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6 Abstract   

7 Despite  the  advances  in  single-cell  transcriptomics  the  reconstruction  of  gene  regulatory                       

8 networks  remains  challenging.  Both  the  large  amount  of  zero  counts  in  experimental  data                           

9 and  the  lack  of  a  consensus  preprocessing  pipeline  for  single-cell  RNA-seq  data  make  it                             

10 hard  to  infer  networks  from  transcriptome  data.  Data  imputation  can  be  applied  in  order  to                               

11 enhance  gene-gene  correlations  and  facilitate  downstream  data  analysis.  However,  it  is                       

12 unclear  what  consequences  imputation  methods  have  on  the  reconstruction  of  gene                       

13 regulatory   networks.     

14 To  study  this  question,  we  evaluate  the  effect  of  imputation  methods  on  the  performance  and                               

15 structure  of  the  reconstructed  networks  in  different  experimental  single-cell  RNA-seq  data                       

16 sets.  We  use  state-of-the-art  algorithms  for  both  imputation  and  network  reconstruction  and                         

17 evaluate  the  difference  in  results  before  and  after  imputation.  We  observe  an  inflation  of                             

18 gene-gene  correlations  that  affects  the  predicted  network  structures  and  may  decrease  the                         

19 performance  of  network  reconstruction  in  general.  Yet,  within  the  modest  limits  of  achievable                           

20 results,  we  also  make  a  recommendation  as  to  an  advisable  combination  of  algorithms,  while                             

21 warning  against  the  indiscriminate  use  of  imputation  before  network  reconstruction  in                       

22 general.   
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23 1   Introduction   

24 Single-cell  transcriptomics  has  revolutionized  genomics.  In  particular,  this  new  type  of  data  is                           

25 widely  assumed  to  advance  the  unraveling  of  regulatory  interactions  in  the  cell.  Thus,  there                             

26 is  great  interest  in  the  computational  reconstruction  of  gene  regulatory  networks  (GRNs)                         

27 from   single-cell   transcriptome   data.   

28 Available  methods  for  GRN  reconstruction  from  single-cell  RNA-seq  (scRNAseq)  data  draw                       

29 on  a  plethora  of  statistical  approaches   (1–6) ).  Pratapa  et.  al.   (6)  provide  an  extensive                             

30 benchmark  study  evaluating  the  performance  of  various  methods.  However,  for  GRN                       

31 reconstruction  several  authors  have  remarked  that  preprocessing  the  data  is  important,                       

32 mostly  due  to  the  sparse  nature  of  the  data   (7,8) .  Several  computational  analysis  pipelines                            

33 have  been  suggested  and  are  in  wide  use   (9,10) .  Typically,  as  one  of  the  early  steps,  such  a                                     

34 pipeline  will  include  a  data  normalization  and/or  imputation  step,  which  statistically  estimates                         

35 unobserved  read  counts  in  cases  where  the  method  deems  that  experimental  or  technical                           

36 noise  has  led  to  the  absence  of  a  count,  i.e.,  a  so-called  dropout.  While  normalization                               

37 attempts  to  correct  for  different  read  depths  between  cells   (11,12) ,  imputation  attempts  to                           

38 recover  gene  counts  by  predicting  missing  data  and  eventually  smoothen  gene  expression                         

39 values   (13–22) .  In  some  tools  a  prior  normalization  step  is  not  required  but  integrated  within                               

40 the  imputation  method   (20,21) .  Hou  et.  al   (23)  extensively  evaluated  the  impact  of  imputation                             

41 on  clustering,  differential  expression  analysis  and  pseudotime  inference  and  invoked                     

42 cautious   interpretations   of   the   results.   

43 It  still  remains  unclear  though  how  imputation  methods  affect  network  structures   (24) .  On  the                             

44 one  hand,  it  is  recommended  to  use  imputation  to  enhance  gene  regulatory  correlations  prior                             

45 to  network  inference   (18,20) .  But  on  the  other  hand,  results  based  on  imputed  data  should                               
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46 be  interpreted  with  care   (10,23,25) .  Thus,  imputation  meets  conflicting  attitudes  within  the                         

47 community.   

48 Here,  we  systematically  study  the  question  whether  data  imputation  as  a  preprocessing  step                           

49 affects  results  obtained  using  reconstructed  GRNs.  We  build  on  previously  published                       

50 benchmark  studies  and  consider  the  best-performing  scRNAseq-based  tools  for  both                     

51 imputation  and  network  reconstruction  in  our  analysis.  We  measure  the  performance  of                         

52 different  combinations  of  imputation  method  and  GRN  reconstruction  method  using  multiple                       

53 experimental  datasets  and  a  ground  truth  network  that  has  been  used  in  other  benchmark                             

54 studies.  We  compare  the  performance  and  network  structures  obtained  using  unimputed                       

55 data  and  imputed  data,  respectively,  and  show  that  in  most  cases  GRN  reconstruction  does                             

56 not  profit  from  imputation.  In  order  to  explain  the  observed  results  we  analyze  the  effect  of                                 

57 imputation  on  predicted  gene  interactions.  Ultimately,  we  present  a  recommendation,  how  to                         

58 proceed   in   a   data   analysis   project.   

  

59 2   Results   

60 2.1   Systematic   evaluation   of   network   models   

61 Evaluating  the  combination  between  imputation  and  network  inference  on  different  datasets                       

62 results  in  a  cubic  matrix.  To  manage  this  we  restrict  our  selection  to  state-of-the-art                             

63 computational  tools,  both  for  imputation  and  network  inference,  that  perform  most  accurately                         

64 and  have  been  recommended  in  recent  benchmark  studies   (6,23) .  Consequently,  we                       

65 developed  a  computational  pipeline  to  study  seven  cell  types  that  were  obtained  from                           

66 different  scRNAseq  experiments,  using  four  state-of-the-art  imputation  methods  combined                   

67 with   three   top   performing   GRN   methods   as   depicted   in   Figure   1.     
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68 Information  on  the  seven  cell  types  was  derived  from  five  experimental  scRNAseq  datasets:                           

69 human  embryonic  stem  cell  (hESC)   (14) ,  human  hepatocytes  (hHep)   (26) ,  mouse  embryonic                         

70 stem  cell  (mESC)   (27) ,  mouse  dendritic  cells  (mDC)   (28)  and  mouse  hematopoietic  stem                           

71 cells  (mHSC)   (29)  that  were  further  separated  into  the  following  subtypes:  erythrocytes                         

72 (mHSC-E),   granulo   monocytes   (mHSC-GM)   and   lymphocytes   (mHSC-L).   

73 For  the  four  imputation  methods,  we  chose  the  following  methods:  two  smoothing-based                         

74 tools   magic   (18)  and   knn-smoothing   (22) ;  a  model-based  tool saver   (17)  and  a  deep-learning                             

75 based  tool   dca   (20) .  We  included   dca  because  the  authors  specifically  expect  to  improve                             

76 network  reconstruction.  A  baseline  model  was  established  using  normalized  but  unimputed                       

77 data.   

78 As  for  GRN  reconstruction,  we  selected  three  tools:  an  information-based  tool  PIDC   (4) ,  and                             

79 two  tree-based  tools  GENIE3   (30)  and  GRNBoost2   (31) .  In  the  remainder  of  this  paper  we                               

80 use  the  term  “model”  to  refer  to  the  combination  of  a  GRN  reconstruction  algorithm  with  an                                 

81 imputation  method  or  no  imputation,  respectively.  We  obtain  the  ground  truth  network  from                           

82 the  STRING  database  —  a  functional  protein-protein  interaction  network   (32)  and  use  the                           

83 evaluation  framework  BEELINE   (6)  for  measuring  the  performance  of  each  network  model                         

84 (see  Methods).  Furthermore,  we  inspect  the  reconstructed  network  and  compare  the  results                         

85 with   one   another.      
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86 Figure  1  |  Systematic  evaluation  of  network  reconstruction  from  imputed  and  unimputed  data.                           

87 Cubic  evaluation  matrix  consists  of  seven  cell  types  from  experimental  scRNAseq  data,  four                           

88 imputation  methods  (see  text)  and  three  network  reconstruction  algorithms.  Imputed  and  unimputed                         

89 (“noimp”  in  the  Figure)  scRNAseq  data  provide  input  expression  matrices  which  are  used  by  the  gene                                 

90 regulatory  network  (GRN)  reconstruction  algorithms  using  the  BEELINE  framework   (6) .  We  evaluate                         

91 the  performances  using  the  early  precision  ratios  (EPR)  and  compare  network  results  across  different                             

92 models.  Additionally,  we  inspect  the  effect  of  gene-gene  correlation  on  prediction  classes  (true                           

93 positives  (TP),  false  positives  (FP),  false  negatives  (FN))  before  and  after  imputation,  and  we  search                               

94 for  common  motifs  within  the  reconstructed  networks.  hESC:  human  embryonic  stem  cells,  hHep:                           

95 human  hepatocytes,  mDC:  mouse  dendritic  cells,  mESC:  mouse  embryonic  stem  cells,  mHSC-E,                         

96 mHSC-GM,  mHSC-L:  mouse  hematopoietic  stem  cells  -  erythrocytes,  granulo  monocytes,                     

97 lymphocytes.   

98 2.2   Imputation   does   not   improve   the   performance   of   network   

99 reconstruction   in   general   

100 A  compact  overview  of  the  results  obtained  under  all  the  models  is  provided  in  Figure  2,                                 

101 where  each  box  summarizes  results  for  one  GRN  reconstruction  method.  The  performance                         

102 measurements  achieved  by  the  respective  model  on  the  seven  data  sets  are  arranged  on  a                               
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103 vertical  axis.  Two  performance  measures  have  been  computed:  the  early  precision  ratios                         

104 (EPR)   (6)  which  are  shown  in  the  three  boxes  of  Fig.  2A,  and  the  log 2 -ratios  between                                 

105 epr imputed  and  epr unimputed  which  are  shown  in  the  three  boxes  of  Fig.  2B.  EPR  refers  to  the                                   

106 number  of  true  positive  interactions  within  the  top-k  network  normalized  by  the  network                           

107 density.  Here,   k  refers  to  the  number  of  positive  interactions  found  in  the  ground-truth                             

108 network  (see  Methods).  An  EPR  of  1  indicates  a  random  predictor.  The  second  performance                             

109 measure  compares  the  performance  of  an  imputation  method  relative  to  the  performance  of                           

110 not  using  imputation.  Here,  a  value  of  zero  means  no  change,  while  a  negative  value                               

111 indicates   a   detrimental   effect   of   the   imputation.   

  

112 The  EPR  scores  for  unimputed  data  that  were  reported  by  Pratapa  et.  al.   (6)  could  be                                 

113 reproduced  in  our  analysis  and  are  illustrated  as  a  dashed  line  in  Figure  2A.  Results  vary                                 

114 strongly  with  the  datasets;  the  scores  range  from  approximately  2  (for  the  mDC  dataset)  to                               

115 8  (for  mHSC-GM),  with  less  variation  across  GRN  reconstruction  algorithms.  Applying                       

116 imputation  with  either   dca ,   knnsmooth  or   magic ,  does  not  improve  the  performance  in  any  of                               

117 the  GRN  reconstruction  methods.  While  in  mDC  data  the  performance  scores  in  each  model                             

118 scatter  around  the  unimputed  model,  in  mHSC-GM  data  the  performance  scores  vary                         

119 strongly,   dropping   from   8   to   just   below   5   for   the    magic /GENIE3   model.     

  

120 Focussing  on  the  change  of  performance  due  to  imputation  as  measured  using  the                           

121 log2-ratios  between  imputed  and  unimputed  EPR  scores,  we  observe  that  only   saver  is  able                             

122 to  improve  the  performance  (Fig.  2B).  The   saver /PIDC  model  achieves  log-fold-ratios  up  to                           

123 +0.5  in  5  out  of  7  datasets  and  2  out  of  7  datasets  combined  with  GENIE3  or  GRNBoost2.                                     

124 All  other  imputation  methods  worsen  the  performance  with  log-fold-ratios  down  to  -1  which                           

125 represents   a   performance   decline   of   100%   in   comparison   to   the   unimputed   model.     
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126 We  further  asked  the  question  whether  data  quality  as  given  by  sequencing  depth  is  a                               

127 determinant  of  the  success  of  imputation  prior  to  GRN  reconstruction.  To  answer  this,  we                             

128 simulated  cells   in  silico  by  downsampling  the  gene  counts  of  the  given  experiments  to  60%                               

129 of  their  sequencing  depth,  thereby  lowering  the  detection  rate  (Supp.  Fig.  1).  The  hope                             

130 would  be  that  imputation  has  a  more  beneficial  effect  in  these  simulated  data  sets  as                               

131 compared  to  the  original,  higher  quality  data.  However,  similar  results  as  above  were                           

132 obtained  when  we  subjected  the  lower  quality   in  silico  data  to  our  analysis  pipeline  (Supp.                               

133 Fig.  2).  Like  with  the  original  datasets,   saver /PIDC   obtain  the  highest  improvements                         

134 compared  to  the  downsampled  unimputed  datasets.  Nonetheless  on  downsampled  data,                     

135 dca ,   knnsmooth  and   magic   are  able  to  improve  performance  in  some  of  the  tested  datasets,                               

136 although   not   consistently.   

  

137 Overall,  our  results  demonstrate  that  our  model  performances  are  highly  dataset-dependent.                       

138 Applying  imputation  on  the  original  data  resulted  mostly  in  a  drop  of  performance  of  GRN                               

139 reconstruction  compared  to  the  unimputed  model,  although  potentially  improving                   

140 performance   on   low-quality   data   tested    in   silico .   
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141 Figure  2  |  Impact  of  imputation  on  network  reconstruction  performances.   (A)  Absolute  EPR  scores  across                               

142 imputation  methods  (x  axis  label)  and  GRN  inference  algorithms  (box)  on  seven  different  cell  types  (coded  by                                   

143 shape  and  color).  Dashed  lines  represent  EPR  scores  obtained  without  imputation.  EPR  =  1  corresponds  to  a                                   

144 random  predictor.  (B)  log2-ratios  between  EPR  scores  obtained  using  imputed  and  unimputed  data.  Log2-ratio  =                               

145 0   represents   no   change   in   performance   (grey   dashed   line)   after   imputation.   

146 2.3   Imputation   method   rather   than   GRN   method   determines   

147 results   

148 The  analysis  presented  in  the  preceding  Section  raises  the  question  how  strongly  either  the                             

149 choice  of  imputation  method  or  of  network  reconstruction  algorithm  affects  the  results.  To                           

150 answer  this  question  we  first  address  the  variability  in  results  when  varying  either  the  one  or                                 

151 the   other,   and   then   study   similarity   among   computed   networks   across   the   models.     

  

152 With  regard  to  the  performance  variability,  we  compare  the  variance  of  EPR  log-fold-ratios                           

153 under  a  fixed  GRN  reconstruction  algorithm  while  varying  across  imputation  methods,  and,                         

154 vice  versa,  varying  the  GRN  algorithm  while  keeping  the  imputation  method  fixed.  As  Figure                             
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155 3A  shows  EPR  log-fold-ratios  vary  much  more  strongly  when  the  GRN  reconstruction                         

156 algorithm  is  fixed  than  than  the  other  way  round  (wilcoxon-test  p-value  ~7.86 ༝ 10 -6 ).  This                           

157 implies  that  the  choice  of  imputation  method  determines  the  quality  of  results  to  a  larger                               

158 degree   than   the   choice   of   GRN   reconstruction   algorithm.     

159 A  direct  consequence  of  this  observation  is  the  suspicion  that  the  topology  of  the  predicted                               

160 networks  may  also  be  largely  determined  by  the  imputation  method  and  to  a  lesser  degree                              

161 by  the  GRN  reconstruction  method.  To  test  this,  we  inspect  the  overlap  among  the  500  most                                 

162 important  gene-gene  interactions  of  the  computed  networks.  Here,  we  calculate  pairwise                       

163 similarity  scores  using  the  Jaccard  index  and  use  it  to  hierarchically  cluster  the  networks.  We                               

164 found  that  networks  tend  to  cluster  with  respect  to  imputation  methods  but  not  GRN  methods                               

165 (Fig.  3B,  Supp.  Fig.  4).  To  make  this  more  precise,  we  use  as  a  measure  of  cluster  purity  the                                       

166 adjusted  rand  index  (ARI)   (33,34) .  ARI  coefficients  calculated  across  the  seven  different  cell                           

167 types  show  higher  cluster  purity  when  labelled  with  imputation  method  as  opposed  to                           

168 network   reconstruction   algorithms   (Fig.   3C).     

  

169 We  conclude  that  the  imputation  method  largely  determines  model  performance,  leaving  little                         

170 influence  to  the  subsequent  GRN  reconstruction  algorithm.  The  choice  of  imputation  method                         

171 further  biases  the  outcoming  network  leading  to  little  consensus  across  the  most  important                           

172 recovered   gene-gene   interactions   as   computed   based   on   different   imputation   methods.   
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173 Figure  3  |  Variability  in  network  results  largely  stems  from  imputation  methods.   (A)  Variance  distribution  of                                 

174 EPR  scores  across  imputation  methods.  Left  violin  plot  keeps  the  GRN  algorithm  fixed  and  depicts  the  variances                                   

175 in  EPR  log-fold-ratios  for  each  dataset  across  the  imputation  methods.  Right  violin  plot  shows  the  variances  for                                   

176 fixed  imputation  methods.  ****  corresponds  to  p-value  ≤  0.0001  by  wilcoxon  rank  sum  test.  (B)  Clustered                                 

177 heatmap  of  network  similarities  measured  by  Jaccard  index  within  top  500  reported  interactions.  Columns  are                               

178 color-coded  by  imputation  methods.  Rows  are  color-coded  by  network  inference  algorithms.  (C)  Adjusted  rand                             

179 index  (ARI)  obtained  for  clustering  results  in  each  cell  type  by  annotation  label  “algorithm”  (pink)  and  “imputation”                                   

180 (blue),   respectively.   

  

181 2.4   Inflation   of   gene-gene   correlations   and   its   impact   on   the   

182 network   topology   

183 Based  on  the  reported  results,  we  examine  how  imputation  generally  affects  gene-gene                         

184 correlation  coefficients.  Although  not  all  network  reconstruction  algorithms  use                   

185 correlation-based  measures  to  recover  interactions,  we  still  use  Pearson's  correlation                     

186 coefficient  as  a  proxy  for  the  association  between  two  genes.  Subsequently,  we  will                           

187 investigate  whether  the  interactions  within  the  reconstructed  networks  affect  the  global                       

188 network   structure.   
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189 Exploring  the  overall  distributions  of  gene-gene  correlations  after  imputation  on  scRNAseq                       

190 data  we  observe  a  strong  increase  in  gene-gene  correlations  (Fig.  4A).  Generally,                         

191 gene-gene  correlations  go  from  almost  no  correlation  when  computed  using  unimputed  data                         

192 to  very  good  anti-  and  positive  correlations  due  to  imputation.  Here,   magic   leads  to  the  most                                 

193 extreme  enhancement.  More  specifically,  Figure  4B  exemplifies  the  association  between                     

194 three  genes  before  and  after  imputation,  transforming  very  weak  correlations  to  almost                         

195 perfect  (anti-)correlations.  These  associations  were  only  reported  after  imputation  using   dca                       

196 among  the  top-k  network  using  GRNBoost2  in  hESC  data.  Indeed,  we  commonly  find  such                             

197 associations   across   different   datasets   and   imputation   methods.     

  

198 In  order  to  see  what  impact  this  enhancement  of  correlation  has  on  the  network  structure  we                                 

199 next  investigated  the  network  density  after  imputation  in  relation  to  the  unimputed  data  using                             

200 log-ratios  (Supp.  Fig.  3A).  Here,  we  looked  at  the  top-k  networks  according  to  the  EPR                               

201 score.  Imputation  methods  alter  the  network  densities  with  log-ratios  ranging  from  -0.5  and                           

202 +0.5  in  hESC,  hHep,  mDC  and  mESC  data,  except  for   saver  and  PIDC  in  hESC  data  with  a                                     

203 slightly  higher  value  of  0.59.  For  the  three  subtypes  of  mHSC  data  we  observe  larger                               

204 changes  in  network  density  reaching  log-ratios  beyond  ±1.  Especially  here,  imputations                       

205 combined  with  GENIE3  and  GRNBoost2  lead  to  a  sparser  network  whereas  all  combinations                           

206 of  imputation  methods  with  PIDC  lead  to  a  denser  network  structure.  This  is  not  surprising  as                                 

207 GENIE3  and  GRNboost2  are  network  reconstruction  algorithms  that  provide  a  directed                       

208 network,  whereas  PIDC  results  in  undirected  interactions  providing  a  backward  and  forward                         

209 edge  with  the  same  ranks.  As  we  select  top-k  ranked  interactions  we  take  interactions                             

210 sharing  the  same  ranks  simultaneously,  consequently  leading  to  a  denser  network  with                         

211 PIDC.   
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212 Besides  network  density,  the  network  topology  is  also  determined  by  the  node  degree                           

213 distribution.  Before  imputation  we  observe  a  heavy  tail  node  degree  distribution                       

214 predominantly  in  GENIE3  and  GRNBoost2  indicating  the  presence  of  many  hub  nodes                         

215 (Supp.  Fig.  3B).  After  imputation  the  heavy  tail  disappears  when  using   dca ,   magic  and                             

216 knnsmooth   while  it  still  exists  when  using   saver.   Generally,  PIDC  does  not  lead  to  this                               

217 structural   change   in   node   degree   distribution.   

  

218 As  a  conclusion,  the  enhancement  of  gene-gene  correlations  due  to  imputation  appears  to                           

219 lead   to   notable   changes   in   the   topology   of   the   predicted   gene   networks.     

220 2.5  Increased  correlation  values  in  false  positive  interactions                 

221 inflate   network   results   

222 Since  we  have  observed  that  imputation  may  decrease  the  performance  of  GRN  network                           

223 reconstruction,  we  attempt  to  understand  how  the  altered  correlations  in  imputed  data  affect                           

224 network  reconstruction.  To  this  end,  we  explore  the  change  of  edge  ranks  and  correlation                             

225 values  of  the  reported  (i.e.,  positively  predicted)  and  missed  (i.e.,  negatively  predicted)                         

226 interactions.   

227 Overall,  the  ranks  of  true  positive  (TP)  interactions  reported  in  the  unimputed  data  change                             

228 significantly  after  imputation  (Fig.  4C,  Supp.  Tab.  1,  Supp.  Fig.  5).  Some  of  the  previously                               

229 reported  TP  interactions  could  be  recovered  after  imputation.  Nevertheless,  the  majority  of                         

230 previously  reported  TP  interactions  shift  after  imputation  towards  the  end  of  the  gene                           

231 interaction  ranking  list,  and  are  considered  less  important.  As  a  consequence,  other                        

232 interactions   become   more   important.   

233 Therefore,  we  look  at  the  change  of  correlation  of  positively  predicted  interactions  before  and                             

234 after  imputation.  Figure  4D  (and  Supp.  Fig.  6)  show  scatter  plots  of  gene-gene  interactions                             
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235 with  the  absolute  values  of  correlation  coefficients  before  imputation  on  the  horizontal  axis                           

236 and  the  correlation  coefficient  after  imputation  on  the  vertical  axis.  For  each  model,  red  dots                               

237 are  the  true  positive  interactions,  yellow  are  the  false  positives,  and  blue  are  the  false                               

238 negatives.  The  general  shape  of  the  scatter  plot  reiterates  the  observation  that  correlation                           

239 coefficients  tend  to  get  enhanced  by  imputation.  For  each  class  we  computed  regression                           

240 lines.  For  better  recognition  of  true  positives  after  imputation,  one  would  hope  for  the  TP                               

241 regression  line  (shown  in  red  in  Fig.  4D)  to  lie  well  above  the  others  -  which  is  not  really  the                                         

242 case.  We  generally  observe  a  strong  enhancement  of  correlations  as  indicated  by  the  height                             

243 of  the  intercept  of  the  regression  lines.  In  11  out  of  12  cases  the  regression  lines  for  both                                     

244 true  and  false  positive  predictions  are  almost  congruent  with  each  other.  Note  that  the  red                               

245 color   dominates   the   other   ones   and   the   dots   below   a   red   one   are   not   visible.   

  

246 Interestingly,  we  see  remarkably  different  regression  lines  if  we  take  the  false  negative  (FN,                             

247 blue)  interactions  into  account.  The  majority  of  FN  correlations  remain  low  after  imputation,                           

248 as  indicated  by  the  height  of  the  intercept  in  Fig.  4D.  Presumably,  the  FN  correlation  values                                 

249 that  actually  get  enhanced  get  lost  in  the  background  due  to  the  inflation  of  FP  correlations  in                                   

250 the  inferred  top-k  network.  Thus,  the  boost  of  correlation  values  makes  it  harder  for  GRN                               

251 reconstruction   methods   to   separate   the   actual   signal   from   the   background.     

  

252 Many  GRN  reconstruction  methods  have  the  goal  of  distinguishing  direct  interactions  from                         

253 transitively  inferred  ones   (35) .  Therefore,  we  tested  whether  the  GRN  reconstruction                       

254 algorithms  analyzed  in  this  study  are  able  to  make  the  necessary  distinction.  Given  three                             

255 genes  X,  Y,  and  Z  where  X  is  correlated  with  Y,  and  Y  is  correlated  with  Z,  these  genes  form                                         

256 a  network  chain.  However,  oftentimes  by  transitivity  these  associations  seem  to  imply  a                           

257 correlation  between  X  and  Z,  thus  forming  a  network  loop.  Generally,  in  network  theory  it  is                                 

258 challenging  to  distinguish  chains  from  loops.  In  this  context,  we  analyze  how  the  models  deal                               
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259 with  the  identification  of  network  chains  from  imputed  data.  Errors  are  counted  if  a                             

260 supposedly   false   loop   is   detected   or   a   chain   ist   detected   instead   of   a   loop   (Fig.   4E).   

261 In  general,  PIDC  identifies  the  highest  number  of  network  motifs  independent  of  the                           

262 imputation  used.  Using   saver  in  combination  with  PIDC  one  is  able  to  find  the  highest                               

263 number  of  TP  chains.  However,   saver /PIDC  mistakenly  identifies  network  motifs  at  the  same                           

264 time.  In  order  to  measure  the  performance  between  true  and  false  predictions  we  calculate                             

265 the  true  positive  rates  (TPR)  and  false  discovery  rates  (FDR)  for  each  network  inference  and                               

266 imputation   method   applied   to   each   dataset   (Fig.   4F).      

267 The  performance  of  network  motif  search  among  the  top-k  networks  does  not  seem  to  be                               

268 affected  by  imputation.  Hence,  either  imputation  methods  do  not  necessarily  induce                       

269 transitive  correlations  or  the  network  reconstruction  methods  deal  well  with  transitively                       

270 induced   correlations.     
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272 Figure  4  |  Gene-gene  correlation  before  and  after  imputation  and  its  impact  on  the                             

273 predicted  interactions.  (A)  Gene-gene  correlation  distributions  obtained  in  each  cell  type                         

274 color-coded  by  imputation  method  among  top  500  most  variable  genes  and  significantly  varying  TFs.                             

275 (B)  Paired  density  scatter  plots  before  and  after  imputation  with   dca .  GRNBoost2  reported  the                             

276 pairwise  interactions  between  ASXL1,  SNAPC3  and  ZNF488  among  the  top-k  network  after                         

277 imputation  in  hESC  data.   (C)  Change  of  edge  ranks  in  true  positive  (TP)  interactions  identified  by                                 

278 unimputed  model  after  imputation  in  hESC  data.  Dashed  line  indicates  the  rank  threshold                           

279 corresponding  to  the  top-k  network.  Interactions  below  the  dashed  line  represent  TP  within  the                             

280 respective  model.  Low  edge  ranks  represent  highly  important  interactions.  (D)  Change  of  correlation                           

281 values  for  TP  (red  crosses),  FP  (yellow  dots)  and  FN  (blue  dots)  classified  by  each  model  in  hESC                                     

282 data.  Positively  predicted  interactions  differ  clearly  from  FN  interactions.  (E)  Counts  of  positively  and                             

283 negatively  predicted  network  chain  motifs  in  hESC  data  for  each  model.  TP  network  chains  agree                               

284 both  in  prediction  and  ground  truth.  FP  network  chains  are  falsely  positively  predicted  chains  being                               

285 actual  feed-forward  loops  in  the  ground  truth.  FN  network  chains  are  falsely  predicted  as  being                               

286 feed-forward  loops  when  they  are  actually  network  chains  in  the  ground-truth  network.  (F)  TPR  and                               

287 FDR  scores  for  network  chain  motifs  obtained  by  statistics  in  E).  Ideally,  TPR  values  should  be  close                                   

288 to   1   whereas   FDR   values   should   be   close   to   0.   

289 3   Discussion   

290 The  advent  of  single-cell  transcriptomics  has  rekindled  the  interest  in  reconstructing  gene                         

291 regulatory  networks  from  transcriptomics  data,  primarily  for  two  reasons.  Firstly,  it  is  of  great                             

292 interest  to  study  regulation  in  individual  cells  in  the  hope  to  eventually  uncover  how,  e.g.,                               

293 differentiation  processes  proceed.  Secondly,  the  main  obstacle  in  gene  network                     

294 reconstruction  from  bulk  transcriptome  data  appears  to  be  the  low  number  of  available                           

295 samples  in  comparison  to  the  large  numbers  of  genes.  For  example,  simulations  have                           

296 demonstrated  that  high  quality  reconstruction  of  gene  networks  requires  a  much  larger                         
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297 number  of  samples  than  the  number  of  genes   (35) .  Seeing  each  single  cell  as  a  sample,  the                                   

298 expectation  arose  that  single-cell  transcriptomics  would  solve  this  conundrum  by  providing  a                         

299 sufficiently  large  number  of  samples,  thus  putting  high  quality  network  reconstruction  within                         

300 reach.     

  

301 It  was  sobering  for  us  to  see  that  due  to  the  sparse  nature  of  single-cell  RNA-seq  data,                                   

302 individual  cells  cannot  contribute  as  much  information  to  network  reconstruction  as  bulk                         

303 samples.  Indeed,  preprocessing  of  single-cell  data  for  data  analysis  is  crucial   (9) ,  and  is                             

304 implemented  in  many  computational  pipelines.  Imputation  has  become  a  possible  element  of                         

305 this  preprocessing  in  the  hope  it  would  supplement  the  missing  information.  In  this  study  we                               

306 have  however  demonstrated  that  the  choice  of  imputation  prior  to  GRN  reconstruction                         

307 influences  the  results  in  a  two-fold  manner:  First,  it  affects  the  performance  of  network                             

308 reconstruction  leading  to  highly  variable  accuracies  and,  secondly,  the  reconstructed                     

309 network   differs   significantly   between   imputation   methods.   

  

310 We  have  systematically  evaluated  the  effect  of  imputation  on  GRN  reconstruction  using                         

311 experimental  scRNAseq  data  on  seven  cell  types.  In  this  context,  we  have  demonstrated                           

312 that  overall,  imputation  does  not  lead  to  an  improvement  of  GRN  reconstruction.  However,                           

313 saver   in  combination  with  PIDC  may  lead  in  some  datasets  to  an  increase  in  performance.                               

314 We  have  shown  and  thereby  agree  with  previous  studies  that  imputation  may  boost                           

315 gene-gene  correlations  in  a  dubious  way,  thereby  introducing  false  positives   (25) .  In  turn,                           

316 these  false  positives  predispose  network  structures  toward  forming  circular  dependencies.  In                       

317 fact,  if  network  reconstruction  methods  rely  on  associations  that  use  correlation  to  some                           

318 extent  (for  example  regression-based  methods)  the  circularity  is  highly  redundant.  Andrews                       

319 et.  al.  have  warned  of  this  circularity  before,  albeit  in  the  context  of  differential  expression                               

320 analysis   (36) .  Consistent  with  our  findings  Andrews  et.  al.  showed  that   saver  introduces  the                             
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321 smallest  number  of  spurious  gene-gene  correlations.  We  speculate  that  the  combination  of                         

322 saver /PIDC  works  well  because   saver  is  a  model-based  imputation  method  and  PIDC  is  a                             

323 mutual-information  based  algorithm;  the  two  approaches  follow  independent  assumptions                   

324 complementing   one   another,   thus   avoiding   the   use   of   redundant   information.   

  

325 In  this  study  we  have  tested  our  hypothesis  on  experimental  datasets  with  fairly  large  library                               

326 sizes  and  gene  detection  rates  (Supp.  Fig.  1.).  In  order  to  test  our  hypothesis  on  more                                 

327 shallowly  sequenced  single-cell  experiments  we  lowered  the  detection  rate  introducing  more                       

328 zero  counts   in  silico .  Our  results  have  shown  that  using   saver  with  PIDC  improves  results  in                                 

329 most  cases.  However,  generally  we  discourage  the  indiscriminate  usage  of  imputation  prior                         

330 to  GRN  reconstruction  because  imputation  tends  to  introduce  a  bias  into  the  derived                           

331 networks.  If  need  be  we  recommend  the  use  of   saver  and  PIDC.  It  should  be  noted  that  we                                     

332 are  not  discouraging  imputation  in  general.  There  may  be  many  other  applications  that  are                             

333 not  studied  here,  where  imputation  can  be  useful,  depending  on  the  type  of  analysis  that  is                                 

334 subsequently   performed.   

335 4   Methods   

336 4.1   Data   collection   and   preprocessing   of   scRNAseq   data:   

337 We  collected  preprocessed  and  normalized  experimental  scRNAseq  count  data  provided  in                       

338 the  BEELINE  paper   (6) .  Here,  the  authors  also  provide  the  corresponding  pseudotime  for                           

339 each  dataset  /  cell  type.  Please  refer  to  the  BEELINE  paper  for  information  about                             

340 preprocessing,   normalization,   and   pseudotime   inference.   

341 However,   dca   needs  unnormalized  raw  count  data.  Therefore,  we  downloaded  the  fastq  files                           

342 using  the  corresponding  accession  numbers:  GSE75748  (hESC)   (14) ,  GSE81252  (hHEP)                     
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343 (26) ,  GSE98664  (mESC)   (27) ,  GSE48968  (mDC)   (28)  and  GSE81682  (mHSC)   (29) .  For                         

344 human  and  mouse  we  aligned  the  fastq  files  to  hg19  (GENCODE  release  29)  or  mm10                               

345 (GENCODE  release  M19),  respectively  and  counted  the  reads  per  gene  using  STAR                         

346 (version   2.7.4a)    (37) .     

347 Following  the  BEELINE  approach,  using  normalized  count  data  we  select  the  top  500  most                             

348 variable  genes  across  pseudotime  using  a  general  additive  model  (‘gam’  R  package).  In                           

349 addition  to  these  genes  we  also  include  significantly  varying  TFs  (Bonferroni  corrected                         

350 p-value   <   0.01).     

351 We  filter  both  imputed  and  unimputed  scRNAseq  data  using  the  same  set  of  (i)  top  500  most                                   

352 variable  genes  and  (ii)  all  significantly  varying  TFs,  in  order  to  make  a  fair  comparison                               

353 between   networks   inferred   using   imputed   and   unimputed   data.   

  

  

354 4.2   Code   availability   

355 All  relevant  scripts  and  R  notebooks  for  reproducing  the  results  are  available  at  Github                             

356 ( https://github.com/lylamha/imputation_GRN_inference ).  The  release  includes  tutorials  from             

357 data  imputation  to  the  evaluation  of  the  reconstructed  networks.  It  covers  the  evaluation                           

358 pipeline   with   the   corresponding   analyses   and   plotting   results.     

359 4.3   Imputation   

360 To  impute  scRNAseq  data  we  use   dca   (version  0.2.3),   knnsmooth   (version  2.1),   magic                           

361 (‘Rmagic’  R  package  version  2.0.3)  and   saver   (‘SAVER’  R  package  version  1.1.2).  Our                           

362 rationale  for  selecting   knnsmooth ,   magic  and   saver  is  based  on  a  previous  comprehensive                          

363 benchmark  evaluation  of  various  imputation  methods   (23) .  Additionally,  we  also  include   dca                         

364 as   it   has   been   explicitly   recommended   as   improving   GRN   reconstruction.   
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365 We  apply  each  imputation  method  to  normalized  count  data  except  for  dca  where  we  use  the                                 

366 raw   counts:   

367 dca   </path/to/ExpressionData_raw.csv>   </path/to/dca_result_folder>   

368 python3   knn_smooth.py   -k   15   -d   10   \   
369 -f   <path/to/ExpressionData.csv>   \   
370 -o   <path/to/ExpressionData_knnsmooth_imputed.csv>   --sep   ,   

  
371 magic   Rsnippet:   
372 #   so_dat   (seurat   object   using   library(Seurat))   
373 so_dat   <-   magic(so_dat,   assay="RNA",   genes="all_genes")     
374 Dat.magic   <-   as.data.frame(so_dat@assays$MAGIC_RNA@data)   

  
375 saver   Rsnippet:   
376 saver_res   <-   saver(input_expr_matrix,   size.factor   =   1,   ncores   =   20,   
377 estimates.only   =   F)   
378 dat.saver   <-   as.data.frame(saver_res$estimate)   

  

379 4.4   Network   reconstruction   via   BEELINE:   

380 Several  tools  have  been  developed  to  infer  GRNs  from  scRNAseq  data  differing  in  their                             

381 algorithmic  approach.  They  can  be  categorized  into  four  main  classes:  correlation-,                       

382 regression-,  mutual  information-  or  modelling-based  approaches   (6) .  In  this  study  we                       

383 evaluated  PIDC,  GENIE3  and  GRNBoost2  which  have  been  previously  recommended  by                       

384 Pratapa  et.  al.   (6)  .  We  use  the  imputed  and  unimputed  scRNAseq  data  as  input  matrices                                 

385 for  network  reconstruction  with  PIDC,  GENIE3  and  GRNBoost2  using  default  parameters.  To                         

386 this   end,   we   use   the   evaluation   framework   BEELINE   (version   1.0).     

387 As  part  of  the  BEELINE  pipeline  we  first  run  ‘BLRunner.py’  to  reconstruct  the  networks.                             

388 Then,  we  filter  the  reconstructed  networks  in  order  to  only  include  interactions  from  TFs  to                               

389 genes.   

390 Finally,  we  use  ‘BLevaluater.py’  to  compute  early  precision  scores  evaluating  the                       

391 performance  of  each  network  by  comparing  it  to  a  ground  truth  network.  Here,  we  choose                               

392 the  functional  protein-protein  interaction  database  STRING  and  filter  for  genes  that  only                         

393 occur   in   the   input   expression   matrix.   
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394 By   using   early   precision   scores   we   only   analyze   the   top-k   networks.   

395 4.5   Characterizing   the   reconstructed   networks   

396 4.5.1   Top-k   network   

397 For  comparability  reasons  we  focus  our  analyses  on  the  top-k  networks.  The  top-k  network                             

398 of  a  reconstructed  network  includes  the  first  k  interactions  selected  by  their  ranks  which  were                               

399 assigned  by  descendingly  ordered  edge  weights.  Here,   k   represents  the  number  of  positive                           

400 interactions  in  the  ground  truth  network.  Interactions  can  share  the  same  ranks,  e.g.,  the                             

401 forward  and  backward  interactions  in  an  undirected  graph.  So  with   k  interactions  reported  in                             

402 the  ground  truth  network  we  select  all  interactions  which  ranks  are  lower  than  or  equal  to   k                                   

403 obtaining  the  top-k  network.  Note,  that  the  number  of  reported  interactions  can  be  higher                             

404 than    k.   

405 4.5.2   Network   density   and   node   degree   

406 Taking  into  account  the  interaction  between  transcription  factors  and  genes  only  the  network                           

407 density   is   calculated   by   numEdges   /   ((numGenes   *   numTFs)   -   numTFs).     

408 In  order  to  calculate  the  node  degree  we  consider  all  out-  and  incoming  edges  for  a  given                                   

409 node.     

  

410 4.6   Methodology   of   evaluation   

411 4.6.1   Early   Precision   Ratios   (EPR)   

412 We  evaluate  the  performance  of  each  inferred  network  based  on  using  early  precision  sores                             

413 (EP)  which  is  given  by  the  number  of  TP  divided  by  the  number  of  positively  predicted                                 

414 observations  within  the  top-k  network.  EP  scores  were  calculated  using  BEELINE.  Each                         
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415 dataset  has  a  different  underlying  ground  truth  subnetwork,  hence  different  evaluations                       

416 regarding  the  random  predictor.  To  account  for  these  differences  and  in  order  to  maintain                             

417 comparability  across  datasets  we  divide  the  EP  scores  by  the  network  density  (see  formula                             

418 above)  of  each  ground  truth  subnetwork  obtaining  EP  ratios  (EPR).  Thus,  EPR  of  1  is                               

419 indicative  of  a  random  predictor  in  all  experimental  datasets.  To  compare  the  performance  of                             

420 network  inference  in  each  imputation  method  with  the  corresponding  unimputed  data,  we                         

421 calculate   log2-ratios   between   EPR imputed    and   EPR unimputed .   

422 4.6.2   Network   similarities   

423 In  order  to  compare  similarities  across  the  reconstructed  networks  we  select  the  top  500                             

424 interactions  reported  in  each  model.  Given  two  networks,  similarity  scores  are  obtained  by                           

425 the  Jaccard  index  which  is  defined  as  the  number  of  overlapping  interactions  divided  by  the                               

426 number  of  unified  reported  interactions.  Repeating  this  in  a  pairwise  iterative  manner  we                           

427 obtain  a  similarity  matrix  which  we  use  as  an  input  for  a  heatmap  that  is  clustered  row-  and                                     

428 column-wise   (‘pheatmap’   R   Package).     

429 We  calculate  adjusted  rand  index  (ARI)  scores  (‘mclust’  R  package)  in  order  to  evaluate  the                               

430 clustering  results  based  on  an  annotation  label   (34) .  As  annotation  labels  we  use  the                             

431 network  reconstruction  algorithm  as  well  as  the  imputation  method.  We  compare  ARI  scores                           

432 across   datasets   obtained   by   the   two   labels   using   the   pairwise   wilcoxon   rank   sum   test.     
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