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Abstract  

 

Aberrant methylation patterns in human DNA have great potential for the discovery of novel 

diagnostic and disease progression biomarkers. In this paper, we used machine learning 

algorithms to identify promising methylation sites for diagnosing cancerous tissue and to 

classify patients based on methylation values at these sites. 

We used genome-wide DNA methylation patterns from both cancerous and normal 

tissue samples, obtained from the Genomic Data Commons consortium and trialled our 

methods on three types of urological cancer. A decision tree was used to identify the 

methylation sites most useful for diagnosis. 

 The identified locations were then used to train a neural network to classify samples as 

either cancerous or non-cancerous. Using this two-step approach we found strong indicative 

biomarker panels for each of the three cancer types. 

These methods could likely be translated to other cancers and improved by using non-

invasive liquid methods such as blood instead of biopsy tissue. 

 

Keywords  AI, deep learning, biomarkers, decision tree, DNA methylation, machine learning, 

neural network, GDC, TCGA, urological cancers, prostate, kidney, bladder 
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Introduction 

 

Epigenetics is the study of biochemical modifications, heritable through cell division, carrying 

information independent of DNA sequence 
1
. This information has direct consequences for 

cellular phenotype and cell differentiation, including cancer formation. Although the 

biochemical modifications can vary for DNA, methylation signatures seem to be most optimal in 

terms of trade-offs between variation and stability to provide data which can be used for 

disease diagnosis. This, together with recent breakthroughs and the decreasing cost of 

sequencing technology, is a probable reason that methylation is the branch of epigenetics that 

has progressed furthest in the last decade. 

 

More importantly, clear evidence has emerged in recent years that aberrant DNA methylation 

plays a key role in many diseases, including cancer 2,3,4. As a key epigenetic modification, this 

biochemical process can modulate gene expression to influence the cell differentiation which 

can possibly lead to cancer 
2
. For cancer, aberrant methylation patterns seem to be a promising 

source of early diagnostic biomarkers. Mayeux and colleagues divide the major types of 

biomarkers into: biomarkers of exposure (used in risk prediction) and biomarkers of disease 

used in the screening, diagnosis and monitoring of disease progression) 
5
. Early diagnosis 

biomarkers are of particular interest as it has been shown that, for many cancer types, early 

detection is strongly correlated with the patient’s chance of survival 
6
.  

 

Finding methylation patterns in human DNA that are specific to different environmental 

exposures (e.g. carcinogenic substances) and clinical diagnoses would be a powerful tool to 

develop cost-efficient predictive assays which could guide clinicians and save lives. 

Traditionally, finding biomarkers from methylation data is done by applying linear models, as 

these are effective at uncovering the main differences between two groups. This approach is 

still very powerful whenever two heterogeneous groups are being compared. More 

importantly, the linear models are also effective when the sample size is low. These models can 

also account for covariates, like age or smoking, which are two of the most influential factors on 
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the human methylome 
7
. However, diagnosis is a classification problem that can also be 

approached by machine learning algorithms when the sample size allows.   

 

With the advent of modern technology, decreasing sequencing costs, and the digitalization of 

international cancer biobanks, we are rapidly approaching the point where AI algorithms may 

guide oncologists in cancer diagnosis. Such classification approaches are already emerging with 

well-developed machine learning approaches starting to play a leading role in areas such as the 

medical imaging of ‘melanoma’ or ‘prostate grade cancer’ 
8,9

.  The development of AI 

algorithms even happens in open rooms with AI competitions launched among non-experts, at 

least in the field of cancer 
10

. This is significantly driven by the quantity of data accumulated, 

and as such, sequencing methods have only recently started to gain much attention due to the 

limited number of samples available in public repositories as well as regulatory issues with 

sharing such data. With new initiatives that enable genomic and clinical data sharing across 

federated networks, such as the Beacon protocol (used as a model for the federated discovery 

and sharing of genomic data) 
11,12

, work in this area is now in progress and will open the door to 

new machine learning approaches.   

 

One of the places with a relatively high number of genomic samples available is the Genomic 

Data Commons data portal (GDC, https://portal.gdc.cancer.gov/). GDC represents a rich source 

of harmonized cancer datasets available for immediate ethical use for cancer biology and 

biomarkers discoveries. Most of the data are publicly available and anonymised, so therefore 

there is no possibility to connect individual patients with this data. GDC contains transcriptomic 

and genomic data as well as epigenomics information about cancers isolated from patients. 

Most of the epigenomics information in GDC is related to methylation profiles measured on the 

‘450k platform’ 
13

. For this platform, 450 000 of the 28 million CpG sites (locations in the 

genetic code where a cytosine is immediately followed by a guanine) present in the human 

genome are measured and a value between 0 and 1 is reported for each CpG site. As the 

distribution of the methylation is binomial for human DNA a threshold of 0.3 can be used to 

classify CpGs as either methylated (>=0.3) or unmethylated (<0.3) 
14

. 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 14, 2021. ; https://doi.org/10.1101/2021.04.12.439479doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.12.439479
http://creativecommons.org/licenses/by-nc/4.0/


5 

 

Artificial intelligence (AI) can operate on such data 
15

 although further development of this field 

is still required. As recently examples, a deep learning model for regression of genome-wide 

DNA methylation was implemented for genomic data 
16

. The authors proposed a deep learning 

method for prediction of the genome-wide DNA methylation, in which the Methylation 

Regression was implemented by Convolutional Neural Networks (MRCNN). Through minimizing 

the continuous loss function, experiments show that their model was convergent and more 

precise than the previous state-of-art method (DeepCpG 
17

) according to the results of the 

evaluation. In addition, integrative analysis identifies potential DNA methylation biomarkers for 

‘pan-cancer’ diagnosis and prognosis 
18

. Unfortunately, this research used the ‘ghost probe’ 

‘cg203000343’ for classification which contaminates their data. In another recent example, 

machine learning methods and DNA methylation data were used to distinguish primary lung 

squamous cells carcinomas from head and neck metastases 
19

. Other recent studies have also 

shown it is possible to use DNA methylation to predict disease outcome 
20,21

. All this should 

open methodological possibilities of using methylation data for prognosis. However, owing to 

the security of the genomic data it is desired to use a minimal number of genomic locations for 

classification purposes. Using a minimal set of genomic locations also allows for the 

identification of novel biomarkers. 

 

The primary goal of our work was to develop machine learning algorithms for the diagnostic 

classification of DNA methylation profiles. We used data obtained from the GDC platform 

relating to three urological cancers: prostate, bladder and kidney. These were chosen as they 

each had a relatively large number of epigenetic data points available as for both cancerous 

tissue and normal (adjacent tissue). To develop the algorithm, we used sequential methods for 

feature selection and then deep learning. These methods are proposed for further independent 

validation in laboratories that store prostate, bladder, and kidney tissue samples and have 

sufficient resources. 
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Methods 

The computations were performed using the University of Birmingham's BlueBEAR HPC service, 

which provides a High Performance Computing service to the University's research community 

(http://www.birmingham.ac.uk/bear). We used ‘Python’ as the primary programming language 

for this project with libraries such as ‘pickle’ and ‘matplotlib’. BlueBEAR HPC uses a slurm files 

system for job submission.  

 

The downloaded data contained a large number of missing (NA) values. This created a problem 

as the neural net requires numerical inputs and the way these values were handled could 

adversely affect the decision tree’s performance as well. On inspection, we discovered that the 

majority of these could be attributed to non-existent CpG sites (location was always specified as 

*) in the data files. However, even after removing these, there were still some NA values. 

Throwing out all rows or columns with NA values would have reduced our dataset too much to 

be a valid option. Instead, we first discarded all CpG sites in which NA values made up more 

than 15% of the data. We then discarded all patients in which NA values made up more than 

15% of the data. CpG sites were removed first as we had more of them available so removing a 

CpG site caused less loss of information in our dataset than removing a patient. Still, there were 

a few patients with a sufficiently high ratio of NA values that it was still beneficial to remove 

them from the study. 

 

After pruning out the CpG sites and patients with the most NA values, we were left with 439 

patients in the bladder set, 484 in the kidney set, and 542 in the prostate set. Among these, a 

small number of NA values still remained in the data. We explored a few options for how to 

deal with these, and settled on replacing all remaining NA values with the average value for 

that CpG site in the relevant tissue as this was considered the option least likely to have an 

impact on our results. 

 

The methylation values were then converted to binary by using a cut-off point of 0.3 as 

previously suggested 
14

. CpG sites with methylation values higher than this were treated as 
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methylated, while those with lower values were classified as unmethylated. This also has a 

biological meaning related to gene regulation. 

 

After the pre-processing stage, the data was randomly divided into three sets. 70% of the data 

was assigned to the training set (307 for bladder, 339 for kidney, 379 for prostate), 20% was 

assigned to the validation set (88 for bladder, 97 for kidney, 108 for prostate), and the 

remaining 10% to the testing set (44 for bladder, 48 for kidney, 55 for prostate). The validation 

set was withheld and used later to optimize and compare different approaches, while the 

testing set was put aside and not used for any purpose other than calculating the final values in 

the results section. Values in the testing set were also excluded from any data visualization. 

 

The ~400 000 dimensions (CpG sites) in our dataset was far more than a neural network could 

reasonably be expected to train on in a feasible amount of time. To resolve this we applied 

feature selection techniques to reduce the dataset to a more manageable number of 

dimensions. Initially we tried using Principal Component Analysis (PCA) to reduce the 

dimensions from ~400 000 to 10. This worked well and the initial tests with the neural network 

showed that it could classify the patients extremely accurately using the PCA data set (data not 

shown). However, as the PCA set was constructed with input from 400 000 CpG sites, any test 

based on this procedure would require all 400 000 CpG sites to be measured for any patient. 

This would be impractical and unreliable in clinical settings, so instead we attempted to identify 

those CpG sites most relevant for classifying the data. For this, we used a decision tree to 

identify approximately 10 of the most relevant CpG sites for dividing the data for each tissue 

type. These points were then used to train the neural network. 

 

The optimal CpG locations to give the neural network would contain a list of locations that 

show a high variance in methylation status between the cancerous and normal groups (primary 

separating locations), and locations that help it classify the data in cases which are not 

separated by those high variance points (secondary separating locations). In order to try to get 

both of these, the decision tree was run to a max depth of two, with the first dividing CpG site 
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being chosen as the one that best separated the two groups and the second and third sites (if 

applicable) being the ones that were best able to correct for any mistakes the first point made. 

After each run the sites found were added to the list and all subsequent runs of the decision 

tree were prevented from dividing on those locations in future. This forced the subsequent runs 

to find a variety of primary and secondary separating locations, increasing the number of 

features that the neural network could use for classification. At the end of the process, this 

resulted in a list of at least 10 CpG sites for each tissue type (actual number was slightly variable 

as the decision tree did not always return the same amount of sites however it would keep 

running until it had at least 10). When training the decision tree we used term Entropy, a 

measure of how mixed the data is calculated accordingly: 
23

,  

 

������� �  
����� � ���������� 
 ����� � ����������                  (1) 

 

Where ‘Normal’ represents  the fraction of the data points in that node that were taken from 

adjacent apparently non-cancerous tissue, and ‘Cancer’ is the fraction of the data points in that 

node that were taken from visibly cancerous tissue. This equation creates a curve that is at its 

minimum (0) when the data is fully divided and maximum (1) when the data is evenly mixed. 

 

When training the decision tree, we found that a depth of 2 was almost always sufficient to 

classify the data. Running at a max depth of 2 gave us a mix of locations with high variance 

between the cancer and normal tissue types, and locations that were good at fine tuning the 

details and correcting those data points that the first locations failed to classify correctly. 

 

The CpG lists from the decision tree were further narrowed down by excluding any in which the 

median methylation for each dataset fell on the same side of the cut-off point. This was done to 

reduce chances of the neural network basing a decision on unreliable or outlying data. The 

separation score (a rough estimate of how distant the two medians of the two groups were 

from each other’s side of the cut-off point) was calculated using the formula: 
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Negative values occur when both groups have a median on the same side of the cut-off point 

and were excluded from the rest of the study. The values were recorded (Table 1). The final list 

of CpG locations was used to train three neural networks for each tissue type. A sigmoid 

activation function (S(x)) was chosen to calculate the output of each neuron, due to the ease of 

calculating the gradient for back propagation and the fact that it gives bounded outputs for all 

potential inputs.  

���� �  
�

�����
                                                                                 (3) 

 

Where e is Euler’s number and x is the sum of all weighted inputs for a given neuron. The first 

neural network had 7 neurons in the first hidden layer and 4 in the second hidden layer. The 

second neural network had 10 neurons in both hidden layers. The third neural network had 

three hidden layers containing 5, 4, and 3 neurons respectively. All three architectures also 

used a learning rate function that decreased slowly over time. These architectures and the 

initial learning rate were chosen based on intuition with the intent to use the validation set to 

optimize these parameters. However, this turned out to be unnecessary as all three structures 

reached the point where they were able to perfectly, or near perfectly, classify all patients in 

the validation set on all tissue types. This resulted in an Area Under the Curve of, or very close 

to, 1 for all structures over all tissue types during Receiver operating characteristic (ROC) 

analysis. As such, no further adjustments were needed. As our ROC curves produced such high 

values for each tissue type a larger testing set is likely needed to get a more accurate 

assessment on the neural nets actual performance. All we can say from the current results is 

that it is likely very high for both bladder and kidney tissue. To check if the CpGs used had any 

known biological functions (for instance known cancer pathway) we have used webtool Enrichr 

was used to find out if there is any association between genes that were in approximation of 

the found CpGs and their functions (https://maayanlab.cloud/Enrichr/) 
24

. 
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Results 

In our AI analysis, cancer samples downloaded from GDC were more numerous than normal 

samples and we chose not to perform a data augmentation strategy. Using Principal 

Component Analysis (PCA) dimensionality reduction to reduce the data from approximately 400 

000 dimensions to just two dimensions we found that the cancer samples can be visually 

distinguished from the normal samples with relative ease for all tissue types (Figure 1). In this 

particular data, the cancer data also had significantly higher variation than the normal samples.  

 

Using the decision tree approach we were able to select a low number CpG sites based on the 

criteria described in the method section while minimising the loss of any information useful for 

distinguishing between normal and cancer signals (Table 1, Figure 2). The CpGs were gene 

annotated and we reported their identifiers, locations (on human genome v38), and separation 

score (Table 1). The CpG sites to be used for neural network classification were further refined 

by removing those in which the median value for the cancer and normal groups both fell on the 

same side of the cut-off point. Performed gene enrichment analysis, did not show any direct 

relationship to cancer pathways.  

 

The final CpGs used in the neural network were subjected to clustering using the Ward 

clustering method and visualized (Figure 3). Bladder and kidney cancer types were generally 

characterized by CpGs that were hypomethylated (low methylation), while for prostate we 

identified hypermethylated (high methylation) sites defining cancer. We then performed ROC 

curve analysis on our testing set and found our neural network produced very accurate results 

(Figure 4). 

 

Discussion 

As novel and cost-effective genomic methods emerge and computational methods become 

more sophisticated, the monitoring of changes in epigenetic signatures of human DNA could be 

a powerful tool for finding prognostic cancer biomarkers as well as for many screening 
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programs. Ideally, many future screening programs could be based on the epigenomic tests 

although this would require a very high sensitivity and specificity of these tests 
15

. 

 

There is no doubt that to achieve such a goal, investment in a large number of samples with 

measured methylation statuses is still desired. Currently, genomic samples are scarce in public 

databases and their availability is hampered by data privacy issues, however the GDC platform 

already offers a rich source of anonymised methylation data. We used this in our work for 

machine learning approaches, to demonstrate the viability of our AI approach in the context of 

urological cancers. 

 

Using normalized methylation values in data provided by the GDC community we have been 

able to identify unique signatures for three cancer types, and distinguish these from their 

respective normal tissues. As we were looking for major differences between samples we did 

not use any metadata related to survival or age of the patient. This approach is desired as it 

decreases the possibility of back identification of any given patients, which could compromise 

the future use of this technique in diagnostics. Importantly, we were still able to get a clear 

signal for these cancers without compromising personal information. 

 

For this study, we divided our data into methylated and unmethylated groups prior to 

processing, based on a threshold of 0.3. This resulted in a clear separation of the cancer and 

normal tissues for many CpG sites (quantified by their separation values in Table 1). Using this 

approach, CpGs with a high separation value are likely to be useful for designing future targeted 

approaches. We also performed gene enrichment analysis, which did not show any direct 

relationship to any known cancer pathways, suggesting that the CpG sites we found do not 

share a common function, including cancer. 

 

We have also noticed that other feature engineering approaches (such as PCA) used for neural 

networks perform well, however many of them would require the whole methylation profile to 

be obtained from future patients and would dramatically increase the computational resources 
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required. Although we believe this is possible, we have demonstrated that only few CpG sites 

are needed to obtain a high specificity and sensitivity when classifying patients. 

 

In our study, a computationally demanding step was using the decision tree for feature 

selection but dimensionality reduction was a necessary step for successfully training the neural 

network. We used a simple AI architecture, where only a few neurons were used in each layer 

of the net, however, this was enough to train the model efficiently as shown by the validation 

set. As we kept the testing set completely separate until all other changes were finished we do 

not believe we have any overfitting and believe that the accuracy it demonstrated is 

representative of how our model would perform on similar external data. 

 

There is a risk, however, that the lack of an independent, external set of the samples from other 

resources could have introduced bias into our results. However, the GDC data we used comes 

from multiple independent projects, deposited on GDC over several years, so such a scenario is 

unlikely. Other external data were not available to us, however by freely releasing our 

algorithms we allow other users who have access to such data to test our approach.  

 

The found biomarkers are related directly to the tissue where cancer was present, and 

compared with adjacent normal tissue. This creates the possibility that there are field effects in 

this study and therefore further validation is needed. This could be done in an independent 

cohort. These studies were done in tissue but could be further converted to work based on 

blood which would be beneficial for the development of screening tests.  

 

Our study used data from tissues samples and thus biopsies would be necessary to apply our 

classification algorithm, which is not an option in screening tests. As such, this approach could 

be improved upon but transitioning to human material that can both be unintrusively collected 

and has a high chance of containing information about developing cancer. Possible options 

include blood, urine or spit. The first approach could be done, for instance, using large pre-

diagnostic blood biobanks, such as the Janus Serum Biobank 
22

. Samples in the blood would also 
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need deconvolution methods to further account for different cell compositions in the blood 

samples.  

 

Our study only focused on three urological cancer types, however, it is possible that pre-

diagnostic screening methods could be developed for other cancers using similar methods. 

Further studies to explore this possibility would also be beneficial.  

 

Finally, our results provide a demonstration of the fundamental power of AI approaches and of 

the usefulness of methylation signatures for diagnoses, and will hopefully pave the way 

towards the development of a better understanding of how epigenetics plays a role in cancers 

and in the design of better and more cost-effective screening methods for urological cancers 

without compromising patient data safety. 

 

Data availability 

All example datasets were used in previously published studies. We used publicly available and 

anonymous data from The Cancer Genome Atlas and Harmonized Cancer Datasets in the 

Genomic Data Commons Data Portal (https://www.cancer.gov/tcga , 

https://portal.gdc.cancer.gov/) investigating kidney, prostate and bladder tissues (dataset 

https://portal.gdc.cancer.gov/legacyarchive/search/f) assayed in multiple, independent 

experiments using the Illumina 450k microarray. The clinical metadata and the manifest file of 

the samples were downloaded through the GDC legacy archive on 2019-10-19 and 2019-11-09.  

We used the Genomic Data Commons (GDC) data download tool 

(https://gdc.cancer.gov/access-data/gdc-data-transfer-tool) using the manifest files deposited 

on our GitHub. 

All methylation data were already normalized across samples by the GDC consortium and 

therefore were ready for further processing. Nevertheless, to further confirm that the 

normalization between datasets was done correctly by GDC we plotted a histogram of the two 

datasets for each tissue type and calculated the first four moments for the distributions 
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between cancer and normal samples for each tissue type (Supplementary S1) to check that 

there were no noticeable differences between the two groups.  

Code availability 

The source code is available in GitHub repository (https://github.com/bazyliszek/methAI) and is 

available upon publication.  
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Figure 1. Principle component 1 and 2 for cancer (red) and normal (blue) samples for the three 

urinary cancer types: a) bladder, b) kidney, c) prostate. Data comes from training and validation 

sets. 
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Figure 2 Boxplot visualisation of CpG sites (on hg38 genome) methylation per group cancer 

(red) and normal (blue) picked by the decision tree for each tissue type and further used by the 

neural network. Data for A. bladder, B. kidney and C. prostate tissue are presented. The 

threshold of 0.3, defining methylated or unmethylated was marked with a dashed line. Data 

comes from the training and validation sets.  
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Figure 3  Cluster maps for  A. bladder, B. kidney and C. prostate cancer. Colour scale represents 

methylation values. Samples are clustered by the Cancer and Normal samples and chosen CpGs. 

Data originates from the training and validation sets but the testing set is excluded. 

 

 

 

Figure 4. Receiver operating characteristic (ROC curves) for A. bladder, B. kidney and C. 

prostate cancer. First neural layer had 7 and second 4 neurons. Area under the curve (AUC) is 

marked. Data originates from the testing set only. 
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Table 1. CpG sites selected to distinguish between normal and cancer tissues using feature 

selection. Name of CpGs as well as location is given, as well as gene annotation and position in 

genomic features. The order of CpGs is related to significance given in the neural network. CpGs 

with negative separation scores were removed.  
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Supplementary files 

Figure S1 Normalization by GDC histograms (normal samples are coloured blue and cancer red). 

4 moments are indicated 

 

 

 

 

Following manifest files uploaded to GitHub:  

1. Bladder cancer manifest file: gdc_manifest.2019-11-09_bladder.txt 

2. Kidney cancer manifest file: gdc_manifest.2019-11-09_kidney.txt 

3. Prostate cancer manifest file: gdc_manifest.2019-10-19_prostate.txt 
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