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13 Abstract

14 Experiences of parents and/or offspring are often assumed to affect the development of trait 

15 values in offspring because they provide information about the external environment, but it is currently 

16 unclear how information from different sources and times might combine to affect the information-

17 states that provide the foundation for the patterns observed in empirical studies of developmental 

18 plasticity in response to environmental cues. We analyze Bayesian models designed to mimic fully-

19 factorial experimental studies of within and transgenerational plasticity (TWP), in which parents, 

20 offspring, neither or both are exposed to cues from predators, to determine how different durations of 

21 cue exposure for parents and offspring, the devaluation of information from parents or the degradation 

22 of information from parents would affect offspring estimates of environmental states related to risk of 

23 predation at the end of such experiments. We show that the effects of different cue durations, the 

24 devaluation of information from parents, and the degradation of information from parents on offspring 

25 estimates are all expected to vary as a function of interactions with two other key parameters of 

26 information-based models of TWP: parental priors and the relative cue reliability in the different 

27 treatments. Our results suggest empiricists should expect to observe considerable variation across 

28 experimental studies of TWP based on simple principles of information-updating, without needing to 

29 invoke additional assumptions about costs, tradeoffs, development constraints, the fitness 

30 consequences of different trait values, or other factors.

31

32 Introduction

33 The trait values expressed by the offspring of one generation can be affected by their own 

34 experiences earlier in life (within-generational plasticity, WGP), by the experiences of their parents 
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35 (transgenerational plasticity, TGP), or by the combined effects of both (within and transgenerational 

36 plasticity, TWP) [1-5]. It is often assumed that one reason why the experiences of parents and offspring 

37 might have adaptive effects on offspring trait values is that those experiences provide information about 

38 conditions in the external environment that the offspring are likely to experience later in life [6-12]. In 

39 addition, information about conditions in the external environment can also be provided by genes, 

40 inherited epigenic factors and parental phenotypes [7, 13, 14]. Hence, in order to appreciate how 

41 information from an individual’s distant and immediate ancestors and its own personal experiences 

42 might combine to affect the development of traits that are the focus of studies of WGP, TGP or TWP, we 

43 must consider how information from a variety of different sources combines within and across 

44 generations to affect the information-state of that individual. 

45 In principle, Bayesian updating is the best way to combine information from different sources 

46 and different times to estimate the value of variables in the external environment [15]. As a result, in 

47 recent years researchers have begun to use Bayesian approaches to study how information from 

48 ancestors and personal experiences might combine over the course of ontogeny [16-22], review in [23]. 

49 These models assume that an individual’s estimate of conditions in the external environment can 

50 change over ontogeny, as its initial estimate based on information from its ancestors (its naïve prior 

51 distribution) is updated on the basis of information provided by its own experiences. In turn, changes in 

52 an individual’s estimate over time are assumed to drive WGP, because an individual’s estimate of 

53 conditions in the external environment (e.g. its estimate of predator density at that locality) is assumed 

54 to affect the trait values it develops in response to that estimate (e.g. its level of antipredator behavior). 

55 By extension, these models predict that if different individuals with the same naïve prior distribution 

56 were exposed to different informative experiences over the course of ontogeny, they would develop 

57 different trait values in response to those experiences [16, 17, 20]. 
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58 By definition, empirical studies of WGP, TGP and TWP focus on phenotypic traits, not 

59 information-states. However, when WGP, TGP or TWP occur in response to cues that provide 

60 information about the external environment, variation among individuals in their information-states 

61 provides the foundation for variation in the trait values observed in experimental studies of these 

62 phenomena.  As a result, it is important to understand how the basic components of information-based 

63 models (e.g. naïve priors, cue reliability, the duration of exposure to different cues, etc.) interact to 

64 jointly affect the information-states of individuals. However, it is difficult to do this in information-based 

65 models that generate predictions about the trait values of individuals. This is because such models 

66 necessarily include assumptions about many factors in addition to an individual’s information-state that 

67 can affect the development and expression of its trait values (e.g. costs of sampling, developmental 

68 constraints, or the fitness consequences of expressing different trait values)(ibid). As a result, in such 

69 models, it is difficult to tell how much information-updating, per se, contributes to their results. 

70 A different way to study how information-updating might affect developmental plasticity is to 

71 focus on information-states, instead of phenotypes [19, 21, 22]. Models which consider how 

72 information-states change within and vary across individuals as a function of variation in prior 

73 distributions, cue reliability and other key components of information-based models have provided 

74 insights into a number of topics in developmental biology, including the ways that information-updating 

75 contributes to variation across individuals or genotypes in their developmental trajectories [19, 21, 24], 

76 and to variation in age-dependent plasticity across individuals and among empirical studies [22]. These 

77 analyzes indicate that empiricists can expect to observe a variety of different patterns in empirical 

78 studies of these topics, simply based on the ways that we would expect information from different 

79 sources to combine over ontogeny within individuals. By extension, these results suggest that it might 

80 not be necessary to invoke assumptions about developmental constraints, tradeoffs, costs of sampling, 
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81 the fitness consequences of trait values, or other factors to account for at least some of variation in 

82 results that empiricists have observed in studies of WGP. 

83 Recently Stamps and Bell [25] extended this approach by using simple Bayesian approaches to 

84 model experimental studies of TWP in response to informative cues. They found that interactions 

85 between two basic components of such models (the parent’s prior at the beginning of the study, and the 

86 relative reliability of the cues in the different treatment groups) had profound effects on the patterns of 

87 offspring information-states expected at the end of those experiments. Here, we expand these analyses 

88 to consider three other variables that are likely to vary across experimental studies of TWP: 1) 

89 differences between the duration of exposure to the same cues in parents and offspring, 2) the extent 

90 to which information from parents is devalued, as compared to the information based on offspring 

91 experience, and 3) the extent to which information from parents is degraded as it is passed from parents 

92 to their offspring. As is described below, we consider how variation among experiments in these three 

93 variables, in conjunction with variation among experiments in parental priors and the relative reliability 

94 of the cues in the different treatments, would affect the patterns of offspring information-states 

95 expected at the end of empirical studies of TWP. 

96 As was the case in [25], we illustrate this approach by modelling fully-factorial experiments of 

97 TWP in response to cues from predators, in which parents, offspring, both or neither are exposed to 

98 cues from predators, and then the trait values of the offspring are measured at the end of the 

99 experiment. Where P = exposed to cues from predators and N = not exposed to cues from predators, 

100 and where the first letter indicates the parental treatment and the second letter indicates the offspring 

101 treatment, the four treatment groups in this type of study consist of NN (neither parents and offspring 

102 exposed to cues), PN (parent exposed, offspring not exposed), NP (parent not exposed, offspring 

103 exposed) and PP (both parents and offspring exposed). 
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104 The results described in [25] were based on assumptions about experimental design and 

105 information-updating which are unlikely to be valid in many empirical studies of TWP. First, with respect 

106 to experimental design, we assumed that parents and offspring were exposed to the same cues for the 

107 same period of time. This assumption is frequently violated in experimental studies of TWP. For 

108 instance, of the 13 experimental studies of TWP in response to cues from predators listed in a recent 

109 review [26], the duration of exposure to the cues for parents and for their offspring differed in 11 of 

110 them. Hence, one important question is whether and how different durations of exposure to the same 

111 cues in parents and offspring might contribute to differences among the offspring in TWP experiments 

112 in their information states at the end of these experiments. 

113 Second, in [25] we assumed that exposure to the same cues for the same period of time in 

114 parents and offspring would provide the same information to offspring.  There are at least two reasons 

115 why this assumption need not be valid.  First, theory indicates that information based on parental 

116 experiences should be devalued, relative to information based on offspring experiences, if 

117 environmental conditions might change across or within generations [7, 27]. In nature, changes between 

118 generations in the value of a state of the environment can occur if offspring develop in a different 

119 environment than their parents, e.g. as a result of natal dispersal in spatially heterogeneous 

120 environments [11, 14] or as a result of temporal shifts in environmental conditions that may occur 

121 between generations [7, 11]. The results of recent studies of experimental evolution in nematodes 

122 support the hypothesis that temporal autocorrelation for the environments of parents and offspring 

123 encourage the evolution of transgenerational plasticity, by showing that parental experiences had 

124 adaptive effects on offspring traits in lineages which evolved when the environmental conditions during 

125 the parental and offspring generation were strongly correlated with one another, but not in lineages in 

126 which they were not [28, 29].
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127  In addition, if environmental conditions might change within generations, a parent’s estimates 

128 of those conditions based on their experiences earlier in life might no longer be accurate by the time 

129 that they transmit information about these conditions to their offspring [7, 30]. This possibility is 

130 implicitly acknowledged by empiricists who study TWP when they use experimental protocols that 

131 minimize the time that elapses between parental exposure to the cues and the time when parents 

132 transfer information to their offspring (e.g. when parents are exposed to cues from predators as adults, 

133 just before offspring production)[e.g. 31-32].                                 

134 Second, information from parents might be degraded between the time that parents perceived 

135 the cues and the time that parents transferred information based on those cues to their offspring. 

136 Degradation of information from parents based on their exposure to a given cue is likely  because the 

137 transmission of information from parents to offspring requires additional proximate steps that are not 

138 required when offspring are directly exposed to the same cue [30]. For instance, parents that detect a 

139 cue from predators might produce a signal (e.g. alter their parental behavior) based on their updated 

140 estimate of the chances that this predator lives nearby [34]. Then their offspring would need to detect 

141 this signal and use it to update their own estimate of the probability that the predator is in residence. 

142 Since neither the parent’s production of the signal nor their offsprings’ detection of that signal are likely 

143 to be error-free, the information based on the parent’s experience could become less reliable by the 

144 time it reaches their offspring. In contrast to the devaluation of information provided by parents, which 

145 is assumed to be an adaptive response to spatial and or temporal heterogeneity in environmental 

146 conditions, the degradation of the information provided by the parents is assumed to be an unavoidable 

147 consequence of the noise introduced into the information pathway by the proximate mechanisms by 

148 which parents pass information based on their own experiences along to their offspring. 

149 Hence, in the current study we considered how differences in the duration of exposure to the 

150 same cues in parents and offspring and the devaluation or degradation of information from parents 
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151 would interact with previously-examined variables (parental priors, relative cue reliability) to affect the 

152 patterns of offspring estimates expected at the end of the treatments in experimental studies of TWP in 

153 response to cues from predators. 

154

155 Material and methods

156 Details about the design and biological rationale for the models used as the basis for those in 

157 the current article are provided in previous publications [19, 21, 22, 25]. In brief, we assumed that each 

158 parent began with a prior distribution (Prior), based on information from their ancestors (e.g. via genes, 

159 inherited epigenetic factors, grand-parental experiences), as well as any informative experiences the 

160 parents had before the onset of the experiment. We illustrate the results for three informative parental 

161 Prior distributions, with different means (0.1, 0.5 and 0.9), but the same variance (0.04) (For definitions 

162 of these and other terms, see Supporting Information). 

163 We assumed that cues from the predator in the P treatment were always informative, and used 

164 beta functions with shapes modelled by α > β to indicate the shapes of the cumulative likelihood 

165 functions for the conditions in the P treatments. We analyzed two sets of models which differed with 

166 respect to their assumptions about the reliability of the information provided by the N treatment. In the 

167 first set (N- models), the information provided by the N treatment was less reliable than the information 

168 provided by the P treatment. We analyzed this situation by assuming that the information provided by 

169 conditions in the P treatment was highly reliable (likelihood with a shape modelled by α = 8, β = 1) while 

170 conditions in N provided no information about the state (i.e., the cumulative likelihood function for the 

171 N treatment had a uniform distribution (α = 1, β = 1). In the second set of models (N* models), the 

172 information provided by the P treatment and the information provided by the N treatment were equally 
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173 reliable. In this case, the cumulative likelihood function for the N treatment was the mirror-image of the 

174 cumulative likelihood function for the P treatment. For instance, if the experiences in the P treatment 

175 resulted in a cumulative likelihood function that indicated with a high level of reliability that the value of 

176 the state of the environment was likely to be high (e.g. likelihood modelled by a beta distribution with a 

177 shape indicated by α = 8, β = 1), conditions in the N treatment had a cumulative likelihood function that 

178 indicated with the same level of reliability that the value of the state was likely to be low (e.g. likelihood 

179 with a shape modelled by α = 1, β = 8).   

180 For all of the models, we computed the offspring estimates of the value of the state at the end 

181 of their respective treatments, where each estimate was the mean of the offspring posterior distribution 

182 at the end of the experiment. Hence, in the current article, ‘offspring estimate’ indicates a key 

183 component of the offspring’s information-state at the end of the experiment, namely, its best estimate 

184 of the value of the state of the environment at that point in time.  

185  

186

187 Duration of exposure to the same cue in parents and offspring

188  Preliminary analyses showed that if parents and offspring were exposed to the same cues for 

189 the same period of time, differences between the parental and the offspring generation in the age of 

190 onset of the exposure period had no effects on the results. For instance, our analyses indicated that 

191 offspring estimates of predator density would be the same if their parents had been exposed for two 

192 weeks to cues from predators just before gamete production as if the offspring themselves had been 

193 exposed for two weeks to the same cues as juveniles. These results occur because in Bayesian updating 

194 models which assume that the true state of the environment is unlikely to change over time, if different 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 12, 2021. ; https://doi.org/10.1101/2021.04.12.439424doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.12.439424
http://creativecommons.org/licenses/by/4.0/


10

10

195 subjects with the same prior distribution are exposed to the same cues, the order in which they were 

196 exposed to those cues has no effect on their final posterior distributions. Because the order-indifference 

197 of Bayesian updating is particularly relevant to analyses of sensitive periods and age-dependent 

198 plasticity, we defer discussion of this point to a study of that topic (Stamps, in prep.) 

199 In contrast, preliminary analyses suggested that different durations of exposure to the same 

200 cues in parents and offspring might have strong effects on offspring estimates at the end of their 

201 respective treatment periods. In order to investigate the effects of different durations of exposure to 

202 the conditions P or N for parents and offspring on the results, we divided the total treatment period, T, 

203 for each generation into four intervals of equal length, and then specified the likelihood function for 

204 exposure to the cue for one interval, and the likelihood function for no exposure to the cue for one 

205 interval. For instance, to model a situation in which parents were exposed to the cues for a longer 

206 period than the offspring, we assumed that parents in the P treatment were exposed to cues from the 

207 predator for all four intervals, whereas the offspring in the P treatment were exposed to the cues from 

208 the predator for either one, two or three intervals, and were exposed to no cues from predators for the 

209 remaining interval(s). Similarly, to model a situation in which offspring were exposed to the cues for a 

210 longer period than the parents, we assumed that offspring in the P treatment were exposed to the cues 

211 for all four intervals, but parents in the P treatment were exposed to the cues for one, two or three 

212 intervals, and were exposed to no cues for the remaining intervals. In all of these models, the N group 

213 was maintained with no cues from predators for all four intervals. We then used Bayesian updating to 

214 compute the mean values of the offspring posterior distributions at the end of the offspring treatment 

215 period for each of the treatment groups (NN, PN, NP and PP), based on the likelihood functions for the 

216 four intervals in the parental generation and the four intervals in the offspring generation. 
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217 As in [25], we computed separate models for the N- situation (in which the conditions during 

218 one time interval in the P treatment provided much more reliable information than the conditions 

219 during one interval in the N treatment) and for the N* situation (conditions during one interval in the P 

220 treatment provided information as reliable as the conditions during one interval in the N treatment).  

221 For the N- models, we assumed that in a P treatment in which the individual was not exposed to the 

222 cues in all four intervals, no information was provided in an interval that lacked the cue. That is, the 

223 likelihood function for one interval spent in the absence of the cue had a shape indicated by a uniform 

224 distribution (α =1, β = 1). In the N* models, we assumed that in a P treatment in which the individual 

225 was not exposed to the cues in all four intervals, the information provided by one interval spent in the 

226 absence of the cue was as reliable as the information provided by one interval spent in the presence of 

227 that cue. For instance, if the likelihood function for one interval in the presence of cues from a predator 

228 had a shape indicated by α = 2.5, β = 1,, the likelihood function for one interval in the absence of those 

229 cues had a shape indicated by α =1, β = 2.5. 

230

231 Cues based on parental experience are devalued or degraded

232  Although the devaluation and the degradation of information from parental experiences are 

233 assumed to occur as a result of different processes (see Introduction and Discussion), in both situations 

234 it is assumed that the information provided by the signal that parents pass along to their offspring based 

235 on their exposure to a given cue is less reliable than the information provided by the cue to which the 

236 parents had been exposed. In Bayesian terms, this means that although we would expect the likelihood 

237 function for the signal provided to their offspring by parents in the P treatment to have the same mean 

238 value as the cue in the P treatment for the offspring, we would expect the likelihood function for the 

239 parental signal to have a higher variance than the likelihood function for the cues in the P treatment for 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 12, 2021. ; https://doi.org/10.1101/2021.04.12.439424doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.12.439424
http://creativecommons.org/licenses/by/4.0/


12

12

240 the offspring. Hence, we used the same procedure to model the devaluation of information from the 

241 parents and the degradation of information from the parents. That is, we assumed for both situations 

242 that the signal from the parent and the cue for the offspring had likelihood functions with the same 

243 mean, but different variances. For instance, instance, if the likelihood function for the P treatment for 

244 offspring had a shape modelled by α = 8, β = 1 (mean = 0.89, variance = 0.01), the likelihood function for 

245 the signal provided by parents to offspring by the parents in the P treatment might have a shape 

246 modelled by α = 3.5, β = 0.44 (mean = 0.89, variance = 0.02).  That is, we assumed that exposure to cues 

247 from predators in the P treatment yielded the same point estimate of the value of the state of the 

248 environment for parents and offspring (in this case, a relatively high value of 0.89, on a scale of 0 to 1), 

249 but the reliability of the information provided by the parents to their offspring (indicated by the variance 

250 of the likelihood function) was lower than the reliability of the information provided by the same 

251 experience for the offspring. 

252 In the N- models, the reliability of the information for the P treatments differed for parents and 

253 offspring, as was indicated above. However, given our assumption for these models that the information 

254 in the N treatments was unreliable (see above), we assumed that the information provided by the N 

255 treatments was equally unreliable for both the parent and the offspring generation (modelled by α = 1,  

256 β = 1). 

257 In the N* models, in which conditions in the N treatment provided information as reliable as 

258 those in the P treatments, we devalued the information provided by parents in the N treatment groups 

259 to their offspring. For instance, if the likelihood function for the P treatment for the offspring had a 

260 shape modelled by α = 8, β = 1, the likelihood function for conditions in the N treatment for offspring 

261 had a shape modelled by α = 1, β = 8, but the likelihood function for the information provided by 

262 parents to their offspring had a shape modelled by α = 0.44, β = 3.5. 
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263 All of the other assumptions and parameter values for these models were the same as those for 

264 the models described in [25].

265

266

267 Results

268 In the ‘baseline’ models, in which parents and offspring were exposed to the same cues for the 

269 same period of time, and in which information from parents was neither devalued or degraded, the 

270 resulting patterns of offspring estimates varied as a function of the relative reliability of the cues in the 

271 different treatments and the parental Priors (Fig 1). In the N- models, in which the information provided 

272 by conditions in one treatment (here P, indicating the presence of cues from predators) was much more 

273 reliable than the information provided by the conditions in the other treatment (here, N, indicating the 

274 absence of cues from predators), we observed a ‘jump-up’ pattern, in which the value for the NN group 

275 was low, and the values for the other three groups (NP, PN, PP) were high and similar (but not identical) 

276 to each other. However, this pattern only occurred when the state of the environment indicated by the 

277 parental Prior differed from the state indicated by the cue in the P treatment. Since we assumed here 

278 that the cues in the P treatment indicated that the value of the state of the environment was high, we 

279 observed the jump-up pattern when the parental Prior strongly contradicted the cue (Prior mean = 

280 0.1)(Fig 1a). In contrast, when the parental Prior and the cues in the P treatment indicated the same 

281 value of the state (Prior mean = 0.9), the offspring estimates were similar for all four treatment groups. 

282 This result occurred because in these models, the N treatment had no effect on an individual’s 

283 information-state, so the results were primarily affected by the ‘discrepancy rule’ of Bayesian updating 

284 (see [24] for more on this topic). 
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285 In the N* models, in which the information provided by conditions in the P treatment and the 

286 information provided by conditions in the N treatment were equally reliable, we observed a ‘step-up’ 

287 pattern, in which the offspring estimates for the NN treatment were low, those for the PP treatment 

288 were high, and those for the NP and PN treatments were intermediate. In this case the pattern did not 

289 vary as a function of the parental Prior: for the same set of parameter values, the step-up patterns were 

290 similar for a range of parental Priors (Fig 1b). This result occurred because in the N* models, by the end 

291 of the experiment reliable information about the state of the environment had been provided by the 

292 cues in both treatment groups, so after the offspring were exposed to two doses of informative cues 

293 (based upon the parent’s experience and their own personal experience), the initial estimate provided 

294 by the parental Prior no longer had much effect on their estimates of the value of the state of the 

295 environment. These results have been described and discussed in detail in [25], so we merely present 

296 examples of these patterns here for comparison with the results of the models in which we relaxed our 

297 assumptions about cue durations, devaluation and degradation. 

298

299 Fig 1.  How differences in the reliability of the cues in the different treatments affect offspring 

300 estimates of the value of conditions in the external environment. P treatment = exposure to cues from 

301 a predator, N treatment = no cues from predator, first letter = parental treatment, second letter = 

302 offspring treatment. Predicted offspring estimates at the end of an experiment for each of four 

303 treatment groups (NN, PN, NP and PP) are indicated for parental Priors with three different means (0.1, 

304 0.5, 0.9) and the same variance (0.04).    a. N- models: conditions in the N treatment provide much less 

305 reliable information than conditions in the P treatment. In this example, information provided by 

306 conditions in the P treatment is modelled by a cumulative likelihood function with a shape indicated by 

307 α = 8, β = 1, indicating that the value of the state is likely to be high; information provided by conditions 

308 in the N treatment is modelled by a uniform distribution (α = 1, β = 1).    b. N* models. Conditions in the 
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309 N treatment provide information as reliable as conditions in the P treatment; the likelihood functions for 

310 the P and N treatments are mirror-images of one another. In this example, conditions in the P treatment 

311 indicate with a high level of reliability that the state of the environment is likely to be high (likelihood 

312 modelled by α = 8, β = 1); conditions in the N treatment indicates with equally high reliability that the 

313 state of the environment is likely to be low (likelihood modelled by α =1, β = 8). 

314 When parents and offspring were exposed to the same cues for different periods of time, the 

315 main effect was to generate differences between the offspring estimates for the PN and NP groups; 

316 these differences were not observed in the baseline models (compare Fig 1 with Figs 2 and 3). As 

317 intuition would suggest, the offspring estimates were higher for the treatment group which included the 

318 generation that had been exposed to the cues for a longer time. For instance, if the offspring in the P 

319 treatment group were exposed to the cues for a longer period than their parents, PN < NP (Fig 2a,b). 

320 Conversely, if the offspring in the P treatment group were exposed to the cues for a shorter time than 

321 their parents, then PN > NP (Fig 3a,b). 

322

323 Fig 2.  Duration of exposure to the same cues is longer for offspring than for parents. In the P 

324 treatment groups, parents are exposed to the presence of cues from predators for two of four time 

325 intervals, but offspring are exposed to cues from predators for all four time intervals (see text).    a. N- 

326 models. In this example, the likelihood function for exposure to cues from a predator for one time 

327 interval has a shape indicated by α = 2.5, β = 1; the likelihood function for the absence of cues for one 

328 interval has a shape indicated by a uniform distribution (α =1, β = 1).    b. N* models. In this example, the 

329 likelihood function for exposure to cues from a predator for one interval has a shape indicated by α = 

330 2.5, β = 1; the likelihood function for the absence of cues for one interval has a shape indicated by α =1, 

331 β = 2.5. 
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332

333 Fig 3. Duration of exposure to the same cues is longer for parents than for offspring. In the P treatment 

334 groups, parents are exposed to the presence of cues from predators for time four intervals, but offspring 

335 are exposed to cues from predators for only two of the four time intervals (see text). Other variables are 

336 the same as in Figure 2. 

337

338 The overall patterns were otherwise similar to those found in the baseline models. That is, a 

339 jump-up pattern was detectable in the N- models when the parental Prior indicated a different value of 

340 the state than the cues in the P treatment, but not when the parental Prior indicated a value of the state 

341 similar to the value indicated by the cues in the P treatment (Figs 2a, 3a). Similarly, similar step-up 

342 patterns were detectable across a range of parental Priors in the N* models (Figs 2b, 3b). However, for 

343 comparable sets of parameter values (i.e. for the same parental Prior, and for the same likelihood 

344 function for the cues in the P treatment), the differences between the offspring estimates for the NP 

345 and PN groups were much less pronounced for the N- models than for the N* models (compare Fig 2a 

346 versus 2b, and Fig 3a versus 3b). 

347 When information from the parents was devalued or degraded, the models predicted lower 

348 estimates of the value of the state for the PN group than for the NP group (Fig 4). The overall patterns 

349 were otherwise similar to those in the baseline models. A jump-up pattern was detectable in the N- 

350 models when the parental Prior indicated a different value of the state of the environment than did the 

351 cues in the P treatment, but not when the parental Prior indicated a value similar to that indicated by 

352 the cues in the P treatment (Fig 4a). In addition, similar step-up patterns were detectable for all parental 

353 Priors in the N* models (Fig 4b). However, for comparable sets of parameter values, the differences 
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354 between the offspring estimates for PN and NP were much less pronounced for the N- models (Fig 4a) 

355 than for the N* models (Fig 4b). 

356

357 Fig 4. Information from parents is devalued or degraded before being passed to the offspring. We 

358 assume that parents and offspring in the P groups are exposed to the same cue for the same period of 

359 time, with a likelihood function indicated by α =8, β = 1.  However, the signal provided by the parent to 

360 the offspring as a result of the parent’s exposure to the cue is less reliable; it is modelled by a likelihood 

361 indicated by α = 3.5, β = 0.44.    a. N- model: information provided by conditions in the N treatment is 

362 much less reliable than the information provided by conditions in the P treatment (likelihood for 

363 conditions in the N treatment modelled by α = 1, β = 1).    b. N* model: conditions in the N treatment 

364 provide information that is as reliable as conditions in the P treatment (likelihood for N modelled by α = 

365 1,  β = 8). However, the signal that parents provide to their offspring as a result of exposure to 

366 conditions in the N treatment is less reliable, with a likelihood modelled by α = 0.44, β = 3.5. 

367

368 Discussion 

369 The current study suggests that empiricists should not be surprised to observe considerable 

370 variation among experiments in the results of studies of trans and within generational plasticity (TWP) in 

371 response to informative cues. Our results show that the offspring estimates that are assumed to provide 

372 the foundation for the offspring trait values in such experiments are expected to vary as a function of 

373 many factors, including 1) parental Prior distributions, 2) the relative reliability of the information 

374 provided in the different treatments, 3) differences in the duration of exposure to the same cues for 

375 parents and offspring, 4) the extent to which information based on cue-exposure for parents is 
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376 devalued, relative to the information based on cue-exposure for offspring, and 5) the extent to which 

377 information passed from parents to offspring is degraded, relative to the information based on the 

378 personal experience of the offspring. We illustrate these findings by modelling fully factorial 

379 experiments in which parents, offspring, both or neither are exposed to cues from predators (in P 

380 treatments) or are not exposed to those cues (N treatments).

381 Our results confirm previous results showing that interactions between parental Priors and 

382 relative cue reliability are expected to have a major impact on the patterns of offspring information 

383 states in empirical studies of TWP [25]. We analyzed two extreme situations for differences in the 

384 reliabilities for the two treatments:  N- models, in which the information provided by conditions in the N 

385 treatment is much less reliable than the information provided by conditions in the P treatment, and N* 

386 models, in which the information provided by the conditions in the P and the N treatments is equally 

387 reliable. A possible example of the former might be an experiment in which the cues from the predator 

388 in the P treatment consists of a single, near-escape from a predator over a period of several months. In 

389 this case, conditions in the P treatment might provide a reliable indication that the predator in question 

390 lives at the current locality, whereas the conditions in the N treatment may provide a less reliable 

391 indication that it may not. By way of analogy, being the victim of a robbery once over the course of a 

392 year might indicate with a high degree of reliability that thieves are active in your neighborhood, but if 

393 such incidents rarely occur, not being robbed over the course of a year need not indicate with the same 

394 level of reliability that they are not. An example of a situation in which the conditions in the P and the N 

395 treatments might provide equally reliable information is when the subjects in the P treatment are 

396 exposed for an extended period to a high concentration of kairomones from a predator and the subjects 

397 in the N treatment are maintained in the absence of kairomones for the same period of time. In this 

398 situation, investigators typically assume that the conditions in the P treatment reliably indicate that 

399 predator density is high, whereas the conditions in the N treatment indicate with a comparable level of 
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400 reliability that predator density is low, since the concentration of kairomones never exceeded the preys’ 

401 threshold for detection (see [25] for additional discussion). 

402 The current results confirm previous results indicating interactions between parental Priors and 

403 the relative reliability of the cues in the different treatments (here P vs N) are expected to have major 

404 effects on the patterns of offspring estimates in studies of TWP in response to informative cues. In 

405 particular, the predicted patterns of offspring estimates were highly dependent on parental Priors in the 

406 N- models, but virtually independent of parental Priors in the N* models [25]. 

407 These results imply that if investigators use an experimental protocol in which the information 

408 provided by the different treatments differs in its reliability (as in the N- models), the results of their 

409 experiments might vary as a function of the population-of-origin or the genotypes of their subjects. This 

410 follows from the assumption that subjects from different populations might have different parental 

411 Priors, based on information from their ancestors, e.g. from genes, inherited epigenetic factors or grand-

412 parental effects. In addition, if the parents for an experimental study of TWP were collected from the 

413 wild, then variation among populations in parental experiences earlier in life could also contribute to 

414 variation among populations in parental Priors. Along the same lines, different genotypes from the same 

415 population might begin with different prior estimates of the value of the same state of the environment 

416 [e.g. 24], so that the results of studies of TWP based on clonal organisms might vary depending on the 

417 clone that was selected for the study.   

418 Indeed, if investigators used an experimental protocol in which the conditions in the different 

419 treatments differed with respect to the reliability of their information (as in the N- models), the choice 

420 of population or genotype for a study might determine whether one could even detect plasticity. For 

421 instance, in all of the N- models analyzed in this article, a ‘jump-up’ pattern (NN < PN,NP < PP) for 

422 offspring estimates was observed when the value of the state of the environment indicated by the 
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423 parental Prior strongly contradicted the value of the state indicated by the cues in the P treatment. 

424 However, when the value of the state indicated by the parental Prior was similar to the value indicated 

425 by the cues in the P treatment, the offspring estimates were virtually identical in all four treatment 

426 groups (NN≈ PN≈ NP≈ PP). In the latter situation, one would not expect to observe either WGP or TGP. 

427 In contrast, consider a situation in which an investigator used an experimental protocol in which 

428 the cues in the different treatments were all equally reliable (as in the N* models). In this case, our 

429 results suggest that the choice of a population or a genotype for the experiment might not matter. As 

430 we show here for all of the models, in this situation we expect to observe a similar step-up pattern (NN 

431 < PN,NP < PP) regardless of the parental Prior. 

432  As intuition would suggest, the main effect of assuming that cue duration differed for parents 

433 and offspring or that the information provided by parents was either devalued or degraded was to 

434 generate different values of the offspring estimate for the PN and the NP treatments; in the absence of 

435 these assumptions, the offspring estimates were the same for the PN and NP treatments. However, for 

436 the same parental Prior and for the same cues in the P treatment, the effects of differences in cue 

437 duration or the devaluation or degradation of information from parents were much more pronounced in 

438 the N* models than in the N- models. This suggests that in general, it would be easier to detect the 

439 effects of cue duration or of the parental devaluation/degradation of information on offspring estimates 

440 or trait values in TWP studies if one used an experimental protocol in which the information provided by 

441 both treatments was similarly reliable than if one used a protocol in which the information provided by 

442 one treatment was much more reliable than the information provided by the other. 

443 If we just focus on situations in which the information provided by the conditions in both 

444 treatments is equally reliable (the N* models), the results indicate, as intuition would suggest, that the 

445 effects of those exposures on offspring estimates would be stronger for the generation that was 
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446 exposed to the cues for the longer period of time. This result supports earlier suggestions that under 

447 natural conditions, parental experiences might have a stronger impact than offspring experiences on the 

448 phenotypes of offspring during the juvenile period, because the cumulative experiences of parents over 

449 their lifetimes provides more reliable information than is provided to offspring based on their own 

450 experiences since conception [35, 36]. As a practical matter, these results indicate that variation among 

451 experimental studies of TWP in the relative duration of exposure to the same cues for parents and 

452 offspring would, all else being equal, be expected to contribute to variation in their results. 

453 The models of information-updating presented here may also provide a useful point of 

454 departure for investigating other aspects of the timing of cue-exposure that might contribute to the 

455 variation results observed in empirical studies of TWP. For instance, the models analyzed herein ignore 

456 sensitive periods, i.e. situations in which exposure to the same cues have different effects on trait 

457 values, depending on the age of onset of the cue-exposures [37-40]. Although traditionally the literature 

458 on sensitive periods has focused on the effects of an individual’s own experiences early in life on its trait 

459 values later in life (i.e. WGP), recently researchers have begun to consider the possibility of sensitive 

460 periods for TGP, i.e. situations in which exposure to cues for parents have different effects on the trait 

461 values of their offspring, depending on the age at which those exposures occurred in the parents, or the 

462 age at which the offspring received the information from their parents [e.g. 26, 30, 41]. However, at this 

463 point it is unclear how sensitive periods of parents, offspring or both would interact to affect offspring 

464 estimates of conditions in the external environment. 

465 As a general rule, we would expect the effects of sensitive periods on offspring information-

466 states to depend on the protocol used in a given experiment. Personal exposure to cues in the external 

467 environment can’t begin to affect the information-states of offspring until the offspring have become 

468 capable of detecting those cues (e.g. as embryos, newborns, or hatchlings). An additional complication is 
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469 that in order to demonstrate that cue-exposure for parents affects the trait values of their offspring, 

470 exposure to cues in the external environment for parents must end before their offspring become 

471 capable of detecting the cues on their own. Hence, if both parents and offspring were continuously or 

472 repeatedly exposed to the cues of interest from the embryo stage until just prior to offspring 

473 production, both generations would be exposed to those cues throughout their sensitive periods, no 

474 matter if or when they occurred in either generation.  In that case, the predicted patterns of offspring 

475 estimates would be the same as those predicted in the absence of sensitive periods (e.g. see Figs 1 and 

476 4). However, if parents or offspring had sensitive periods for the effects on cue-exposures on offspring 

477 trait values, if these periods occurred at different ages in the two generations, and if exposure to the 

478 inductive cues was limited to restricted periods in both generations, then the effects of sensitive periods 

479 on offspring estimates are unclear. This would be a worthwhile topic for further empirical and 

480 theoretical study.  

481 Our results also confirm the intuitive notion that when information from parents is devalued 

482 relative to information from offspring, exposure to cues for parents would have a weaker effect on 

483 offspring estimates than equivalent exposure to the same cues in the offspring. Theory predicts that the 

484 devaluation of information from parents should occur as an evolved, adaptive response to reduced 

485 levels of autocorrelation between parental environments and offspring environments (see Introduction). 

486 In other words, the devaluation of information from parents is expected when, under natural conditions, 

487 the value of a state of the environment is likely to change between the time that parents are exposed to 

488 cues and the time that their offspring are exposed to the same cues. For instance, if we assume that the 

489 true value of the state gradually changes over time, the devaluation of information from parents would 

490 be inversely related to the amount of time that elapsed between the time that parents were exposed to 

491 cues and the time that their offspring were exposed to the same cues. In turn, this implies that for 

492 subjects from the same population, the devaluation of information from parents would be less 
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493 pronounced in an experiment in which parents were exposed to the cues of interest just before their 

494 offspring were conceived and their offspring were exposed to the same cues soon after hatching than in 

495 an experiment in which both parents and offspring were exposed to the cues soon after hatching. 

496 Of course, in natural populations, the true value of a state of the environment need not change 

497 gradually over time, but may instead occur at specific times, lifestages or life-history landmarks. For 

498 instance, in a species in which the value of a state (e.g. predator density) does not change over the 

499 distances typically traveled by natal dispersers, information based on a parent’s exposure to kairomones 

500 from a predator in its natal habitat would be also be relevant to its offspring’s estimate of predator 

501 density in its own natal habitat. In contrast, in a species in which predator density varies over typical 

502 dispersal distances, information based on a parent’s exposure to kairomones in its natal habitat would 

503 be less useful for estimating the predator density in its offspring’s natal habitat. In other words, theory 

504 suggests that we should expect the devaluation of information from parents to differ among different 

505 populations or species, depending on the extent to which the environmental factors of interest varied 

506 spatially over the distances relevant to natal dispersal, or varied temporally within and across 

507 generations. Hence, one could potentially test predictions about the devaluation of information from 

508 parents using comparative data from field studies indicating whether, how, and when particular 

509 environment conditions of interest are spatially and temporally correlated for parents and their 

510 offspring. Unfortunately, at present this data is still sparse [42-44]. 

511 In addition, our results also indicate that if information from parents is degraded before it is 

512 passed along to their offspring, exposure to cues for parents would have a weaker effect on offspring 

513 estimates than equivalent exposure to the same cues in offspring. However, in contrast to the duration 

514 of exposure to cues, which can be readily manipulated or controlled by investigators, the degradation of 

515 information from parents cannot. The degradation of information from parents is assumed to occur as a 

516 non-adaptive consequence of the proximal mechanisms by which parents transfer information to their 
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517 offspring. That is, the degradation of information from parents to their offspring is assumed to be a 

518 result of the ‘noise’ introduced into the flow of information from one generation to the next, based on 

519 the series of processes that intervene between the time that mothers and/or fathers are personally 

520 exposed to the cues and the time that an offspring receives signals from their parents based on the 

521 parent’s estimate of the value of the state [30]. 

522 Because we assume that the degradation of information occurs as a result of unavoidable 

523 constraints in the mechanisms responsible for the transfer of information across generations, we would 

524 expect the degradation of information from parents to be phylogenetically conservative, i.e. similar for 

525 populations and species with comparable patterns of offspring development and parental care. Thus, in 

526 contrast to the situation for the devaluation of information from parents, we would not expect the 

527 degradation of information from parents to vary across populations or closely-related species, as a 

528 function of the extent to which the environmental conditions experienced by parents and offspring were 

529 correlated with one another across space and time. Instead, testing hypotheses about the effects of the 

530 degradation of information from parents to offspring will require detailed information about the 

531 proximal mechanisms which mediate the flow of information from parents to offspring in a given taxon. 

532 At present, little is known about this topic; this would be another fruitful topic for future research. 

533  Under certain conditions, models which predict patterns of offspring estimates may help shed 

534 light on the patterns of offspring trait values observed in empirical studies of TWP. One important 

535 condition is that the inductive cues only provide information, as opposed to also having direct, long-

536 lasting effects on the somatic states of parents, offspring or both. Detailed discussion of the difference 

537 between inductive experiences which affect development because they provide information and 

538 inductive experiences which affect development because they have persistent effects on somatic states 

539 can be found in [6, 9, 45, 46]. Examples of information-only inductive experiences include stimuli 

540 produced by predators, conspecifics, or competitors. Examples of inductive experiences which might 
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541 provide information, but which also have direct effects on a developing organism’s somatic state, 

542 include food deprivation in animals, shade in plants, and extreme temperatures in either. As Nettle and 

543 Bateson (2015) point out, if an inductive experience is information-only, one can imagine a single loss-

544 of-function mutation that abolishes an individual’s ability to detect that cue, but which leaves the 

545 developing individual otherwise unaffected. In contrast, if an inductive experience has a direct and 

546 lasting impact on an individual’s state, one would expect that experience to affect its trait values even if 

547 the individual was unable to sense that it had that experience. Although it is possible to make general 

548 predictions about how particular trait values might change in response to exposure to information-only 

549 cues over the course of development [e.g.  17, 20], this is much more difficult when experiences also 

550 have direct, lasting effects on an individual’s metabolism, growth or other aspects of its somatic state 

551 (but see 16).

552 A second important condition for assuming that offspring estimates will be directly related to 

553 the expression of a given trait in the offspring is evidence that the trait is advantageous when the 

554 offspring is in the environment indicated by the cues in the experiment. For example, in empirical 

555 studies of TWP in response to cues from predators, investigators often focus on inducible defenses, e.g. 

556 behavioral or morphological traits which have been shown to increase survivorship when offspring are 

557 in the presence of predators. In such cases, it is reasonable to assume that those traits would be more 

558 strongly expressed if a subject’s estimate of the value of an environmental state that contributes to 

559 predation risk (e.g. predator density) was high than if it was low. In contrast, analyses of offspring 

560 information-states are much less useful for predicting the plasticity of traits for which the expected 

561 adaptive response to different information states is unknown or uncertain. 

562 However, if a cue is information-only, if the adaptive phenotypic response to that cue is clear, 

563 and if one has a reasonable idea about the relative reliability of the information provided by the 

564 conditions in the different treatments, then these models can provide a useful benchmark against which 
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565 to compare the patterns for offspring trait values observed in empirical studies of TWP. For instance, if 

566 parents and offspring are both exposed to the same cues from predators from birth to maturity, if one 

567 measures inducible traits known to improve survivorship in the presence of that predator, and if it is 

568 reasonable to assume that the cues in the P treatment and the cues in the N treatment are equally 

569 reliable, then the models in the current paper predict a ‘step-up’ pattern for offspring trait values, in 

570 which the values for an antipredator trait for the PN group are either the same or lower than the values 

571 for the NP group (see Figs 1b and 4b). In addition, if information from the field indicates that the 

572 environmental state of interest might change between the parental and offspring generations, one 

573 would expect the trait values for the NP group to be higher than the trait values for the PN group. 

574 An example of an experiment for which these conditions appear to be satisfied is a classic study 

575 of TWP in which Daphnia cucullata parents and offspring were exposed to kairomones from a predator 

576 (Chaoborus  flavicans) from birth to first reproduction, and then relative helmet length was measured at 

577 the age of first reproduction in the offspring [2]. Other experiments have shown that kairomones from 

578 C. flavicans induce the development of larger helmets in D. cucullate [47], and that relatively large 

579 helmets protect juvenile and adult D. cucullata from this predator [48]. In addition, field studies of C. 

580 flavicans indicate that the risk it poses to Daphnia spp. varies within seasons across the temporal scales 

581 that might encourage the devaluation of information from parents [49]. Finally, continuous exposure of 

582 kairomones from a predator from birth to maturity in a P treatment is typically assumed to provide 

583 reasonably reliable information about the density of that predator, while the absence of cues from the 

584 predator from birth to maturity in an N treatment is assumed to provide comparably reliable 

585 information indicating that the density of that predator is low. As predicted by the models described 

586 herein under this set of conditions Agrawal et al. [2] reported a step-up pattern (NN < PN < NP < PP), in 

587 which the trait values for all four groups were significantly different from one another.  
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588 Finally, the current study shows how an appreciation of the ways that information from 

589 different sources is expected to combine within and across generations reveals a number of questions 

590 that investigators might want to consider when they are planning or interpreting the results of empirical 

591 studies of TWP in response to inductive cues. These are summarized as follows:

592 1) Are the inductive cues information-only, or could the inductive experiences also have direct, lasting 

593 effects on the somatic states of either the parent or their offspring?  Insights from models of 

594 development based on information-updating are currently most useful for predicting trait values when 

595 cues are information-only. 

596 2) Are the conditions in the different treatments likely to provide equally reliable information about a 

597 state of the environment, or are the conditions in one treatment likely to provide much more reliable 

598 information than those in the other treatment? As was shown here and in [25], we expect the patterns 

599 of offspring estimates in TWP studies to dramatically differ in these two situations. 

600 3) Are parents and offspring exposed to the same cues for the same period of time? As is shown in the 

601 current article, all else being equal, differences in the duration of cue-exposure for parents and offspring 

602 are expected to affect the patterns of offspring estimates, especially if the cues in the different 

603 treatments are equally reliable.  

604 4) Is there strong existing support for the assumption that a particular response in a particular trait to a 

605 particular cue is likely to be adaptive? In such cases, it is more likely that differences among the 

606 treatment groups in offspring information states at the end of the experiment will be related to 

607 differences among those groups in the trait values expressed by the offspring at the end of the 

608 experiment. 

609 In addition, our results indicate that it may not be necessary to invoke assumptions about 

610 developmental constraints, costs of sampling, or the fitness consequences of trait values of offspring to 
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611 account for at least some of variation in results observed in empirical studies of TWP. Instead, we have 

612 shown that even if we restrict ourselves to experiments with information-only cues, we should expect to 

613 observe considerable variation in their results, as a function of variation in parental priors, the reliability 

614 of the cues in the different treatments, differences in the duration of cue-exposure for parents and 

615 offspring, and the extent to which information from parents was either devalued or degraded in 

616 comparison to information from offspring.  

617
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