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Abstract 

It has recently been shown that acute stress affects the allocation of neural resources between large-scale 

brain networks, and the balance between the executive control network and the salience network in 

particular. Maladaptation of this dynamic resource reallocation process is thought to play a major role in 

stress-related psychopathology, suggesting that stress resilience may be determined by the retained 

ability to adaptively reallocate neural resources between these two networks. Actively training this ability 

could hence be a potentially promising way to increase resilience in individuals at risk for developing stress-

related symptomatology. Using real-time functional Magnetic Resonance Imaging, the current study 

investigated whether individuals can learn to self-regulate stress-related large-scale network balance. 

Participants were engaged in a bidirectional and implicit real-time fMRI neurofeedback paradigm in which 

they were intermittently  provided with a visual representation of the difference signal between the 

average activation of the salience and executive control networks, and tasked with attempting to self-

regulate this signal. Our results show that, given feedback about their performance over three training 

sessions, participants were able to (1) learn strategies to differentially control the balance between SN and 

ECN activation on demand, as well as (2) successfully transfer this newly learned skill to a situation where 

they (a) did not receive any feedback anymore, and (b) were exposed to an acute stressor in form of the 

prospect of a mild electric stimulation. The current study hence constitutes an important first successful 

demonstration of neurofeedback training based on stress-related large-scale network balance – a novel 

approach that has the potential to train control over the central response to stressors in real-life and could 

build the foundation for future clinical interventions that aim at increasing resilience. 

 

Highlights 

• Acute stress affects the allocation of neural resources between large-scale brain networks 

•  We provide a first successful demonstration of neurofeedback training based on stress-related 

large-scale brain networks 

• Novel approach has the potential to train control over central response to stressors in real-life 

• Could build foundation for future clinical interventions to increase resilience 
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1 Introduction 

Our body’s response to acute stress constitutes an essential adaptive mechanism that helps us to 

properly evaluate and react to potential threats in our environment (de Kloet et al., 2005). However, 

repeated exposure to stressors can also lead to maladaptation and mental disorders (Kalisch et al., 2015). 

Stress related mental illness, such as depression and anxiety disorders, are amongst those with the highest 

disease burden and efforts to reduce their high prevalence have remained largely unsuccessful (Rehm & 

Shield, 2019; Vos et al., 2017). This has triggered a paradigm shift from treatment to prevention-oriented 

health research over the last years, with a steadily increasing interest in resilience – an individual’s ability 

to positively adapt to being exposed to a stressor (Kalisch et al., 2015). 

Recent neuroimaging research has revealed how acute stress affects the human brain at the 

systems level, with stress-related hormones and neurotransmitters triggering shifts in large-scale brain 

network configurations (Hermans et al., 2014; Hermans et al., 2011; van Oort et al., 2017). In particular, 

stress appears to induce a shift in the balance between the salience network (SN), which integrates 

cognitive processes associated with salient stimuli, including bottom-up attention (Seeley et al., 2007), and 

the executive control network (ECN), which regulates higher-order cognitive functions such as working 

memory and top-down attention (Vincent et al., 2008). It is believed that during the acute stress phase, 

neural resources are reallocated to strengthen SN activity at the cost of ECN function (Young et al., 2017) 

- a balance shift that is subsequently actively reversed to return to homeostasis (Hermans et al., 2014). 

Maladaptation of this dynamic resource reallocation process is thought to play a major role in stress-

related psychopathology (Akiki et al., 2017; van Oort et al., 2017; Menon, 2011), suggesting that stress 

resilience may be determined by the retained ability to adaptively reallocate neural resources between 

these two networks. Actively training this ability could hence be a potentially promising way to increase 

resilience in individuals at risk for developing stress-related symptomatology. 

In the current study, we investigated training the voluntary reallocation of neural resources 

between SN and ECN using real-time fMRI neurofeedback (rtfMRI-NF), as a potential mean to increase 

stress resilience. Following a short localizer session from which subject-specific network masks were 

defined, healthy participants were each engaged for three separate sessions in a bidirectional, implicit and 

intermittent rtfMRI-NF paradigm in which the difference signal between the average activations in the 

individualized SN and ECN masks was coupled to the size of a visual stimulus on the screen. Participants 

were not given any details of this setup other than the instruction that they could learn to control the size 

of the stimulus with their brain. In a subsequent transfer session, participants performed the same 

bidirectional self-regulation task, but had to apply their learned strategies in the absence of any feedback 
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and, in addition, were exposed to an acute stressor (mild electric stimulation) in some of the trials 

(McMenamin et al, 2014). We hypothesized that participants are able to (1) learn to self-regulate SN-ECN 

activation balance, and (2) apply learned regulation strategies in (a) the absence of feedback and (b) in 

prospect of an acute stressor. Through analysis of participants’ self-evaluation as well as additional 

exploration of whole-brain activations during regulation, we aimed to gain further insights into how the 

tested group of participants achieved self-regulation of the feedback signal. 

2 Method 

2.1 Participants 

Eleven healthy volunteers (6 females, 5 males; all recruited at Radboud University and Radboud 

University Medical Centre, Nijmegen, The Netherlands) aged between 19 and 40 years (mean = 25.73; SD 

= 5.87) participated in the study in return for a monetary reward of 104 – 129 €. All of them had normal 

or corrected to normal vision and had no known neurological or psychological disorders. Exclusion criteria 

included MRI contraindications, such as the presence of electronic or ferromagnetic body implants and a 

prior history of claustrophobia or panic attacks. Only non-native speakers of English were included, to 

ensure that all participants were at approximately the same level of language proficiency when receiving 

instructions and answering questionnaires in English. Before the study, participants received general 

information about fMRI neurofeedback as well as study-specific information pertaining to the scheduling 

of the study and a short description of the experimental task, and were informed that the three best 

performers over the whole study would receive an extra monetary bonus of 25 €. Participants were 

instructed to refrain from the use of recreational drugs, have a good rest the night before each 

experimental session, and to abstain from consuming caffeinated or alcoholic drinks, and smoking six 

hours prior to each experimental session. Due to technical problems, one participant had to be excluded 

after the second experimental session. The remaining 10 participants (5 females, 5 males; between 19 and 

40 years of age, mean = 25.80, SD = 6.18) completed all experimental sessions. The study was approved 

by the local ethics committee, and participants gave their written informed consent before the procedure. 

2.2 Design 

The study consisted of five consecutive experimental sessions (see Figure 1), each on a different 

day, with 1 to 19 days between the first and the second session (mean = 7.45, SD = 5.68), 1 to 16 days 

between the second and the third session (mean = 7.20, SD = 5.67), 1 and 13 days between the third and 

the fourth session (mean = 5.60, SD = 4.09), and 1 and 7 days between the fourth and the fifth session 
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(mean = 4.30, SD = 2.63). The first session (Localiser) entailed an anatomical MRI recording, followed by 

two functional MRI runs (each 300 volumes), with the first being a resting state run used for individualizing 

network templates, and the second being a passive viewing of pseudo-randomized presentations of five 

repetitions (each 10 s) of the experimental stimuli used in later sessions to collect baseline pupil responses. 

Subsequently, a set of questionnaires was administered outside the MR scanner. The following three 

sessions (Training) were identical to each other, and each comprised an anatomical MRI recording, 

followed by seven to eight functional MRI neurofeedback runs (each 600 volumes). Each functional run 

started with a long rest block (34 s), followed by 16 self-regulation blocks (“larger”, “smaller”; each 16 s), 

each followed by “delay” (6 s), “feedback” (4 s) and “rest” (10 s) blocks. In the first and second run of the 

first Training session, all self-regulation blocks were of the condition “larger” and “smaller”, respectively, 

to familiarize participants with the paradigm, while all other runs consisted of an equal number of both 

conditions in a pseudo-randomized order. The fifth and last session (Transfer) involved an anatomical MRI 

recording, followed by four functional MRI runs, and was included to examine if participants were able to 

apply learned strategies in the absence of feedback, as well as during the presence of an acute stressor. 

The first three functional runs entailed self-regulation without feedback (762, 710 and 736 volumes, 

respectively), with a pseudo-randomized order of “larger”, “smaller”, “larger|threat”, “smaller|threat” 

and ”rest|threat” blocks (each 16 s), intermixed with “rest” blocks (each 10 s). Over all three runs, 10% of 

the threat blocks (“smaller”|threat”, “larger|threat”, “rest|threat”) were replaced by a shock block 

(“smaller|shock”, “larger|shock”, “rest|shock”), respectively. The first run included one replacement for 

each of the three shock condition, equally spaced over the whole run, with the “rest|shock” block in the 

middle. In the second run there was one replacement of “rest|shock” block at approximately the middle 

of the run. The last run included one replacement for each “rest|smaller” and “rest|larger” at the first and 

last quarter of the run, respectively. The order of the two replacements for “rest|smaller” and 

“rest|larger” in the first and third run was counterbalanced over participants to control for order effects. 

The fourth and last functional run was a resting-state run (300 volumes). 
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2.3 Materials 

2.3.1 Questionnaires 

Administered questionnaires included the 60 item International Personality Item Pool NEO 

Questionnaire (IPIP-NEO-60; Maples-Keller et al., 2019), the behavioural inhibition system (BIS) and 

behavioural activation system (BAS) questionnaires (Carver & White, 1994), the cognitive emotional 

regulation questionnaire (C.E.R.Q.; Garnefski, Kraaij, & Spinhoven, 2001), the trait component of the state-

Figure 1. Overview of MRI runs during each of the five experimental sessions. Each session started with the acquisition 
of an anatomical recording (A). The first session (Localiser) included two short functional runs: passive viewing of the 
experimental stimuli (PV) and resting state (RS). The second session (Training 1) started with two functional runs in 
which participants were asked to either increase and decrease the circle, respectively, followed by up to six further runs 
in which they were asked to do both, in a mixed order, and participants received feedback after each attempt. The next 
two sessions (Training 2 and Training 3) each consisted of up to eight of these mixed runs. In the last session (Transfer) 
participants were asked to increase and decrease the size of the circle with the strategies learned during the training, 
but without receiving feedback and with the prospect of receiving a mild electric stimulation in 50% of the trials. The 
session ended with a resting state run (not analysed). 
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trait anxiety inventory (STAI-trait) (Spielberger, Gorsuch, & Lushene, 1968), the thought control 

questionnaire (TCQ; Wells & Davies, 1994), and Beck’s depression inventory II (BDI-II; Beck, Steer, & Brown, 

1996). Questionnaires were part of a standard battery to identify severely depressed participants (BDI-II), 

and to add to a larger body of explorative data for generating potential hypotheses for future studies 

(remaining questionnaires).1  

2.3.2 Stimuli 

Experimental stimuli were created and presented using Expyriment (version 0.9.0; Krause & 

Lindemann, 2014), running on a computer designated for stimulus presentation. The neurofeedback 

display consisted of a grey disc (red = 128, green = 128, blue = 128), superimposed with a black circle (red 

= 0, green = 0, blue = 0; visual angle of radius = 5.96 °, visual angle of thickness = 0.07 °) as well as a black 

dot in the center (red = 0, green = 0, blue = 0; visual angle of radius = 0.16 °). The size of the grey disc was 

half between the size of the dot and the size of the black circle (visual angle of radius = 3.06 °) during all 

blocks except the feedback blocks, during which it could be anything in between size of the black circle 

and the size of the dot in the center (which turned green in this condition; red =0, green = 255, blue = 0). 

During regulation blocks, the grey disc was surrounded by four outward (“larger”) or inward (“smaller”) 

pointing arrows at the top, bottom, left and right side (visual angle of width = 0.77 °, visual angle of height 

= 0.98 °; visual angle of distances between top and bottom as well as left and right centers = 6.99 °) and 

the dot in the center turned orange (red = 255, green = 128, blue = 0). During threat blocks, the entire 

display was additionally surrounded by a red frame (red = 255, green = 0, blue = 0; visual angle of height = 

19.36 °, visual angle of width = 19.36 °, visual angle of thickness = 0.33 °). See Figure 2 for an overview of 

used stimuli. 

                                                            
1 Notably, one individual (participant 6) scored unexpectedly high on the STAI-trait questionnaire (69). 

Excluding this participant from analysis, however, does not change the interpretation of the results or conclusions 
drawn in this study. 
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2.3.3 MRI data acquisition 

All MR images were recorded using a Siemens Skyra 3T MR system (Siemens, Erlangen, Germany), 

with a 32-channel receiver head coil. High-resolution 3D anatomical images were recorded using a T1-

weighted magnetization-prepared rapid gradient echo (MPRAGE) sequence with a generalized 

autocalibrating partial parallel acquisition (GRAPPA) acceleration factor of 2 (repetition time/echo time = 

2300/3.03 ms, flip angle = 8 °, field of view = 256 × 256 x 192 mm, resolution = 1.0 mm2). Functional images 

were acquired using a echo planar T2*-weighted sequence sensitive to BOLD contrast with a multiband 

acceleration factor of 4 (repetition time/echo time = 1000/33 ms, flip angle = 60 °, field of view = 210 × 

Figure 2. Overview of experimental stimuli and design of the training (top) and transfer (bottom) 
sessions. 
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210 mm2, number of slices = 52, slice thickness = 2.4 mm (no gap), in-plane resolution = 2.4 x 2.4 mm2). 

During all scans, besides cushioning around the head, a strip of medical tape was applied over the forehead 

of the participants to reduce head motion (Krause et al., 2019). 

2.3.4 Real-time fMRI neurofeedback setup 

Real-time functional imaging was realized by implementing a custom functor in the MR image 

reconstruction pipeline which exported pixel data to an additional computer as soon as it becomes 

available. TurboExport (version 0.261, Brain Innovation, Maastricht, The Netherlands) was used to 

transform incoming pixel data for each volume into an image. Each resulting image was preprocessed in 

real time using Turbo-BrainVoyager (version 4.0 beta; Brain Innovation, Maastricht, The Netherlands). 

Preprocessing included motion correction (by realigning each image to the first image of the session), as 

well as spatial smoothing (Gaussian kernel of 5 mm full width at half maximum). The stimulation computer 

communicated with Turbo-BrainVoyager via a network connection, using the Transmission Control 

Protocol (TCP), in order to request the preprocessed real-time data to generate the feedback display. 

2.3.5 Peripheral recordings 

Eye movements and pupil size of the left eye were recorded using an Eyelink-1000 Plus eye-tracker 

(SR Research, Ottawa, Canada), with a sampling rate of 500 Hz. Additionally, a BrainAmp ExG MR (Brain 

Products, Gliching, Germany) was used to measure heart rate with an MR-compatible pulse sensor (placed 

on left ring finger; Brain Products, Gliching, Germany), respiration with an abdominal respiration belt 

(attached to a pneumatic sensor, Brain Products; Gliching, Germany), and Galvanic Skin Response with 

two Ag/AgCl electrodes (placed on the distal phalanges of the left index and middle fingers; Brain Products, 

Gliching, Germany). 

2.3.6 Peripheral stimulation 

Mild electrical shocks were delivered via two electrodes attached to the first and fifth finger of the 

right hand using a MAXTENS 2000 TENS unit (Bio-Protech, Gangwon-do, Korea). Stimulation intensity 

varied between 0 V/0 mA and 40 V/80 mA. During a standardized adjustment procedure prior to the 

testing, each participant received and subjectively rated five shocks, allowing stimulation strength to 

converge to an individualized level that was experienced as uncomfortable, but not painful. 
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2.4 Procedure 

2.4.1 Session 1: Localiser 

After the recording of an anatomical image (≈ 5 min), participants were asked to look at a fixation 

cross at the centre of the screen, while a resting-state functional data-set was recorded (≈ 6 min). 

Subsequently, the eye-tracker was calibrated and another short functional data-set was recorded while 

participants were asked to passively look at the stimuli that were used in the later parts of the study (≈ 5 

min). For the purpose of having a baseline pupil size for each of the stimuli, pupil size was recorded during 

this run. Once the tasks in the scanner were concluded, participants were asked to complete a set of 

questionnaires (see Materials). 

The anatomical image and resting-state data-set were used after the session to create 

individualized network masks to be used as neurofeedback target regions during the subsequent training 

and transfer sessions. Using a custom-made Nipype (version 1.1.8; Gorgolewski et al., 2011, Gorgolewski 

et al., 2017) pipeline (https://github.com/can-lab/IndNet), functional images were realigned to the first 

volume of the run, spatially smoothed (Gaussian kernel of 5 mm full width at half maximum), cleaned from 

head-motion artefacts using ICA-AROMA (Pruim et al., 2015), and high-pass filtered (filter size = 100 s). 

The anatomical image underwent brain extraction and segmentation into grey matter (GM), white matter 

(WM) and cerebro-spinal fluid (CSF) binary masks. Binary masks of 14 intrinsic connectivity networks (ICN; 

Shierer et al., 2012) were transformed into native space, multiplied with the GM mask, and the results 

were used to extract 14 timecourses (first eigenvariate of each ICN) from the cleaned data. In addition, 

the WM and CSF masks were used to extract average (mean) WM and CSF timecourses from the cleaned 

data. ICN, WM and CSF timecourses entered a generalized linear model (GLM) in which contrasts reflecting 

combinations of ICN regressors specifying SN (anterior and posterior), ECN (left and right) as well as the 

default mode network (DMN; dorsal and ventral) were estimated and thresholded using spatial mixture 

modelling (threshold level = 0.66). Eventually, SN, ECN and DMN binary masks were created by only 

considering voxels that occurred exclusively in either of the thresholded maps and transformation into 

native anatomical voxel space. Resulting masks were imported into BrainVoyager (version 21.0, Brain 

Innovation, Maastricht, The Netherlands), transformed to be iso-voxeled and a BrainVoyager voxels-of-

interest (VOI) definition was created for each mask. 
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2.4.2 Sessions 2, 3 and 4: Training 

At the beginning of the first Training session oral instructions about the task and outline of the 

session were given outside of the scanner. For the regulation task, participants were asked to attempt to 

either increase or decrease the size of the disc on the screen with their brain, depending on the orientation 

of the surrounding arrows in each trial. They were told that they could achieve this by thinking of 

something specific, performing some mental task internally, or getting into a certain mood, emotion, 

feeling, or state of mind, and that they had to explore different mental strategies to find one that works 

for them. They were not made aware of either the origin and computation of the feedback signal, or the 

details of the study. Before each session, participants were explicitly asked to try to avoid movement, 

including facial movements, limp movements and irregular breathing patterns. Inside the scanner, first an 

anatomical image was recorded (≈ 5 min) and preprocessed immediately after reconstruction on a 

separate computer using BrainVoyager (version 21.0, Brain Innovation, Maastricht, The Netherlands). 

Figure 3. Example output of procedure to individualise SN (red) and ECN (blue) network templates (top) to 
subject-specific network masks (bottom; data from participant 11, back-projected from native space to MNI 
space). 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 15, 2021. ; https://doi.org/10.1101/2021.04.12.439440doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.12.439440


SELF-REGULATION OF STRESS-RELATED LARGE-SCALE BRAIN NETWORK BALANCE 

12 
 

Preprocessing included intensity inhomogeneity correction, iso-voxeling, and brain extraction. 

Preprocessed anatomical images were further coregistered to the anatomical image of the first (localiser) 

session, and results were supplied to Tubro-BrainVoyager to have real-time functional data in alignment 

with the neurofeedback target ROIs. Parallel to the anatomical preprocessing, the eye tracker was 

calibrated. Subsequently, participants were engaged in seven (session 4 of participant 3, session 3 of 

participant 6, session 4 of participant 7) to eight (all other sessions) real-time fMRI neurofeedback training 

runs (each ≈ 10 min). The main motivation for splitting the sessions into multiple short runs was to offer 

participants self-paced rest periods (in between runs). Each run started with a rest block during which the 

baseline and initial display boundaries for the feedback signal (i.e. smallest and largest disc size) were 

calculated. Feedback was based on the difference signal between the averages (mean) of all voxels in the 

SN and ECN ROIs (participants 1, 3 ,5 ,7 ,9, 11: SN - ECN; participants 2, 4, 6, 8, 10: ECN - SN). The baseline 

for this difference signal was defined as the average (median) difference between SN and ECN during the 

initial rest block, and the initial lower and upper display boundaries were set to two standard deviations 

from this baseline. These limits were updated before each regulation block to the average (median) of the 

five lowest/highest difference values in that run. For each regulation block, positive and negative changes 

in the difference signal resulted in a feedback value between -1 and 1 by applying the following calculation 

(values lower than -1 and higher than 1 were set to -1 and 1, respectively): 

 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑝𝑝 =
𝑟𝑟𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 − 𝑓𝑓𝑓𝑓𝑏𝑏𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟𝑓𝑓
𝑟𝑟𝑟𝑟𝑙𝑙𝑟𝑟𝑟𝑟𝑙𝑙𝑝𝑝𝑙𝑙𝑝𝑝𝑙𝑙 − 𝑓𝑓𝑓𝑓𝑏𝑏𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟𝑓𝑓

 (1) 

 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑝𝑝𝑎𝑎𝑎𝑎𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑝𝑝 =
𝑟𝑟𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 − 𝑓𝑓𝑓𝑓𝑏𝑏𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟𝑓𝑓
𝑟𝑟𝑟𝑟𝑙𝑙𝑟𝑟𝑟𝑟𝑢𝑢𝑝𝑝𝑝𝑝𝑝𝑝𝑙𝑙 − 𝑓𝑓𝑓𝑓𝑏𝑏𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟𝑓𝑓

 (2) 

Due to the characteristics of the delayed haemodynamic response, calculations did not consider the first 

six volumes of each block, but included the first two volumes of the following block. The feedback hence 

represented the average regulation performance during each regulation block and was given 

intermittently during the subsequent feedback block. The feedback value was furthermore used to 

calculate the amount of points a participant collected. For each regulation block, an amount of points 

proportional to the feedback value was given ranging from 0 points, when the difference signal changed 

in the opposite direction than instructed, and 100 points when the specified limit was reached. These 

points were accumulated after each regulation block, and the total was presented to the participant in the 

end of each. After each run, participants were asked to verbally rate their degree of control over the disc 
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size as well as the difficulty of the regulation in either direction on a scale from 0 to 10. In between runs, 

participants could take a short break (inside the scanner), if needed. At the end of the session and outside 

the scanner, participants were asked to write down the strategies they used, if they thought these 

strategies worked and whether they would use them again in the next session. 

2.4.3 Session 5: Transfer 

After the standardized stimulation intensity adjustment an anatomical image was recorded and 

the eye tracker was calibrated. The subsequent three functional runs were similar to the feedback runs in 

previous sessions, but differed in two ways: (1) no feedback was given to the participant about their 

regulation performance, and (2) during 50% of all rest and regulation blocks, there was the chance (11.8% 

across all three runs) of a mild electrical stimulation of the fingers at any time during the block. Participants 

were told to apply those strategies to increase and decrease the size of the disc that they thought worked 

best during the training, and that they were still collecting points. In the last run of the session a functional 

resting-state data-set was recorded while participants were asked to look at a fixation cross at the centre 

of the screen. At the end of the session and outside the scanner, participants were asked about any 

thoughts they would like to share about their participation, after which they were debriefed and informed 

about the details of the study. 

2.5 Data analysis 

2.5.1 Self-evaluation 

 Perceived controllability of the feedback signal as well as perceived difficulty to control the signal 

in either direction specifically were assessed for each training session by averaging the scores across all 

runs of that session. Expected increase in perceived controllability from first to last training session, as well 

as decreased perceived difficulty in both regulation directions, were each tested for with a one-sided 

paired t-test. Analyses were performed using Pingouin (version 0.3.8; Vallat, 2018). 

2.5.2 Peripheral recordings 

Bandpass filtering (0.3 – 3 Hz) was applied to raw pulse and respiratory recordings to remove low-

frequency drifts, artefacts time-locked to the MR volumes were removed from the data via deconvolution, 

and automatic peak detection was applied to the pulse data, using a custom tool (https://github.com/can-

lab/brainampconverter). Data was further visually inspected and corrected, using a custom tool 

(https://github.com/can-lab/hera). Periods rejected due to data quality were removed and data were 

interpolated. The processed pulse and respiratory data were then used for retrospective image-based 

correction of physiological noise artefacts in the MRI data, using a custom tool (https://github.com/can-

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 15, 2021. ; https://doi.org/10.1101/2021.04.12.439440doi: bioRxiv preprint 

https://github.com/can-lab/brainampconverter
https://github.com/can-lab/brainampconverter
https://github.com/can-lab/hera
https://github.com/can-lab/RETROICORplus
https://doi.org/10.1101/2021.04.12.439440


SELF-REGULATION OF STRESS-RELATED LARGE-SCALE BRAIN NETWORK BALANCE 

14 
 

lab/RETROICORplus). This method utilises 5th order Fourier modelling of cardiac and respiratory phase 

related noise. A total of 25 nuisance regressors were created, including 10 cardiac phase regressors and 10 

respiratory phase regressors (RETROICOR; Glover et al., 2000), plus 3 heart rate frequency regressors 

(Shmueli et al., 2007; van Buuren et al,. 2009), and 2 respiratory volume per unit time regressors (Birn et al., 

2006; van Buuren et al., 2009). 

Skin conductance data recorded during the Transfer session were down-sampled to 100 Hz and high-

pass filtered (cutoff = 5 Hz). Continuous Decomposition Analysis on the first 10 seconds of each block was 

then performed in Ledalab (Benedek & Kaernbach, 2010), in order to extract tonic and phasic components 

of the skin conductance amplitude. To test whether the threat of a mild electric shock led to an expected 

overall increase in skin conductance, compared to not receiving a shock, the standardized (z-transformed) 

average phasic amplitude of the initial ten seconds of each block was calculated and subsequently entered 

into a one-sided paired t-test. In case of a significant overall effect, the expected increase was further 

assessed by post-hoc one-sided paired t-tests in each condition (rest, regulate to SN [participants 3, 5, 7, 9, 

11: “larger”; participants 2, 4, 6, 8, 10: “smaller ”], regulate to ECN [participants 3, 5, 7, 9, 11: “smaller”; 

participants 2, 4, 6, 8, 10: “larger ”]) individually. Potential differences in the strength of the threat effect 

between conditions was furthermore tested by the interaction effect in a 3 × 2 repeated measures ANOVA 

with the factors condition (rest, regulate to SN, regulate to ECN) and threat (threat, safe). 

Average baseline pupil dilation in response to each stimulus was calculated from data acquired in 

the Localiser session. The average pupil size of the first 10 seconds of each rest and regulation block was then 

calculated for the Transfer session and z-transformed, from which the z-transformed average baseline was 

subtracted, to avoid pupil dilation differences driven by changes in luminance between stimuli. Periods 

reported as blinks by the eye-tracker (pupil data missing for three or more samples in a sequence) were not 

considered. To test whether the threat of a mild electric shock led to an overall increase in pupil size, 

compared to not receiving a shock, baseline-corrected data was subsequently entered into a one-sided 

paired t-test. In case of a significant overall effect, the expected increase was further assessed by post-hoc 

one-sided paired t-tests in each condition (rest, regulate to SN [participants 3, 5, 7, 9, 11: “larger”; 

participants 2, 4, 6, 8, 10: “smaller ”], regulate to ECN [participants 3, 5, 7, 9, 11: “smaller”; participants 2, 4, 

6, 8, 10: “larger ”]) individually. Potential differences in the strength of the threat effect between conditions 

was furthermore tested by the interaction effect in a 3 × 2 repeated measures ANOVA with the factors 

condition (rest, regulate to SN, regulate to ECN) and threat (threat, safe). Skin conductance and pupil size 

analyses were performed using Pingouin (version 0.3.8; Vallat, 2018). 
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2.5.3 SN-ECN balance self-regulation performance 

The first two runs of the first training session were considered to be practice runs (for the 

participants to get used to the setting) and were not analysed further. For each remaining functional run, 

the difference signal between SN and ECN timecourses (as extracted online with Turbo-BrainVoyager) was 

high-pass filtered (cutoff = 0.01 Hz/100 s) and normalized (z-transformation). For each participant, the 

concatenated preprocessed difference signals of all runs of all sessions entered a generalized linear model 

(GLM), corrected for serial correlations by means of a first order autoregressive model (AR1),  with 29 

regressors modelling the expected hemodynamic responses (double gamma function) during the different 

blocks of the experimental design in each session (i.e. the regulation conditions “larger” and “smaller”, the 

“delay” period, and “feedback” for each regulation condition in each of the training sessions, as well as 

the regulation conditions “larger”, “smaller”, “larger|threat”, “smaller|threat”, “rest|threat”, and 

regressors for reinforced threat blocks describing the periods before and after a shock , as well as the 

shock itself, for the transfer session). An additional set of 49 regressors per run was added as covariates: 

six motion parameters from Turbo-BrainVoyager (three translational and three rotational), their first 

temporal derivative as well as the quadratic terms of both the base motion parameters and their temporal 

derivatives, and 25 physiological noise components. Self-regulation performance in each session was 

assessed by estimating the difference contrast “regulate to SN > regulate to ECN” (participants 3, 5, 7, 9, 

11: “larger > smaller”; participants 2, 4, 6, 8, 10: “smaller > larger”) corresponding to that session. In line 

with our hypotheses, the following planned contrasts were tested for significance: (1) the difference 

contrast across all sessions, to test for overall control over the feedback signal, (2) the difference contrast 

in the transfer session, to test specifically for preserving that skill after training, in the absence of feedback, 

(3) a contrast corresponding to a positive linear trend in the difference contrast over sessions, to test for 

improvement over time, and (4) a contrast testing whether the effect of the difference contrast in the 

transfer session was smaller in the “threat” condition, compared to the  “safe” condition. To assess random 

effects across participants, contrast estimates of all participants where tested for significance with a one-

sample t-test. The significance level for all tests was set to α = 0.05. Analyses were performed using NiPy 

(version 0.4.2; Millman, 2007) and Pingouin (version 0.3.8; Vallat, 2018). 

2.5.4 Whole-brain voxel-wise analysis 

To further explore how the self-regulation of SN-ECN balance affected global brain activations in 

the here tested group of participants, additional whole-brain voxel-wise offline fMRI analysis has been 

performed. All MR image were preprocessed with FMRIPREP version 1.5.8 (Esteban et al., 2018; Esteban 

et al. 2020; RRID:SCR_016216), a Nipype (Gorgolewski et al., 2011; Gorgolewski et al., 2017; 
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RRID:SCR_002502) based tool. Each T1w (T1-weighted) volume was corrected for INU (intensity non-

uniformity) using N4BiasFieldCorrection v2.1.0 (Tustison et al., 2010) and skull-stripped using 

antsBrainExtraction.sh v2.1.0 (using the OASIS template). Spatial normalization to the ICBM 152 

Nonlinear Asymmetrical template version 2009c (Fonov et al., 2009; RRID:SCR_008796) was performed 

through nonlinear registration with the antsRegistration tool of ANTs v2.1.0 (Avants et al., 2008; 

RRID:SCR_004757), using brain-extracted versions of both T1w volume and template. Brain tissue 

segmentation of cerebrospinal fluid (CSF), white-matter (WM) and gray-matter (GM) was performed on 

the brain-extracted T1w using fast (Zhang et al, 2001; FSL v5.0.9; RRID:SCR_002823). 

Functional data was motion corrected using mcflirt (FSL v5.0.9; Jenkinson et al., 2002). This was 

followed by co-registration to the corresponding T1w using boundary-based registration (Greve et al., 

2009) with six degrees of freedom, using flirt (FSL). Motion correcting transformations, BOLD-to-T1w 

transformation and T1w-to-template (MNI) warp were concatenated and applied in a single step using 

antsApplyTransforms (ANTs v2.1.0) using Lanczos interpolation.  

Many internal operations of FMRIPREP use Nilearn (Abraham et al., 2014; RRID:SCR_001362), 

principally within the BOLD-processing workflow. For more details of the pipeline see 

https://fmriprep.readthedocs.io/en/latest/workflows.html. 

FMRIPREP-preprocessed functional runs were further spatially smoothed (5 mm FWHM) and 

temporally high-pass filtered (cutoff = 0.01 Hz/100 s), using a custom-made Nipype (version 1.4.2; 

Gorgolewski et al, 2011; Gorgolewski et al., 2017) pipeline (https://github.com/can-lab/finish-the-job). 

The first two runs of the first training session were considered to be practice runs (for the 

participants to get used to the setting) and were not analysed further. Each of the remaining runs was 

median-scaled to a value of 10000, and all voxels exceeding a threshold of 1000 entered a pre-whitened 

generalized linear model (GLM; FILM_GLS from FSL version 6.0.1; Smith et al., 2004) with five regressors 

modelling the expected hemodynamic responses (double gamma function) during the different blocks of 

the experimental design (the regulation conditions “larger” and “smaller”, the “delay” period, as well as 

“feedback” for each regulation condition). An additional set of 49 regressors per run was added as 

covariates: 24 motion parameters from FMRIPREP (three translational and three rotational, their first 

temporal derivative, as well as the quadratic terms of both base motion parameters and their derivatives) 

and 25 physiological noise components from RETROICOR. First-level contrasts corresponding to “regulate 

to SN” (participants 3, 5, 7, 9, 11: “larger”; participants 2, 4, 6, 8, 10: “smaller ”), “regulate to ECN” 

(participants 3, 5, 7, 9, 11: “smaller”; participants 2, 4, 6, 8, 10: “larger”), and “regulate to SN > regulate to 

ECN” (participants 3, 5, 7, 9, 11: “larger > smaller”; participants 2, 4, 6, 8, 10: “smaller > larger”), were 
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estimated and averaged across all runs of one training session in a single-regressor second/intermediate-

level fixed-effects GLM (FLAMEO from FSL; version 6.0.1; Smith et al., 2004). The transfer session was 

analysed in the same way, with additional regressors  for the conditions “larger|threat”, “smaller|threat”, 

“rest|threat”, and regressors for reinforced threat blocks describing the periods before and after a shock, 

as well as the shock itself, for the transfer session, and additional contrasts for each regulation direction 

and the difference between them were estimated for safe and threat conditions independently. Session 

estimates then entered several third/group-level fixed-effects GLMs (FLAMEO from FSL version 6.0.1; 

Smith et al., 2004): four single-regressor models to test for main effects of each session, (2) a model with 

one regressors describing a positive linear relationship across sessions and 10 regressors describing subject 

effects (to test for improvements over time), as well as (3) a model with one regressor describing the 

difference between safe and threat conditions in the transfer session and 10 regressors describing subject 

effects. Results were family-wise error (FWE) corrected for multiple comparisons on the single voxel level, 

and thresholded at a α = 0.05. Analyses were performed using a custom-made Nipype (version 1.4.2; 

Gorgolewski et al, 2011; Gorgolewski et al., 2017) pipeline (https://github.com/can-lab/FawN). 

2.5.5 Data and code availability 

Scripts used during real-time neurofeedback training, as well as scripts for reproducing the 

reported self-regulation performance, self-evaluation, peripheral recordings, and full-brain analyses are 

openly available in the Open Science Framework at https://osf.io/sh2ck. Pseudonymized data will be 

available on request from the Donders Repository at https://data.donders.ru.nl. Raw MR images are not 

publicly available due to privacy or ethical restrictions. 

3 Results 

3.1 SN-ECN balance self-regulation performance 

Figure 4 shows self-regulation performance per session for each participant individually (top) as 

well as for the group of all participants (bottom). Most importantly, and in line with our hypothesis, 

participants gained significant differential control (i.e. between the two regulation directions) of the 

feedback signal, both, across all sessions, t(9) = 4.78, p < 0.001, d = 1.51, as well as during the transfer 

session, without feedback, in particular, t(9) = 3.38, p < 0.01, d = 1.07. This skill was even significantly 

demonstrable on an individual level for 8/10 and 7/10 participants, respectively (see Supplementary 

Material for detailed individual results). Participants furthermore showed a linear improvement in self-

regulation performance over time, from the first training session to the transfer session, t(9) = 2.82, p < 
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0.05, d = 0.89. No significant difference between differential self-regulation performance in the “safe”, 

compared to the “threat” condition of the transfer session could be observed, t(9) = 1.05, p = 0.16, d = 

0.33, and confidence intervals indicate significant differential control in both conditions. For a full overview 

of individuals’ self-regulation performance see Supplementary Materials. 

 

Figure 4. SN-ECN balance self-regulation performance per session for each participant individually (top) and for all participants as 
a group (bottom). On average, participants gained significant control over the feedback signal, irrespective of being threatened 
or not, and demonstrated consistent improvement during acquisation of this skill. Error bars represent 95% bootstrapped 
confidence intervalls, and indicate significance when they do not encompass zero. **: p < 0.01, n.s.: not significant. 
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3.2 Self-evaluation 

There was a significant increase in the ratings of perceived control of the feedback signal from the 

first training session (3.91) to the last (4.71), t(9) = 2.06, p < 0.05, d = 0.42. A significant decrease in the 

rating of perceived regulation difficulty was observed when regulating to ECN (first training session: 7.66, 

last training session: 5.72), t(9) = -4.68, p < 0.001, d = 1.08, but not when regulating to SN (first training 

session: 5.77, last training session: 6.21), t(9) = 0.90, p = 0.80, d = 0.34. Participants’ strategies to regulate 

to SN included focusing on emotional memories/thoughts (n = 5), imagery of size changes (n = 3), as well 

as refocusing covert attention away from the task (n = 2). Strategies to regulate to ECN included focusing 

on positive memories/relaxing thoughts (n = 5), imagery of size changes (n = 3), as well as mental 

calculation (n = 2). For a full overview of individuals’ ratings and strategies per session see Supplementary 

Materials. 

3.3 Physiological threat response 

Figure 5 shows pupil responses in the transfer runs. Overall, normalized pupil size showed the 

expected sympathetic response to the stressor, t(9) = 3.16, p < 0.01, d = 1.89, with larger pupil size during 

threat blocks (0.42 SD) than during safe blocks (-0.34 SD), validating the experimental manipulation. Post-

hoc tests indicated this effect to be significant during both rest, t(9) = 3.21, p < 0.01, d = 1.77, and when 

regulating towards ECN, t(9) = 2.13, p < 0.05, d = 1.04, but not when regulating towards SN , t(9) = 0.82, 

p = 0.23, d = 0.46. The difference in the effect between conditions was not significant, F(2,18) = 3.45, 

p = 0.054, ηp
2 = 0.28. 

Overall, the same pattern was observed for standardized average phasic skin conductance 

amplitude in the transfer runs, which was 0.14 SD larger during threat blocks than during safe blocks, t(9) 

= 2.17, p < 0.05, d = 0.99. Post-hoc tests indicated that this effect reached significant only when regulating 

towards ECN,  t(9) = 2.72, p < 0.05, d = 1.30, but not when regulating towards SN, t(9) = 1.39, p = 0.10, 

d = 0.70, or during rest, t(9) = 1.74, p = 0.06, d = 0.73. The difference in the effect between conditions was 

not significant, F(2,18) = 0.38, p = 0.69, ηp
2 = 0.04. 
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Figure 5. Pupil dilation in the Transfer session for each participant individually (top) and for all participants as a group (bottom). 
The threat of a mild electric stimlation significantly increased overall pupil size, but to different degrees in each task. Error bars 
represent 95% confidence intervalls. **: p < 0.01, *: p < 0.05, n.s.: not significant. 
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3.4 Whole-brain voxel-wise analysis 

Figure 6 shows an overview of the whole-brain voxel-wise effects of self-regulation in each of the 

four sessions, corrected for family-wise error. Regulating SN-ECN balance to either side positively activated 

a large set of regions associated with SN (including supplementary motor area, anterior cingulate cortex, 

supramarginal gyrus, insula, amygdala, hippocampus, dorsal striatum, thalamus), and negatively activated 

a large set of regions associated with ECN (including middle frontal gyrus, angular gyrus) and DMN 

(including posterior cingulate gyrus, precuneus, paracingulate gyrus). Descriptively, participants 

increasingly learned to differentially activate SN, but also part of DMN, between the two regulation 

conditions. Results of the contrast specifically testing for an improvement over time confirm this pattern, 

and further indicated that while participants did improve in increasingly activating SN when asked to 

regulate to SN, they mainly learned to actively deactivate SN when asked to shift SN-ECN balance in the 

other direction. Tables S1, S2 and S3 (Supplementary Materials) provide the full list of regions whose 

activation changed positively or negatively over time, for differential regulation, regulation to SN and 

regulation to ECN, respectively. 

 

Figure 6. Full-brain activations of the tested group of participants during self-regulation in each of the four sessions. Participants 
learned to regulate the difference signal mainly via SN and ECN (but also DMN) manipulation, and especially by actively 
deactivating SN when asked to regulate to ECN. 
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Figure 7a shows the whole-brain voxel-wise effects of threat in the transfer session, corrected for 

family-wise error. Overall, being threatened with a mild electric stimulation led to an increase in activation 

of SN regions and visual brain areas, as well as a decrease in activation of ECN and DMN regions (see table 

S4 in Supplementary Materials for the full list of regions). This effect was more pronounced in the two 

regulation conditions, compared to the rest condition. Figure 7b shows the effects of threat on self-

regulation in particular. Self-regulating to either direction, when being threatened with a mild electric 

shock, led to local increases in activation of visual brain areas, insular cortex, superior frontal gyrus and 

posterior cingulate cortex, compared to not being threatened (see tables S5 and S6 in Supplementary 

Materials for the full list of regions). However, in the differential contrast between the two regulation 

directions, only a single voxel in the middle frontal gyrus being was significantly more activated when being 

threatened, compared to when not being threatened. 

Figure 7. Full-brain activations during self-regulation in the transfer session. a) Being threatened with a mild electric shock led to 
an increase in SN activation, as well as decreases in ECN and DMN activation. (b) The threat affected self-regulation in both 
directions equally. 
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4 Discussion 

The current study is a first investigation of the general feasibility to use rtfMRI-NF to train the self-

regulation of stress-related large-scale network balance. Our results show that, given intermitted feedback 

about their performance over three training sessions, participants were well capable to learn to 

differentially control the balance between SN and ECN activation, both as a group, as well as individually.  

Crucially, participants were able to successfully transfer this newly learned skill to a situation 

where they did not receive any feedback anymore. Unlike other forms of neuromodulation which 

externally change neural parameters at the time of application or aim for long-term effects via plasticity 

changes (Johnson et al., 2013), neurofeedback specifically allows individuals to learn mental strategies 

that they can voluntarily apply themselves at a later point in time after the training. While participants in 

the current study used very different mental strategies, ranging from emotion induction to exerting 

cognitive control, they were all able to explicitly describe their chosen strategies afterwards and seemed 

to be aware of their self-regulation success. In addition to transferring the learned self-regulation 

strategies beyond the training, participants were also capable to apply them under acute stress (in form 

of a threat of mild electric stimulation). The threat of mild electric stimulation led to a significant overall 

increase in both pupil size and skin conductance, compared to periods without this threat, validating that, 

in line with previous research (Phelps et al., 2001), the threat was perceived as an acute stressor. This 

effect, while descriptively present in all conditions, did not reach statistical significance in each of them 

individually (probably due to the small size of the current sample), but there was also no evidence that the 

effect significantly differed between conditions. 

Whole-brain voxel-wise fMRI analysis confirmed that participants recruited large-scale networks 

of brain areas in SN and ECN, but also DMN, during their self-regulation attempts. Notably, participants’ 

attempts to regulate SN-ECN balance in either direction seem to have led to a general shift of network 

balance toward SN, with strong SN activation and ECN (and DMN) deactivation, compared to rest. We also 

consistently observed this pattern in the online feedback signal during the training sessions. There are 

multiple possible explanations for this observation. It has previously been shown that increases in 

cognitive effort as well as reward anticipation recruit overlapping networks of brain areas within SN 

(Vassena et al., 2014). Reward processing networks are known to be part of the neural substrates of 

neurofeedback-based self-regulation, together with other SN and ECN areas, involved in the conscious 

perception of feedback and reward, and executive aspects of the regulation tasks, respectively (Sitaram et 

al., 2017). Furthermore, an increase in cognitive effort during regulation attempts might have led to 

heightened sympathetic arousal (Westbrook & Braver, 2015), resulting in network balance shifts similar to 
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acute stressors (Young et al., 2017). Alternatively, the pressure to perform self-regulation on cue within a 

limited time period might have simply been perceived as an acute stressor. The results of the threat 

manipulation in both whole-brain fMRI as well as pupil data seem to be in line with this interpretation. 

The pupil data in the transfer session showed visibly increased dilation during regulation blocks, compared 

to safe blocks (see Figure 5). The difference was more pronounced in the safe condition than in the threat 

condition, possibly due to pupil size ceiling effects when regulating under threat. Likewise, whole-brain 

voxel-wise fMRI data showed that while threat in general led to increases in SN activation and decreases 

in ECN and MN activation, these neural effects were largely driven by the regulation conditions (which 

appeared to be equally affected by the threat). 

Importantly, however, despite a general shift towards SN, whole-brain voxel-wise fMRI analysis 

showed that participants were able to learn over time to suppress SN activation when regulating towards 

ECN, and continued to do so in the transfer session. This is also reflected in the self-evaluation results 

which indicated that participants, while generally aware of their improvement in self-regulation over time, 

only perceived a decrease in the difficulty to regulate to ECN over time. From a clinical perspective, the 

ability to voluntarily regulate network balance away from SN is particularly relevant, as it might allow 

patients with stress-related disorders to actively counteract the automatic stress-induced shifts towards 

SN (Hermans, et al., 2014). Future research applying this novel network-based neurofeedback approach 

to corresponding patient populations will be needed to test this hypothesis. It should be noted that, due 

to the explorative nature of the whole-brain voxel-wise fMRI analysis and the focus on understanding how 

the group of tested participants in the current study achieved self-regulation of the network balance, fixed 

effects analysis was performed. In contrast to the other analyses reported, the conclusions drawn from 

this analysis are hence not generalizable beyond the current sample. 

The neurofeedback approach in the current study differs considerably from the majority of 

previous rtfMRI-NF paradigms, in that it does not target only the activation of a single isolated brain area 

(Thibault et al, 2017; Sulzer et al., 2013), nor the functional connectivity between two individual areas 

(Thibault et al, 2017; Watanabe et al, 2017). We specifically targeted the difference in activation between 

two functionally different actors (c.f. Scharnowski et al., 2015). Unlike Scharnowski and colleagues (2015), 

however, we focus on the balance between two large-scale brain networks that each consist of multiple 

brain areas and are functionally related. Our approach is in line with two other recent neurofeedback 

studies that target large-scale brain network balance (Kim et al. 2019; Pamplona et al., 2020). While Kim 

and colleagues (2019) targeted changes in functional connectivity between SN and DMN, Pamplona and 

colleagues (2020) took an approach similar to ours and targeted the difference in the activation between 
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the sustained attention network and DMN. Notably, however, the current study differs to both of these 

studies by focusing on the balance between SN and ECN, specifically, providing another important proof-

of-concept demonstration for a promising new class of network-based neurofeedback paradigms. Besides 

its clinical potential to target maladaptations in large-scale network configurations, network-based 

neurofeedback might also be less affected by physiological confounds (in particular respiratory patterns) 

that are otherwise difficult to remove from a single real-time neurofeedback signal (Weiss et al., 2020). 

The large-scale nature of the involved networks over large parts of the brain, combined with the 

characteristically widespread pattern in which physiological noise affects brain activity (Birn et al., 2006), 

suggest that this confounding factor would affect each network to a very similar degree, and that a 

subtraction of two of the signal from two of those networks would largely cancel out the noise. This, 

however, remains a theoretical argument at this point, which needs to be further detailed and specifically 

tested in future research. In the current study, we consequently applied physiological noise correction to 

the offline fMRI analyses to further mitigate this issue (Glover et al., 2000; Birn et al., 2006; Shmueli et al., 

2007; van Buuren et al., 2009). 

In conclusion, the current study constitutes an important first successful demonstration of 

neurofeedback training based on stress-related large-scale network balance – a novel approach that has 

the potential to train control over the central response to stressors in real-life situations outside of the 

MRI scanner, opening up new potential clinical approaches to changing maladaptive stress responses – 

the underlying mechanism of a large variety of mental disorders (de Kloet et al, 2005 ) – and to promote 

resilience (Kalisch et al, 2017; Kalisch et al., 2015). 
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