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Abstract 

The accuracy of biosensor ratio imaging is limited by signal/noise. Signals can be weak when biosensor 
concentrations must be limited to avoid cell perturbation. This can be especially problematic in imaging 
of low volume regions, e.g., along the cell edge. The cell edge is an important imaging target in studies of 
cell motility. We show how the division of fluorescence intensities with low signal-to-noise at the cell 
edge creates specific artifacts due to background subtraction and division by small numbers, and that 
simply improving the accuracy of background subtraction cannot address these issues. We propose a new 
approach where, rather than simply subtracting background from the numerator and denominator, we 
subtract a noise correction factor (NCF) from the numerator only. This NCF can be derived from the 
analysis of noise distribution in the background near the cell edge or from ratio measurements in the cell 
regions where signal-to-noise is high. We test the performance of the method first by examining two 
noninteracting fluorophores distributed evenly in cells. This generated a uniform ratio that could provide 
a ground truth. We then analyzed actual protein activities reported by a single chain biosensor for the 
guanine exchange factor Asef, and a dual chain biosensor for the GTPase Cdc42. The reduction of edge 
artifacts revealed persistent Asef activity in a narrow band (~640 nm wide) immediately adjacent to the 
cell edge. For Cdc42, the NCF method revealed an artefact that would have been obscured by traditional 
background subtraction approaches. 
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Introduction 

FRET biosensors are powerful, widely used tools for visualization and analysis of protein activities that 
include conformational changes, post-translational modification, and ligand interactions. Signaling 
proteins, like the Rho family GTPase and GEF studied here, function differently in their active and 
inactive conformations, so it is important to differentiate their overall distributions from the distribution 
of specific active conformations (Rossman, Der et al. 2005, Hall 2012). In Förster resonance energy 
transfer (FRET) biosensors, the conformational changes of the target protein typically modulate the 
separation or orientation of two fluorophores, a FRET donor and a FRET acceptor (Hochreiter, Garcia et 
al. 2015, Greenwald, Mehta et al. 2018, Terai, Imanishi et al. 2019). This produces a conformation-
dependence of the FRET intensity (acceptor emission upon donor excitation). In ratiometric imaging, the 
FRET intensity is divided by the fluorescence intensity of the directly excited donor or acceptor 
fluorophore at each point in the cell. This ratio reflects the conformation of the target protein. Use of a 
ratio rather than simply measuring FRET intensity reduces artifacts produced by variations in cell volume 
or biosensor distribution (Kurokawa, Itoh et al. 2004, Pertz, Hodgson et al. 2006).  

Processing FRET biosensor data to produce ratios involves a number of steps, each of which can affect 
the accuracy of the final result (e.g., shade correction, masking, subtraction of background fluorescence in 
each channel, correction for bleed-through between the channels, and correction for photobleaching 
(Machacek, Hodgson et al. 2009, Hodgson, Shen et al. 2010)). Here we focus on artifacts produced when 
noise and background subtraction exert strong effects on the final ratio. Errors introduced by oft-used 
procedures can create artefactual, apparent gradients in the ratio near the cell edge, a region particularly 
important when studying cell morphodynamics. When relatively flat cells are used to study motility, 
important actin dynamics occur in a thin region within 2-3 microns of the edge (Pertz, Hodgson et al. 
2006, Machacek, Hodgson et al. 2009, Marston, Vilela et al. 2020).The small volume of this region 
decreases signal/noise and increases the magnitude of background subtraction errors relative to the real 
signal. Importantly these effects increase as we move towards the cell edge and volume decreases. We 
show here how and why this region is prone to artefacts, and propose a correction method, the noise 
correction factor (NCF), that eliminates the need for background subtraction. The method can be applied 
in many types of ratio imaging where background subtraction can be problematic.  

The paper begins with a simplified model of the problem, based on considering a hypothetical cell with 
thickness gradually decreasing as we move closer to the edge. This model is used to illustrate issues with 
background subtraction and noise that generate artefactual gradients in ratios, and to explain the rationale 
behind the NCF method. We demonstrate the artefactual gradients in real cells and look more closely at 
the role that background subtraction plays in such artefacts. Using an "inert biosensor" that would be 
expected to produce a uniform ratio throughout the cell, we demonstrate why improving the accuracy of 
background subtraction actually amplifies the artefactual gradient associated with division by low signal-
to-noise values. Finally, we provide mathematical derivations that justify the use of NCF to produce an 
artifact-free ratio. These theoretical considerations are tested by applying the NCF method to two 
additional biosensors: a single-chain biosensor for Asef, and a dual-chain biosensor for the GTPase 
Cdc42. For the Asef biosensor, by eliminating the noise-related artifact we eliminated spurious activity at 
the cell edge, revealing real GEF activation in a 2-pixel wide band along the periphery. For the GTPase 
biosensor, improved visualization of near edge regions revealed problematic areas that needed to be 
excluded from ratio analysis. 
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Results 

 

A hypothetical cell model illustrating effects of noise on ratio values 

Here we consider a simple cell model to establish the new approach; it will be applied to real cells in the 
following sections. FRET is defined as the fluorescence intensity emitted from the acceptor upon donor 
excitation, excluding any contribution from background, spectral bleedthrough or other artifacts. 
Emission from the "FRET channel", on the other hand, is the intensity measured when the microscope is 
configured to monitor donor excitation and acceptor emission, including contributions from bleedthrough, 
background etc. Analogously, monitoring the "Donor channel" refers to quantifying light actually 
collected when monitoring donor excitation and donor emission, including artefactual contributions. Let 
us consider a hypothetical cell in which the thickness gradually increased with the distance from the edge, 
starting with a value of zero thickness at the edge. Let’s assume that the protein activity, as reflected by a 
FRET biosensor, is perfectly uniform throughout the volume of the cell. Ideally, the intensity of the 
signals in the FRET and donor channels will increase linearly with the distance from the edge, �, as ��� 
and ��� respectively, due to the increasing thickness of the cell. By taking the ratio of the signals, we get 
the constant value 

��
��, which tells us that the activity is uniform as expected. In reality, each signal is 

shifted by a background fluorescence: ��� � background and ��� � background. Thus, inaccurate 

subtraction of the background leads to the ratio 
������
������, which is a function of � instead of a constant (

��
��). 

The more accurately we subtract the background, the more accurately we can determine the ratio. Let’s 
assume that we found a way to subtract the background perfectly. Now we have another problem: each 
channel has some noise in the signal so that the ratio after background subtraction is 

������
������. Far enough 

from the edge, the signal dominates the noise ���� � �� and ��� � ���, so we get an accurate estimate 
of  

��
��. However, near the very edge, as � � 0, the ratio is heavily affected by noise, producing large 

variance of the ratio values. The calculated ratios will tend to produce more large positive values when 
noise starts to dominate the signal (effects of noise that decrease the correct ratio value can only approach 
zero, whereas those that increase the ratio can become arbitrarily high). Importantly, this trend towards 
increasing values will have a spatial component, making the ratio appear to become higher as we 
approach the edge. The more high-intensity pixels are produced by this effect, the higher will be the 
apparent, artefactual increase in activity at the edge, which be mistaken for a real protein activity gradient. 

In this example, we can resolve these issues using the fact that 
���������
��������� �

�������

��

	����
����
��

	���
�������

��

	���
  

(Supplementary Information). Instead of subtracting background values from each channel, we can 

subtract one correction factor, ��� � ��
��
���, from the FRET channel only, producing the ratio 

�������

��

	���
�������

��

	���
, which is a better estimate of 

��
��, because even as � � 0, �� �� � ��

��� � �� and we never 

divide by noise.  

In the following sections, we explore the applicability of this idea to actual biosensor data. The correction 
factor will be referred to as the noise correction factor (NCF).  
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Effects of noise examined in real cells  

  

Figure 1. Ratio calculation using the mean background subtraction method. A. A colormap of the FRET channel (mCerulean
emission upon excitation of CyPet ) after background subtraction, showing noneven distribution near the cell edge. The insert
shows the signal from the white box in log scale for better contrast at the edge. The green box indicates the area of the image
used to determine the mean and standard deviation of the background noise. B. The resulting ratio signal with the background set
to the mean ratio signal in the cells for a closer look at the non-uniform distribution. C. The ratio profile from B along the black
line. Blue arrows point to the artifact – at the edge very large deviations of the ratio from the expected constant mean level in the
cells. D, E. Mean ratio signal as a function of the distance toward the cell center from the edge for the left and right cells in B.
Blue curves indicate the mean. Red dashed curves indicate the mean plus/minus one standard deviation. 

To illustrate the effect of noise in wide field imaging of real cells, we examined Cos7 cells expressing two
fluorescent proteins often used for FRET, mCerulean and CyPet. Although biosensor activity is
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frequently reported as the ratio of FRET intensity to the intensity of the directly excited donor 
fluorophore, other ratios are also used (e.g., FRET divided by a directly excited acceptor or a volume 
indicator). To keep our description more general, we refer to the numerator as image1 and the 
denominator as image2. When background subtraction is explicitly included, the ratio is: 

�������, �� � � �!"1��, �� � $%�����
� �!"2��, �� � $%�����

, 
where ��, �� is the position of a pixel in the image.  

 

Figure 1A shows the nonuniform intensity distribution in the FRET channel for two neighboring cells, 
containing linked fluorophores that should FRET but not reflect protein activity. Figure 1B shows the 
fluorescence ratio after background subtraction for the same cells, a much more uniform image. For the 
background of each image, we determined the average intensity of a region away from the cell, which we 
will refer to as a distant background (green box in Figure 1A). To more clearly show variations in ratio 
values, we set the pseudocolor scale by assigning the region outside the cells to equal the mean of the 
ratios inside (' 0.7). A line-scan across the cells (black line in Figure 1B) showed that some pixels at the 
cell edges had intensity values several-fold higher than those within the cell (arrows in Figure 1C), as 
predicted. Figure 1D,E show that such pixels create a statistical bias in the average intensity within the 
cell, which varies with the distance from the edge, *. Using the relative range of the mean intensity, �max�-./ � min�-./� min�-./⁄ , as the measure of the deviation from the expected constant mean, we 
find that the left and right cells are biased at their edges by 4.7% and 5.7%, respectively.  
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Figure 2. Illustration of an extreme case of an error in background subtraction. A. The ratio  without background

subtraction at all B. The ratio profile from A along the white line.  

 

 

 

nd 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 14, 2021. ; https://doi.org/10.1101/2021.04.13.439673doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.13.439673
http://creativecommons.org/licenses/by/4.0/


The effects of background subtraction 

Like noise, incorrect background subtraction can also generate artefactual gradients at thin parts of the
cell.  Importantly, the method we will propose here does not require direct background subtraction, so
these artefacts will be eliminated. In this section we show why it is worth eliminating the need for
background subtraction; and highlight potential artifacts for those who do use it. 

Incorrect background subtraction artificially elevates or reduces ratios, depending on the relative extent of
the error it introduces in the numerator and denominator. As the signal decreases towards the edge, such
background errors contribute more to the ratio values calculated, producing an artefactual gradient of
activity (see Figure 2 for an extreme case of no background subtraction at all). The gradient can increase
or decrease towards the cell edge, depending on the relative magnitude of errors in the denominator and
numerator. To put it mathematically, as the signals  and 

 get smaller near the edge, the errors in the background subtraction make that ratio

 approach a number  , which has no biological meaning.  

Determining the correct background to apply to each pixel in the cell can be challenging. In wide field
imaging for example, parts of the cell outside the plane of focus generate out-of-focus light that is
unevenly distributed across the in-focus pixels. Some of this light appears outside the cell, so averaging
regions outside the cell to determine the background can be problematic. When averaging a region far
from the cell edge, the background will be too low. To illustrate this effect, we compared the ratios
obtained in Figure 1 with those obtained by setting the backgrounds (  and ) halfway
between the distant background value used for Figure 1, and the value used to define the cell mask, i.e.,
the value right at the cell edge. Figure 3A,B shows that the resulting bias becomes worse, giving a
deviation of 4.2% and 10.6% from the flat level, on average, and the variance of the ratio values at the
edge is significantly increased. This was because using an increased background value decreased the
intensity after background subtraction, making it smaller relative to noise.  

 

Figure 3. Mean ratio signal as a function of the distance from the edge. Blue curves indicate the mean. Red dashed curves
indicate the mean plus/minus one standard deviation. A,B. The result for the left and right cells in Figure 1 based on the
subtraction of the values halfway between the distant background value and the value used to define the cell mask. Here the
deviations from the expected constant mean are 4.2% and 10.6%, respectively. 

We tested whether this problem could be overcome by subtracting background values obtained near the
edge of the cell, taking into account the fact that background near the edge varies along the periphery of
the cell. We applied non-uniform background subtraction by subtracting  and

 that depend on the position in the image. To capture the spatial variation of the
background, the background intensity was measured along the cell edge right outside the cell, and the
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resulting values were applied to nearby regions within the cell, so that subtracted values more properly
reflected the local background. Figure 4 illustrates the approach.  

Figure 4. Non-uniform background subtraction. A,B. The fluorescence intensity in the FRET and donor channels outside the
cell and near the edge (i.e., the local background along the cell periphery) is shown in blue. Smoothing these using a Gaussian
filter generated the curve shown in red. C,D. Spatial interpolation using the smoothed signal along the cell edge as the
background for determining ratio values near the edge. E. Mean ratio signal as a function of the distance toward the cell center
from the edge, showing 12.7% deviation from the expected constant mean. This is due to the same edge artifacts shown in Figure
1, but further exaggerated by small values of the ratio denominator.  

First, we find the intensity at each pixel adjacent to the cell boundary  for each channel (blue curves in
Figure 4A,B). This measurement reflects two contributions: 1) local pixel-to-pixel variation due to the
intrinsic noise of the signal and 2) a larger-scale variation in the background at different regions around
the cell. To estimate background fluorescence along the whole cell edge, we need to use this larger-scale
trend in the intensity variation (red curves in Figure 4A,B). It is found by applying the Gaussian

filter(Davies 2005) to smooth out the noise, , where  and  are numerical

indexes of the points along the edge and  is a parameter representing the extent of the smoothing

window. Next, we find the interpolated values inside the cell as , where 
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is the distance from a pixel � to the point ��, �� and   is the parameter that controls how deep the local 
background values at the cell edge are extended inside the cell before the peripheral variation is smoothly 
connected across the cell. Such interpolation produces a meaningful estimation of the background 
intensity distribution near the curved edge. Interpolated distribution in the middle of the cell may not be 
any more accurate than a global value of the background obtained from a distant region. The result of this 
operation is shown in Figure 4C,D for the FRET and donor channels, respectively (only the near edge 
regions are shown). Finally, we find the ratio after non-uniform background subtraction as: 

�������, �� � ������,��
��������,��
�����,��
����	��,�� , ,       

Designed this way, our non-uniform background should provide a particularly accurate estimate of the 
actual background signal around the cell near its edge. However, the problem with the division by small 
numbers (weak donor signal at the very edge) is not resolved. The artifact is actually stronger because the 
subtracted values are closer to the fluorescent signal on the cell edge. Indeed, Figure 4E shows the mean 
intensity change in the cell with the distance from the edge. Our metric of the deviation from the expected 
flat distribution �max�-./ � min�-./� min�-./⁄ , gives 12.7%, which is about twofold more than the result 
of the distant background subtraction method (compare with Figure 1D,E).  
 

Use of a noise correction factor; identification and correction of artifacts without using direct 
background subtraction  

The previous section shows that improving background subtraction may not be sufficient to avoid 
misleading ratiometric artifacts at the edge of the cell. Let us therefore explore an alternative way to 
calculate the ratio of image 1 and image 2. We start with a theoretical estimation and then test the 
predictions with live-cell imaging. 

Let’s start with the situation considered above, where protein activity is constant throughout the cell, so 
that signal variation across the cell results from non-uniform cell thickness. We aim to determine the ratio 
between background- and noise-free florescent signals  2���, �� and 2���, ��, which must be proportional 
to each other in this case. The ratio of the two images can be written as 

�������, �� � �������,��
�������,�� � 
����,����������,��

����,����������,�� ,                                               (1) 

where �  is a coefficient of proportionality and $�, 3���, ��, $� , 3���, �� are the background levels and 
the noise in image 1 and image 2, respectively.  

Background subtraction from each image (e.g., using mean background subtraction, MBS) reports: 

�����!"#��, �� � �������,��
��
�������,��
�� �


����,�������,��
����,�������,�� .                                     (2) 

Using a simple algebraic rearrangement of terms in this equation (1), we find (see Supplementary 
Information) 

�������, �� � �������,��
�������,�� � 
�����,����������

��������,��

�����,�����������,�� .                              (3) 

Now we can show that subtracting a specific constant in the numerator – the noise correction factor 
(NCF) – eliminates the need for background subtraction in the denominator. Subtracting N45 � $� �� $�  produces: 

�����$%&��, �� � �������,��
���
�������,�� � 
�����,�����������,��

�����,�����������,�� .                                 (4) 
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In any part of the cell away from the edge, where 2���, �� � $� � 3���, ��, both the MBS and NCF 
methods give the same correct (flat on average) result: 

�����'����, �� ' ������()��, �� ' � � ����,��
����,�� . 

However, in thin regions near the edge, where 2���, �� � 0, the MBS method generates the artifact 

�����'����, �� ' ����,��
����,��, 

while the NCF method still gives the correct (flat on average) answer 

����������, �� ' � � ����,��
 �� , 

When we use the correction factor, the artefact is not present because we did not subtract the background 
from the denominator and $� � 3���, ��. For the same reason, we can apply the correction factor 
approach to the whole image, including the region around the cells (with no biosensor signal). For these 
regions, we get: 

�������,��
��
�������,�� � 
�������,��

�������,�� ' � � ����,��
 �� . 

So far, we considered an ideal (biologically uninteresting) situation where the FRET signal is strictly 
proportional to the donor signal. Now, let’s consider the next order of approximation, where biosensor 
activity deviates from the basal level so that the pure (background- and noise-free) part of the signal in 
image 1 is 2���, �� � 6� � ����, ��72���, ��. As we will illustrate below, when we discuss imaging of a 
GEF biosensor, this is a good approximation for biosensors that are based on a single protein chain which 
contains both FRET fluorophores. Subtracting the correction factor 345 � $� � � $� from image 1 
yields 

����������, �� � �������,��
���
�������,�� � 
�����,�����������,��

�����,�����������,�� � ���,������,��
�����,�����������,��. 

In cell regions where the donor signal is strong 2���, �� � $� � 3���, ��, we again get the agreement 
between the MBS and NCF methods: 

����������, �� ' �����'����, �� ' � � ����, ��. 
In the background of the image, we still get  

�������,��
���
�������,�� � 
�������,��

�������,�� ' � � ����,��
�� , 

while at the very edge of the cell, where 2���, �� � 0, but $� � 3���, ��, the corrected ratio transitions 
between �  and � � ����, �� as 

����������, �� � � � ����, �� ����,��
����,����� �

����,��
����,�����. 

These results suggest that in cell areas where the MBS method does not generate noise-related artifacts, 
the noise correction factor gives the same ratio values. However, unlike the MBS method, the NCF 
method allows us to evaluate the ratio all the way to the cell edge. In addition, the NCF method allows us 
to visualize background noise outside the cell (Figure 5, 6). This is useful because it enables comparison 
of background noise outside the cell with the FRET ratio inside the cell. With the MBS method, this is not 
possible because outside the cell we have one noise divided by another noise. Although the NCF method 
may underestimate the values at the very edge of the cell, these values would still be appreciably higher 
than the zero activity FRET ratio � . FRET signal measured when there is no protein activity reported by 
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the biosensor could result from the FRET of the biosensor in its 'off state' (e.g., for single cell biosensors 
where both fluorophores are always held in proximity within the biosensor) or from some systematic shift 
in the image acquisition (e.g., an uncorrected camera signal). The practical usefulness of this method is to 
visualize the ratio signal at the cell edge and other noisy portions of the cell, free from artifacts associated 
with division by a very weak donor signal.  

Determining the proper noise correction factor in practical applications 

The mathematical results in the previous section illustrated the benefits of using the NCF method. Here 
we show two alternative ways to find the right value of NCF for practical applications. In some cases, 
there will be appreciable "background FRET", measurable intensity in the FRET channel even when there 
is no protein activity. This could occur, for example, with single chain biosensors that contain two 
fluorophores held near each other in the biosensors 'off' state (Pertz, Hodgson et al. 2006, Marston, Vilela 
et al. 2020). In such cases, we can take advantage of the fact that the correct NCF value makes 
����������, �� ' �����'����, �� in the cell regions away from the edge. It is easy to check for strong 
background FRET by plotting the intensity of image 1 vs. image 2 for each pixel. In such cases, the NCF 
can be found as the value that minimizes the deviation function  

8"9���345� � :�
�∑ ��������� � �����'����+,, -./-                                        (5) 

where � is the number of pixels in the considered cell region away from the edge. 

Another way to determine the NCF is to take advantage of the fact that the correct NCF value makes the 

background level near the edge outside the cell flat: 
�������,��
���

�������,�� ' � � ����,��
�� . Thus, the NCF can be 

found as the value that minimizes the deviation function  

8"9012�345� � :�
�∑ ��������� � � ��3/ 4-56 -./-                                        (6) 

where � is the number of pixels in the considered background region. Since �  represents the zero protein 
activity "background ratio", we define it as the mean value of the ratio calculated with the MBS method 
inside the cell. This approach is preferable for biosensors where we cannot expect strong proportionality 
between background- and noise-free florescent signals 2���, �� and 2���, ��, e.g., for biosensors 
consisting of two chains, with one fluorophore on each chain (Machacek, Hodgson et al. 2009, Marston, 
Vilela et al. 2020). 

Let us check how this optimization approach works for our example from the previous sections (two 
fluorophores with constant FRET throughout the cell). We first verify the proportionality between the 
signals in image 1 and image 2. Figure 5A shows FRET vs. donor signals for each pixel in the image 
with the expected strong proportionality. The linear fit gives the coefficients � � 0.63 and � � 0.72 for 
the left and right cells in the image, respectively. Knowing the background values, we can estimate the 
theoretical value ($� � � $�) of the noise correction factors as 345 � 53.4 and 345 � 43.2. Next, 
using morphological erosion (Soille, P. 2004) of the cell masks by 10 pixels, we determine the deviation 
values of the function (5), as shown in Figure 5B for each of the cells. The smallest deviation values are 
achieved when 345 � 51.6 and 345 � 39.8, which are close but not exactly equal to our estimation 
based on the fit of the FRET vs. donor plot. Figure 5C,D shows the resulting ratio images, and Figure 
6A,B shows the corresponding line scans across the image.  
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Figure 5. Illustration of the correction factor method. A. Intensity in the FRET vs. donor channels for each pixel. Red and
blue colors indicate pixels in the left and right cells, respectively. The green lines indicate linear fits to the data points. B. The
deviation function (Equation 5) for a range of correction factor values. Red and blue curves are the functions calculated
separately for the left and right cells in the image. The optimal correction factors are defined as the positions of the minima of
these functions. C,D. The ratio images resulted from the subtraction of the correction factors. In C, the signal in the left cell
flattens with the background level as predicted by the mathematical analysis. Similarly, in D, the right cell flattens with the
background. The flattening is so efficient that the noise fluctuations become visible. 

Clearly, the MBS and NCF methods give the same intensity profile, except that the NCF method does not
show noise-related artifacts, in agreement with the theoretical prediction. For  and 

 we found the smallest value of the flatness metric, , when the mean
intensity became close to a constant value over a range of distances from the edge (Figure 6C,D), as
expected for this data. For these correction factors, the deviation from the constant became 1.2% and
0.9% for the left and right cells in the image, respectively. This is a fivefold improvement over the MBS
method (see Figure 3A,B). All the values of NCF for each cell found through different means above are
consistent with each other, which supports the mathematical rationale behind the NCF method.   
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Figure 6. Comparison of correction using the noise correction factor (NCF) versus mean background subtraction. A,B. The ratio
profiles from the images in Figure 5C,D along the line at the same location as in Figure 1. Red and blue colors indicate the ratios
obtained with the mean background subtraction and NCF methods, respectively. Both results overlap inside the cells away from
the edge (left cell in A and right cell in B). Near the cell edges, the shape of the profile is still consistent between the methods,
but the artifacts are not present in the result of the correction factor method. C,D. Mean ratio signal as a function of the distance
toward the cell center from the edge after applying the correction factor (C for the left cell and D for the right cell), showing the
expected flat level with only 1.2% and 0.9% deviation from a perfectly constant line. The variance of the fluctuations is also flat
all the way to the cell edge, in contrast to the background subtraction approaches (see Figure 3 and Figure 4D).    

 

Application of the correction factor method to a single-chain biosensor. 

We next tested the theoretical predictions of the previous sections using our single-chain biosensor for the
guanine exchange factor (GEF) Asef (Marston, Vilela et al. 2020). In this biosensor, a pair of
fluorophores, mCerulean 3 and YPet, connected by a flexible linker, are inserted into a flexible hinge
region between the active site and autoinhibitory domain (AID). Activation of the protein causes the AID
to be displaced and the donor/FRET ratio to increase. The biosensor was imaged in moving fibroblasts
constitutively expressing the biosensor. Figure 7A shows the plot of FRET vs CFP values for each pixel
of a biosensor image. Clearly, there is a strong linear trend due to the zero-activity background ratio of the
connected fluorophores,  with a number of pixels deviating from the line due to biological activation,

, as can be seen in the zoomed region of the plot (Figure 7B). Therefore, our theoretical

representation of this FRET vs. CFP relationship as  is a good approximation. Now,

Figure 7C shows the ratio of the two channels obtained with the MBS method. Close visual inspection of
the pixels near the edge of the segmented cell (see Figure 7D,E) indicates that there are many very bright,
somewhat irregularly distributed pixels along the edge. These pixels may well have been generated by the
artifact that we investigated in the first sections.  

 

tio 
ios 
m 

ds, 
ce 

the 
lat 

he 
of 
ge 
ID 
sts 
el 
he 

, 
cal 

w, 

 of 
, 

he 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 14, 2021. ; https://doi.org/10.1101/2021.04.13.439673doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.13.439673
http://creativecommons.org/licenses/by/4.0/


Figure 7. Application of the mean background subtraction method to Asef biosensor data. A. Uncorrected FRET vs. donor
for each pixel. Blue indicates pixels with intensities above the mask threshold (i.e., inside the cell), green indicates pixels in the
background with intensities below the mean plus three standard deviations of the noise in the box, and cyan indicates pixels in the
background near the cell edge (with intensities between the threshold and mean + 3 std of the background noise) B. A zoomed-in
region of the image in A, confirming our theoretical assumption that there is strong basal activity of the GEF biosensor. C. Ratio
image resulting from the mean background subtraction method. Here we set the background level to the mean value of the ratio
inside the cell (as in Figure 2B). D,E. Two different zoomed-in regions from the image in C (black boxes). Red arrows point to
high ratio pixels on the edge of the cell. With MBS method, these pixels appear similar to the noise artifact seen Figure 1C, so
NCF is needed to analyze these pixels properly.  

How would we know if this is real biosensor activity or an artifact stemming from ratio calculation? The
correction factor approach can help to answer this question. First, we use the deviation metric (Equation
5) to find the noise correction factor. As described in the previous section, by minimizing the deviation
we find the correct NCF, for which the ratio values away from the edge (where signal to noise is high)
match the values of the MBS method (see Figure 8A,B). Now, we can calculate the ratio values across
the whole image (inside and outside of the cell). With the NCF method, the values of the pixels at the
very edge are significantly lower than the values of the same pixels in the MBS method. We can consider
these values to be free of noise-related artifacts. However, they are still clearly elevated relative to the
background level. Thus, the NCF ratio image indicates that there is indeed a narrow band of high activity
on the edge of the cell (see Figure 8C,D), which is not a processing artifact but a true biological activity.
For a better quantitative measurement of this effect, we plot the confidence regions for mean intensity
values of the contour pixels on the cell edge and up to 2 pixels away from the edge toward the cell center
and towards the cell background (Figure 8E). This plot shows that the band of activity on the cell edge is
just 2 pixels (0.64 um) wide, and it stands out over the mean intensities on each side of the band with
statistical significance. 
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Figure 8. Application of the correction factor method to Asef biosensor data. A. The ratio values along a line in the ratio
image resulting from the mean background subtraction method (red) and from the NCF method (blue). The red arrow indicates a
pixel where the MBS method gives an artefactually high ratio value (noise-related artifact). The NCF method gives a value (blue
arrow) that is within the distribution of ratio values seen throughout the cell (free of the noise related artifact). B. The deviation
function (Equation 5) for a range of NCF values. The correction factor giving the minimum deviation is used. C,D. Two different
zoomed-in regions of the ratio image calculated with the NCF method. Each zoomed-in region is presented in two colormaps. For
better contrast, the panels on the right also exclude all regions from the view except for the near edge region. White arrows point
to a narrow band of bright pixels at the very edge of the cell. E. Statistical measurement of the activity distribution (mean
plus/minus the standard error) for pixels along the contours at different distances from the cell edge. Blue and red color
represents the result of the NCF and MBS methods, respectively. On average, a two-pixel band is elevated over the noise seen
beside the band, either inside or outside the cell. 

Application of the correction factor method to a dual-chain biosensor. 

Our theoretical considerations relied on the assumption that there is a strong component in the FRET
signal that is proportional to the donor signal. As we showed in the previous section, this assumption is
accurate for the single chain Asef biosensor and should be accurate in general for single chain FRET
biosensors due to their design. For dual-chain biosensors using intermolecular FRET, we cannot expect
the same level of correlation because the donor and acceptor are not physically linked and may or may not
be distributed similarly in the cell. However, we can still find the NCF based on the flattening of the
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background level near the cell edge outside the cell, using the deviation function defined by Equation 6. 
This background level can be used as a baseline with which to compare ratio values inside the cell. Notice 
that in all our previous examples, the mean level of the noise outside the cell becomes flat on average and 
levels up to the mean ratio inside the cell after subtracting the NCF (See Figure 6A,B and 8A). This 
makes sense, because noise outside the cell should be flat on average regardless of the type of biosensor 
we use. Based on this minimization routine, we can expect that the proper NCF will suppress noise-
related edge artifacts in ratiometric analysis of dual-chain biosensors. To investigate this, we applied it to 
the dual chain Cdc42 biosensor designed to be imaged simultaneously with the Asef biosensor. In this 
Cdc42 biosensor (Marston, Vilela et al. 2020), LSSmOrange is attached to Cdc42, and mCherry is 
attached to the CRIB domain of WASP. When Cdc42 is activated the WASP fragment binds Cdc42, and 
mCherry (FRET) emission can be detected upon LSSmOrange (donor) excitation. This biosensor could 
be used together with the Asef biosensor because the donor proteins in the two biosensors can be excited 
with the same wavelength, but they have substantially different emission maxima. Because this was a 
dual chain biosensor, we studied FRET and donor signals after correction for spectral bleedthrough. 
Ratios were then calculated using the MBS and NCF methods. 

To define the region near the cell edge outside the cell, we used morphological dilation by 50 pixels. The 
minimum of the deviation function was achieved at 345 � 550.6. The resulting ratio images from the 
two methods are shown in Figure 9A-C. Perhaps surprisingly, the intensity profile inside the cell away 
from the edge was very consistent between the methods (Figure 9D), although here we did not use such 
criteria for finding NCF. Actually, if we do use the minimization based on the deviation function inside 
the cell, 8"9���345� (see Equation 5), we get the correction factor 345 � 538, which is close to the 
value we obtain with the minimization of 8"9012�345�. This result, confirming the agreement of the two 
types of optimization, further justifies our rationale for using flattening of the background level as a way 
to find the proper value of the NCF.   
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Figure 9. Application of the correction factor method to the Cdc42 biosensor data. A. The ratio image resulting from the
mean background subtraction method. The background level is set to the mean value of the ratio inside the cell. B. The ratio
image resulting from the correction factor method. Now with the ratio signal in the background, a shade-like bias from the
bottom-left to the top-right sides of the cell becomes clearly visible. C. A zoomed-in image of the cell with the cell outline
highlighted in red. The image shows that the artifact is mostly present outside the cell so that the ratio calculation inside the cell
away from the edge should be accurate in both methods, but the bias is still present at the very edge. D. The ratio values along a
horizontal line running across the whole image. Red and blue colors represent the results of the mean background subtraction and
correction factor methods, respectively.   

Despite the similarity of the intensity profiles between the methods, the correction method reveals that
there is a ratio-imaging artifact. This artifact, the consistently higher ratio on one side of the cell is clearly
visible near the cell edge. Now, after the fact, one may notice a hint of this bias in the ratio image from
the MBS method, but only for a limited number of pixels at the very edge of the cell. Because the NCF
method preserves the information near the edge outside the cell, the artifact is visible much more
distinctly. This once again shows the practical benefits of using the NCF method. In summary, we found
that CDC42 biosensor signal at the very edge of the cell (i.e., within 1 pixel from edge) is artificially
biased and does not represent a biological process, so that the affected pixels should be excluded from
further analysis. In published analyses, noise and resultant difficulties with ratio imaging at the very edge
have led to exclusion of the outermost two pixels from analysis. 

Discussion 

For biosensors, ratiometric imaging is used to exclude the effects of uneven illumination,
nonhomogeneous biosensor distribution, etc. In this article, we show that this procedure can create noise-
related artifacts at the cell edge where the fluorescence is weak and contains a substantial noise
component. In the past, these artifacts have been eliminated or reduced by excluding pixels at the very
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edge from consideration, or by averaging larger regions of the cell edge (Pertz el at 2006, Machacek et al 
2009), but these fixes sacrificed spatial information or resolution. The regions near the edge of protruding 
membranes are important from a biological, mechanistic perspective. We therefore provide here a simple 
approach to investigate the ratio at the very edge of the cell, to identify potential issues and even mitigate 
their effects. Importantly, this NCF method enables calculation of the ratio in the portion of the image 
outside the cell, because this no longer requires division by very low values after background subtraction. 
The ratio outside the cell can be used to determine an NCF value and thereby eliminate artifacts within 
the cell.     

In general, the NCF method is based on a minimization routine that flattens the noise level in the ratio 
near the edge outside the cells. Alternatively, for cases when the background ratio in cells is significant 
even in the absence of protein activity (e.g., for biosensors with FRET in the off state), the NCF value can 
be found by minimizing the difference between NCF and MBS ratios in the cell region away from the 
edge. Using a mathematical analysis, we showed that both calculation methods give NCF ratio 
measurements that are consistent with traditional MBS approaches but free from the noise-related 
artifacts (because we eliminate the need to divide the FRET signal by small numbers). We validated the 
accuracy of the theoretical predictions using data from two uniformly distributed fluorophores. Our 
method allowed us to achieve the expected flat ratio with ~1% accuracy, while the MBS method gave 
~5% deviation at best. In parts of the cell where the FRET signal is weak, the ratio values from the NCF 
method are leveled with the background noise, unlike the MBS method that does not give a direct 
reference point for zero activity. 

When we applied our method to analyze the activity of the Asef biosensor, we discovered that there was 
persistent Asef activity in a very narrow band (2 pixel = 640 nm) on the cell edge. In contrast, deeper 
within the cell, GEF activity varied significantly during protrusion and retraction (data not shown). These 
intriguing spatial differences in GEF activity will be pursued in further studies. Knowing that the signal at 
the very edge of the cell is not an artifact due to calculating ratios at the limit of image resolution is a 
critical first step.  

Applying our NCF method to the dual-chain Cdc42 biosensor revealed a different artifact in the time-
lapse cell images, a spatially biased background signal near the cell edge. Although such uneven 
distribution affected mostly the pixels right outside the cell mask, the pixels on the edge of the mask were 
still impacted by this bias. This was not obvious when background regions of the image were "zeroed out" 
using the traditional MBS method, but was clearly apparent when ratios inside and outside the edge could 
be compared.  

Importantly, identifying a correct NCF value not only removes artifacts stemming from low signal/noise, 
but also produces a flat level of background noise in the ratio image. This can potentially be useful for 
stabilizing drift in time-lapse recordings, such as that produced by photobleaching.  

 

Methods 

Live cell imaging 

For the inactive biosensor experiments, Cerulean and YPet were transfected into Cos7 cells using 
Fugene6 (Roche) 24 hr prior to imaging. On the day of imaging, cells were trypsinized using 
Trypsin/EDTA (Corning). They were then replated onto coverslips coated with Fibronectin (10µg/ml 37C 
overnight) and allowed to attach in DMEM (Corning) /10%FBS (Hyclone).  Cells were imaged in 
Hams/F12 (Caisson Labs)/5% FBS. Cells were imaged using a 40X, 1.3 NA objective on an Olympus IX-
81 inverted microscope and using Metamorph screen acquisition software (Molecular Devices) and 
mercury arc lamp illumination. Filters used were Ex - ET436/20X, Em; donor- ET470/24M, FRET - 
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ET535/30M and a 445/505/580 ET dichroic mirror. Images were obtained on a Flash4 sCMOS camera 
(Hamamatsu). Images were analyzed using MATLAB (Mathworks).  

For the Asef and Cdc42 experiments, the Asef biosensor constructs were inserted into a tet-off inducible 
retroviral expression system and stable lines were produced in tet-off MDA-MB-231 cells (Johnson Lab, 
UNC-CH). Cells were maintained in DMEM (Cellgro) with 10% FBS (Hyclone) and 0.2 μg/ml 
doxycycline to repress biosensor expression. Biosensor expression was induced 48 hr prior to imaging 
through trypsinization and culturing without doxycycline and the Cdc42 biosensors were transfected into 
the RhoGEF biosensor-expressing stable cell lines. On the day of imaging, cells were replated using 
Accumax (Innovative Cell Technologies) onto coverslips coated with collagen I (10µg/ml 37C overnight) 
and allowed to attach in DMEM /10%FBS. After 2 hrs the media was replaced with Hams/F12 with 0.2% 
BSA, 10ng/µl Epidermal growth factor (R and D systems) 10mM HEPES, 100 µm Trolox, and 0.5mM 
Ascorbate and cells were allowed to equilibrate. After a further 2-4 hrs, cells were imaged in a closed 
chamber with media treated with Oxyfluor (1/100). For single biosensor experiments, cells were imaged 
using the filters listed above. For dual biosensor experiments, the excitation filters used were FF-434/17 
for Cerulean3/mTFP and LSSmOrange, and FF-546/6 for Cherry (Semrock) combined with a custom 
zt440/545 dichroic (Chroma). For emission, a TuCam (Andor) was fitted with a FF560-FDi01 imaging-
flat dichroic and a Gemini dual view (Hamamatsu) was added to each emission port. For the short 
wavelength port of the Gemini, the filters used were donor- FF-482/35, FRET - FF-520/15 and a FF509-
FDi01 imaging flat dichroic mirror. For the Red-shifted Gemini port, the filters used were Orange – 
FF01-575/15, FRET/mCherry – FF01-647/57 and a FF580-FDi01 imaging flat dichroic. 

Image pre-processing 

Donor and FRET images were aligned using fluorescent beads as fiduciaries to produce a transformation 
matrix using the Matlab function “cp2tform” (Matlab, The Mathworks Inc.). This was then applied to the 
Donor image using the Matlab function “imtransform”. The camera dark current was determined by 
obtaining images for each camera without excitation, and the dark current was subtracted from all images. 
Images were corrected for shading due to uneven illumination by taking images of a uniform dye solution 
under conditions used for each wavelength, normalizing this image to an average intensity of 1 to produce 
a reference image for each wavelength, and then dividing the images corrected for dark current by the 
shading correction reference image. 

NCF processing 

MATLAB scripts for NCF application are available upon request 
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