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Abstract: Non-sinusoidal waveform is emerging as an important feature of neuronal 
oscillations. However, the role of single cycle shape dynamics in rapidly unfolding brain 
activity remains unclear. Here, we develop an analytical framework that isolates oscillatory 
signals from time-series using masked Empirical Mode Decomposition to quantify dynamical 
changes in the shape of individual cycles (along with amplitude, frequency and phase) using 
instantaneous frequency. We show how phase-alignment, a process of projecting cycles into 
a regularly sampled phase-grid space, makes it possible to compare cycles of different 
durations and shapes. ‘Normalised shapes’ can then be constructed with high temporal detail 
whilst accounting for differences in both duration and amplitude. We find that the 
instantaneous frequency tracks non-sinusoidal shapes in both simulated and real data. 
Notably, in local field potential recordings of mouse hippocampal CA1, we find that theta 
oscillations have a stereotyped slow-descending slope in the cycle-wise average, yet 
exhibiting high variability on a cycle-by-cycle basis. We show how Principal Components 
Analysis allows identification of motifs of theta cycle waveform that have distinct 
associations to cycle amplitude, cycle duration and animal movement speed. By allowing 
investigation into oscillation shape at high temporal resolution, this analytical framework will 
open new lines of enquiry into how neuronal oscillations support moment-by-moment 
information processing and integration in brain networks. 
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1: Introduction 1 
 2 
Frequency, phase and amplitude have long been reported as important features of neuronal 3 
oscillations with behavioural and electrophysiological relevance. Furthermore, neuronal 4 
oscillations show non-sinusoidal waveform shapes that span a wide range of spatial and 5 
temporal scales (Cole and Voytek, 2017). Whilst waveform shape is emerging as a fourth 6 
relevant feature of neuronal oscillations, many theories of neuronal oscillations currently 7 
assume sinusoidal waveforms. This might be due to the fact that characterising and 8 
quantifying non-sinusoidal waveforms remains a substantial analytic challenge (Amzica and 9 
Steriade, 1998; Cole and Voytek, 2017). To uncover the role of waveform dynamics in 10 
rapidly unfolding brain activity, there is a growing need for novel analysis methods that are 11 
able to characterise a wide range of waveform shape features at the single-cycle level. 12 
 13 
Waveform shape related parameters, such as skewness or asymmetry, can be estimated from 14 
higher order Fourier spectra such as the bispectrum or bicoherence (Bartz et al., 2019; Elgar, 15 
1987; Sheremet et al., 2016). These methods require relatively long data segments to have 16 
high frequency resolution, and therefore do not provide single-cycle estimates. Alternatively, 17 
a set of waveform features for individual cycles can be described by the relative durations of 18 
different quartiles of a cycle (Belluscio et al., 2012; Cole and Voytek, 2019; Trimper et al., 19 
2014). Whilst this approach is tractable on single cycles, the extracted features must be 20 
defined a priori and are limited to the resolution of the selected cycle control points such as 21 
the extrema and zero-crossings. 22 
 23 
The temporal dynamics in oscillatory frequency can be quantified for a given waveform by 24 
its instantaneous frequency computed from the differential of the signal’s instantaneous phase 25 
(Boashash, 1992; Huang et al., 2009). Such instantaneous frequency estimates have been 26 
used previously in electrophysiology to explore dynamics in oscillatory peak frequency at 27 
high temporal resolution (Cohen, 2014; Liang et al., 2005; Nelli et al., 2017; Rudrauf et al., 28 
2006). Crucially, any non-sinusoidal waveform features in an oscillation will lead to within-29 
cycle instantaneous frequency modulations in which the frequency of an oscillation changes 30 
from moment-to-moment within a single cycle (Huang et al., 1998). The degree of non-31 
linearity of an oscillation is related to the total amount of within-cycle frequency modulation 32 
(Huang et al., 2014; Tsai et al., 2016; Wang et al., 2012; Yeh et al., 2020).  33 
 34 
We introduce a novel approach which creates smooth waveform shape profiles that describe 35 
non-sinusoidal features in single cycles with high temporal detail. To this end, we first 36 
operationalise waveform shape as the profile of instantaneous frequency across the cycle’s 37 
instantaneous phase. We then identify when and how an ongoing cycle deviates from a 38 
sinusoidal waveform by identifying points in the cycle where instantaneous frequency departs 39 
from a flat profile. For example, a cycle with a wide peak has a relatively low instantaneous 40 
frequency around the peak, and a cycle with a fast-ascending edge will have a relatively high 41 
instantaneous frequency between the trough and peak. In order to allow between cycle 42 
comparisons, we also need to account for how different cycles of an oscillation will play out 43 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 14, 2021. ; https://doi.org/10.1101/2021.04.12.439547doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.12.439547
http://creativecommons.org/licenses/by/4.0/


 2 

at different speeds, leading to differences in extrema timing and overall duration. To 44 
overcome these problems, we introduce the process of ‘phase-alignment’ which reregisters 45 
the instantaneous frequency profiles onto a regularly sampled set of points in phase. To 46 
obtain the instantaneous phase time course of each cycle, we use the Empirical Mode 47 
Decomposition (EMD). EMD decomposes the time-series of interest into its oscillatory 48 
modes (Intrinsic Mode Functions; IMFs) that retain the non-stationary and non-linear signal 49 
features.  50 
 51 
We outline and validate our novel approach in simulated data before applying it to theta-band 52 
oscillations recorded in the local field potentials (LFPs) of the mouse hippocampal CA1 53 
during active exploratory behaviour. The hippocampal theta rhythm has a characteristic non-54 
sinusoidal waveform shape (Belluscio et al., 2012; Buzsáki et al., 1985; Siapas et al., 2005) 55 
that is modulated by movement (Sheremet et al., 2016) and changes in sleep or drug states 56 
(Buzsáki et al., 1985).  Using EMD to identify the theta rhythm, we show that phase-aligned 57 
instantaneous frequency is able to robustly characterise a continuous waveform shape profile 58 
for hippocampal theta. The results confirm the stereotyped fast-ascending and slow-59 
descending shape in the cycle-wise average. Additionally, it reveals but with high amounts of 60 
shape variation across single cycles of theta, which we describe using a set of data-driven 61 
shape ‘motifs’. Finally, we find that cycle-level shape motifs have differential associations 62 
with theta amplitude, theta cycle duration and mouse movement speed. Overall, we 63 
demonstrate that behaviourally relevant dynamics in single-cycle oscillatory waveforms can 64 
be accurately and intuitively explored with phase-aligned instantaneous frequency profiles.  65 
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2: Methods 66 
 67 
2.1: Data and Code Availability Statement 68 
 69 
Code for the analyses in this paper are freely available online (https://github.com/OHBA-70 
analysis/Quinn2021_Waveform) and data are available from the MRC BNDU Data Sharing 71 
Platform (https://data.mrc.ox.ac.uk/data-set/instantaneous-frequency-profiles-theta-cycles; 72 
requires free registration). The analyses in this study were carried out in python 3.7 using 73 
v0.4.0 of the EMD package (Quinn et al., 2021; https://emd.readthedocs.io/) and glmtools 74 
v0.1.0 for General Linear Model design and fitting (https://pypi.org/project/glmtools/). The 75 
wavelet transforms and principal components analysis were computed using SAILS v1.1.1 76 
(Quinn and Hymers, 2020). The underlying python dependencies were numpy (Harris et al., 77 
2020) and scipy (SciPy 1.0 Contributors et al., 2020) for computation and matplotlib (Hunter, 78 
2007) for visualisation. 79 
 80 
2.2: Masked Empirical Mode Methods 81 
 82 
The EMD is implemented as a sifting algorithm that incrementally extracts the highest 83 
frequency features of a time-series into its oscillatory components known as IMFs (Huang et 84 
al., 1998). Once identified, the IMF is subtracted from the signal and the sifting process 85 
repeated to find the next fastest set of oscillatory dynamics. This process is iterated through 86 
until only a residual trend remains in the dataset, constituting the very slowest dynamics of 87 
the signal. 88 
 89 
Transient or intermittent oscillatory signals can lead to a mix of different frequency 90 
components appearing in a single IMF; an issue known as mode mixing (Deering and Kaiser, 91 
2005; Wu and Huang, 2009). To reduce mode mixing, we use an adapted version of the mask 92 
sift (Deering and Kaiser, 2005; Tsai et al., 2016). The mEMD involves the same core process 93 
as the original sift outlined above. However, at each iteration, a masking signal is added to 94 
the data before all the extrema (maxima and minima) in the masked signal are identified. An 95 
upper and lower amplitude envelope is then estimated by interpolating between the maxima 96 
and minima respectively. The average of the upper and lower envelope is subtracted from the 97 
data and the extrema identification, envelope interpolation and subtraction repeated until the 98 
average of the upper and lower envelopes are close to zero. The mask is then subtracted from 99 
the signal to return the IMF.  100 
 101 
The performance of the sift is limited by a number of factors such as accuracy in peak 102 
detection and overshoot or edge effects in the envelope interpolation. As such, when applied 103 
to real data, the sift may not always perfectly isolate individual oscillations. To prevent 104 
envelope overshoot we used a monotonic PCHIP (Piecewise Cubic Hermite Interpolating 105 
Polynomial; implemented in scipy.interpolation.PChipInterpolator) interpolation during the 106 
sifting. The monotonic PCHIP interpolation avoids overshoot of the amplitude envelopes 107 
where the data are not completely smooth. When compared to a cubic-spline interpolation, 108 
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this reduces instances where the envelopes become very large, or the upper and lower 109 
envelopes cross over.  110 
 111 
2.2.1: Frequency Transformation 112 
 113 
The analytic form of each IMF was constructed using the Hilbert transform and the 114 
instantaneous phase set as the angle of the analytic form on the complex plane (See figure 2C 115 
for an example). To attenuate noise in the phase estimation, the unwrapped phase time-course 116 
was smoothed using a Savitsky-Golay filter (scipy.signal.savgol_filter; order = 1, window 117 
size = 3 samples). The instantaneous frequency (See figure 2D for an example) in Hertz is 118 
then computed from the derivative of this unwrapped phase: 119 
 120 

IF=	
fs
2π

d∅(t)
dt  121 

 122 
Where fs is the sampling frequency and ∅(𝑡) is the unwrapped instantaneous phase time-123 
course. The instantaneous amplitude time-course is computed as the absolute value of the 124 
analytic form of each IMF. 125 
 126 
The distribution of instantaneous amplitude values by frequency or time and frequency can 127 
be computed from these instantaneous frequency metrics. A sparse matrix H∈R^(T × F) is 128 
filled with the instantaneous amplitudes value from the IMFs at their respective time and 129 
frequency co-ordinates. This matrix is the Hilbert-Huang Transform (HHT; See figure 2E for 130 
an example) and provides an alternative time-frequency transform to traditional Fourier based 131 
methods such as the short-time Fourier transform and the wavelet transform (Huang et al., 132 
1998).  133 
 134 
2.2.2: Cycle Detection  135 
 136 
The next stage is to segment the IMFs into their constituent cycles and identify which cycles 137 
will be included in further analysis. The start and end of theta cycles are located by the 138 
differentials greater than six in the phase. The start and end point of cycles in this paper is the 139 
ascending zero-crossing as this occurs at the point where the phase time-course wraps. Once 140 
identified, some cycles will be ‘bad’ in the sense that the oscillation captured by the IMF is 141 
not well represented, e.g., because the rhythm is not present over that time period or it is 142 
poorly estimated, and will be excluded from subsequent analyses. This is important for 143 
instantaneous frequency analyses as the differentiation step (see section 2.2.1) can be very 144 
noise sensitive. Included cycles are identified from the wrapped instantaneous phase time-145 
course of the IMF containing the oscillation to be analysed. As the instantaneous phase 146 
computation via the Hilbert transform returns a value for every sample regardless of whether 147 
a prominent rhythm is present, only ‘good’ theta cycles are retained for further analysis. A 148 
good cycle is defined as having a phase with a strictly positive differential (i.e., no phase 149 
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reversals) that starts with a value 0≤x≤π/24 and end within 2π-π/24≤x≤2π and 4 control 150 
points (peak, trough, ascending edge and descending edge). 151 
 152 
2.2.3: Control Point analysis 153 
 154 
One approach to quantify oscillatory waveforms is to base analyses around parts of the cycle 155 
which can be straightforwardly identified in all cycles (Belluscio et al., 2012; Cole and 156 
Voytek, 2019). For example, the peak, trough, ascending zero-crossing and descending zero-157 
crossings of a cycle can define a set of control points describing the relative timing of 158 
inflections and mid-points in a cycle. In the present analyses, the extrema (peaks and troughs) 159 
are detected by finding zero-crossings in the differential of an IMF. This initial extrema 160 
estimate is limited by the sampling frequency of the dataset and is refined using parabolic 161 
interpolation (Rato et al., 2008). The zero-crossings are initially identified from sign changes 162 
in the IMF time-course and refined by linear interpolation. The ratio of temporal durations 163 
between these control points can describe large scale shape features. Finally, we compute the 164 
peak-to-trough ratio and the ascent-to-descent ratios for each cycle (Cole and Voytek, 2019). 165 
 166 
2.2.4: Phase-alignment 167 
 168 
We present an alternative approach to control points that ensures that entire waveform 169 
profiles can be combined and/or compared across cycles despite cycle-by-cycle differences in 170 
progression rate and overall duration. To compare waveforms across cycles that play out at 171 
different speeds, we use phase-alignment to register cycles onto a common grid. Phase 172 
alignment is performed on the instantaneous phase of a cycle and a measure of interest, such 173 
as the instantaneous frequency, which is observed at the same time-intervals. A linear one-174 
dimensional interpolation function is fitted between the instantaneous phase (as x values) and 175 
the instantaneous frequency (as y values). The interpolation function is evaluated on a 176 
template set of instantaneous phase values with a linear spacing between 0 and 2pi, if any 177 
points in the template fall outside the fitted range, the interpolator returns an extrapolated 178 
value. This interpolated version of instantaneous frequency is then directly comparable across 179 
cycles as each point in the phase will occur at the same time. We compute phase-alignment 180 
using a linear interpolation across 48 fixed points across the zero to 2pi phase range. 181 
 182 
Once an instantaneous frequency profile has been phase aligned, we can visualise a 183 
normalised waveform by projecting the frequency content back to a phase-time course. This 184 
is achieved by re-normalising the instantaneous frequency from Hertz back to radians in 185 
order to create a profile of successive phase differences. The phase time-course is then 186 
reconstructed from the cumulative summation of these phase differences. An oscillatory 187 
waveform can then be computed by taking the sine transform of this phase time-course. The 188 
resulting waveform has an amplitude of one and a consistent time-axis for all cycles. This 189 
‘normalised waveform’ allows for visualisation of shape between cycles with different 190 
durations and amplitudes.  191 
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 6 

2.2.5: Describing shape an instantaneous frequency mean vector  192 
 193 
A simplified summary of a cycle’s shape can be computed from a mean-vector of the phase 194 
aligned instantaneous frequency according to the following equation: 195 
 196 

𝑀𝑉 =	 𝐼𝐹444𝑒!∅# 	 197 
 198 
Where ∅6 is the uniform phase-grid used in phase-alignment and 𝐼𝐹444 is the phase-aligned 199 
instantaneous frequency. This is similar to the mean-vector approach to computing phase-200 
amplitude-coupling (Canolty et al., 2006). The mean-vector of a sinusoidal cycle will be zero 201 
whilst a non-sinusoidal cycle will return a complex value whose angle indicates which phase 202 
has the highest instantaneous frequency and the magnitude indicates the extent of the 203 
frequency modulation through the cycle. This method provides a straightforward summary 204 
but is only sensitive to unimodal deviations from a flat instantaneous frequency profile. 205 
 206 
2.2.6: Principal Components shape motifs.  207 
 208 
A more complete, data-driven approach to summarising shape from instantaneous frequency 209 
uses Principal Components Analysis (PCA) to identify the principal modes of variation in 210 
shape across the included cycles. Phase-aligned cycles are concatenated into a single matrix 211 
of size [nphases x ncycles]. The second dimension of this matrix is reduced to by PCA. This 212 
results in an [nphases x ncomponents] matrix of shape ‘motifs’ defined by the distribution of 213 
component weights across phase and an [ncomponents x ncycles] matrix of PC scores 214 
indicating the presence of each component motif in each individual cycle. 215 
 216 
The component motif matrix defines the axes of variability in waveform shape across cycles. 217 
The shapes captured along each of these axes are visualised by defining a set of PC scores 218 
containing the maximum or minimum observed score for the PC in question and zeros for all 219 
others. These scores can be projected back into the original data space to provide exemplar 220 
instantaneous frequency profiles for both extremes of the PC axes. Finally, these exemplar IF 221 
profiles can be projected back into the time-domain to generate a normalised waveform that 222 
preserves the shape depicted in the exemplar IF profiles. 223 
 224 
2.3: Simulation analyses 225 
 226 
2.3.1: Schematic cycle generation 227 
 228 
To illustrate the relationship between waveform shape, instantaneous phase and frequency, a 229 
set of noise free oscillations were generated. First, a linearly progressing phase time-course is 230 
generated and sinusoid is created by taking a sine-transform of this wrapped phase. Different 231 
non-sinusoidal cycles are generated by modulating the unwrapped phase time-course by sine 232 
and cosine waves at different phases and frequencies. The cycles with extrema and edge 233 
asymmetry are generated by modulating the phase with a 1 Hz sine or cosine respectively. 234 
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The extrema curvature examples are generated by modulating the linear phase with a 2 Hz 235 
sinusoid. From the computed cycle time-courses the instantaneous phase and instantaneous 236 
frequency are re-estimated using the Hilbert transform. Finally, the waveform shape is 237 
represented by phase-aligning the instantaneous frequency time-course of each cycle type 238 
with its instantaneous phase. 239 
 240 
2.3.2: Noisy Signal Generation 241 
 242 
A more realistic noisy simulation was used for the results in figures 3, 4 and 5. A simulated 243 
oscillation at 12 Hz was generated using an autoregressive oscillator with the following 244 
transfer function: 245 
 246 

𝐻(𝑓) = 	
1

1 − 2𝑟 cos 𝜃 +	𝑟$ 247 

 248 
Where 𝜃 is the angular frequency of the oscillator (in rads/sec) and 𝑟 is the magnitude of the 249 
roots of the polynomial (0 < r < 1). For this simulation, we computed 𝐻 for r=0.95 and 𝜃 250 
equivalent to 12 Hz and used its parameters to filter (a forwards and backwards filter using 251 
scipy.signal.filtfilt) white noise. This generates a noisy sinusoidal oscillation which contains 252 
random dynamics in the frequency and amplitude of each oscillatory cycle. Sixty seconds of 253 
data were generated at 512 Hz. 254 
 255 
This simulated oscillation was then modulated by one of two equations defined in equations 256 
50.24 and 50.25 in section 50-6 in Volume 1 of Feynman’s Lectures of Physics (Feynman et 257 
al., 2011). The first equation defines a linear system that scales the signal by a constant 258 
leaving the waveform shape unchanged. 259 
 260 

𝑥%&'	 = 𝐾𝑥!) + 𝑒(𝑡) 261 
 262 
Whilst the second equation defines a nonlinear system that includes a term inducing a change 263 
in waveform shape as well as scaling the signal. 264 
 265 

𝑥%&'	 = 𝐾[𝑥!) + 	𝜖𝑥!)$ ] + 𝑒(𝑡) 266 
 267 
The nonlinearity in the second equation makes the peak of the oscillations shorter and widens 268 
the trough. Both systems include an additive white noise term. 269 
 270 
2.3.3: Noisy Signal Analysis 271 
 272 
The simulations are separated into IMFs using the masked sift. The relatively straightforward 273 
dynamics in this simulation allow a simplified mask-sift to be applied. To define the mask 274 
frequencies, a first IMF is extracted using the standard sift routine. The number of zero-275 
crossings in this IMF defines the frequency of the initial mask with subsequent masks being 276 
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applied at half the frequency of the previous one. The mask amplitudes are set equivalent to 277 
1-standard deviation of the previously extracted IMF. 278 
 279 
The 12-Hz oscillation is isolated in the third IMF (IMF-3) of this mask sift. The frequency 280 
transformation of this IMF is computed using the Hilbert transform (section 2.2.1). The 281 
Hilbert-Huang transform (HHT) is computed using 64 frequency bins between 2 and 35 Hz. 282 
A wavelet transform was computed using a 5-cycle Morlet basis computed using the same 64 283 
frequencies as the HHT. 284 
 285 
The timing of individual oscillatory cycles is identified using the phase jumps in the 286 
instantaneous phase time course where the oscillatory amplitude was above a threshold of 287 
0.04 and instantaneous frequency below 18Hz. We compute control-point ratios (section 288 
2.2.3), time locked instantaneous frequency profile and phase aligned instantaneous 289 
frequency profile (section 2.2.4) across all included cycles (see section 2.2.2) of IMF-3.  290 
 291 
The sift, frequency transform, cycle detection and shape metrics are computed for both the 292 
linear and non-linear systems defined in section 2.3.2 The difference between the linear and 293 
non-linear systems is quantified using a separate t-test on the peak-to-trough and ascending-294 
to-descending control point ratios, and for each point in phase across the phase-aligned 295 
instantaneous frequency profiles. Finally, the normalised waveforms are computed from the 296 
average phase-aligned instantaneous frequency profiles from each system. 297 
 298 
2.4: Hippocampal theta analyses 299 
 300 
Local field potentials (LFPs) were recorded from the pyramidal layer of hippocampal CA1 301 
using multi-channel tetrodes (Lopes-dos-Santos et al., 2018). Recordings were made during 302 
open-field exploration in both familiar and novel environments across six recordings taken 303 
over three recording days from each of three mice. Further data acquisition details can be 304 
found in appendix 1.  305 
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 306 

Figure 1: Overview of analysis applied to LFP recordings of hippocampal theta.  307 
A: The raw input LFP recording. 308 
B: The raw signal is split into Intrinsic Mode Functions (IMFs) using a mask sift. 309 
C: An instantaneous phase and instantaneous frequency time-course is estimated from the 310 
theta IMF using the Hilbert Transform. 311 
D: Cycle start and stop times are identified from jumps in the wrapped phase time-course and 312 
‘bad’ cycles with distortions of reversals in phase are identified and removed. 313 
E: Control points (peaks, troughs, ascending zero crossings and descending zero crossings) 314 
are estimated from the good cycles within the theta IMF. Shape is then summarised using 315 
peak-to-trough and ascending-to-descending duration ratios. 316 
F: The instantaneous frequency of each good cycle is phase aligned to correct for variability 317 
in cycle duration and internal cycle timings. 318 
G: The phase-aligned cycles are stacked into a single array to allow for straightforward 319 
comparisons between cycles. 320 
H: A set of shape motifs are identified from the phase aligned IF using PCA.   321 
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2.4.1: Mask sift and Frequency transform. 322 
 323 
LFP recordings were each separated into oscillatory components using the mask sift (Figure 1 324 
A & B) with masks placed at f_m = [350, 200, 70, 40, 30, 7, 1 Hz]. These masks were 325 
selected to capture components with frequencies above the mask frequency down to around 326 
f_m*0.7 (Fosso and Molinas, 2017; Rilling and Flandrin, 2008). Keeping the masks constant 327 
across recordings ensures that the frequency content of each IMF will be comparable across 328 
recordings. For instance, we isolate the theta oscillation in IMF-6 using a mask frequency of 329 
7 Hz. These mask frequency parameters were validated by rerunning the phase-aligned 330 
instantaneous frequency analyses with jittered mask-frequencies (Supplemental section 8.2; 331 
figure S2), showing that the theta waveform description is robust to reasonable changes to the 332 
mask frequency values. These mask frequencies were effective in this set of CA1 LFP 333 
recordings, but it is expected that a different set of mask frequencies would be needed to 334 
analyse time-series containing different oscillatory dynamics. Next, a frequency 335 
transformation was computed for each IMF using the Hilbert transform and the methods from 336 
section 2.2.1 (Figure 1C).  337 
 338 
2.4.2: Cycle detection 339 
 340 
To ensure that the detected theta cycles are physiologically interpretable theta activity, we 341 
identified cycles in each recording during times where the speed of movement of the mouse 342 
was greater than 1 cm/second. As faster movement is associated with stronger theta 343 
oscillations, this restriction increases the probability that our detected cycles represent 344 
physiologically interpretable theta events. We additionally restricted analyses to cycles in 345 
IMF-6 where cycle duration corresponded to 4-11 Hz frequency range (i.e., 312 and 113 346 
samples respectively) and cycle amplitude was above the bottom 10% of the amplitude 347 
distribution. Finally, cycles that failed the cycle inclusion checks outlined in section 2.2.2 348 
were removed from analysis at this point (Figure 1D). 349 
 350 
2.4.3: Cycle comparisons 351 
 352 
We computed the temporally aligned instantaneous frequency profile, phase-aligned 353 
instantaneous frequency profile and normalised waveform for each included theta cycle. The 354 
average waveform shape within each dataset was estimated from the averaged phase aligned 355 
instantaneous frequency and a group average constructed from the mean of the six individual 356 
runs. Variability in waveform shape across single cycles in the group data is summarised 357 
using the instantaneous frequency mean vector (section 2.2.5) and visualised as a distribution 358 
in the complex plane in which the x-axis represents asymmetry between ascending and 359 
descending edge frequency and the y-axis represents asymmetry between peak and tough 360 
frequency. For comparison, we also identified the control points from each cycle of the theta 361 
IMF and constructed the peak-to-trough and ascending-to-descending duration ratios (Cole 362 
and Voytek, 2019). 363 
 364 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 14, 2021. ; https://doi.org/10.1101/2021.04.12.439547doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.12.439547
http://creativecommons.org/licenses/by/4.0/


 11 

2.4.4: Waveform Motifs and Relation to behaviour 365 
 366 
We next look to explore the waveform shapes which are present in the phase-aligned 367 
instantaneous frequency values. We use PCA (section 2.2.6) to identify the data-driven set of 368 
shape components that explain the most variance in the shape of theta cycles in this dataset. 369 
The first four principal components explaining 95% of variance defined our four shape motifs 370 
and were retained for further analysis. The reproducibility of the PCA is validated across 500 371 
split-half iterations assessing the proportion of variance explained by each PC and the 372 
correspondence between the component shape in the two halves (Supplemental section 8.3; 373 
figure S3). 374 
 375 
The relationship between the shape motifs and a set of three cycle covariates (i.e., cycle 376 
amplitude, cycle duration and mouse movement speed) was quantified using a General Linear 377 
Model (GLM). The GLM was created with a design matrix containing the mean and the three 378 
z-transformed covariates. These predictors were used to model the between cycle variability 379 
in the principal component (PC) scores for each shape component in turn. This resulted in 380 
four GLMs each fitting four parameter estimates. The t-statistic of each parameter estimate 381 
was computed, and statistical significance established using a row-shuffle non-parametric 382 
permutation scheme. 5000 permutations were computed for each PC-motif and dependent 383 
variable before statistical significance determined at p<0.01.  384 
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3: Results 385 
 386 
3.1: Instantaneous Frequency tracks waveform shape  387 
 388 
Figure 2 illustrates how instantaneous frequency reflects waveform shape in a set of noiseless 389 
simulated cycles (see section 2.3.1). A sinusoidal cycle (Figure 2A) has a monotonically 390 
progressing phase time-course which, in turn, has a flat instantaneous frequency profile. 391 
Analysis of the duration of different segments reveals that the peak, trough, ascending edge 392 
and descending edge all have the same duration. Cycles with a narrow peak, trough or 393 
descending edge show corresponding changes in their instantaneous frequency (Figure2 B & 394 
C). Specifically, the longer duration, slower features correspond to a lower instantaneous 395 
frequency. These instantaneous frequency profiles can describe a wide range of possible 396 
shapes. For example, cycles in which both the peak and trough are widened or pinched lead 397 
to instantaneous frequency profiles with multiple extrema (Figure 2: last column). While the 398 
simple control-point metrics used here can track individual waveform features such as peak 399 
or trough duration (Figure 2: bottom row), the quantification of more complex shapes would 400 
require the definition of additional control points and shape metrics.  401 
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402 
Figure 2: Instantaneous Frequency changes with oscillatory waveform shape.  403 
The four columns illustrate examples of different simulated oscillatory cycles with distinct 404 
waveform shapes. 405 
A: The time-domain waveforms for each cycle. The first column shows a sinusoid, and the 406 
remaining three columns show pairs of cycles with opposite waveform distortions (for 407 
reference a sinusoid is shown as a dotted back line). 408 
B: The instantaneous phase time course of the signals in the corresponding column. 409 
C: The instantaneous frequency time course of the signals in the corresponding column. 410 
D: The durations between different control points for each cycle the dotted line indicates the 411 
expected duration for a sinusoid.  412 
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3.2: Quantifying and comparing waveform shape in a simulated signal 413 
 414 
We next use simulations to illustrate how instantaneous frequency analyses can be conducted 415 
on a noisy signal with a dynamic 12 Hz oscillation modified by a non-linearity which widens 416 
the trough of each cycle (see section 2.3.2). This oscillation was isolated from the noisy 417 
background using mask sift (Figure 3B) before the Hilbert transform was used to compute the 418 
instantaneous phase time-course (Figure 3C). It is evident that the phase time-courses do not 419 
progress linearly through all cycles; these deviations from monotonic phase progression are 420 
quantified in the instantaneous frequency time-course (Figure 3D). Instantaneous frequency 421 
sweeps within a single cycle reflect the non-sinusoidal shapes of the time-domain waveforms. 422 
For this simulation, the instantaneous frequency tends to be higher during the first half of the 423 
cycle and lower in the second half, reflecting the non-linearity that shortens the peak and 424 
widens the trough of these oscillations.  425 
 426 
The HHT of the simulated signal (Figure 3E) retains the high time-frequency resolution of 427 
the instantaneous frequency time-course allowing within cycle frequency dynamics to be 428 
visible. In contrast, while a standard 5-cycle Morlet wavelet transform identifies similar 429 
power dynamics, variability in frequency within single cycles are not resolved (Figure 3F). A 430 
further disadvantage is that the non-sinusoidal waveform shape of this simulation introduces 431 
a 24Hz harmonic component into the wavelet transform.  432 
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   433 

Figure 3: Instantaneous frequency analysis on a noisy non-sinusoidal oscillation. 434 
 435 
A simulated 12 Hz oscillation can be extracted from a noisy time-series and represented with 436 
EMD, instantaneous frequency and the Hilbert-Huang Transform. Vertical grey lines denote 437 
the starting times of individual cycles across the different panels. 438 
A: The simulated noisy non-sinusoidal oscillation. 439 
B: IMF-3 extracted from ‘A’ containing the simulated oscillation. 440 
C: Instantaneous phase time-course of IMF-3. Cycles excluded from further analysis are 441 
indicated in red. In this case, these cycles were below the amplitude threshold. 442 
D: Instantaneous frequency time-course of IMF-3. 443 
E: Hilbert-Huang Transform (HHT) of the simulated data segment. 444 
F: Continuous Wavelet Transform (CWT) of the simulated data segment.   445 

HHT

CWT

A

B

C

D

E

F

IMF-3

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 14, 2021. ; https://doi.org/10.1101/2021.04.12.439547doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.12.439547
http://creativecommons.org/licenses/by/4.0/


 16 

Individual cycles of an oscillation play out at different rates leading to differences in the 446 
timing of extrema within cycles and in overall cycle duration. These two sources of 447 
variability hamper comparisons between individual oscillatory cycles. As outlined above 448 
(section 2.2.3) one method to solve this issue is to discretise the cycle using a set of control 449 
points before computing the proportion of time spent in different segments of the cycle 450 
(Belluscio et al., 2012; Cole and Voytek, 2019). The cycle phase quartiles (ascending zero-451 
crossing, peak, descending zero-crossing and trough) of 500 cycles of the simulated signal is 452 
shown in Figure 4A. The ratios of peak-to-trough duration and ascending-to-descending time 453 
of these cycles suggests longer troughs and shorter peaks, whilst the ascending and 454 
descending portions of the cycle are approximately equal in duration (Figure 4B).  455 
 456 
An alternative approach for comparing cycles is to align the instantaneous frequency profiles 457 
to one of the control points. For example, we aligned the 500 cycles to the ascending zero-458 
crossing and computed their time-locked average (Figure 4C). The time-locked instantaneous 459 
frequency profile of these cycles is not flat, reflecting the presence of non-sinusoidal shape in 460 
this simulated signal. However, the precise type of non-sinusoidal shape is ambiguous from 461 
this average, due to variability in the location of different waveform features within single 462 
cycles. In this case, the instantaneous frequency is highest around 10 samples after the 463 
ascending zero-crossing; however, this time-lag might correspond to different points in the 464 
waveform in different cycles. In addition, variability in the duration of cycles means that, 465 
after a certain point, different numbers of cycles contribute to the average, making the 466 
estimate unstable.  467 
 468 
Here we present an approach that overcomes these shortcomings. In brief, phase-alignment 469 
removes this ambiguity by visualising the instantaneous frequency of a cycle across a fixed 470 
grid of points along its phase (see section 2.2.3). For instance, an oscillatory peak is 471 
normalised to occur at the same phase value irrespective of the cycle’s duration or shape. 472 
This corresponds always to exactly one quarter of the phase of each cycle, but not necessarily 473 
to one quarter of the duration of each cycle. By aligning the instantaneous frequency to the 474 
phase, we remove the temporal distortions caused by varying shapes and cycle durations, and 475 
express the shape with the phase-aligned instantaneous frequency values. The phase-aligned 476 
instantaneous frequency of the simulated cycles (Figure 4D) now unambiguously shows the 477 
increased frequency around the peak of the 12Hz oscillation and decreased frequency around 478 
the trough. The average across the phase-aligned cycles is then a smooth representation of the 479 
shape of the entire cycle.  480 
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 481 

 482 
Figure 4: Methods for comparing waveform across cycles. 483 
Simulated data illustrating how waveform shape can be quantified using control point ratios, 484 
instantaneous frequency and phase-alignment. 485 
A : The durations between successive control points for each simulated cycle. 486 
B : Top: distributions of peak-to-trough and ascent-to-descent durations. Bottom: The peak-487 
to-trough and ascent-to-descent ratios for each cycle. 488 
C : Top: the average temporally aligned instantaneous frequency profiles. Bottom the 489 
temporally aligned instantaneous frequency profile for each cycle. 490 
D : Top: the average phase-aligned instantaneous frequency profiles. Bottom: the phase-491 
aligned instantaneous frequency profile for each cycle.  492 
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Comparisons between sets of cycles is straightforward once waveform shape has been 493 
estimated from instantaneous frequency and normalised through phase-alignment. This is 494 
illustrated by contrasting the shape of a noisy a 12-Hz oscillation modulated by either a linear 495 
or non-linear system (section 2.3.2; Figure 5A). The non-linear system has a wide-trough 496 
shape whilst the linear system has a sinusoidal waveform (Figure 5B & C). The average 497 
phase-aligned instantaneous frequency values for the linear system correspond to a flat line at 498 
12 Hz throughout the cycle. In contrast the non-linear system has an increased instantaneous 499 
frequency in the first half of the cycle and a decreased frequency in the second half (Figure 500 
5D).  We can compare the average instantaneous frequency profiles from both systems 501 
(Figure 5E) and compute conventional t-statistics (Figure 5F) to quantify any differences in 502 
waveform shape. In this simulation, we find that the non-linear system creates oscillations 503 
with increased frequency peaks and decreased frequency troughs.  504 
 505 
Finally, the phase-aligned average frequency profiles can be projected back into a 506 
‘normalised waveform’ to more intuitively visualise the type of non-sinusoidal distortions. 507 
These normalised waveforms have a constant duration and an amplitude of one, but retain 508 
any distortions in waveform shape quantified in the instantaneous frequency profile. For this 509 
simulation, the normalised waveform reveals the pinched peak and the widened generated by 510 
the non-linear system (Figure 5G).  511 
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 512 

Figure 5: Comparing waveform shape in two simulated examples. 513 

A : A simulated oscillation is modulated by either a linear or a non-linear system. 514 
B : Output oscillations of the two systems. 515 
C : Oscillations recovered from the noisy simulation using EMD. 516 
D : Average phase-aligned instantaneous frequency profiles for the two systems with 517 
individual cycles in grey. 518 
E : Average instantaneous frequency profiles from ‘D’ overlaid together. 519 
F : t-values for a contrast between the instantaneous frequency in the two systems for each 520 
point in phase. 521 
G: Normalised waveforms for the two average frequency profiles in ‘E’. 522 
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3.3: Characterising waveform shape in Hippocampal Theta 523 
 524 
LFP data recorded from the mouse hippocampus were analysed to explore the utility of 525 
phase-aligned instantaneous frequency as a measure of waveform shape. Figure 6A shows a 526 
three-second LFP recording from the pyramidal layer of the mouse dorsal CA1 (black) 527 
overlaid with the EMD-extracted theta IMF (red, Figure 6B shows all IMFs). In this case, the 528 
theta oscillation was isolated into IMF 6 with minimal disruption to its amplitude or 529 
waveform shape dynamics. Many of the theta cycles within this window have prominent non-530 
sinusoidal waveform shapes, which are qualitatively visible in both the raw data trace 531 
(Buzsáki et al., 1986, 1985) and the EMD-extracted theta IMF.  Importantly, the oscillatory 532 
waveform shape varies between successive cycles, though the amplitude and duration of the 533 
theta cycles are relatively consistent. 534 
 535 
The instantaneous phase (Figure 6C) and instantaneous frequency (Figure 6D) were 536 
computed from the theta oscillation in IMF-6. As with the simulation analysis, any within-537 
cycle dynamics in the instantaneous frequency naturally represent the waveform of each 538 
cycle. This was summarised with the standard deviation of instantaneous frequency values 539 
within each cycle (Figure 6E). As an illustration, cycles 5, 9 and 11 have relatively sinusoidal 540 
shapes with flat instantaneous frequency profiles and low frequency variability. In contrast, 541 
cycle 13 is relatively non-sinusoidal with a dynamic instantaneous frequency profile and high 542 
frequency variability. The HHT provides a time-frequency description with sufficient 543 
resolution to depict these within cycle instantaneous frequency sweeps (Figure 6F). In 544 
contrast, a 5-cycle wavelet transform of the same data was not able to resolve these dynamics 545 
(Figure 6G). 546 
 547 
Looking at individual cycles illustrates how instantaneous frequency can characterise 548 
waveform shape (Figure 7). Frequency increases and decreases correspond to slowing down 549 
and speeding up of the cycle as its waveform shows non-sinusoidal behaviour. It is evident 550 
that there are many observed shape profiles. For instance, the cycles labelled as i and iii in 551 
figure 7 had frequencies that dip during the centre of the cycle, indicating an elongated, low 552 
frequency descending edge. Cycle v had slowest frequency around -pi/2 corresponding to a 553 
wide peak. In contrast, cycle vi had relatively high frequency around -pi/2 and lower 554 
frequency at +pi/2 leading to a short, pinched peak and an elongated trough. Overall, the 555 
phase-aligned instantaneous frequency profiles and normalised waveforms provide a rich 556 
description of oscillatory waveform, despite wide variability in cycle amplitude, duration and 557 
shape.  558 
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 559 

Figure 6: EMD analysis of a LFP segment containing hippocampal theta oscillations. 560 
A : A segment of a hippocampal LFP recording (black) overlaid with the extracted theta 561 
oscillation (red). 562 
B : IMFs extracted from this data segment using the mask-EMD. The theta oscillation is 563 
isolated into the IMF-6. 564 
C : Instantaneous phase time-course of the theta IMF. 565 
D : Instantaneous frequency time-course of the theta IMF. 566 
E : Variability in instantaneous frequency for each theta cycle. 567 
F : Hilbert-Huang Transform (HHT) of the LFP segment. 568 
G : Continuous Wavelet Transform (CWT) of the LFP segment.   569 
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 570 

Figure 7: Characterising shape in eight example cycles of hippocampal theta.  571 
 572 
Eight representative theta cycles. For each example, the first subpanel shows the raw data 573 
(grey) with the theta IMF super imposed (coloured line). The second subpanel shows the 574 
phase aligned instantaneous frequency and third panel shows the normalised waveform 575 
(coloured line) with a sinusoid for reference (black dotted line).  576 
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3.4: Using phase-aligned instantaneous frequency to compare cycles. 577 
 578 
We next computed waveform shape from around 1500 hippocampal theta cycles from a 579 
single recording using three different methods: control-point ratios (see section 2.2.6), 580 
control-point locking, and phase-alignment (see section 2.2.3). The durations between 581 
specified control points were computed for each cycle (Figure 8A) and the peak-to-trough 582 
ratio and the ascent-to-descent ratio computed (Figure 8B). The peak-to-trough ratios are 583 
evenly distributed around zero, whereas there is a bias in the ascent-to-descent ratios 584 
suggesting that the descending edge of theta is longer than the ascending edge. The 585 
instantaneous frequency profiles locked to the ascending zero-crossing show a wide variety 586 
of shapes with a group average tendency for frequency to start around 9 Hz and to decrease 587 
through the duration of the cycle (Figure 8C). As described above, this average effect is 588 
challenging to interpret due to within-cycle variability in the timing of cycle features and 589 
between cycle variability in total cycle duration. Our proposed phase-aligned instantaneous 590 
frequency profiles (Figure 8D) resolve these ambiguities. This shows that theta cycle 591 
instantaneous frequency in this single recording starts around 9 Hz at the ascending zero-592 
crossing, decreasing to around 8.1 Hz at the descending zero-crossing, before increasing 593 
again to 9 Hz at the end of the cycle. This is consistent with a fast-ascending and slow 594 
descending cycle shape revealed by the control point analysis and in previous literature. The 595 
phase-aligned instantaneous frequency approach is able to show this effect as a continuous 596 
shape profile for single cycles, which can be straightforwardly compared at the group level. 597 
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 598 

Figure 8: Methods for quantifying waveform in hippocampal theta. 599 
A : Durations between successive control points for each simulated cycle. 600 
B : Top: Distributions of peak-to-trough and ascent-to-descent durations. Bottom: Peak-to-601 
trough and ascent-to-descent ratios for each cycle. 602 
C : Top: Average of temporally aligned instantaneous frequency profiles. Bottom: 603 
Temporally aligned instantaneous frequency profile for each cycle. 604 
D : Top: Average of phase-aligned instantaneous frequency profiles. Bottom: Phase-aligned 605 
instantaneous frequency profile for each cycle.  606 
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3.5: Theta has a stereotyped asymmetric shape with wide variability over cycles 607 
 608 
We next summarised the average waveform across theta cycles from six recordings taken 609 
from three mice. The average phase-aligned instantaneous-frequency profile is computed for 610 
each recording and for the whole dataset. The overall group-level average waveform had a 611 
cosine-type profile centred around an average instantaneous frequency of ~8.6 Hz (Figure 612 
9A, average in black and individual recording sessions in grey). On average, the 613 
instantaneous frequency peaked within the cycle around 9 Hz at the ascending zero-crossing 614 
and drops to just below 8.4 Hz between the peak and descending zero-crossing. These results 615 
are consistent with previous studies showing an asymmetry between the fast-rising and slow-616 
decaying halves of a theta cycle (Belluscio et al., 2012; Buzsáki et al., 1986; Cole and 617 
Voytek, 2019). All six recordings across three animals showed a shape with a maximum 618 
frequency around the ascending zero-crossing and a minimum on the descending edge, 619 
though there was some variability in whether the lowest frequency was closer to the peak or 620 
trough. 621 
 622 
To visualise the variability in waveform shape across cycles and recording sessions, we 623 
performed a complementary analysis using the instantaneous frequency mean-vector to see 624 
the distribution of single-cycle waveforms across a simplified 2-dimensional shape-space 625 
(Figure 9B; section 2.2.4). The distribution had a non-zero mean on the x-axis for all 626 
recordings, indicating that the highest frequencies in a cycle are typically at the ascending 627 
edge, consistent with the average in Figure 9A and with previous literature on the theta cycle 628 
(Belluscio et al., 2012). Though the overall mean shift in the distribution of cycles is robust, 629 
there is substantial cycle-to-cycle variability indicated by the width of the distribution.  630 
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  631 

Figure 9: Average waveform shape and variability in shape across cycles in 632 
hippocampal theta.  633 
A : Average of phase-aligned instantaneous frequency profiles for each of the six separate 634 
recording sessions across three mice. The different dashed line styles indicate the runs from 635 
the different mice and the solid black line represents the average across all six recordings. 636 
B : Each individual cycle is projected into a simplified ‘shape-space’ to visualise the overall 637 
variability in waveform shape around the average. Individual recording averages are shown 638 
in red with different symbols representing the three animals.  639 
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3.6: Distinct waveform motifs are differentially related to behavioural and 640 
electrophysiological states. 641 
 642 
To further describe the variability in waveform shape across cycles and characterise its 643 
relation to movement speed, theta amplitude and theta cycle duration we identify a set of 644 
waveform shape ‘motifs’ using PCA. The PC values define a set of shape motifs that are each 645 
expressed to different degrees in the observed cycles (see section 2.2.5 and 2.4.4). The first 646 
four components describing 96% of variance are retained for further analysis (Figure 10). 647 
The waveform shape represented by each PC motif is summarised by the normalised 648 
waveforms (Figure 10A). These normalised waveforms are computed from the instantaneous 649 
frequency profiles of the PC component-vectors (Figure 10B) projected onto the extreme 650 
ends of the PC score distribution (Figure 10C). The shape of each individual cycle can then 651 
be described by a set of four PC scores, relating to the amount of each component which it 652 
contains.   653 
 654 
PC-1 (63.31% of variance) describes a continuum of shape from a sharp peak and wide 655 
trough through to a wide peak and sharp trough. This shape is similar to the y-axis in the 656 
mean vector distribution in Figure 9B. In contrast, PC-2 (22.56% of variance) describes 657 
shapes ranging between an elongated ascending edge and an elongated descending edge, 658 
similar to the x-axis of Figure 9B. The remaining components describe more complex shapes 659 
with relatively small contributions to the variance explained. PC-3 (6.86% of variance) 660 
captures shapes with a left or right ‘tilt’ around their extrema and PC-4 (3.33% of variance) 661 
describes shapes with a sharper or flatter curvature around the extrema.  662 
 663 
The control-point-based ascending-to-descending ratio and peak-to-trough ratio are computed 664 
for each cycle. For each PC, these values are partitioned into cycles with positive or negative 665 
PC scores (relating to distinct ends of the shape continuum for that component) and their 666 
distributions plotted in Figure 10D.  The peak-to-trough ratios are clearly separated in the two 667 
ends of PC-1 whilst the ascending-to-descending ratios are similar for cycles with a positive 668 
or negative score in PC-1. This is consistent with the normalised waveforms summarising 669 
PC-1 in Figure 10A. PC-2 also shows the expected separation of ascending-to-descending 670 
ratios by PC score, whilst the peak-to-trough ratios are unchanged. Whilst PC-3 and PC-4 671 
describe around 10% of shape variability, they are not characterised by the control point 672 
analyses. Neither peak-to-trough ratios nor ascending-to-descending ratios are changed by PC 673 
score for PC-3 or PC-4. These shape profiles are robustly identified by the phase-aligned 674 
instantaneous frequency method but are not distinguished by these control point-based 675 
metrics as the shape distortions in PC-3 and PC-4 occur between the four specified control 676 
points. 677 
 678 
A general linear model was used to quantify the relationship between the different shape 679 
motifs and theta amplitude, theta duration and mouse movement speed. This regression is 680 
computed separately for each PC and the resulting parameter estimates converted into t-681 
statistics. PC-1 codes for changes in average instantaneous frequency across the cycle with a 682 
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small shape distortion around the descending edge. This PC has a strong relationship with 683 
cycle duration and amplitude but no significant covariation with movement speed.  Longer 684 
and higher amplitude cycles tend to have more positive scores in PC-1 relating to wide peak 685 
shapes. PC-2 has a strong relationship with duration and movement speed. Specifically, 686 
cycles with elongated descending edges have longer cycle durations and are more likely to 687 
occur during fast animal movement. PC-3 shows significant covariance with cycle amplitude. 688 
High amplitude cycles tend to have shapes in which instantaneous frequency is relatively 689 
high just before the peak or trough. Finally, PC-4 varies strongly with duration and weakly 690 
with movement speed. Cycles with flatter curvatures around the extrema have longer cycle 691 
durations and are less likely to occur during faster animal movement.  692 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 14, 2021. ; https://doi.org/10.1101/2021.04.12.439547doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.12.439547
http://creativecommons.org/licenses/by/4.0/


 29 

 693 
Figure 10: Shape motifs in hippocampal theta and their relation to movement speed. 694 
 695 
A : The normalised waveforms for the first four shape motifs identified from a PCA across 696 
all phase-aligned instantaneous frequency profiles. Waveforms for positive PC scores are 697 
shown in purple and waveforms for negative scores shown in green with a sinusoid for 698 
reference (black dotted line). 699 
B : PC for each motif.  700 
C : Instantaneous frequency profiles of each shape motif created by multiplying the PC shape 701 
in ‘B’ with the maximum or minimum observed PC score for that PC and adding the mean. 702 
Purple profiles represent the positive end of the score distribution and green profiles represent 703 
the negative end. 704 
D : Control-point ratios for cycles split by the sign of the PC score. Purple profiles represent 705 
the positive end of the score distribution and green profiles represent the negative end. 706 
E : t-value of a GLM modelling the PC score for each motif as a function of movement 707 
speed, theta cycle duration and theta cycle amplitude. Asterisks indicate statistical 708 
significance at p>0.01 as identified by non-parametric permutations.  709 
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4: Discussion 710 
 711 
Non-sinusoidal waveforms are often visible by eye in raw LFP traces of electrophysiological 712 
datasets, yet discovering and quantifying these non-sinusoidal and non-linear features present 713 
substantial analytic challenges. We utilise within-cycle variability in instantaneous frequency 714 
to describe distortions in waveform (Huang et al., 2009). Further, we introduce phase-715 
alignment as a solution to comparing full-resolution waveforms between cycles of different 716 
durations. Taken together, we establish that the phase-aligned instantaneous frequency profile 717 
of an oscillation provides a flexible framework for complete characterisation of oscillatory 718 
waveform shape. We demonstrate the utility of this approach by applying it to simulated data 719 
and LFP recordings of theta oscillations of behaving mice. 720 
 721 
In real data, we observed that theta oscillations have, on average, a fast-ascending and slow 722 
descending waveform, in line with previous reports (Belluscio et al., 2012; Buzsáki et al., 723 
1986, 1985; Cole and Voytek, 2019). Though this average shape is robust across many 724 
cycles, recording sessions and animals; the shape of individual cycles is highly variable. We 725 
characterise this variability using PCA to identify a range of shape components, or ‘shape 726 
motifs’, which maximally explain the variability in the dataset. The first two PCs quantify the 727 
relative durations of the peak and trough (PC-1) and the ascending to descending edge (PC-728 
2). These PCs broadly map onto the features described by the peak-to-trough and ascending-729 
to-descending control point ratios. We show that these theta shape PCs have distinct patterns 730 
of covariation with movement speed, theta amplitude and theta cycle duration. Critically, we 731 
show that though PC-2 describes less variability overall, it most clearly co-varies with 732 
movement speed.  733 
 734 
PC-3 and PC-4 capture more complex waveform shapes. We show that the curvature around 735 
the extrema of the waveform shape (PC-4) is wider in theta cycles occurring during faster 736 
animal movement. This shape is naturally described by instantaneous frequency but not 737 
visible to standard ascending-to-descending and peak-to-trough control-point ratios. More 738 
generally, if the waveform shape of interest is known a priori, it is possible to construct 739 
specific control point-based measures so that the waveform shape can be identified. For 740 
instance, waveform sharpness can be explored by looking at the differential between the 741 
extrema and the samples 5ms before and after (Cole et al., 2017). However, in real data, we 742 
may not know the waveform shape of interest a priori, implying that many separate metrics 743 
may need to be computed for each cycle. In contrast, the phase-aligned instantaneous 744 
frequency can quantify any waveform shape as a within-cycle instantaneous frequency sweep 745 
without pre-specifying the features which may be of interest.   746 
 747 
The present results demonstrate that single-cycle dynamics in oscillations can be 748 
meaningfully estimated using phase-aligned instantaneous frequency, and that specific shape 749 
motifs are differentially related to the wider electrophysiological (theta amplitude and 750 
duration) and behavioural (movement speed) context. Future models of theta function may 751 
consider these dynamics in waveform shape that deviate from a canonical sinusoidal theta 752 
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template. Given that many sub-processes occur preferentially at different parts of the theta 753 
cycle (Klausberger and Somogyi, 2008), we hypothesise that shape distortion may indicate or 754 
reflect a change in the underlying theta-phase-nested sub-processes. 755 
 756 
The outlined approach requires that each cycle is smooth in both its waveform and phase 757 
profiles, as any jumps or discontinuities will lead to noisy or even negative instantaneous 758 
frequency estimates. If the cycle is smooth, we can characterise very large distortions in 759 
waveform shape as within-cycle dynamics in instantaneous frequency. Finally, we assume 760 
that the features being analysed are well described as oscillations. If the features are non-761 
sinusoidal and non-oscillatory, such as spiking activity, then descriptions using the language 762 
of frequency may not be appropriate. With these improvements and caveats in hand, this 763 
approach is readily generalisable to other datasets and provides a flexible framework for 764 
investigating waveform shape oscillating systems. 765 
 766 
In conclusion, the full-cycle waveform of single cycles of hippocampal theta can be 767 
quantified and explored with phase-aligned instantaneous frequency. We use this approach to 768 
confirm the characteristic fast-ascending waveform of theta oscillations; and to additionally 769 
reveal that this is highly variable on the single-cycle level. Moreover, we are able to link this 770 
variability with behavioural and electrophysiological states, suggesting that waveform shape 771 
is a relevant feature of neuronal oscillations alongside frequency, phase and amplitude. 772 
Finally, whilst we have illustrated this approach with hippocampal theta oscillations, it is 773 
likely that this methodology will readily generalise to neuronal oscillation in other brain 774 
regions, frequency bands and contexts.  775 
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8: Supplemental Methods 937 
 938 
Experimental model and subject details 939 
Animals used were male adult (4–7 months old) C57BL/6J mice (Charles River, UK). All 940 
animals had free access to water and food in a dedicated housing facility with a 12/12 h 941 
light/dark cycle. They shared a cage with their littermates until the surgery. All experiments 942 
involving animals were conducted according to the UK Animals (Scientific Procedures) Act 943 
1986 under personal and project licenses issued by the Home Office following ethical review. 944 
 945 
Microdrive implantation 946 
Animals were implanted with a 10-12 tetrode microdrive during a surgical procedure 947 
performed under deep anesthesia using isoflurane (0.5–2 %) and oxygen (2 l/min), with 948 
analgesia (0.1 mg/kg vetergesic) provided before and after. Tetrodes were constructed by 949 
twisting together four insulated tungsten wires (12 µm diameter, California Fine Wire) and 950 
shortly heating them to bind them together in a single bundle. Each tetrode was attached to a 951 
M1.0 screw to enable their independent movement. The drive was implanted under 952 
stereotaxic control in reference to bregma (Lopes-dos-Santos et al., 2018). Tetrodes were 953 
initially implanted above the CA1 pyramidal layer and their exposed parts were covered with 954 
paraffin wax. The drive was then secured to the skull using dental cement. For extra stability, 955 
stainless-steel anchor screws had first been inserted into the skull. Two of the anchor screws, 956 
which were inserted above the cerebellum, were attached to 50 µm tungsten wires (California 957 
Fine Wire) and served as ground and reference electrodes during the recordings. The 958 
placement of the tetrodes in dorsal CA1 was confirmed by the electrophysiological profile of 959 
the local field potentials in the hippocampal ripple frequency band. 960 
 961 
Recording procedures 962 
Recordings commenced following full recovery from the surgery. Each animal was 963 
connected to the recording apparatus and familiarized with a high-walled box containing 964 
home cage bedding and with one open-field enclosure (the familiar enclosure) over a period 965 
of approximately seven days. During this period, tetrodes were gradually lowered to the 966 
stratum oriens of the hippocampal CA1. On the morning of each recording day, tetrodes were 967 
further lowered into the pyramidal cell layer in search of multi-unit spiking activity and 968 
sharp-wave/ripple events (van de Ven et al., 2016). Tetrodes were not moved for at least 1.5 969 
h before recordings started. For each recording day, the animal was exposed to various open-970 
field enclosures including the familiar, which the animal had repeatedly been exposed to 971 
before, and a novel enclosure the animal had never seen before. The open-field enclosures 972 
differed in shape and in the cue-cards that lined some of the walls. The present study includes 973 
a total of six LFP recordings from three mice (including three familiar enclosure and three 974 
novel enclosure sessions). At the end of each recording day, tetrodes were raised to the 975 
stratum oriens to avoid damaging the pyramidal layer overnight. 976 
 977 
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Multichannel data acquisition and position tracking 978 
The extracellular signals from the electrodes were buffered on the head of the animal (unity 979 
gain op-amps, Axona Ltd) and transmitted over a single strand of litz wire to a dual stage 980 
amplifier and band pass filter (gain 1000, pass band 0.1 Hz to 5 kHz; Sensorium Inc., 981 
Charlotte, VT), or (in other setups) the electrode signals were amplified, multiplexed, and 982 
digitized using a single integrated circuit located on the head of the animal (RHD2164, Intan 983 
Technologies, Los Angeles; pass band 0.09 Hz to 7.60 kHz). The amplified and filtered 984 
electrophysiological signals were digitized at 20 kHz and saved to disk along with the 985 
synchronization signals from the position tracking. LFPs were further down sampled to 1250 986 
Hz for all subsequent analyses. In order to track the location of the animal three LED clusters 987 
were attached to the electrode casing and captured at 39 frames per second by an overhead 988 
color camera.  989 
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8.2: Mask sift parameter robustness 990 
 991 
We ran a supplemental analysis to ensure that our LFP phase-aligned instantaneous 992 
frequency results were robust to moderate changes in the masking parameters. 5 minutes of 993 
data from a single data recording were repeatedly sifted with jittered masked frequencies. 25 994 
sifts were computed for each of three mask frequency jitter values of 10%, 20% and 30%. 995 
For example, in the 10% condition each iteration each mask frequency was randomised to a 996 
value drawn from a uniform distribution between 90% and 110% of the original frequency. 997 
The results showed that jitter of 10% has a small effect on the phase-aligned instantaneous 998 
frequency values, though the centre frequency and shape profile remain consistent across all 999 
iterations. Jitters of 20% and 30% have larger effects on both centre frequency and shape on 1000 
individual iterations, suggesting that some mask frequency combinations are having a large 1001 
impact on the results. Despite this, the average across all iterations remains strikingly similar. 1002 
These results indicate that the main waveform results are robust to moderate changes to the 1003 
masking parameters. 1004 
 1005 
 1006 

 1007 
Figure S1 – Phase-aligned instantaneous frequency values across a range of jittered 1008 
mask frequencies. 1009 
A: Instantaneous frequency for mask frequencies used in main analysis 1010 
B: Instantaneous frequency for mask frequencies jittered by +/- 10%. Individual iterations are 1011 
shown in grey and the average in black. 1012 
C: As B for jitter of +/- 20% 1013 
D: As B for jitter of +/- 30%  1014 
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8.3: PCA component selection and reproducibility 1015 
 1016 
The principal components analysis results were validated by computing the split half 1017 
reproducibility of the PC components across 500 splits. The correlation of component shapes 1018 
between the separate halves and the proportion of variance explained was computed for each 1019 
split. The distribution of explained variance for each mode was highly reproducible across 1020 
the 500 splits and the first four components explained more than 5% of overall variance 1021 
(Figure S2A). The PC component shapes were also highly reliable for the first four 1022 
components. The average correlation between components for the two halves of each split 1023 
was over r=0.95 for the first 5 PCs. Based on these comparisons we carried the first four 1024 
components forward for further analyses. 1025 
 1026 

 1027 
Figure S2 – the variance explained and split-half correlation distributions across 500 1028 
split half iterations. 1029 
A: the variance explained by each component for each half over the 500 splits. The first half 1030 
is in red and the second half in blue. 1031 
B: The correlation in the component shape between the first and second half of the 500 splits. 1032 
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