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Abstract 1 

Genetic data from ancient humans has provided new evidence in the study of loci thought to be 2 

under historic selection, and thus is a powerful tool for identifying instances of selection that might 3 

be missed by methods that use present-day samples alone. Using a curated set of disease-associated 4 

variants from the NHGRI-EBI GWAS Catalog, we provide an analysis to identify disease-5 

associated variants that bear signatures of selection over time. After accounting for the fact that 6 

not every ancient individual contributed equally to modern genomes, a Bayesian inference method 7 

was used to infer allele frequency trajectories over time and determine which disease-associated 8 

loci exhibit signatures of natural selection. Of the 2,709 variants analyzed in this study, 895 show 9 

at least a weak signature of selection (|s| > 0.001), including multiple variants that are introgressed 10 

from Neanderthals. However, only nine disease-associated variants show a signature of strong 11 

selection (|s| > 0.01). Additionally, we find that many risk-associated alleles have increased in 12 

frequency during the past 10,000 years. Overall, we find that disease-associated variants from 13 

GWAS are governed by nearly neutral evolution. Exceptions to this broad pattern include GWAS 14 

loci that protect against asthma and variants in MHC genes. Ancient samples allow us an 15 

unprecedented look at how our species has changed over time, and our results represent an 16 

important early step in using this new source of data to better understand the evolution of hereditary 17 

disease risks.  18 
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Introduction 1 

Many studies have been conducted to understand the genetic basis of diseases and other traits. 2 

Indeed, thousands of disease loci have been implicated in genome-wide association studies 3 

(GWAS) across human populations (Welter et al., 2014). Due to a balance between mutation and 4 

selection, alleles that are associated with Mendelian diseases tend to be rare (Weghorn et al., 2019). 5 

By contrast, alleles that are associated with complex diseases often segregate at intermediate 6 

frequencies (Timpson et al., 2018). GWAS loci are also enriched for derived, as opposed to 7 

ancestral, alleles that increase the risks of complex polygenic diseases (Gorlova et al., 2012; 8 

Lachance, 2010). There has been a great deal of interest in understanding how allele frequencies—9 

and thus, traits—have changed over time; however, until recently, only modern genomes have 10 

been available. Analysis of modern human genomes has revealed that genes that confer resistance 11 

to infectious diseases have been targets of recent selection (Karlsson et al., 2014), and that natural 12 

selection contributes to differences in hereditary disease risks between human populations 13 

(Lachance et al., 2018; Marigorta et al., 2011). Classic debates about the relative importance of 14 

natural selection and genetic drift have also been rekindled (Jensen et al., 2019; Kern and Hahn, 15 

2018). It has also been proposed that modern medicine has led to the relaxation of selection against 16 

mildly deleterious mutations and an increase in genetic load over recent human history (Lynch, 17 

2016). 18 

 19 

During the past decade, an increasing number of ancient genomes have been sequenced, some to 20 

very high read depth (Fu et al., 2014; Mathieson et al., 2015; Meyer et al., 2012; Narasimhan et 21 

al., 2019; Olalde et al., 2018; Prüfer et al., 2014). High quality genome sequences of our archaic 22 

hominin cousins have revealed previously unknown introgression events, and follow-up studies 23 
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have shown how these introgressed regions have impacted modern human health and traits 1 

(Dannemann et al., 2016; Gunz et al., 2018; Simonti et al., 2016). Ancient DNA has also revealed 2 

that selection on the fatty acid desaturase genes FADS1 and FADS2, which are relevant to lipid 3 

disorders, did not coincide with the Neolithic transition and the discovery of agriculture 4 

(Mathieson and Mathieson, 2018). Application of polygenic risk scores to ancient genomes has 5 

revealed that genetic disease risks have changed over the last 10,000 years (Berens et al., 2017). 6 

Furthermore, ancient human genomes have revealed that many variants associated with disease 7 

risk have increased in frequency during recent history (Aris-Brosou, 2019). Because ancient DNA 8 

enables times series data to be analyzed, it is now possible to determine the evolutionary histories 9 

of individual disease-associated loci. Large allele frequency changes during the last 10,000 years 10 

are indicative of disease loci that are under natural selection, while relatively flat allele frequency 11 

trajectories are indicative of disease loci that are evolving neutrally (Schraiber et al., 2016). 12 

 13 

An open question in evolutionary medicine is whether the effects of genetic variation on disease 14 

risks are decoupled from fitness effects (Rodríguez et al., 2014). Here, we use 143 ancient human 15 

samples from 18 previously published studies to examine the role of selection on variants from the 16 

NHGRI-EBI GWAS Catalog. Most of the ancient samples analyzed here lived during the past 17 

10,000 years. First, we correct for whether ancient genomes contribute to modern human 18 

populations. We then use time series data to infer allele frequency trajectories and selection 19 

coefficients for a curated set of 2,709 different disease-associated variants. We also examine 20 

whether protective alleles are more likely to be positively selected, and identify which diseases are 21 

enriched for signatures of weak selection. Collectively, these analyses reveal that most disease-22 

associated loci are governed by nearly neutral evolution.  23 
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Results 1 

Most GWAS variants do not show signatures of strong selection 2 

For each disease-associated locus, we employed a Bayesian MCMC method (Schraiber et al., 3 

2016) to infer allele frequency trajectories and selection coefficients that match time series data 4 

from ancient genomes. However, inference of natural selection requires an understanding of 5 

population continuity, or how much ancient individuals have contributed to modern genomes, if 6 

at all. As previous studies have found differences in contribution based on lifestyle (Haak et al., 7 

2015), we grouped our ancient samples into one of three lifestyles: hunter-gatherers, 8 

agriculturalists, and pastoralists. We then calculated maximum possible genetic contribution of 9 

each of these groups to each variant using the method developed by Sjödin et al. (2014). Using 10 

this information, we could ensure we did not include ancient individuals who might skew allele 11 

frequencies in a way that did not reflect ancient demography (Figure S1).  12 

 13 

Most GWAS loci have flat allele trajectories and selection coefficients that are close to zero. Of 14 

the 2,709 variants analyzed here, we find that 895 show at least a weak signature of selection (|s| 15 

> 0.001) and only 9 show a signature of strong selection (|s| > 0.01; Table 1). We also examined 16 

whether protective alleles were more likely to increase in frequency during recent history than 17 

risk-increasing alleles. A slight majority (52.6%) of putatively selected loci have protective alleles 18 

with positive selection coefficients. However, this trend was not statistically significant (471 of 19 

895 variants, binomial test, P = 6.21 x 10-2). We also found that derived alleles are more likely to 20 

have positive selection coefficients than ancestral alleles at GWAS loci (528 of 895 variants; 21 

binomial test, P < 10-7). Taken together, our findings reveal that GWAS loci are largely governed 22 

by nearly neutral evolution. 23 
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 1 

Despite most variants appearing to evolve neutrally, exceptions exist for some disease-associated 2 

loci (Supplemental Table S1). For example, six of the nine variants under strong selection (s > 3 

0.01) are associated with autoimmune diseases. One of them (rs13277113) is associated with 4 

systemic lupus erythematosus (Hom et al., 2008), and has been found by the GTEx Project (v8) to 5 

significantly affect expression of BLK, a gene involved in B cell development (Gauld and Cambier, 6 

2004). Another of these variants (rs2270450) is associated with developing Hashimoto thyroiditis 7 

versus Graves' disease (Oryoji et al., 2015). Curiously, this variant is significantly associated with 8 

expression of TDRD6, a gene involved in spermiogenesis as well as autoimmune polyendocrine 9 

syndrome (Akpınar et al., 2017; Bensing et al., 2007). The other four strongly selected variants 10 

associated with autoimmune diseases are found within the MHC region, which is known to be 11 

dense with rapidly evolving genes critical to immune function. 12 

 13 

Table 1. Selection coefficients inferred from ancient genomes 14 

Variant type Total number 
of variants 

|s| > 0.001 
(weak selection) 

Protective 
allele selected 

|s| > 0.01 
(strong selection) 

Protective 
allele selected 

All 2,709 895 
(33.0%) 

471 of 895 
(52.6%) 

9 
(0.3%) 

4 of 9 
(44.4%) 

MHC 148 76 
(51.4%) 

36 of 76 
(47.4%) 

4 
(2.7%) 

0 of 4 
(0%) 

Introgressed 24 8 
(33.3%) 

4 of 8 
(50.0%) 

0 
(0.0%) - 

 15 

  16 
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Archaic introgression introduced some selected alleles at GWAS loci  1 

Disentangling the effects of selection and archaic introgression can be difficult if one is analyzing 2 

modern genomes (Racimo et al., 2016). However, time series data from ancient genomes can 3 

sidestep many of these difficulties. Of the 2,709 disease-associated loci analyzed here, 24 contain 4 

introgressed alleles from Neanderthals. Of these 24 loci, nine introgressed variants have signatures 5 

of weak selection in the recent past (Figure 1). Some introgressed alleles appear to have reached 6 

moderate allele frequencies prior to being negatively selected, while other introgressed alleles 7 

appear to have only been positively selected during recent human history. Overall, we find that 8 

disease-associated alleles that have a Neanderthal origin have similar selection coefficients to other 9 

disease-associated alleles from the GWAS Catalog (Table 1). This is not wholly surprising, given 10 

that purging of strongly deleterious introgressed alleles occurred shortly after admixture (Petr et 11 

al., 2019), and introgressed alleles that are able to persist to the present day will have managed to 12 

avoid being filtered out due to Dobzhansky-Muller incompatibilities or other hybrid fitness effects.  13 

 14 

 15 

 16 
Figure 1. Some introgressed disease alleles are under weak selection. Inferred allele frequency 17 

trajectories of introgressed alleles with |s| > 0.001 are plotted here 18 
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 1 

 2 

 3 

Figure 2. GWAS effect sizes are generally unrelated to selection coefficients. We plotted the 4 

odds ratios (OR) of GWAS loci verses inferred selection coefficients for 1,910 disease-associated 5 

variants that were identified in a GWAS that used samples of European ancestry (MHC variants: 6 

red, non-MHC variants: black). 7 

 8 

 9 

Most selected alleles at disease loci have small effect sizes 10 

We examined whether selection coefficients are correlated with disease-related effect sizes. Given 11 

that our time series dataset exclusively contains samples from Europe and effect sizes are 12 

contingent on a host of factors including study population and environmental factors, this analysis 13 

focused on the subset of 1,910 variants that were identified in a GWAS that used samples of 14 

European ancestry (Figure 2). Overall, we find that there is no relationship between odds ratio 15 
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(OR) and magnitude of s for non-MHC variants (r = -0.012). This pattern arises because many 1 

GWAS Catalog traits are largely irrelevant to fitness. For example, the variant with the highest 2 

OR analyzed here (rs3825942, OR=20.1) is associated with glaucoma, a disease which normally 3 

strikes long after reproductive age. Although the variants in Figure 2 are associated with a 4 

heterogenous set of diseases, our results suggest that the selection coefficients are largely 5 

decoupled from the effects of GWAS loci on disease risks. 6 

 7 

Variants in the MHC region show stronger signatures of selection 8 

Compared to other disease-associated alleles, MHC variants show a strikingly different pattern. 9 

Disease-associated variants in the MHC region on chromosome 6 have larger effects sizes than 10 

disease-associated variants that are not in the MHC region (mean MHC OR: 2.11, mean non-MHC 11 

OR: 1.36, t test P = 4.12 x 10-19). Disease-associated variants in MHC genes also show a modest 12 

positive correlation between s and OR (r = 0.167). Variants located in the MHC region were 13 

significantly more likely to show signatures of weak selection than GWAS variants found in other 14 

parts of the human genome (Table 1, hypergeometric P < 10-6). Disease-associated variants in the 15 

MHC region were also significantly depleted of selection for protective alleles (hypergeometric P 16 

< 10-6). Given the highly pleiotropic nature of the immune system, it is possible that alleles that 17 

increase risk for some immune diseases have been historically protective against others 18 

unrepresented in the GWAS Catalog (i.e., infectious diseases).  19 

 20 

Disease-specific tests for enrichment of selection signatures 21 

Although we caution against overinterpreting disease-specific results (due to genetic hitchhiking 22 

and the pleiotropic nature of variants analyzed in this paper), multiple diseases were enriched for 23 
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signatures of weak selection. Idiopathic membranous nephropathy, an autoimmune disease that 1 

severely impacts kidney function, showed the strongest signature of selection, with 17 of 19 2 

variants under at least weak selection (Figure 3A; hypergeometric P < 1.00 x 10-6). Unsurprising 3 

given the strong immune component to this disease, all but one of the variants associated with this 4 

disease are found in the MHC region, which likely contributes to enrichment for selected alleles 5 

that are associated with idiopathic membranous nephropathy. Curiously, alleles that protect against 6 

this disease have tended to decrease in frequency during recent human history (Figure 3B; 7 

hypergeometric P = 4.76 x 10-4). As stated above, this result could represent either genetic 8 

hitchhiking or pleiotropic effects. The next strongest enrichment signal was from asthma, with 26 9 

of the 49 variants associating with it being under at least weak selection (Figure 3A; 10 

hypergeometric P = 2.12 x 10-3). We found that alleles that protect against asthma were strongly 11 

enriched for being under positive selection (Figure 3B; 20 of 26 selected alleles were protective; 12 

hypergeometric P = 8.94 x 10-3). This result was robust to the exclusion of MHC variants. A third 13 

disease that showed enrichment for signatures of weak selection was acne, with 7 of its 10 14 

associated variants under selection (hypergeometric P = 1.79 x 10-2; Supplemental Table S2).  15 

 16 

In addition, we found three diseases that were significantly depleted for signatures of weak 17 

selection (Supplemental Table S2). The strongest signal was for breast cancer (Figure 3B; 21 of 18 

96 variants; hypergeometric P = 1.20 x 10-2), followed by major depressive disorder (10 of 55 19 

associated variants; hypergeometric P = 1.27 x 10-2), and addiction (3 of 23 variants; 20 

hypergeometric P = 2.96 x 10-2). Taken together, these results reveal that not all diseases are 21 

equally affected by selection, even when selection does not appear to be broadly acting. 22 

  23 
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 1 

 2 

Figure 3. Few diseases are enriched for signatures of selection. Dashed vertical lines indicate 3 

mean values for all disease-associated alleles analyzed in this study. (A) For diseases with at least 4 

15 variants under weak selection, the proportion of variants with |s| > 0.001 is plotted. Details 5 

about other diseases can be found in Supplemental Table S2. (B) The proportion of selected 6 

variants where the protective allele has a positive selection coefficient. 7 

 8 

Given that severity and when a disease manifests determine its fitness impact, we also examined 9 

whether diseases with an early age of onset have different characteristics than diseases with a 10 

late age of onset. Overall, 55.9% of alleles that are associated with increased disease risks in our 11 

dataset were derived, as opposed to ancestral (binomial P < 1.00 x 10-6). This trend was more 12 

pronounced in diseases whose onset was before the age of 18 (hypergeometric P = 3.50 x 10-5; 13 

Figure 4A). Despite this effect, age of onset does not seem to impact the likelihood of a variant 14 

being under selection (Figure 4B). However, there is a slight bias in favor of the protective allele 15 

for both the 0-18 age of onset (binomial P = 0.047) and the 19-40 age of onset disease variants 16 

(binomial P = 0.042; Figure 4C).  17 

A B
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 1 

 2 

Figure 4. Comparisons between GWAS loci that are associated with diseases that have 3 

different ages of onset. (A) Proportion of variants where the risk-increasing allele is the derived 4 

allele. The dashed line represents the null expectation (50%). (B) Proportion of variants under at 5 

least weak selection (|s| > 0.001). The dashed line represents the overall variants under weak 6 

selection (33.0%). (C) Proportion of selected variants where protective alleles have increased in 7 

frequency over recent human history. The dashed line represents the null expectation (50%).  8 

 9 

 10 

Discussion 11 

We find that the majority of GWAS variants do not appear to be under strong selection, and that 12 

selection coefficients (s) and odds ratios (OR) are uncorrelated. Allele frequency changes at many 13 

disease-associated loci may be due to the indirect effects of genetic hitchhiking, i.e., selection 14 

acting at closely linked loci. Because of this, our results suggest an “upper bound” for the amount 15 

of selection experienced by GWAS variants. In general, we find that our results reinforce the 16 

notion that diseases do not necessarily impact fitness. Our study also demonstrates the utility of 17 

time series data to infer the evolutionary histories of individual disease-associated loci. 18 

 19 

A B CDerived Risk Selected Protective
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Disease phenotypes are obvious targets for natural selection, so the general lack of variants under 1 

selection in this set of GWAS loci at first seems unexpected. However, a previous study estimating 2 

selection coefficients from C-scores showed a remarkably similar proportion of GWAS variants 3 

under weak selection (Racimo and Schraiber, 2014). Indeed, there are many reasons why we would 4 

not expect many of these variants to be under strong directional selection in the timescale 5 

examined. First, many of these diseases are unlikely to impact fitness, a scenario supported by our 6 

result that OR and the magnitude of s are uncorrelated for most variants. Of the 178 diseases 7 

considered here, 20 are late-onset (age of onset of 60 or later) and while they shorten lifespans, 8 

they do so well after reproductive age. Barring strong effects from scenarios such as the 9 

grandmother hypothesis (Williams, 1957) and presuming these variants substantially affect no 10 

other fitness-impacting traits, this makes this group of disease variants essentially invisible to 11 

selection. The fact that these diseases show no marked depletion in the proportion of variants under 12 

weak selection when compared to diseases with earlier ages of onset could imply that genetic 13 

hitchhiking or pleiotropy may be obscuring expected patterns of selection.  14 

 15 

Another possibility is that selection has acted on disease traits, but the polygenic nature of the 16 

disease means individual loci affecting risk might be close to neutrality. Indeed, this is expected 17 

as many GWAS variants are segregating at allele frequencies that no strongly deleterious variants 18 

could ever reach. Previous studies have demonstrated negative correlations between allele 19 

frequency and effect size, even when study power was taken into account (Park et al., 2011). This 20 

suggests that purifying selection constrains evolutionarily deleterious alleles, supporting the idea 21 

that variants in the GWAS Catalog have not historically had large fitness effects. Another 22 

possibility is that due to environmental changes, some of these diseases have become more 23 
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prevalent in recent history (so-called diseases of modernity). This would cause selection to only 1 

be able to act on them recently, outside the timescale of our analyses. These scenarios do not 2 

represent an exhaustive list of possibilities, nor are they mutually exclusive. 3 

 4 

One exception to this overall pattern is that many putatively selected variants are found in the 5 

highly polymorphic MHC region of the genome. Genes in this region impact resistance to 6 

infectious disease, mate choice, kin recognition, reproductive success, among others (Bernatchez 7 

and Landry, 2003; Piertney and Oliver, 2006). As such, they have been frequent targets of 8 

recurring balancing and positive selection. When considered, these theories make it clear why 9 

GWAS variants overall would be depleted of signatures of selection, apart from MHC variants. It 10 

is worth noting the highly repetitive and highly polymorphic nature of this region makes 11 

genotyping in the MHC region notoriously difficult, so it is possible that this has introduced bias 12 

in our results (Kiyotani et al., 2017). However, there is no a priori reason why difficulty genotyping 13 

would consistently result in an excess of signal for selection. 14 

 15 

Interestingly, diseases whose onset is during pre-reproductive or reproductive age are slightly more 16 

likely to have protective alleles that are positively selected. A prime example of this involves 17 

variants affecting asthma, which are strongly enriched for selection overall, and positive selection 18 

on protective alleles in particular. Asthma is a chronic inflammatory disorder of the airways 19 

primarily affecting children whose incidence has increased substantially over recent decades 20 

(Akinbami et al., 2015), which has been partially attributed to both the hygiene hypothesis as well 21 

as increasing air pollution through urbanization (Bowatte et al., 2015; WHO, 2019). These factors 22 

together suggest that the environmental risk for asthma has been on the rise over recent human 23 
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history, with commensurate increases in selective pressure resulting in the strong enrichment for 1 

positive selection on protective alleles that we observed. 2 

 3 

It is worth mentioning that the approach taken here is subject to the limitations of the GWAS data 4 

to which it has been applied. While incredibly useful, GWAS are not easily conducted on certain 5 

diseases that likely carry great importance to fitness, such as infectious diseases or diseases and 6 

health events that result in patient death before they can be enrolled in a study (i.e., myocardial 7 

infarction, stroke). Our approach here is well suited to examining the common variants typically 8 

found in GWAS, but it is ill-suited to rare or family-specific variation. Additionally, the timescales 9 

we can examine using this approach are defined by the density and timeline of ancient samples. 10 

As many of our samples are from the last 10,000 years and the youngest is from ~1,208 years ago, 11 

very recent allele frequency shifts are difficult to detect. It is possible that some variants may have 12 

been under episodic selection, but our method is unable to detect selection if allele frequency 13 

trajectories are U-shaped. 14 

 15 

Conclusion 16 

Our study shows the utility of ancient genomic data and time series analyses in understanding the 17 

effects of selection versus neutral processes on complex disease risk. These results contribute to 18 

the growing body of data on how selection has shaped the human genome, as well as the 19 

importance of disambiguating fitness effects from disease status. It is also worth noting that 20 

incorporating information from ancient samples can help give context in situations where 21 

traditional markers of selection (linkage disequilibrium, singleton density, etc.) are obscured due 22 

to the history of the region. This is a particular source of trouble in regions such as haplotypes 23 
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introgressed from ancient hominins, whose history violates many assumptions of methods using 1 

modern data alone (Vernot and Akey, 2014). As more high-quality ancient genomes are collected 2 

from around the world, our understanding of evolutionary medicine will continue to grow. 3 

 4 

 5 

Materials and Methods 6 

GWAS variant and ancient DNA curation 7 

Data was downloaded and curated as described in (Berens et al., 2017). Briefly, variants were 8 

downloaded from the GWAS catalog (accessed 28 September 2016) and associations with benign 9 

phenotypes removed. Specific variant associations were removed from consideration if two 10 

variants associated the same disease and were within 100 kb of each other, with a preference for 11 

maintaining the variant-phenotype association with the lower p-value. The risk allele for each 12 

variant was classified as derived or ancestral based on data from the 1000 Genomes Project (Auton 13 

et al., 2015). We used genomic data from 143 ancient individuals from 18 studies (see (Berens et 14 

al., 2017) for further details on the curation of this data). As time series data requires a continuous 15 

population, non-European ancient human samples (e.g., Mota and Anzick) and archaic hominin 16 

Neanderthal and Denisovan samples were not included from the larger set described in Berens et 17 

al (2017). 18 

 19 

Age of onset determination and phenotype collapsing 20 

When available, we used the disease information collated by Google from multiple data sources 21 

(for more information, see: https://support.google.com/websearch/answer/2364942). Onset was 22 

broken down into seven age ranges: 0-2, 3-5, 6-13, 14-18, 19-40, 41-60, and 60+. For each disease, 23 
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we used the age range determined by the highest frequency of ages affected. When multiple age 1 

ranges were equally likely, we used the youngest age range. For the diseases that Google did not 2 

have this information, we used either age of onset data or the age of study participants from the 3 

studies contributing to the GWAS Catalog (Welter et al., 2014). For phenotypes that lacked an age 4 

of onset (allergic reactions, injuries, etc.), we used the category “Any.” In addition, we collapsed 5 

similar phenotypes into an umbrella phenotype (Supplemental Table S2). For example, all 6 

symptoms associated with type II diabetes were collapsed into the type II diabetes umbrella 7 

category.  8 

 9 

Population continuity and contributions to modern genomes 10 

We used a method developed by Sjödin et al (2014). Ancient individuals were assigned into three 11 

groups based on lifestyle: agriculturalists, hunter-gatherers, and pastoralists. For each variant, we 12 

used this program to determine the maximum possible genetic contribution of individuals from 13 

each lifestyle to modern EUR individuals. Maximum contribution was calculated by decile using 14 

a uniform prior and scaled admixture time of 0.01 (5000 years ago, given a generation time of 25 15 

years and Ne of 10,000). This method was shown to be robust to a difference in the time of 16 

admixture compared to the age of the sample as well as variation in sample age. Consistent with 17 

previous findings (Sjödin et al., 2014), similar results were observed when using the Griffiths 18 

distribution, which incorporates ancestral and derived state information. 19 

 20 

Allele frequency trajectory and selection inference 21 

We used a method developed by Schraiber et al (2016). For variants where the maximum 22 

contribution of individuals of a particular lifestyle was less than 100%, we down-sampled the 23 
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individuals from that lifestyle by enforcing a chance of inclusion equal to the maximum 1 

contribution of that lifestyle. Individuals were then binned by age (>9500, 9500-8000, 8000-6500, 2 

6500-5000, 5000-3500, and <3500 years ago). Each time point was determined by calculating the 3 

median age of all individuals included in the bin. Time was then scaled by generation time (25 4 

years) and N0 (10,000). The program was then run twice for each variant, once using a 5 

demographic model of constant population size, and the other including the out of Africa 6 

bottleneck and subsequent exponential growth - parameters used from Gravel et al (2011). Growth 7 

was modelled as a step-wise exponential increase in population size every 2500 years until a 8 

population size of 20,000 was reached, after which population size was held constant through to 9 

present day. Variants were only included for analysis if at least 20 ancient individuals total 10 

contributed over at least two time points (determined after individuals were down-sampled). In 11 

instances of individual down-sampling, the same individuals were used for each variant for both 12 

constant and exponential runs. The final selection coefficient (s) was determined by averaging the 13 

s1 (selection on heterozygote) and ½ s2 (selection on homozygote) values generated by this method. 14 

Due to overestimation of s when the derived allele frequency started very high in ancient 15 

populations, we repolarized the test to treat an ancestral allele as if it was derived when the derived 16 

allele frequency at the first time point was greater than or equal to 75%. 17 

 18 

Introgressed and MHC variant identification 19 

We determined the introgression status of variants using the haplotypes and variants identified in 20 

a study of Neanderthal and Denisovan introgression across modern Eurasian and Melanesian 21 

groups (Vernot et al., 2016). Coordinates defined by the Genome Reference Consortium were used 22 
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to specify the MHC region (hg38 chr6:28,510,020-33,480,577). When necessary, we used liftOver 1 

to convert data from hg38 to hg19 or vice versa (Hinrichs et al., 2006). 2 

 3 

Binomial and hypergeometric enrichment 4 

We used the numpy module in python to generate binomial and hypergeometric distributions. In 5 

all cases, we simulated 1,000,000 draws. Unless otherwise stated in the text, hypergeometric 6 

distributions were generated based on the results from the overall set of 2,709 GWAS variants 7 

with selection information. 8 

 9 
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