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Abbreviations 15 

ARI: anthocyanin reflectance index 16 

CNN: convolutional neural network 17 

GBLUP: genomic best linear unbiased predictor 18 

GEBVs: genomic estimated breeding values 19 

GNDVI: green normalized difference vegetation index 20 

GS: genomic selection 21 

MLP: multilayer perceptron 22 

MT: multi-trait 23 

NCPI: normalized chlorophyll pigment ratio index 24 

NDVI: normalized difference vegetation index 25 

NWI: normalized water index 26 

PRI: photochemical reflectance index 27 

RF: random forest 28 

SVM: support vector machine 29 

UT: uni-trait 30 
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Abstract 32 

Prediction of breeding values and phenotypes is central to plant breeding and has been 33 

revolutionized by the adoption of genomic selection (GS). Use of machine and deep learning 34 

algorithms applied to complex traits in plants can improve prediction accuracies in the context of 35 

GS. Spectral reflectance indices further provide information about various physiological 36 

parameters previously undetectable in plants. This research explores the potential of multi-trait 37 

(MT) machine and deep learning models for predicting grain yield and grain protein content in 38 

wheat using spectral information in GS models. This study compares the performance of four 39 

machine and deep learning -based uni-trait (UT) and MT models with traditional GBLUP and 40 

Bayesian models. The dataset consisted of 650 recombinant inbred lines from a spring wheat 41 

breeding program, grown for three years (2014-2016), and spectral data were collected at 42 

heading and grain filling stages. MT-GS models performed 0-28.5% and -0.04-15% superior to 43 

the UT-GS models for predicting grain yield and grain protein content. Random forest and 44 

multilayer perceptron were the best performing machine and deep learning models to predict 45 

both traits. These two models performed similarly under UT and MT-GS models. Four explored 46 

Bayesian models gave similar accuracies, which were less than machine and deep learning-based 47 

models, and required increased computational time. Green normalized difference vegetation 48 

index best predicted grain protein content in seven out of the nine MT-GS models. Overall, this 49 

study concluded that machine and deep learning-based MT-GS models increased prediction 50 

accuracy and should be employed in large-scale breeding programs. 51 

 52 

Core Ideas 53 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 14, 2021. ; https://doi.org/10.1101/2021.04.12.439532doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.12.439532
http://creativecommons.org/licenses/by/4.0/


1. Potential for combining high throughput phenotyping, machine and deep learning in 54 

breeding. 55 

2. Multi-trait models exploit information from secondary correlated traits efficiently. 56 

3. Spectral information improves genomic selection models. 57 

4. Deep learning can aid plant breeders owing to increased data generated in breeding 58 

programs 59 

 60 

Introduction 61 

Quantitative genetics theory was proposed by Sir Ronald Fisher a century ago and established 62 

the infinitesimal model (Fisher, 1918). This theory was developed without the direct use of 63 

genotypic data and persisted for decades. With the advent of sufficient genome-wide markers 64 

paired with an infinitesimal model of quantitative genetics theory, Meuwissen et al. (2001) were 65 

the first to propose the term genomic selection (GS) for predicting breeding values in animals 66 

and plants. GS uses estimates of marker effects based on model development from a related 67 

population genotyped and phenotyped for the trait of interest. The genome-wide marker effects 68 

are then used for predicting the genomic estimated breeding values (GEBVs) of  a new 69 

population, which is only genotyped (Heffner et al., 2010). GS has been extensively researched 70 

in plant breeding, focusing on optimizing marker density, training population size, family 71 

relatedness, heritability of the trait, and GS model utilized (Shengqiang et al., 2009). Most of the 72 

GS models evaluated in plant breeding have been uni-trait (UT), where single traits are predicted 73 

(Lozada & Carter, 2019; Sun et al., 2019). Recently, breeders have moved to adopt multi-trait 74 

(MT) GS models because predictions are required for multiple traits simultaneously and their 75 

combination may improve prediction accuracies (Jia & Jannink, 2012).  76 
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MT-GS models leverage shared genetic information between correlated traits (Jia & 77 

Jannink, 2012) to predict various traits simultaneously by utilizing the same set of predictors, 78 

assuming the presence of some structure in the captured output (Bhatta et al., 2020). Improved 79 

prediction accuracy of MT-GS models over UT-GS is attributed to the correlation among the 80 

training population and between the traits. Furthermore, MT-GS models are more interpretable 81 

and require less computational time than a series of UT-GS models (Montesinos-López et al., 82 

2018a). MT models are intensively employed in other fields such as data mining, forest 83 

management, energy forecasting, and ecological modelling (Voyant et al., 2017). Jia & Jannink 84 

(2012) showed that prediction accuracy improved for primary traits with low heritability in 85 

barley (Hordeum vulgare L.) when a secondary correlated trait is used in MT-GS models. Sun et 86 

al. (2019) demonstrated the increase in GS prediction accuracy for wheat (Triticum aestivum L.) 87 

grain yield when secondary traits such as normalized difference vegetation index (NDVI) and 88 

canopy temperature were included in MT-GS models. Bhatta et al. (2020) compared UT- and 89 

MT-GS models for predicting end-use quality traits in barley and concluded that MT-GS models 90 

have better performance under both within and across environment predictions. Mixed model 91 

approaches utilizing Bayesian and genomic best linear unbiased predictor (GBLUP)  are most 92 

commonly used in plant breeding programs (Endelman, 2011; Pérez & Campos, 2014).  93 

GBLUP is a frequently used MT-GS models in plant breeding, which uses marker-based 94 

relationship matrix for predicting the performances of genotypes (Endelman, 2011; VanRaden, 95 

2008). Several Bayesian MT-GS models (Bayes A, Bayes Lasso, Bayes B, and Bayes Cpi) are 96 

also available, which assume a prior distribution during the training process, and hence separate 97 

models are required to optimize different traits (Pérez & Campos, 2014). Bayes Lasso follows 98 

the double exponential prior distribution for performing the continuous shrinkage and variable 99 
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selection (Tishbirani, 1996). Additionally, Bayes Lasso applies a long tail student t distribution 100 

to the marker effects. Bayes A, Bayes B, and Bayes Cpi  use the scaled-t, gaussian mixture (point 101 

mass at zero with gaussian distribution), and scaled-t mixture (point mass at zero with scaled-t 102 

distribution) prior distribution, respectively, during the model training (Pérez & Campos, 2014). 103 

These models assume that all markers do not contribute to the total genetic variance. Bayesian 104 

models are also computationally intensive due to Monte Carlo Markov Chain utilization for 105 

estimating the marker effects. Bayesian models are known as parametric due to the assumption 106 

of the prior relationship among features and predictors, which do not model gene by gene and 107 

higher-order interactions during the estimation of marker effects (Gianola et al., 2006; 108 

Montesinos-López et al., 2019). Hence, recently developed machine and deep learning tools 109 

provide an opportunity for the selection of the GS model. 110 

The increasing adoption of high throughput genotyping and phenotyping tools by plant 111 

breeders has increased data generation tremendously, which requires the adoption of analytical 112 

methods used in other disciplines for complex datasets. Machine and deep learning models have 113 

been explored in previous studies for prediction in UT-GS models and have demonstrated mixed 114 

results (Bellot et al., 2018; Ma et al., 2017). Random forest (RF) and support vector machine 115 

(SVM) are commonly used ensemble machine learning models for the GS context. RF is an 116 

ensemble machine learning tool used for predicting the output by averaging the results of an 117 

extensive collection of identically distributed decision trees applied to bootstrapped samples of 118 

the training data. RF is better than the other tree-based methods like decision tree regression and 119 

bagging, as it tries to reduce the correlation between the subsets of tree by averaging results from 120 

those trees for final predictions. The reduction of correlation among the independent trees and 121 

averaging performance of the trees aids in reducing overfitting and increasing the prediction 122 
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accuracy. The important hyperparameters for RF model training include the number of trees, the 123 

number of features sampled for each iteration, the importance of each feature, and the depth of 124 

the trees (Hastie et al., 2009). SVM provides flexibility for fitting the model as it fits the best 125 

regression line by allowing a specific acceptable error in the model. Optimization of SVM 126 

models requires finding a regression line that deviates from the real line by no greater than a 127 

value called maximum error (�), and at the same time the line should be flat as possible (Smola 128 

& Scholkopf, 2004). 129 

Deep learning is the branch of machine learning that uses an artificial neural network as a 130 

prediction tool, and needs to be explored in GS owing to the plethora of data accumulated in 131 

breeding programs (Lecun et al., 2015; Samuel, 2001). Deep learning models explore the 132 

relationship between input and output variables using a combination of neurons and hidden 133 

layers to form a network similar to the biological network of neurons in the human brain. Deep 134 

learning models use different non-linear activation functions with a large number of layers, and 135 

data is transformed along with each layer to obtain the best fit for different genetic architectures 136 

(Angermueller et al., 2016). Often used deep learning models in plant breeding are multilayer 137 

perceptron (MLP) and convolutional neural network (CNN) (Pérez-Enciso & Zingaretti, 2019). 138 

Optimization of hyperparameters is required to achieve the best deep learning model 139 

performance, which is the most computationally intensive step (McKay, 1992). The most 140 

essential hyperparameters include the type of activation function, activation rate, regularization 141 

parameter, number of epochs, number of hidden layers, dropout, and stopping criteria (Pérez-142 

Enciso & Zingaretti, 2019). Hyperparameters can be selected by using one of the four methods, 143 

namely grid search, latin hypercube sampling, random search, and optimization (McKay, 1992).  144 
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MLP is considered a feed-forward neural network, and consists of three input, hidden, 145 

and output layers. The first layer is the input layer, which receives the DNA marker information. 146 

Each neuron of the hidden layers has its characteristic weight and transforms the previous layer’s 147 

data using various linear and non-linear activation functions (Lecun et al., 2015). The weight 148 

parameters and other hyperparameters are optimized using the training data using either 149 

backpropagation or stochastic gradient (Cho & Hegde, 2019). The number of the output layer is 150 

equal to the total number of response variables, depending upon the tested model. The output of 151 

a layer also depends upon the weighted average transformation of neurons from the previous 152 

layer with associated bias. CNN is a special type of neural network used for input features 153 

having a specific pattern, such as linkage disequilibrium among markers distributed along a 154 

linear chromosome. The hidden layer in MLP is replaced with multiple layers in CNN, such as 155 

convolutional, pooling, fully connected, and dense layers (Lecun et al., 2015). As opposed to 156 

neurons, CNN uses the kernels or filters in convolution layers for capturing the hidden 157 

information. A filter consists of predefined marker interval windows having the same weights. 158 

This filter is moved continuously across the input data for obtaining the weight for each window 159 

for computing the locally weighted sum. The pooling layer follows the first convolutional layer 160 

and is used for dimensionality reduction (Pérez-Enciso & Zingaretti, 2019). This layer merges 161 

the output of filters from the convolutional layer using either mean, minimum, or maximum to 162 

smoothen the results. Dropout and activation functions are employed after the convolutional and 163 

pooling layer (Pook et al., 2020).  164 

High-throughput phenotyping applications include spectral reflectance values obtained 165 

from plants to provide information about various physiological processes and have been used in 166 

wheat (Babar et al., 2006), rice (Oryza sativa L.; Zheng et al., 2018) maize (Zea mays L.; Aguate 167 
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et al., 2017), barley (Barmeier et al., 2017), and sorghum (Sorghum bicolor L.; Habyarimana et 168 

al., 2020). Different vegetation indices or spectral reflectance indices (SRI) can be extracted by 169 

measuring reflection from plants. These SRI aid in the indirect selection of primary traits (grain 170 

yield or grain protein content) in wheat due to their moderate to high genetic correlation and high 171 

heritability compared to primary traits (Crain et al., 2018). Commonly utilized indices are NDVI, 172 

photochemical reflectance index (PRI), normalized water index (NWI), and green-NDVI 173 

(GNDVI), which provide information about plant biomass, photochemical pigments, plant water 174 

stress, and nitrogen status (Gitelson et al., 1996; Peñuelas et al., 1994). These indices have been 175 

used in covariate and MT-GS models to predict grain yield in wheat and demonstrate 176 

improvement in prediction accuracy (Lozada & Carter, 2019; Sun et al., 2019). To the best of our 177 

knowledge, deep learning models have not been explored for MT-GS in wheat for predicting 178 

grain yield and grain protein content using spectral information as secondary traits. 179 

SRI derived from wheat has been reported to correlate to grain yield, biomass, and 180 

drought tolerance in spring wheat (Gizaw et al., 2018). Grain yield and grain protein content are 181 

important selection traits in spring wheat breeding programs and are complicated by the negative 182 

correlation between them. However, GS and SRI provide an alternative for selecting these two 183 

traits simultaneously. Our previous study observed that inclusion of secondary correlated traits 184 

results in improved prediction accuracy for grain yield and grain protein content by using the 185 

rrBLUP GS model. Grain protein content and grain yield were accurately predicted when 186 

spectral data was collected at heading and grain filling stages, respectively (Sandhu et al., 187 

2021b). Similarly, we observed that deep learning based GS models improve prediction accuracy 188 

by 3-5% in different agronomic traits in wheat (Sandhu et al., 2021a). The main objectives of 189 

this study were to 1) Optimize different MT machine and deep models for predicting grain yield 190 
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and grain protein content in wheat, 2) Compare the performance of MT-GS and UT-GS models, 191 

and 3) Compare the performances of MT-GS mixed models with machine and deep models 192 

under cross-validation and independent validation scenarios.  193 

 194 

Materials and Methods 195 

Field data and plant material: The data set used in this study consisted of 650 recombinant 196 

inbred lines from a nested association mapping population of spring wheat (Blake et al., 2019). 197 

The field trial was planted for three years (2014-2016) at Spillman Agronomy Farm, Pullman, 198 

WA. For detailed information about the population, field trials, and traits evaluated see  Sandhu 199 

et al. (2021a,b). In brief, field trials were planted in a modified augmented design with 15-20% 200 

of the plots assigned to three replicated check cultivars. Grain protein content (%) and grain yield 201 

(t/ha) was collected using a Perten DA 700 NIR analyzer (Perkin Elmer, Sweden) and 202 

Wintersteiger Nursery Master combine (Ried im Innkreis, Austria).  203 

Spectral reflectance at 16 different bands between the 430 and 980 nm wavelengths was 204 

collected with a handheld CROPSCAN multi-spectral radiometer at heading (Feekes growth 205 

stages 10.1) and grain filling stages (Feekes growth stages 11.1) (Large, 1954). Data from the 206 

CROPSCAN was processed with CROPSCAN MSR software, and six different SRI were 207 

derived. These indices were NDVI, PRI, NWI, anthocyanin reflectance index (ARI), normalized 208 

chlorophyll pigment ratio index (NCPI), and GNDVI (Peñuelas et al., 1994; Prasad et al., 2007; 209 

Rouse et al., 1972). Detailed information about these SRI and the physiological traits they 210 

explain is provided in Supplementary Table 1.  211 

 212 
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Genotyping: The population was genotyped using genotyping by sequencing and Illumina 90K 213 

SNP chip array (Poland & Rife, 2012). Initial genotyping data consisted of 73,345 high-quality 214 

polymorphic markers anchored to the Chinese Spring RefSeqv1 reference map (Jordan et al., 215 

2018). Detailed procedure about genotyping, SNP calling, map construction, and filtration is 216 

described in previous publications (Sandhu et al., 2021a). Quality filtering involved removing 217 

monomorphic markers and markers missing more than 20% of the genotyping data. RILs 218 

missing phenotyping data in one environment and 10% genotyping data were discarded. Finally, 219 

a minor allele of < 0.05 was used, resulting in 635 RILs having 40,038 polymorphic markers.  220 

 221 

Statistical analysis: Adjusted means for grain yield, grain protein content, and SRI were 222 

obtained using residuals derived separately for each environment using the ‘lme4’ function 223 

implemented in the R program using the model: 224 

Yij = Blocki + Checkj + residualsij 225 

Where Yij is the phenotypic values of the trait, Checkj is the fixed effect of jth replicated check 226 

cultivars, and Blocki is the fixed effect of the ith block. Residuals were used for obtaining the 227 

adjusted means for all the evaluated phenotypic traits (Bates et al., 2015).  228 

Broad sense heritability was extracted using augmented randomized complete block design 229 

implemented in R (Aravind et al., 2020) with the model: 230 

Yij = µ+ Blocki + Checkj + Genj(i) + eij 231 

 232 
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Where Yij, Blocki, and Checkj are defined above, Genj(i) is the random effect of the unreplicated 233 

genotype nested within the ith block and follows the distribution Genj ~ N(0, σ2
g), and eij is the 234 

standard normal error distributed as eij ~ N(0, σ2
e).  235 

 236 

Genetic correlation between primary traits (grain yield or grain protein content) and secondary 237 

traits (individual SRI) are calculated using multivariate models, represented as 238 

������ � ��� 0
0 ��

	 �
�
�	 � ��� 0
0 ��	 ���

� � ������ 

Where yA and yB are the BLUPs for the primary (A) and secondary (B) traits, X and Z denote the 239 

design matrix for the fixed and random effect, and b is the fixed effects, g is the random genetic 240 

effects, and e is the residuals for each trait. Variance components were calculated assuming ���
�  241 

~ N(0, H ⨂ G), where G is the genomic relationship matrix, H is the genetic variance-covariance 242 

matrix, and ������ ~ N(0, I ⨂ R), where R is the residual variance-covariance matrix, and I is the 243 

identity matrix. The genetic correlation was obtained as  244 

�� � �����, ��
������� � ������ 

Where Var(A), and Var(B) represents the genetic variance of the primary and secondary traits 245 

individually and cov(A, B) is the covariance between primary and secondary traits. The complete 246 

multivariate analysis was performed using a multivariate approach in JMP genomics (SAS 247 

Insitute Inc. 2011).  248 

 249 

Genomic prediction models: 250 

Genomic best linear unbiased predictor (GBLUP): The UT-GS GBLUP is defined as 251 
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� � μ � � � � 

where y is the phenotype of interest (grain yield or grain protein content), μ is the overall mean, 252 

Z is the design matrix linking genotypes to the breeding values, g is the vector of genomic 253 

breeding values, and e is the random residuals. It is assumed that g ~ N(0, Gσ
2
g), where G is 254 

genomic relationship matrix, σ2
g is the additive genetic variation, and e ~ N(0, Iσ2

e) with σ2
e as 255 

residual variance and I is the identity matrix. The MT-GS is represented as  256 

������ � ��� 0
0 ��

	 �
�
�	 � ��� 0
0 ��	 ���

� � ������ 

Where yA and yB represent the primary and secondary traits, X and Z are the design matrix 257 

associating the fixed and random effects, b is the vector of means for primary and secondary 258 

traits, g and e are the vector for random genetic and residual effects. It is assumed as ���
�  ~ N(0, 259 

H ⨂ G), where G is the genomic relationship matrix, H is the variance-covariance matrix for the 260 

two traits, and ������ ~ N(0, I ⨂ R), R is the residual variance-covariance matrix between two 261 

traits (Endelman, 2011; VanRaden, 2008). In all the MT-GS models, individual SRI were 262 

included as secondary correlated traits.  263 

 264 

Bayesian models: As GBLUP uses the relationship matrix for estimating genotypes effects, in 265 

this study we also explored the Bayes Lasso, Bayes A, Bayes B, and Bayes Cpi in UT- and MT-266 

GS models, which consider different prior distributions. The UT-GS model is represented as 267 

�� � μ � � �����
��	

��


� ��  

where ��  is the phenotype of interest (grain yield or grain protein content), μ is the overall mean, 268 

�� is the jth marker effect, ���  is the value of the jth SNP in the ith individual, and ��  is residual 269 
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error. The conditional prior distribution was separate for each of the Bayesian models employed 270 

in this study. For Bayes A, the prior distribution is ��  ~ N(0, σ2) with σ2 ~ χ-2 (σ2|df, S) for 271 

residuals, and �� ~ χ-2 (dfβ , Sβ) for genotypic values. Initial values for the degrees of freedom for 272 

the t distribution was set to four and S was calculated as S = var(y) * 0.4 as suggested by Pérez & 273 

Campos (2014). Analysis was performed using BGLR and MTM packages (Campos & 274 

Grüneberg, 2016) with 20,000 Monte Carlo Markov Chain iterations, and 5,000 burn in 275 

iterations.  276 

 277 

The MTM package was used for fitting MT Bayesian models estimating unstructured variance-278 

covariance between traits. The model is represented as 279 

� � μ � �! � � 

Where y is the vector of primary and secondary phenotypic traits, μ is the mean vector for all 280 

traits, ! is the predicted genotypic values for all traits with distribution as ! ~ N(0, H ⨂ G), 281 

where G is relationship matrix, H is the variance-covariance matrix, and � is vector of residuals 282 

and distributed as � ~ N(0, I ⨂ R), where I is the identity matrix and R is the variance-covariance 283 

matrix for the residuals (Montesinos-López et al., 2016).  284 

 285 

Random forests (RF): In RF bootstrap sampling, a subset of features was selected randomly as 286 

predictors for splitting the tree nodes. Each tree is chosen for lowering the loss function in the 287 

final prediction (Smith et al., 2013). The RF model can be represented as  288 

�"� � 1
� � $�����

�

��
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Where �"� is the predicted value of the individual with genotype �� , B is the number of bootstrap 289 

samples, and T is the total number of trees. RF is computationally less intensive, as each tree is 290 

independent of each other and can be computed on different units or nodes (Waldmann, 2016). 291 

The working of the RF can be grouped into four main steps: 292 

1. Bootstrap sampling is used to select the individual plant i (�� , ��) with replacement. The 293 

sampled individual can appear several times or not, mainly bootstrap sampled b = (1, …, 294 

B).  295 

2. Selection is performed for the number of features (max features) or input variables at 296 

random (SNPj, j = (1, …, J), and the best set of features are selected that minimize the 297 

loss function obtained as MSE.  298 

3. Splitting is performed at each node into two new subsets (child nodes) for the genotype 299 

of SNPj.  300 

4. Steps 2 and 3 are repeated for each node until a minimum node or the specified max 301 

depth is reached. The final predicted value of an individual of genotype ��  is the average 302 

of the values predicted by the decision trees in the forest.  303 

The important hyperparameters for RF model training include the number of trees, the 304 

number of features sampled for each iteration, the importance of each feature, and the depth of 305 

the trees (Hastie et al., 2009). We used randomized and grid search cross-validation for selecting 306 

the best hyperparameter’s combination. The combination used for grid search cross-validation 307 

after the randomized search was the number of trees (200, 300, 500, 1000), max features (auto, 308 

sqrt), and max depth (40, 60, 80, 100). The random forest regressor and Scikit learn libraries 309 

were used for analysis in Python 3.7 (Gulli and Pal, 2017). 310 

 311 
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Support vector machine (SVM): SVM uses kernel functions for mapping the input space into a 312 

high dimensional feature space using the relationship between phenotypes and marker genotype 313 

(Smola & Scholkopf, 2004). The relationship between the phenotype and genotype is given as  314 

%��� � &� � 
 

Where w is the unknown weight and b is the constant, reflecting the maximum allowed bias. The 315 

learning of function %��� is performed by minimizing the loss function 316 

' � (����
�

��


� 1
2 *&* 

Where ��  = y - %��� is the associated error with the ith training data point, *&* represents model 317 

complexity, C is a positive regularization parameter controlling the tradeoff between training 318 

error and model complexity, and ( is the loss function (Vapnik, 2013). Herein, we selected the �  319 

insensitive loss function for L and is represented as  320 

(���� � + 0 ,%|�| . �
|�| / � �01��&,2�3 

L (loss function) is zero if the absolute error is less than predefined �, while if absolute error is 321 

greater than �, L is the difference between absolute error and �. Usually, � insensitive loss 322 

function is represented in term of slack variables �44��. The resulting optimization equation can 323 

be represented as  324 

                                                           min w, b, ξ, ξ (' ∑ (�44���
��
 � 



*&*) 325 

The solution to this minimization problem is of the form 326 
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Where ���� is the inner product of linear function. It was replaced with a non-linear kernel 327 

function, namely the gaussian radial basis function. The parameters C, ξ, and kernel are 328 

optimized using cross-validation in the Scikit library (Pedregosa et al., 2011). 329 

 330 

Multilayer perceptron (MLP): MLP is a feed-forward neural network consisting of three main 331 

layers, namely input, hidden, and output layers. A detailed representation of the MLP used is 332 

represented in Figure 1A, where the output of a layer depends upon the weighted average 333 

transformation of neurons from the previous layer with associated bias. The output of a hidden 334 

layer is represented as 335 

Zi = b(i-1) + Wi %(i-1) (x) 336 

Where Zi is the output from the ith hidden layer, Wi is the weight associated with the neurons, %(i-337 

1) represents the activation function linking the associated weights and bias from the previous 338 

layer, and this process is repeated until the output layer. In the case of UT-GS models, the output 339 

layer is a vector of GEBVs, and in MT-GS, it contains two vectors having GEBVs and spectral 340 

information.  341 

 Hyperparameters were optimized for the MLP models using inner grid search cross-342 

validation and the Keras function’s internal capabilities. The grid search cross-validation used 343 

80% of the training data, where 80% of this dataset is used for optimizing the hyperparameters 344 

and the remaining 20% for validation using Keras independent split validation functions (Cho & 345 

Hegde, 2019). The hyperparameters that provided the least MSE on the validation set were 346 

selected, and later used on the testing set. Detailed information about the hyperparameter 347 

optimization is referred to in a previous publication (Sandhu et al., 2021a). All the MLP 348 
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algorithms were implemented in Python 3.7 using Keras and Scikit learn libraries (Gulli and Pal, 349 

2017).  350 

 351 

Convolutional neural network (CNN): CNN is a special case of neural network used for input 352 

features having a specific pattern. The complete layout for CNN is provided in Figure 1B. Initial 353 

values for the hyperparameters were based on previous findings on UT-GS models (Sandhu et 354 

al., 2021a). The CNN model used here consists of one input layer, two convolutional layers, two 355 

pooling layers, a dense layer, a flatten layer, two dropouts, and an output layer. Grid search 356 

cross-validation was used for selecting hyperparameters, namely, filters (16, 32, 64, 128), 357 

learning rate (0.01, 0.05, 0.1), activation function (logistic, linear, tanh, relu), batch size (64, 358 

128), epochs (150, 200), and solver (adam, sgd, lbfgs). These hyperparameters were selected 359 

based on previous findings and other studies (Waldmann et al., 2020). Early stopping, dropout, 360 

and regularization techniques were applied to control model overfitting. Early stopping involves 361 

stopping the training process as validation error reaches a minimum, using Keras-provided API 362 

(Callbacks) (Pedregosa et al., 2011). Dropout involves assigning a fixed set of training neurons 363 

with a weight to zero for controlling the overfitting and reducing complexity. We used a dropout 364 

rate of 0.2 during hyperparameter optimization in MLP and CNN based on Srivastava et al. 365 

(2014). 366 

 367 

Cross-validation and independent prediction: The performances of all nine UT- and MT-GS 368 

models were evaluated using five-fold cross-validation. During five-fold cross-validation, 80% 369 

of the data was used for model training, and the remaining 20% for model testing within each 370 

environment. Two hundred replications were used to assess the model’s performance, and the 371 
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mean was reported as prediction accuracy. Each replication consisted of five model iterations, 372 

where the testing set was rotated for each iteration. Prediction accuracy was obtained as the 373 

Pearson correlation coefficient between actual (observed) phenotypic value and the calculated 374 

GEBVs. Instant accuracy was reported, which involves the average correlation coefficient of 375 

iterations. Comparisons were made between UT- and MT-GS models where a single SRI was 376 

included in the MT-GS model. Similarly, machine and deep learning-based MT-GS models were 377 

compared with their Bayesian and GBLUP counterparts. MT-GS models used six SRI 378 

individually in the model, and the best performing SRI was identified for each trait with different 379 

models. 380 

Independent predictions were performed by training models on previous year(s) data and 381 

predicting the phenotype in future years. We tested the performance of both UT- and MT-GS 382 

with the inclusion of spectral information. In brief, the GS model trained on 2014 and 2015 data 383 

was used to predict the 2016 and similarly the model trained on 2014 data to predict the 2015 384 

environment. The GS analysis was computationally intensive, and this problem was resolved by 385 

working on Washington State Universities high speed computing cluster (https://hpc.wsu.edu/).  386 

 387 

Results 388 

Phenotypic summary and heritability: Average phenotypic values and heritabilities are 389 

provided for grain yield and grain protein content under three environments (Table 1). Grain 390 

yield and grain protein content had low and moderate heritability. The six SRI used in this study 391 

had moderate to high heritability (Table 2), and 2015 had the lowest heritability for phenotypic 392 

and spectral traits (Table 1 and 2). Phenotypic and genetic correlation between phenotypic traits 393 

and SRI was obtained at both heading and grain filling stages (Table 3, Supplementary Table 2 394 
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and 3). Grain protein content and grain yield had a high and significant correlation with SRI 395 

collected at heading and grain filling stage (Table 3 and Supplementary Table 2).  396 

 397 

Genomic selection using uni- and multi-trait models: We evaluated nine different models 398 

(GBLUP, Bayes A, Bayes B, Bayes Cpi, Bayes Lasso, RF, SVM, MLP, and CNN) for predicting 399 

grain protein content and grain yield using five-fold cross-validation (Figure 2 and 3). A single 400 

SRI was included in each model for predicting both traits under MT-GS models and their 401 

average results are depicted for comparison with UT-GS models (Figure 2 and 3). In the case of 402 

grain yield, MT-GS models either gave an equal or higher prediction accuracy than UT-GS 403 

models (Supplementary Table 4). Furthermore, machine and deep learning models performed 404 

better than the traditional GBLUP and Bayesian models under UT and MT models. The 405 

improvement in prediction accuracy with MT-GS models for grain yield varied from 0 to 28.5%, 406 

with maximum improvement observed in the 2014 environment, and the lowest increase was 407 

observed for the 2015 environment (Figure 2). RF and MLP performed best for predicting grain 408 

yield under all the environments, closely followed by GBLUP (Supplementary Table 4 and 409 

Figure 2). Both models performed superior for UT- and MT-GS models compared to other 410 

machine and deep learning models. Four bayesian models, namely, Bayes A, Bayes B, Bayes 411 

Cpi, and Bayes Lasso, produced almost the same prediction accuracy for grain yield under the 412 

UT- and MT-GS models (Supplementary Table 4 and Figure 2). SVM resulted in the lowest 413 

prediction accuracy for grain yield and CNN observed the lowest increase under the MT-GS 414 

models (Figure 2 and Supplementary Table 4). 415 

Similarly, MT-GS models increased prediction accuracy for grain protein content 416 

compared to UT-GS counterparts (Figure 3 and Supplementary Table 4). MLP and RF 417 
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performed superior to other models and gave similar accuracy under different scenarios (Figure 418 

3 and Supplementary Table 4). The performance of MT-GS models varied from -0.04 to 15% 419 

compared to the UT-GS models. Similar to grain yield, SVM performed poorest for UT- and 420 

MT-GS models to predict grain protein content. We observed similar trends in improvement in 421 

prediction accuracy with MT-GS models for all environments compared to grain yield, with 422 

2014 observing the largest increase (Figure 2 and 3). The maximum prediction accuracy for 423 

grain protein content was 0.62 in  2014 with RF, 0.56 in 2015 with MLP, and 0.61 in 2016 with 424 

RF MT-GS models (Figure 3). We observed that similar to grain yield, MT-GS model for CNN 425 

resulted in the lowest increase in prediction accuracy.  426 

 427 

Performances of multi-trait genomic selection models using individual SRI: We evaluated 428 

each SRI’s relationship with grain protein content and grain yield  across all nine MT-GS models 429 

assessed in this study (Figure 4 and 5). Inclusion of any SRI in the MT-GS model resulted in 430 

higher prediction accuracy than the UT-GS model for grain protein content and grain yield. 431 

Figure 4 shows the prediction accuracies for grain protein content for the three environments 432 

with six individual SRIs in the MT-GS models. GNDVI was the best performing index for seven 433 

out of the nine models in each environment (Figure 4). RF and MLP resulted in the greatest 434 

improvement in prediction accuracy by including GNDVI in the MT-GS model. SVM was the 435 

only model where GNDVI performed worse than other indices for most environments (Figure 436 

4). The maximum prediction accuracy for grain protein content in 2014, 2015, and 2016 was 437 

0.67, 0.61, and 0.68, respectively, with RF by inclusion of GNDVI in the MT-GS model.  438 

Similarly, the inclusion of individual SRI in the MT-GS models increased prediction accuracy 439 

compared to UT-GS models for grain yield (Figure 5). Unlike grain protein content, there was 440 
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no individual SRI that performed best across all environments and models. The maximum 441 

prediction accuracy for 2014 was 0.72 with inclusion of NWI, 2015 was 0.40 with inclusion of 442 

NDVI, and 2016 was 0.64, with inclusion of NDVI. Overall, we observed that NWI, NDVI, and 443 

GNDVI provide the necessary information for increasing prediction accuracy for grain yield 444 

(Figure 5).  445 

 446 

Independent predictions with uni- and multi-trait genomic selection models: Independent 447 

predictions involve prediction across environments where models were trained on previous year 448 

datasets, and predictions were made for upcoming years. We used four UT- and MT-GS models, 449 

namely, GBLUP, RF, MLP, and CNN, for the independent predictions as they performed 450 

consistently better with cross-validation for both traits and under all the environments. SVM was 451 

excluded because of its poor performance for both traits. All the Bayesian models performed 452 

similarly, but had less accuracy, so were excluded from independent predictions because of huge 453 

computational time limitations. The machine and deep learning models were approximately four 454 

times faster than the Bayesian models. Figure 6 shows the results for independent prediction for 455 

both traits using UT- and MT-GS models.  456 

There was an increase of 17% and 11% in prediction accuracies for grain yield and grain protein 457 

content with MT-GS over the UT-GS models (Supplementary Table 5). RF and MLP 458 

performed consistently better under UT- and MT-GS models to predict grain yield and grain 459 

protein content, closely followed by CNN. The highest average prediction for grain yield and 460 

grain protein content was 0.29 and 0.41 with MLP and RF, compared to 0.20 and 0.34 with the 461 

traditional UT GBLUP model (Supplementary Table 5). There was a varied increment in 462 
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prediction accuracies with different MT-GS models for grain yield and grain protein content, as 463 

depicted in Figure 6. 464 

 465 

Discussion: 466 

Grain yield and grain protein content are  highly important target traits in wheat breeding 467 

programs and for other cereal grains. The generally negative correlation between them, along 468 

with lower heritability, creates a problem in efficiently selecting both the traits simultaneously. 469 

GS and high throughput phenotyping have the potential for reducing the challenges associated 470 

with selection for these two traits. GS may increase selection efficiency, reduce the generation 471 

advancement time, and increase selection intensity (Heffner et al., 2010). Similarly, spectral 472 

information from phenomics data allows for indirect selection by using SRI as a proxy indicator. 473 

The increased use of machine and deep learning models in other disciplines has prompted its use 474 

in plant breeding. Several MT selection studies have conducted and demonstrated the potential 475 

for increasing prediction accuracy (Bhatta et al., 2020; Jia & Jannink, 2012). This study 476 

evaluated the potential of MT machine and deep learning models for predicting grain yield and 477 

grain protein content in wheat using spectral information as a secondary trait. The spectral 478 

information acts as a proxy indicator for selection, is correlated with the primary trait of interest, 479 

and has higher heritability. We observed that machine and deep learning models, namely RF and 480 

MLP, resulted in an increased prediction accuracy for both traits when spectral information was 481 

included in MT-GS models.  482 

 483 

Trait characterization and association 484 
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The greatest advantage of MT-GS models is borrowing the information from secondary traits to 485 

increase prediction accuracies for the primary trait (Calus & Veerkamp, 2011). Understanding 486 

the genetic architecture of each traits is the first consideration when developing MT models. The 487 

primary traits of interest in this study were grain yield and grain protein content, which were 488 

evaluated for three years and heritabilities were low to moderate (Table 1), suggesting a 489 

considerable influence of non-genetic effects. Lower heritability for grain yield and grain protein 490 

content was expected, as these traits are controlled by a large number of small effect QTLs and 491 

are genetically complex. Similar results were obtained in previous studies for grain yield and 492 

grain protein content (Sun et al., 2017). Secondary traits (SRI used in this study) have high 493 

heritability and correlate positively with the primary traits (Table 2). Furthermore, the collection 494 

of SRI is easy and could be performed using high-throughput techniques (Sankaran et al., 2015). 495 

This suggested that their inclusion in MT-GS models may improve prediction accuracy, increase 496 

selection intensity, and lead to faster breeding cycles (Crain et al., 2018).  497 

GNDVI was the best performing index for seven out of nine models evaluated in this 498 

study, and could be a useful proxy index for selecting grain protein content in breeding 499 

programs. Association of GNDVI with nitrogen status and translocation is related to the increase 500 

in prediction accuracies for grain protein content in the MT-GS models (Gitelson et al., 1996). 501 

The high correlation of primary traits with SRI indicates a direct connection between them. 502 

Grain protein content has a lower heritability value than GNDVI, and hence a lesser amount of 503 

variation is accounted by GS models for grain protein content under the UT-GS model. The 504 

higher accuracy observed in MT-GS models can be attributed to capturing more genetic 505 

variation, as GNDVI is genetically correlated with grain protein content. Grain protein content 506 

had the highest correlation with GNDVI, which measures reflection from the green region (550 507 
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nm) of the plant vegetation spectrum and provides information about the plant’s nitrogen status 508 

(Gitelson et al., 1996). Another advantage of using GNDVI is that it allows the prediction of 509 

grain protein content earlier in the selection pipeline, saving the time, cost, and effort to harvest 510 

and collect data from a large number of field plots. Using GNDVI also aids in improving MT-GS 511 

models, which can be used early in the selection pipeline to select improved lines for 512 

advancement in the breeding program. 513 

Grain yield is a complex trait resulting from a myriad of interactions, including nutrient 514 

status, water availability, biotic and abiotic stress. Three SRI, namely NWI, NDVI, and GNDVI, 515 

resulted in the highest prediction accuracy for grain yield under the MT-GS models. These 516 

indices each measure a part of NIR (900-970 nm), and this spectrum determines the water status 517 

and biomass of the plants, suggesting NIR is useful for predicting grain yield, especially in the 518 

Pacific Northwest US, where wheat is grown under dryland conditions. Identifying multiple SRI 519 

that increase prediction accuracy provided insight that model analysis should not rely on a single 520 

SRI in each year. Expression of several physiological processes in plants is dependent upon the 521 

plants genetic makeup, factors like light, temperature, humidity, day length, etc, and the growth 522 

stage when the plant experiences stress. Different SRI are able to capture these various genotype 523 

by environment interactions, along with environmental variation that may exist from year to 524 

year, which contribute to final grain yield estimations. The inclusion of multiple SRI in the 525 

model helps explain the unknown variance component ignored in UT-GS models. We were able 526 

to identify the three SRI that are more influential for predicting grain yield out of the six SRI 527 

explored. Using these three SRI will reduce computation time and cost for data management to 528 

make selections.  529 

 530 
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Potential of the machine and deep learning models in a breeding program 531 

This study aimed to explore machine and deep learning potential in wheat breeding 532 

programs using MT-GS models. Deep learning is a new machine learning branch using a dense 533 

network of neurons to explore the dataset’s complicated hidden relationship. We concluded that 534 

MT random forest and multilayer perceptron resulted in an improvement of 23-31% prediction 535 

accuracy for both traits under cross-validation and independent prediction compared to the 536 

GBLUP and Bayesian models. Similar results were obtained by Ma et al. (2018) for predicting 537 

grain yield, plant height, and grain length in wheat using UT-deep learning models and rrBLUP. 538 

Their study demonstrated potential for the utilization of deep learning models in plant breeding. 539 

Deep learning based GS models gave 0-5% higher prediction accuracies for various agronomic 540 

traits in wheat in our previous work (Sandhu et al., 2021a). Montesinos-López et al. (2018b) 541 

concluded that deep learning models were superior for six out of nine traits evaluated in maize 542 

and wheat over the traditional GBLUP. Additionally, Montesinos-López et al. (2018a) showed 543 

that MT deep learning models performed superior to the MT Bayesian models when genotype by 544 

environment interaction was not included for predicting grain yield in wheat. These results open 545 

up a new path for improved breeding selection, that could translate into higher rates of genetic 546 

gain.  547 

Machine and deep learning models, unlike Bayesian models, are highly flexible for 548 

mapping complex interactions present between predictors and responses, and thereby 549 

interpreting the trend of the current dataset (Liu et al., 2019). Bayesian models often include 550 

selection of a specific subset of markers which explain the most variation in the response, in 551 

contrast to machine and deep learning models, that explore the whole data space during model 552 

training (Pérez & Campos, 2014). As grain yield and grain protein content are polygenic, relying 553 
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on Bayesian models might not be a good strategy, as it is often unknown how many QTLs are 554 

present in a particular population and are expressing under the specific environment. Hence, 555 

machine and deep learning models are suitable for complex traits as they explore all possible 556 

relationships between markers and traits. Machine and deep learning models also account for 557 

interactions among predictors and remove redundant information using filters, nodes, or neurons 558 

(Crossa et al., 2019), and modelling of this interaction is especially important for MT models 559 

when primary and secondary traits are correlated . Our results confirm this, obtaining the highest 560 

prediction accuracy with a MT-MLP model, compared to a UT-MLP model. The neuron weight 561 

updates in the hidden layers leads to a combination of attributes for capturing the most suitable 562 

hierarchical representation. Similarly, random forest development uses independent tree 563 

branches, and the conclusion is based on the forest’s average with individual tree branches being 564 

uncorrelated, instead of any one individual branch (Waldmann, 2016). In this way, both random 565 

forest and MLP models are an improvement for mapping complex interactions and resulted in 566 

the highest prediction accuracy for both grain protein content and grain yield in this study.  567 

The computation time increased linearly with inclusion of more variables such as SRI in 568 

this study for MT GBLUP and Bayesian models; however, MT machine and deep learning 569 

models are well developed for parallelism in computation (Lecun et al., 2015). We observed that 570 

MT machine and deep learning models were four times faster than the MT Bayesian models, due 571 

to their capacity to parallelize the operations. With the continuous increase in secondary traits 572 

owing to utilization of high throughput phenotyping tools in the breeding program, breeders need 573 

to shift from traditional Bayesian models to more computationally efficient models, and machine 574 

and deep learning models provide a new avenue in this regard. Grain yield and grain protein 575 

content had different heritability in each environment, with 2015 being lowest. The MT machine 576 
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and deep learning models resulted in the maximum increase in prediction accuracy for both traits 577 

in the 2015 environment, showing that these models are also superior for lower heritability traits 578 

or environments, which is often seen in plants (González-Camacho et al., 2018).  579 

 580 

It is a misconception that machine and deep learning models should be used only on large 581 

datasets having thousands of individuals, which is difficult for traits like grain yield or grain 582 

protein content which are evaluated at mid to late stages in breeding programs (Angermueller et 583 

al., 2016). However, our results and other related work indicate that machine and deep learning 584 

models have similar or higher performance compared to traditional GBLUP and Bayesian 585 

models when using data from hundreds of individuals for model training (Zingaretti et al., 2020). 586 

Furthermore, a large dataset with 100k individuals was used for predictions with deep learning 587 

models in the GS context and did not observe any superiority over the traditional linear mixed 588 

models (Bellot et al., 2018). Zingaretti et al. (2020) and Montesinos-López et al. (2018a) 589 

demonstrated deep learning models have higher prediction accuracy than GBLUP and other 590 

mixed models when using 1233 strawberry and 250 wheat genotypes. These results, combined 591 

with ours, suggest that training population size plays a minor role compared to the genetic 592 

architecture of the trait and secondary traits utilized in the models. However, adequate training 593 

population sizes remain important in GS.  594 

The main issue with machine and deep learning models is the lack of biological 595 

significance as different hyperparameters in the models handle different data parts. These models 596 

might not be useful in providing genetic insight for the primary and secondary traits employed, 597 

and hence genome-wide association studies are an important complement. Furthermore, 598 

compared to GBLUP, machine and deep learning models were computationally intensive 599 
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because of the extra step of hyperparameter optimization. Hyperparameter optimization is 600 

required separately for each trait and could significantly discourage users when results are 601 

needed quickly in breeding programs for making selections (Cho & Hegde, 2019). Plant breeders 602 

are often interested in each predictor’s significance in the models, which is not possible in deep 603 

learning because of their black-box nature due to many hidden layers, neurons, and filters. 604 

Finally, machine and deep learning model implementation requires a sufficient background in 605 

computer science, mathematics, and machine learning, which will require additional efforts by 606 

plant breeders, or accomplished through efficient collaborations. Although there are some 607 

potential hindrances in implementing machine and deep learning models, their utilization can 608 

result in the improvement of prediction accuracy for complex traits of interest in breeding 609 

programs. Overall, this study presents the benefits to utilizing MT machine and deep learning 610 

models for predicting complex traits under selection while efficiently using spectral information.  611 

 612 

Conclusion: In this study, we evaluated the potential of MT machine and deep learning models 613 

for predicting grain yield and grain protein content using spectral information in a wheat 614 

breeding program. The model’s performances were compared with traditional UT and MT 615 

GBLUP and Bayesian models under cross-validation and independent predictions. Our results 616 

showed the vast potential for MT machine and deep learning models with spectral information as 617 

a proxy phenotype. Random forest and multilayer perceptron were the best performing models 618 

for both traits under all the evaluated scenarios, closely followed by convolutional neural 619 

network and GBLUP. Green normalized difference vegetation index was the best SRI for 620 

predicting grain protein content for most MT models under cross-validation and independent 621 

predictions. Furthermore, machine and deep learning models were competitive with Bayesian 622 
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models as they were less computationally intensive than Bayesian models. This and previous 623 

studies on deep learning for predicting complex traits shows enormous potential for the 624 

utilization of these models in plant breeding programs to enhance genetic gain for quantitative 625 

traits.  626 
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Table 1. Average phenotypic values and broad sense heritability of grain yield and grain protein content for the 
three environments (2014-2016). 
Environment Grain yield Grain protein content 
 Phenotype (t/ha) Heritability Phenotype (%) Heritability 
2014 2.0 0.38 14.4 0.57 
2015 1.7 0.24 12.2 0.35 
2016 2.4 0.40 12.6 0.63 

 856 

 857 

Table 2. Broad sense heritability of six different spectral reflectance indices obtained for each environment for 
utilization in multi-trait genomic selection models. 
Environment NDVIa PRIb NWIc ARId NCPIe GNDVIf 

2014 0.75 0.93 0.60 0.74 0.64 0.69 
2015 0.66 0.81 0.60 0.56 0.55 0.64 
2016 0.80 0.60 0.74 0.76 0.82 0.72 
a NDVI, Normalized difference vegetation index; b PRI, Photochemical reflectance index; c NWI, Normalized water index; d ARI, 
Anthocyanin reflectance index; e NCPI, Normalized chlorophyll pigment ratio index; f GNDVI, Green normalized difference vegetation index 
 858 

 859 

Table 3. Phenotypic correlation between six different spectral reflectance indices collected at grain filling stage 
with grain yield and grain protein content for the three environments (2014-2016). 
Trait Environment NDVIa PRIb NWIc ARId NCPIe GNDVIf 
Grain yield 2014 0.33*** 0.32*** 0.36*** -0.16*** -0.30*** 0.37*** 

2015 0.06 0.03 0.09* -0.09* -0.12* 0.04 
2016 0.20*** 0.15*** 0.19*** -0.23*** -0.18*** 0.20*** 

 
Grain protein 
content 

2014 0.26*** 0.10 0.27*** -0.12* -0.20*** 0.29*** 
2015 .08* 0.01 -0.03 0.27*** 0.02 0.18*** 
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2016 -0.19*** -0.10* -0.22*** 0.12* 0.13* -0.15*** 
a NDVI, Normalized difference vegetation index; b PRI, Photochemical reflectance index; c NWI, Normalized water index; d ARI, 
Anthocyanin reflectance index; e NCPI, Normalized chlorophyll pigment ratio index; f GNDVI, Green normalized difference vegetation 
index; *** significant at P < 0.0001; ** significant at P < 0.001; * significant at P < 0.05 
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 866 

 867 

 868 

Figure 1. Outline for multilayer perceptron model with one input, three hidden and an output 869 
layer. The connections between layers are represented with neurons (A). The representation of 870 
convolutional neural network employed in this study is provided with multiple layers (B). Figure 871 
1A was redrawn from code in http://www.texample.net/tikz/examples/neural-network. 872 

Figure 2. Prediction accuracies for grain yield with nine different uni- and multi-trait genomic 873 
selection models under the three different environments (2014-16) (A-C) using five-fold cross-874 
validation. The x-axis represents the nine genomic selection models with faceting separating the 875 
uni- and multi-trait models.  876 

Figure 3. Prediction accuracies for grain protein content with nine different uni- and multi-trait 877 
genomic selection model under the three different environments (2014-16) (A-C) using five-fold 878 
cross-validation. The x-axis represents the nine genomic selection models with faceting separates 879 
the uni- and multi-trait models. 880 

Figure 4. Prediction accuracies for grain protein content for the three environments (A-C) with 881 
inclusion of six different spectral reflectance indices in the nine multi-trait genomic selection 882 
models. The x-axis represents the individual spectral reflectance indices and multi-trait genomic 883 
selection models are separated with facets for comparing across model performances.  884 

Figure 5. Prediction accuracies for grain yield for the three environments (A-C) with inclusion 885 
of six different spectral reflectance indices in the nine multi-trait genomic selection models. The 886 
x-axis represents the individual spectral reflectance indices and multi-trait genomic selection 887 
models are separated with facets for comparing across model performances.  888 

Figure 6. Independent prediction accuracies for grain yield (A-C) and grain protein content (D-889 
F) using four different uni- and multi-trait genomic selection models. The first digit of the year 890 
represents the testing environment, and the second year represents the training environment. The 891 
x axis represents the different models and faceting separate the uni- and multi-trait models. 892 
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