and also several plant pathogens 96 

including Parastagonospora spp, Zymoseptoria tritici (Plissonneau et al., 2018; Syme 97 

et al., 2018). Therefore, characterization of genetic variants is vital to mapping the 98 

pangenomes and understanding the mechanisms of species evolution. 99 

Despite the importance of both small and large variants, our current understanding of 100 

fungal genetic variations generally focuses on SNPs that are widely used in 101 

population genetics and genome-wide association studies to link genotypes with 102 

phenotypes. So far, F. graminearum population genetic studies have emphasized on 103 

analysis of SNPs. For example, a link between local polymorphisms and pathogen 104 

specificity has been identified in F. graminearum genome (Cuomo et al., 2007). Firasl 105 

et al. associated SNP diversity with genes crucial for F. graminearum phenotype 106 

including trichothecene chemotypes and virulence (Talas et al., 2012). By contrast, 107 

there is to date a lack of both interest and effort in studying large variants such as 108 

indels and SVs in population genetic studies of fungal pathogens. However, compared 109 

to SNPs, SVs are more likely to disrupt the genome stability and function such as 110 

altering gene structure, copy numbers, and gene regulation given their large size 111 

(Alonge et al., 2020). For example, SVs have already been implicated in development 112 

of various genetic disorders in certain human pedigrees or populations (Friedman et 113 

al., 1994; Nattestad et al., 2018). Therefore, a lack of population-wide mapping of 114 

structural variants in plant pathogens has led to an underestimation of their genetic 115 

diversities as well as impact on fungal pangenome evolution.  116 

The overall lack of SV knowledge in plant pathogenic fungi is largely down to the 117 

technical challenges to detect SVs based on widely-used next-generation sequencing 118 
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(NGS) data due to its small read-length (Mahmoud et al., 2019). Although variant 119 

detection tools such as Pindel (Ye et al., 2009), Delly (Rausch et al., 2012), Lumpy 120 

(Layer et al., 2014) are available, application of these tools to NGS data are mostly 121 

ideal for detecting small variants with limited power in large variant discovery. 122 

Third-generation sequencing technology (i.e., Pacific Bioscience or Oxford 123 

Nanopore), able to span most repetitive and complex regions in genome assembly and 124 

variant detection given the long reads (Mahmoud et al., 2019), presents an ideal 125 

alternative to identify SVs. However, long-read sequencing remains expensive for 126 

variant detection in large-scale population genomic studies of plants and fungi. 127 

Recently, an alternative strategy has been proposed for variant detection based on a 128 

chromosome-scale reference genome and population-scale resequencing datasets. It 129 

involves reference-guided scaffolding of draft genome assemblies from NGS data, 130 

followed by assembly-based detection of variants. Several computational tools have 131 

been developed for this task including Ragout2 (Kolmogorov et al., 2014) and 132 

RaGOO (Alonge et al., 2019) etc., providing a fast and affordable option to 133 

characterize pan-SV landscape at population level. The chromosome-scale genome 134 

assemblies also facilitate the analysis of pangenomes for the species being studied. 135 

In this study, we sought to identify SVs in a large collection of F. graminearum 136 

accessions using chromosome-level genome assemblies, generated by 137 

referenced-guided genome scaffolding of NGS-based assembly, followed by SV 138 

identification. We also constructed the pangenome of F. graminearum based on these 139 

assemblies, revealing the contribution of accessory and private genomes to species 140 

adaptation. Intersecting the SVs with pangenome components highlighted the 141 

important role of SV in the genome evolution and pathogenesis of F. graminearum. 142 

This study not only presents a valuable resource for future population genomic and 143 

pangenomic investigation in this cosmopolitan fungal pathogen, but also demonstrates 144 

how SVs could be analyzed in fungal population genomic datasets solely based on 145 

NGS.  146 

 147 
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MATERIALS AND METHODS 148 

Sequencing data and quality control  149 

NGS (Illumina paired end) raw data of 104 F. graminearum isolates from five 150 

countries (China, USA, United Kingdom, France and Australia) around the globe 151 

were downloaded from National Center of Biological Information (NCBI) Sequence 152 

Read Archives (SRA) (Table S1). The SRA data were then converted to FASTQ 153 

format using SRA Toolkit (https://github.com/ncbi/sra-tools). The quality of the 154 

FASTQ data were assessed from two perspectives. Firstly, FASTP (Chen et al., 2018) 155 

was used to check the read quality such as base quality, guanine-cytosine (GC) 156 

content, adapters etc. of the fastq files, followed by filtering reads with the poor 157 

quality and adapters with default parameters settings. Secondly, the software 158 

Sourmash (Ondov et al., 2016) was used to check k-mer distributions of each dataset, 159 

finding and filtering out samples with abnormal k-mer frequencies. In total, 98 of 104 160 

samples passed the quality control and these cleaned data were used for the 161 

downstream analysis. 162 

Chromosome-level genome assembly 163 

SPAdes (Prjibelski et al., 2020) was used to de novo assemble the cleaned reads, with 164 

the parameters: -k 33,55,77 --careful -t 28, and then the contigs.fasta and 165 

scaffolds.fasta were generated. RaGOO (Alonge et al., 2019) was used to assemble 166 

contigs on the chromosome level based on the results of SPAdes (Prjibelski et al., 167 

2020). The running parameter was -b -t 4-g 100-s-i 0.2, and the fasta file at the 168 

chromosome level was obtained. To evaluated the genome assemblies, we run QUAST 169 

(Gurevich et al., 2013) with default parameters.  170 

Genome annotations and effector prediction 171 

For F. graminearum genome annotation, de novo gene structure was predicted by 172 

GeneMark-ES with parameters ‘--ES --fungus’ (Lomsadze et al., 2005; 173 
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Ter-Hovhannisyan et al., 2008). A Fusarium gene model was then used to train 174 

AUGUSTUS v. 3.1 (Stanke et al., 2008). MAKER2 pipeline (Min et al., 2017) with 175 

RepeatMasker v. 4.0.7 (Saha et al., 2008) option on to find and mask repetitive 176 

elements, was used to find protein-coding genes integrating gene models predicted 177 

from GeneMark-ES and AUGUSTUS, and protein sequences of the F. graminearum. 178 

The F. graminearum putative effectors were predicted as follows: candidate secreted 179 

proteins have a secretion signal as determined by EffectorP (Sperschneider et al., 180 

2018) and have no transmembrane domain as determined by TMHMM 2.0 (Krogh et 181 

al., 2001). Eventually, WoLF-PSort v. 0.2 (Horton et al., 2007) software was used to 182 

estimate the located sites and only those proteins that were credibly positioned in the 183 

extracellular space (i.e., extracellular score >15) were included into in the final 184 

secretome (Kaundal et al., 2010). Small secreted proteins (SSPs) are defined here as 185 

proteins that are smaller than 200 amino acids and labeled as ‘cysteine rich’ when the 186 

percentage of cysteine residues in the protein was at least twice as high as the average 187 

percentage of cysteine residues in all predicted proteins of that organism. 188 

Variant detection  189 

Structural variant detection was conducted using two different approaches: mapping 190 

based approach (MBA) and assembly-based approach (ABA). For MBA, we first 191 

mapped NGS short reads to F. graminearum PH1 genome using BWA-mem (Li & 192 

Durbin, 2009), and performed structural variant detection using three mainstream SV 193 

callers Lumpy (Layer et al., 2014) , Delly (Rausch et al., 2012) and Manta (Chen et al., 194 

2016), followed by merging the detected SV of each caller (only considering SVs that 195 

are detected by at least two of four SV callers) using SURVIVOR (Jeffares et al., 196 

2017). Alternatively, with ABA we aligned each of the 98 chromosome scale genome 197 

assemblies against F. graminearum PH1 genome, followed by structural variant 198 

detection using Assemblytics (Nattestad & Schatz, 2016). The chromosome-level 199 

genome assembly for each of 98 F. graminearum isolates was aligned to the reference 200 

genome PH1 using minimap2 (Li, 2018) with the parameter settings: minimap2 -k19 201 

-w19 reference.fasta contigs.fasta, where "reference.fasta" and "contigs.fasta" 202 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 14, 2021. ; https://doi.org/10.1101/2021.04.14.439764doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.14.439764


 8

represents the PH1 reference genome and genome assembly results given by RaGOO, 203 

respectively. The alignments (.pav files) were then converted to delta format, and then 204 

used as input to Assemblytics for structural variant discovery with the parameter 205 

settings: assemblytics contigs.delta contig_SV 1000000 1 1000000. Structural variants 206 

detected recorded in .bed files as the output of Assemblytics were converted to VCF 207 

(variant call format) files using SURVIVOR v2.0.1. Structural variants of multiple 208 

isolates were filtered, compared and merged using SURVIVOR to identify common 209 

and distinct variants. SNP and indels were identified using Genome analysis tool kit 210 

(GATK) (DePristo et al., 2011). dN/dS (the ratio of non-synonymous to synonymous 211 

substitutions) data were obtained from a previous report by Sperschneider et al 212 

(Sperschneider et al., 2015). 213 

Structural variant effect analysis  214 

The effects of structural variants on genome functions were analyzed using 215 

ANNOVAR (Wang et al., 2010). Genome annotation files (.gtf) and VCF files storing 216 

structural variant calls and genome coordinates were used as input to ANNOVAR for 217 

calculating the effects of each structural variant including overlaps with gene coding 218 

regions (introns and exons), UTRs, intergenic regions etc. The fungal genes affected 219 

by structural variants were obtained by overlapping the gene annotation information 220 

with the variant information stored in .bed files given by Assemblytics using Bedtools 221 

(Quinlan & Hall, 2010). A threshold of 10% or more in gene coding regions 222 

overlapping with any structural variant was used to identify genes affected by the 223 

variant.  224 

Pangenomic analysis 225 

The pangenome analysis was conducted using two different approaches: 226 

genome-based and gene-based approach. For genome-based approach, ppsPCP 227 

pipeline (Tahir Ul Qamar et al., 2019) was used for pan-genome analysis to find full 228 

complement of genome sequences from all 98 genomes with default parameters. For 229 
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the gene-based approach, we used protein sequences of all 98 isolates and PH1 to 230 

identify ortholog groups (orthogroups) shared by all proteomes, among different 231 

proteomes and unique to each proteome using OrthoFinder (Emms & Kelly, 2019). 232 

Core genome is defined as orthogroups present in all isolates, whereas accessory 233 

genome is defined as orthogroups shared by some but not all isolates. Private genome 234 

is defined as orthogroups unique to each isolate. The three parts of pangenomes were 235 

compared with genes encoding for effectors, carbohydrate-degrading enzymes, 236 

virulence factors (PHI-base records (Urban et al., 2020)) and trichothecene 237 

biosynthetic enzymes to evaluate the evolution of these gene functions in F. 238 

graminearum. The pangenome components were also compared with genes affected 239 

by structural variants to assess the contribution of the variants to these gene functions 240 

and fungal evolution. Pangenome openness was determined by fitting the pangenome 241 

profile curve model: y=AxB + C (Tettelin et al., 2005), where y and x represent 242 

pangenome size and genome number respectively, and A, B and C are filting 243 

parameters. 244 

Functional enrichment analysis 245 

For gene function annotation, KEGG pathway analysis was performed using 246 

KOBAS3.0 (Xie et al., 2011), protein domain was annotated by InterProScan (Jones 247 

et al., 2014), and Gene Ontology was annotated by BLAST2GO 248 

(https://www.blast2go.com/), and then enrichment analysis was completed by TBtools 249 

(Chen et al., 2020). 250 

Data availability   251 

The genome assemblies and variants reported in this paper have been deposited in the 252 

Genome Sequence Archive in National Genomics Data Center, China National Center 253 

for Bioinformation / Beijing Institute of Genomics, Chinese Academy of Sciences, 254 

under the BioProject ID PRJCA004286 and accession numbers 255 

WGS018715-WGS018812 that are publicly accessible at https://bigd.big.ac.cn/gsa. 256 
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RESULTS 257 

Chromosome-level genome assembly of 98 F. graminearum accessions 258 

To reconstruct the pangenome and identify structural variants in F. graminearum, we 259 

produced chromosome-level genome assemblies for a collection of F. graminearum 260 

accessions via a reference-guided approach. We first downloaded from public 261 

domains NGS data for 104 F. graminearum isolates originally sampled from five 262 

countries: China (CN), the United States (US), France (FR), United Kingdom (UK) 263 

and Australia (AUS) (Table S1). Quality of these NGS data were assessed, followed 264 

by removing six problematic datasets (showing abnormal Kmer frequencies) and 265 

poor-quality reads and sequence adapters, yielding a total of 98 high quality datasets 266 

including 60, 24, 6, 4 and 4 from US, AUS, FR, UK and CN, respectively (Figure 1A). 267 

Cleaned reads were then de novo assembled by SPAdes to generate 98 draft genome 268 

assemblies (Figure 1B; Table S1) with genome sizes ranged from 34.3Mb to 37.4Mb 269 

and an average GC content of 48.20%. Unsuprisingly, these assemblies were overall 270 

fragmented with the number of contigs ranging from 72 to 805 (Figure 1B and 1C), 271 

and contig N50 ranging from 93.8kb to 2.3Mb (Figure 1C).  272 

High-quality genome assemblies are needed for optimal pangenome construction and 273 

efficient SV identification based on whole genome alignments. Recently, several 274 

algorithms such as RaGOO (Alonge et al., 2019) for reference-guided genome 275 

assembly have been developed to scaffold contig-level assemblies into 276 

chromosome-level assemblies using a reference genome. From the NGS-based draft 277 

genomes of the 98 isolates, we further generated chromosome-scale genome assembly 278 

for each isolate using F. graminearum PH1 reference genome as a guide (Figure 1B). 279 

We obtained 98 final genome assemblies of high contiguity with contig N50 ranging 280 

from 8.3Mb to 10Mb (Figure 1C), a significant leap of quality over the draft 281 

assemblies (Table S1). We also observed that the draft contigs of each isolate could 282 

not be fully aligned into four chromosomes of PH1 genome, suggesting that each 283 

isolate has underwent substantial evolution carrying unique genome sequences. It 284 
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demonstrated the need to characterize the fungal pangenome because any individual 285 

genome is insufficient to represent the genetic information in the whole species.  286 

Pangenomic analysis of F. graminearum 287 

We recovered the F. graminearum pangenome sequence by a genome-based approach 288 

from the 98 chromosome-scale genome assemblies using ppsPCP pipeline (Tahir Ul 289 

Qamar et al., 2019). First, each genome assembly was iteratively compared with the 290 

PH1 reference genome, followed by the presence-absence variation identification via 291 

scanning unique sequences (>100bp) of each accession relative to the reference 292 

genome. For each iteration, the unique sequences and the reference genome were 293 

merged into a non-redundant sequence file. The process was repeated for all 98 294 

accessions to complete the pangenome construction for F. graminearum. The final 295 

pangenome size of the 98 accessions is 42.6Mb, about 5.6Mb larger than the PH1 296 

reference genome. These extra sequences encoded a total of 1,203 protein-coding 297 

genes, and functional enrichment showed that they were mostly significantly enriched 298 

in pathways such as carbohydrate, fatty acid and tyrosine metabolism, transporters 299 

(Figure S1). Fatty acid, carbohydrate and amino acid metabolism produces primary 300 

metabolites that are not only essential for fungal cellular functions, but also precursors 301 

for fungal secondary metabolism (Chroumpi et al., 2020).  302 

For any species, pangenome typically consists of gene sets conserved in all, some or 303 

none of the isolates, which are defined as core, accessory and private genomes, 304 

respectively. To systematically identify the core, accessory and private genomes in F. 305 

graminearum pangenome, we first predicted the protein-coding genes from the 306 

chromosome-scale genomes of the 98 F. graminearum accessions using AUGUSTUS 307 

(Stanke et al., 2008) based on Fusarium-specific gene model (Table S1). Orthofinder 308 

was then used to identify orthologs between PH1 and 98 samples, classifying genes 309 

into 15,408 orthogroups, among which 8,003 (51.94%) were present in all samples 310 

defined as the core genomes. Additionally, 2,928 (19.01%) orthogroups associated 311 

with a single accession, defined as private genomes. Finally, the remaining 4,476 312 
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(29.05%) orthogroups associated with at least two but not all accessions were defined 313 

as accessory genomes (Figure 2A and 2C). We found that the pangenome size 314 

increased before reaching a plateau as the number of accessions increased, but the size 315 

of core genomes decreased (Figure 2B), suggesting that F. graminearum has a closed 316 

pangenome. Interestingly, we found significant smaller dN/dS ratios were associated 317 

with the F. graminearum core genes than with the accessory genes and private genes, 318 

suggesting a different selection pressure likely being exerted on the three types of 319 

genomes (Figure 2D). Furthermore, functional enrichment showed that the accessory 320 

genes were enriched in membrane trafficking (SNARE mediated vesicle trafficking, 321 

exocytosis and autophagy), ribosome and protein translation. Private genes were 322 

enriched in transcription factors, metabolism of amino acids (valine, leucine and 323 

tryptophan) and fatty acids (Figure 2E), consistent with the finding using 324 

genome-based approach (Figure S1). By contrast, core genomes were enriched in 325 

pathways related to the basic metabolism and house-keeping cellular processes 326 

(Figure 2E). Collectively, the pangenomic analysis indicated that F. graminearum 327 

field populations have evolved accessory and private genomes with stronger 328 

diversifying selection compared to core genomes, reflecting the pangenome evolution 329 

behind the fungal adaptation.  330 

Mapping structural variants in F. graminearum 331 

Genetic variants play a central role in genome evolution. With the identified F. 332 

graminearum pangenome, we are curious about what genomic variations each 333 

accession went through to shape the current fungal genome. We characterized the 334 

structural variations (SVs) in all 98 F. graminarum accessions, as SNPs and indels 335 

have already been reported in these isolates previously by others (Cuomo et al., 2007; 336 

Talas et al., 2012). More importantly, SVs are genetic variations typically larger than 337 

50bp such as deletions, insertions, inversions, and translocations, and tend to have 338 

more severe consequences to genome stability and organismal fitness (Medvedev et 339 

al., 2009; Escaramís et al., 2015). Here, we focused on detecting large deletions and 340 

insertions, two most common SV types, in 98 F. graminearum isolates using two 341 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 14, 2021. ; https://doi.org/10.1101/2021.04.14.439764doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.14.439764


 13

different approaches: mapping based approach (MBA) and assembly-based approach 342 

(ABA). For MBA, we first mapped NGS short reads to F. graminearum PH1 genome 343 

using BWA-mem (Li & Durbin, 2009), and performed structural variant detection 344 

using  three mainstream SV callers Lumpy (Layer et al., 2014), Delly (Rausch et al., 345 

2012) and Manta (Chen et al., 2016), followed by merging variants (only considering 346 

SVs that are detected by at least two of three SV callers) using SURVIVOR (Jeffares et 347 

al., 2017). Alternatively, for ABA we aligned each of the 98 chromosome-scale 348 

genome assemblies against F. graminearum PH1 genome, followed by structural 349 

variant detection using Assemblytics (Nattestad & Schatz, 2016).  350 

In total, the MBA method detected 10,253 SVs (> 50bp) including 10,118 deletions 351 

and 135 insertions from 98 F. graminearum isolates (Figure 3A). Conversely, the 352 

ABA method discovered a total of 52,420 SVs including 30,191 insertions (57.59%) 353 

and 22,229 deletions (42.41%) (Figure 3A). The fact that more SVs were detected by 354 

ABA than by MBA showed the power of chromosome-scale genome assemblies used 355 

for SV discovery. A comparison of SVs found that 8,855 SVs were captured by both 356 

MBA and ABA, occupying 86.36% and 16.89% of total SVs discovered by MBA and 357 

ABA, respectively (Figure 3A). Interestingly, 69.51% SVs (57.15% deletions, 99.55% 358 

insertions) detected by ABA were not detected by MBA. The size distribution showed 359 

that smaller and larger SVs are more detectable by MBA and ABA, respectively 360 

(Figure 3B). Harnessing the strength of both methods, we obtained a merged SV 361 

callset by incorporating variants identified by MBA and ABA, yielding a total of 362 

52,645 SVs (Figure S2) for F. graminearum, including 23,614 deletions and 29,031 363 

insertions which were used for downstream characterization of their population 364 

landscape and functional effects. Interestingly, SVs tend to be clustered at 365 

subteleomeric and centromeric regions of F. graminearum genome, although SVs 366 

were distributed throughout the genome (Figure 3C), consistent with previous reports 367 

that SVs occur more frequently in highly complex genomic regions (Sudmant et al., 368 

2015).  369 

Biosynthesis of trichothecene mycotoxins is controlled by Tri gene cluster in F. 370 
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graminearum and other trichothecene-producing species (Gauthier et al., 2015). Three 371 

trichothecene chemotypes have been found in natural isolates of F. graminearum: 372 

15-acetyl-deoxynivalenol (15ADON), 3-acetyl-deoxynivalenol (3ADON), and 373 

nivalenol (NIV). Studies have shown that gene presence and absence variation within 374 

the cluster leads to the fungal chemotypic diversity. In current study, we detected a 375 

large deletion event (2,379bp) contributing to the loss of Tri7 gene in all 3ADON and 376 

NX2 chemotype, but not 15ADON chemotype of F. graminearum accession from 377 

USA (Figure S3). This is consistent with current knowledge that Tri7, a trichothecene 378 

biosynthesis gene encoding an acetylesterase catalyzing a C-4 oxigenation essential 379 

for T2-toxin production in F. sporotrichioides (Brown et al., 2001), is a pseudogene in 380 

F. graminearum 15ADON chemotypes and absent in 3ADON chemotypes (Rep & 381 

Kistler, 2010). However, this deletion event was not observed in F. graminearum 382 

accessions from China, France, Australia and England. In addition, we also detected a 383 

large segment of deletion (7,640bp) contributing to the loss of Tri4, Tri5 and Tri6 384 

genes in 16 of 24 accessions from Australia, which are deletion mutants of the three 385 

genes generated using CRISPR-cas9 genome editing in F. graminearum (Table 386 

S2)(Gardiner & Kazan, 2018). The fact that these deletion events are consistent with 387 

the previous reports or prior knowledge indicates the reliability of the structural 388 

variant detection procedure in this study.  389 

With the merged SVs, we further examined their population distributions and effects 390 

on coding genes. First, a principle component analysis using a SV presence/absence 391 

matrix revealed that the 98 isolates belonged to distinct clusters that overall 392 

correspond to their geographical regions (Figure 3D). Second, we found the UK 393 

isolates and US isolates had the lowest and highest number of SVs per sample, 394 

respectively (Figure S4), although this discrepancy of SV frequency could well be a 395 

result of insufficient sampling of the F. graminearum population of UK compared to 396 

US regions. Third, the genome-wide distribution of SVs showed that majority (84.4%) 397 

of SVs intersected with gene exonic regions and their upstream and downstream 398 

regulatory regions (Figure S5). These SVs affected a total of 1,660 protein-coding 399 
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genes F. graminearum enriched with pathways such as signal transduction and energy 400 

metabolism (Figure 3E), suggesting potential disruptive effects of SVs on the gene 401 

function and potential fitness. Lastly, the number of common SVs between isolates 402 

gradually decreased as the number of compared isolates increased. For instance, 1,660, 403 

597, 145 and 8 protein-coding genes (1kb flanking each side) intersected by SVs were 404 

shared by at least 2, 10, 50 and 90 isolates (Table S3). We further identified highly 405 

variable genes among 98 accessions intersecting with the greatest number of SVs. The 406 

top 20 highly variable genes encode proteins involved in cell contact during mating 407 

(agglutinin like proteins), cell surface associated proteins (Mucins), myosins and 408 

kinesin proteins, virulence-associated proteins and 2OG-Fe oxygenase etc. (Table 1), 409 

suggesting these highly variable genes in F. graminearum pangenomes are likely 410 

associated with virulence, fungal cell communications and interactions with either 411 

other cells, or the environment.  412 

Impact of SVs on F. graminearum pangenome and pathobiology gene functions 413 

We next investigated how much SVs may have shaped F. graminearum pangenomes, 414 

by examining the fractions of genes affected by SVs associated with core, accessory 415 

and private genomes for each accession. Compared to the proportion of core (52%), 416 

accessory (29%) and private (19%) genes in pangenome (Figure 2A), 45%, 29% and 417 

26% genes affected by SVs belong to core, accessory and private genomes, 418 

significantly overrepresented on private genomes but underrepresented on core 419 

genomes (Figure 4A; Table 2). This suggests a clear skewed contribution of SVs 420 

(large deletions and insertions) towards the evolution of private and accessory 421 

genomes, compared to core genomes in F. graminearum. As such, SVs would have 422 

caused extensive gene loss and gain in the fungal populations, leading to a diverse 423 

range of dispensable gene content in different accessions. Conversely, the 424 

under-representation of SV-affected genes in core genomes might be a consequence of 425 

purifying selection against disrupting conserved genes, many of which perform 426 

essential house-keeping functions.  427 
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Next, we examined how structural variants have affected specific groups of genes that 428 

are associated with pathogenesis or secondary metabolism of F. graminearum, 429 

including carbohydrate-active enzymes (CAZYme), effectors, secondary metabolic 430 

gene clusters and transcription factors. For each of these gene groups, we performed 431 

statistical test (Fisher's exact tests) (Table 2) to determine whether their distribution on 432 

each compartment (core, accessory and private) of pangenome significantly deviated 433 

from a random distribution of three pangenomic compartments, followed by testing 434 

whether such distribution also significantly deviated from the distribution of these 435 

gene groups intersecting with SVs on each compartment of pangenome (Table S4). 436 

For example, we predicted 584 effector proteins in F. graminearum pangenome, small 437 

secreted fungal proteins that typically promote pathogenesis, of which 32%, 23% and 438 

45% located in core, accessory and private genome, respectively (Figure 4B), with 439 

private genome significantly enriched with effectors (Table 2). We found 65 effectors 440 

intersected with SVs, of which 26%, 32% and 42% belong to core, accessory and 441 

private genome, respectively (Figure 4B), without enrichment on any compartment 442 

(Table 2). Similarly, we analyzed SV impact on 29 transcription factors (TFs), a list of 443 

764 F. graminearum CAZYme-encoding genes (Figure 4B) downloaded from dbCAN 444 

meta server (Zhang et al., 2018), and 696 secondary metabolic genes (SMG) (Figure 445 

4C) we predicted using antismash. The results show that no deviation of distribution 446 

was observed for SMGs, global or SV-affected, on any compartment (Table 2). 447 

Although TFs and CAZYmes are overall enriched on core genome, no significant 448 

enrichment of SV-affected TFs or CAZYmes was found on any compartment (Table 449 

2). Despite such a lack of significant enrichment, an increased proportion on 450 

accessory compartment was found for SV-affected SMG (33.62%) and CAZYmes 451 

(30.10%) compared to pangenomic ratio (29.05%), suggesting that SVs have 452 

contributed to increased variability of these proteins among F. graminearum isolates.  453 

Finally, we showed that SMG clusters and effectors harbor substantial structural 454 

variations among isolates across different countries (Figure 4E and 4F). We found 22 455 

(33.85%) effectors and 40 (29.41%) SMGs are affected by a deletion or insertion in at 456 
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least ten isolates, respectively. These highly variable SMGs and effector genes are 457 

mostly located at subteleomeric and centromeric regions of chromosomes, consistent 458 

with the genomic distribution of SVs (Figure 3C, track g-h). Given likely associations 459 

of CAZYmes, effectors and SMG clusters to fungal pathobiology, and the disruptive 460 

effects of structural variations on the coding and flanking sequence of these genes, our 461 

results indicate that the pathogen pangenome is likely experiencing rapid evolution in 462 

these genes allowing the fungus to adapt to host and environmental cues.  463 

DISCUSSION 464 

The landscape and functional roles of structural variants in fungal pathogens remain 465 

an overall uncharted area of research in plant pathogens. Focusing on F. graminearum, 466 

one of the most researched plant fungal pathogens, we for the first time performed 467 

systematic identification of large-scale genome structural variants in a collection of 98 468 

fungal isolates with resequencing data. Knowledge-wise, our study have made new 469 

discoveries in three major aspects. Firstly, through reference-guided genome assembly 470 

and alignment followed by variant detection, we discover that structural variants are 471 

prevalent in F. graminearum field populations. Secondly, we show that many of these 472 

deletion and insertion variants co-localize with coding genes and thus may disrupt 473 

their normal functions. The most highly variable genes (found in over 80% of the F. 474 

grmainearum accessions analyzed in this study) caused by SVs are involved in 475 

agglutin proteins, mucins and kinesins that mediate cell to cell contact and 476 

communications during mating or interaction with environment. A high proportion of 477 

isolates carrying these mutations indicates pathogen adaptation to surrounding cells or 478 

environment is likely under strong selection. Thirdly, although these variants can be 479 

found throughout the genome, a high density of SVs is associated with genomic 480 

regions near centromere and telomeres. SVs in these highly polymorphic regions 481 

intersected with genes encoding putative effectors and secondary metabolic enzymes. 482 

Whether SVs play similar roles in evolution of other fungal pathogens of plants and 483 

humans would be intriguing to investigate.  484 
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Our study also showcased a computational strategy to characterize SVs of plant 485 

pathogenic fungi from large populations. The technical challenge of structural 486 

variation detection using short reads has been a major reason why these variants are 487 

left unnoticed in F. graminearum. In this study, we showed that the assembly-based 488 

method detected 44,569 structural variants that are inaccessible to traditional 489 

read-mapping method, highlighting the limitation of large variant detection based on 490 

short reads. Recently, variant callers are being developed to identify SVs in human 491 

samples based on single-molecule sequencing data (PacBio and Oxford Nanopore). 492 

Therefore, plant and fungal structural variant detections are bound to be improved 493 

using these long-read sequencing data given their advantage in detecting large and 494 

complex variants, although the cost of producing and analyzing these data from a 495 

massive plant or fungal populations remains a tremendous challenge for most 496 

large-scale population genomics studies so far. The approach (reference-guided 497 

assembly followed by SV detection) we adopted in this study enabled the SV analysis 498 

solely based on short reads, proving its efficacy working with population scale 499 

resequencing data in pathogenic fungi. With the cost of sequencing continuously 500 

plummeting in the near future, it will be possible to obtain long-read-based fungal 501 

resequencing data from hundreds or thousands of field isolates or experimental strains 502 

to reveal a more complete pangenomic and pan-SV landscape. 503 

F. graminearum SVs detected in this work represent a valuable resource for future 504 

population genomic and pangenomic studies in this cereal pathogen, which is 505 

important for two reasons. First, the prevalence of large scale genome variants in F. 506 

graminearum genome clearly shows the inadequacy of a single reference genome in 507 

population genetic studies, since it tends to introduce geographic bias in interpreting 508 

the genomic data. A pangenomic database integrating all types of variants is essential 509 

to a more robust interpretation of genetic variations genotyped in various F. 510 

graminearum populations. Second, failure to characterize the full spectrum of genome 511 

variants by missing the structural variants represents a blind spot for discovering the 512 

genotype and phenotype associations in F. graminearum. Despite the effects of SNPs 513 
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in gene expression and regulation, they are less disruptive to gene functions and 514 

phenotypes than large-scale variations such as SVs and chromosomal aberrations. 515 

Therefore, it’s critical to take into consideration the impacts of a broader spectrum of 516 

variants for identifying the causal mutations behind trait evolution such as tolerance 517 

of antifungal drugs or evasion of host resistance.  518 

In conclusion, we have produced genome assemblies for a large collection of F. 519 

graminearum isolates, based on which the fungal pangenome and structural variants 520 

were comprehensively analyzed. Our study demonstrates that SVs are ubiquitous in F. 521 

graminearum genomes disrupting functions of genes possibly associated with 522 

pathogenesis and secondary metabolism, providing insights into the fungal genome 523 

evolution. The computational strategies and structural variant resources developed by 524 

this study will be valuable to future population genetic researches of F. graminearum 525 

and other plant pathogenic fungi. 526 
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 755 

 756 

 757 

TABLES 758 

Table 1. Summary of the 20 most variable genes intersecting with structural variants 759 

and their annotated functions in Fusarium graminearum pangenome. The number of 760 

variants is the total number of structural variants intersecting with the protein-coding 761 

sequene and its 1kb flanking region.  762 

 763 

Gene ID Annotations 
Number 

of variants 

Number of 

accessions 

with variants 

FGRAMPH1_01G05643 agglutinin-Like Protein 568 93 

FGRAMPH1_01G15613 agglutinin-Like Protein 489 94 

FGRAMPH1_01G27087 agglutinin-Like Protein 232 85 

FGRAMPH1_01G21813 myosin light chain kinase 187 89 

FGRAMPH1_01G25011 
mucin 1, cell surface associated 

(MUC1) 
185 85 

FGRAMPH1_01G15427 ankyrin-3 protein 184 93 

FGRAMPH1_01G12267 mucin 22 protein 157 85 

FGRAMPH1_01G25295 virulence-associated lipoprotein MIA 122 84 

FGRAMPH1_01G13139 vacuolar carboxypeptidase 118 83 

FGRAMPH1_01G22029 nucleoside phosphorylase 117 81 

FGRAMPH1_01G08911 
Extracellular serine/threonine-rich 

Protein 
116 84 

FGRAMPH1_01G08231 
cell surface proteins containing the 

conserved peptide motif (LPXTG) 
113 82 

FGRAMPH1_01G12003 kinesin light chain 109 81 

FGRAMPH1_01G28273 peptidase c14 108 69 

FGRAMPH1_01G27923 2OG-Fe oxygenase 104 87 

FGRAMPH1_01G11565 Unknown protein 103 73 

FGRAMPH1_01G28289 kinesin light chain 102 96 

FGRAMPH1_01G04545 zinc finger transcription factor 98 93 

FGRAMPH1_01G10821 
SNF5-component of SWI SNF 

transcription activator complex 
97 49 
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 764 

 765 

 766 

Table 2. A summary of the core, accessory and private gene fractions in Fusarium 767 

graminearum pangenome (Global), SV-affected genes (Pan-SV), and genes belonging 768 

to four different functional groups (effectors, CAZyme, SMG and TF). Underneath 769 

the fractions are p-values given by two-tail Fisher's exact tests conducted to determine 770 

the statistical significance of gene enrichment. SV: structural variants. O: 771 

overrepresented. U: underrepresented. N: nonsignificant. NA: nonapplicable. SMG: 772 

secondary metabolic genes. TF: transcription factors. 773 

 774 

Number of genes Global Effector CAZYme SMG TF 

Pangenome 

(15,407) 

Core 

(8,003) 
51.94% 

32.36% 

p = 2.3e-08 

(U) 

68.98% 

p = 1.2e-06 

(O) 

56.03% 

p = 0.2549 

(N) 

71.01% 

p = 0.0108 

(O) 

Accessory 

(4,476) 
29.05% 

22.60% 

p = 0.01155 

(U) 

30.10% 

p = 0.6724 

(N) 

33.62% 

p = 0.0647 

(N) 

28.99% 

p = 0.9817 

(N) 

Private 

(2,928) 
19.01% 

45.03% 

p < 2.2e-16 

(O) 

0.92% 

p < 2.2e-16 

(U) 

10.34% 

p = 1.1e-06 

(U) 

0% 

NA 

Pan-SV 

(1,660) 

Core 

(842) 

50.72% 

p = 0.6084 

(N) 

26.15% 

p = 0.54 (N) 

61.90% 

p = 0.6839 

(N) 

53.68% 

p = 0.8471 

(N) 

65.52% 

p = 0.9248 

(N) 

Accessory 

(659) 

39.70% 

p = 2.1e-10 

(O) 

32.31% 

p = 0.2344 

(N) 

38.10% 

p = 0.42 (N) 

37.50% 

p = 0.6084 

(N) 

34.48% 

p = 0.8212 

(N) 

Private 

(159) 

9.59% 

p = 4.3e-16 

(U) 

41.54% 

p = 0.8282 

(N) 

0% 

NA 

8.82% 

p = 0.7388 

(N) 

0% 

NA 
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 778 

 779 

 780 

Figure 1. Geographic distribution and genome assembly of 98 Fusarium 781 

graminearum accessions. A. World map displaying the countries of origin for the F. 782 

graminearum accessions included in this study. The color scale is proportional to the 783 

number of accessions marked on the map. B. Whole genome alignments of F. 784 

graminearum reference genome PH1 against the genome assembly using Illumina 785 

short reads alone (left) and using RaGOO to perform a scaffolding based on the NGS 786 

assembly (right), using UK2999 isolate as an example. C. Density distribution of 787 

contig counts (left) and contig N50 (right) for the 98 genome assemblies using short 788 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 14, 2021. ; https://doi.org/10.1101/2021.04.14.439764doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.14.439764


 28

reads alone (blue) or using reference-guided assembly of the short reads (red).  789 

 790 

Figure 2. Pan-genome analysis of Fusarium graminearum. A. Core, accessory and 791 

private genomes represent 51.94%, 29.05% and 19.01% of F. graminearum 792 

pan-genome, respectively. B. Variation of gene families in the pan-genome and 793 

core-genome along with an additional F. graminearum genome. C. The number of 794 

genes counted for each pan-genome composition (core, accessory and private) in 98 795 

individual genomes. D. Boxplot of dN/dS ratio (nonsynonymous substitution rate 796 

divided by synonymous substitution rate) distribution for F. graminearum genes 797 

located on each pan-genome composition (core, accessory and private). The 798 

lower-case letter a, b and c represents the significant difference (p < 0.05) using 799 

Student's t-test. E. A bubble plot summarizing the functional enrichment analysis of 800 

each composition of F. graminearum pangenome. Y-axis and X-axis denotes the 801 

enriched KEGG terms and p value (p <0.05). 802 
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 803 

 804 

Figure 3. An overview of structural variant landscape in 98 Fusarium 805 

graminearum accessions. A. Comparison of F. graminearum structural variants 806 

detected using two different approaches: mapping-based approach (MBA) and 807 

assembly-based approach (ABA). B. The size distribution of structural variants 808 

showed that smaller and larger structural variants are more easily detectable by MBA 809 

and ABA, respectively. C. Genome circos plot displaying the distributions of key 810 

genomic features for F. graminearum. (a-h) GC content, Gene density, SNP density, 811 

indel density, structural variant (SV-deletion, SV-insertion) density, effector and 812 

secondary metabolic (SM) gene density calculated in 100-kb windows. Black bars (g 813 

and h) represent the highly variable effectors and SM genes intersected with structural 814 

variants among at least 80% of F. graminearum accessions. D. Principal components 815 

analysis of the structural variants and geographical locations based on a 816 

presence/absence matrix of the 98 accessions. E. Kyoto Encyclopedia of Genes and 817 
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Genomes (KEGG) pathway analyses of SV genes.  818 

 819 

Figure 4. Structural variations contribute to accessory genome evolution in F. 820 

graminearum. A. Proportions of genes affected by structural variants (SV) across the 821 

pangenome. B-D. Pan-SV categories of carbohydrate-active enzymes (B), effectors 822 

(C) and secondary metabolite (SM) gene clusters (D). E-F. Heatmaps showing SV 823 

frequency of effector (E) and secondary metabolic (F) genes. 824 

 825 
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