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Abstract 
        Over the last decade, seemingly conflicting results were obtained regarding the 
question of whether features of an object are stored separately, or bound together, in 
working memory (WM). Many of these studies are based on an implicit assumption 
about a default, or fixed, mode of working memory storage. However, according to 
recent findings about the functional property of WM, we proposed that anticipated 
memory probes used in a given experiment might actually determine the format in 
which information is maintained in WM. In order to test this flexible maintenance 
hypothesis, we recorded EEG while subjects performed a delayed-match-to-sample 
task with and without the requirement of maintaining bound features. In two 
experiments, we found significant differences in EEG signals recorded in central-
parietal channels between the two conditions, providing reliable evidence for such 
flexible maintenance.  
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Introduction  
The question of how feature binding is maintained in working memory has received a 
lot of attention in the psychological and neuroscientific literature (Treisman & Gelade, 
1980; Treisman, 1998;Schneegans & Bays, 2019a; Treccani, 2018). These studies 
focused on investigating two questions: 1) whether objects are stored in the visual 
working memory as bound objects or separated features, and 2) whether the 
maintenance of binding in working memory requires the involvement of additional 
processing resource, for instance, attention. These two questions are interrelated yet 
independent.  

Assessing the limitations of working memory performance is a typical, but indirect, 
way to investigate the first question concerning the format of objects maintained in 
working memory, either as bound objects or as separate features. If features are 
separately stored in working memory, then performance should be limited by the 
number of features rather than the number of objects to be maintained. Otherwise, if 
bound objects rather than separate features are stored, then working memory 
performance should be limited by the number of objects regardless of the number of 
features.  Following such reasoning, Luck and Vogel (1997) proposed a ‘strong 
object’ view since they observed that increasing numbers of features within objects 
did not impair performance in change-detection tasks. Moreover, they found that 
remembering additional features did not decrease performance compared to 
remembering less features with the same number of objects. Invariance to the number 
of features was observed even when one object consisted of multiple values from the 
same feature dimension. Such a strong object hypothesis was supported by a study 
showing no difference in delay EEG activity between memorization of multiple and 
single color objects (Luria & Vogel, 2011).  

However, other studies came to different conclusions. For example, Wheeler and 
Treisman (Wheeler & Treisman, 2002) observed that while features from different 
dimensions could be stored in parallel without a cost for working memory 
performance, adding features from the same feature dimension limited memory 
performance. They proposed the multiple-resources view, stating that working 
memory maintains features from different feature dimensions in parallel, while 
features from the same feature dimension compete for storage space. The multiple-
resources view was later supported by other studies using either a similar (Delvenne 
& Bruyer, 2004) and different paradigms (Wang, 2017, Xu, 2002). For example, 
Wang et al (2017) found that for objects with two dimensions, the memory 
performance decreased as more feature values had to be remembered, but the other 
(fixed) dimension of that object was not affacted. 

Yet another variant for the architecture of working memory suggests that working 
memory performance is limited by both the number of objects and the number of 
features. For example, Olson and Jiang (2002) found that when the number of objects 
was held constant, performance was better in the single-feature condition than in the 
multiple feature condition, suggesting that it was more difficult to store two features 
than one feature of an object. When the number of features was held constant, 
performance was better when features conjoined to form objects than when they were 
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presented as isolated features. The importance of both the number of features and the 
number of items inspired the ‘weak-objects view’ of working memory limitation  
(Alvarez & Cavanagh, 2004; Hardman & Cowan, 2015). 

The second question, whether binding features together requires additional resources, 
was widely studied through dual-task paradigms in which a secondary-attention-
demanding task was performed during the retention interval of a task. If maintaining 
bound objects requires processing resources beyond those required for maintaining 
unbound features, then tests requiring retention of bound features would suffer from 
the secondary task to a greater extent than those requiring only retention of features.  
Using this approach, Allen, Baddeley and Hitch (2006) found that a concurrent 
backward counting task impaired overall change-detection performance, but did not 
impair memory of bound objects more than memory of separate features. This pattern 
of results was replicated when memory of bound objects was made more demanding 
by separating the shape and color features spatially, temporally, or across visual and 
auditory modalities (Baddeley, Allen, & Hitch, 2011), and when the secondary task 
was auditory (Morey & Bieler, 2013; Vergauwe, Langerock, & Barrouillet, 2014). 
That is, the impairment caused by the secondary task was not selective to bound 
objects.  

However, some secondary tasks, involving object-based attention, like multi-object 
tracking (Fougnie & Marois, 2009), mental rotation, and random dot kinematograms 
(He et al., 2020; Shen, Huang, & Gao, 2015), showed a greater interference with the 
maintenance of bound objects. A specific susceptibility of feature bindings to 
interference from subsequent distractor stimuli has also been observed (Makovski & 
Pertzov, 2015; Ueno, Allen, Baddeley, Hitch, & Saito, 2011). A fMRI study showed 
that retention of binding in addition to features involved more cortical regions 
compared with retention of features (Parra, Della Sala, Logie, & Morcom, 2014). 
Behavioral dissociation between maintaining features and bound objects was 
observed in different groups. For example, memory for bound objects could be 
impaired, without impairment in memory for individual features or locations, in 
patients with a variant of encephalitis (Pertzov et al., 2013) and Alzheimer’s disease 
(Liang et al., 2016; Parra et al., 2009; Pertzov et al., 2013). This suggests that 
maintenance of binding involves extra processing resources in addition to 
maintenance of features.  

Both debates about whether features are stored separately or bound, and whether 
keeping bound objects in WM requires extra attention or not, are based on an implicit 
assumption that there is a default or fixed mode of working memory storage. Under 
this assumption, this mode of representation could be impaired with resource shortage 
and could be estimated with performance in response to different probe questions. 
However, such a universal default mode cannot be taken for granted. Indeed, 
remarkable flexibility in prioritizing information in WM according to the task goal 
has been reported. For example, when non-human primates viewed the same to-be-
remembered stimuli but were trained to expect different kinds of memory probes, 
delay activity in the prefrontal cortex showed different patterns (Rao, Rainer, & 
Miller, 1997). In an fMRI study in humans, participants were required to remember a 
face and a scene (Nobre, 2007). During the delay period, a cue was presented to 
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inform which is to be tested later. Increased activity was observed in areas involved in 
face (fusiform gyrus) or scene (parahippocampal gyrus) processing, according to the 
cue. Thus, working memory is not simply a passive representational state of visual 
input during a delay period, but is better conceived as a functional state bridging 
previous contexts and sensations to anticipated actions and outcomes (Myers, Stokes, 
& Nobre, 2017). Consequently, the anticipated memory probes (questions) used in a 
given experiment might actually determine the format in which objects will be 
maintained in working memory and the involved cognitive resources.  

Imaging studies have also supported both maintenance of separate features and of 
bound objects. For instance, both primate (Baizer, Ungerleider, & Desimone, 1991; 
Mishkin, Ungerleider, & Macko, 1983) and human studies (Courtney, Ungerleider, 
Keil, & Haxby, 1996; Smith et al., 1995) found that working memory for spatial 
location and item identities activated different regions of the brain. Other studies 
however found no evidence for distinct representations of  spatial and non-spatial 
features (D’Esposito et al., 1998; Kravitz, Kriegeskorte, & Baker, 2010; Kravitz, 
Saleem, Baker, & Mishkin, 2011). These conflicting findings might be due to 
different methodologies used, but they may also be due to the flexibility of storing 
visual input both as bound objects and as separated features.  

In order to test this flexible maintenance hypothesis, claiming that the brain stores 
separate features or bound objects according to the task goal, we recorded EEG while 
subjects performed a delayed-match-to-sample task with and without the requirement 
of maintaining binding between features. If there is a universal default mode for the 
system to store visual stimuli regardless of task requirement, we expected no 
systematic differences between these two conditions in the Event-Related Potential 
(ERP) during delay period, as the visual input to be maintained was identical. If 
information maintained in the visual working memory is adaptive to task goals, we 
expected to find differences in ERP during the delay period between these two 
conditions. The direction of such differences, if any, could inform us of the amount of 
processing resources consumed by each representation format. We report two 
experiments, where Experiment 1 is exploratory, and Experiment 2 is a confirmatory 
replication.  

  

Experiment 1 
Methods 

Participants 
Fifteen healthy volunteers from the Hebrew University of Jerusalem participated in 
the study. They were paid (40NIS/hrs.) or given course credits for participation. All 
subjects had reportedly normal or corrected-to-normal sight and no psychiatric or 
neurological history. One subject did not finish the experiment and three were 
excluded from analysis due to noisy recordings. The remaining eleven subjects 
consisted of 6 males and 5 females 19–31 years old. The experiment was approved by 
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the ethics committee of the Hebrew University of Jerusalem, and informed consents 
were obtained after the experimental procedures were explained to subjects.  

Stimuli and apparatus 
Subjects sat in a dimly lit room. The stimuli were presented with Psychotoolbox-3 
(http://psychtoolbox.org/) implemented in Matlab 2018 on a ViewSonic G75f CRT 
(1024×768) monitor with a 100-Hz refresh rate. They appeared on a grey background 
at the center of the computer screen located 100 cm away from the subjects’ eyes.  

Subjects performed a delayed match-to-sample test in 3 blocked conditions (Figure 1): 
two-item-feature (F2), two-item-binding (B2), and four-item-binding (B4). In the B2 
and F2 conditions the memory array consisted of 2 colored items randomly selected 
out of six items of identical irregular shapes in clearly different colors (Figure S1). 

Each item subtended a visual angle of 2.1°×2.1. The color of each item was randomly 

selected out of six highly distinguished colors, without repetition (i.e. each item had a 
unique color within the array). The locations of the two selected items were randomly 
selected out of eight potential locations evenly distributed on an invisible circle with a 

diameter of 7.3°centered on the fixation cross. In the B4 condition, the memory array 

consisted of four items of different colors on four locations that were randomly 
selected from the six colors and eight potential locations respectively, without 
repetition.   

Following a variable delay period of 1, 2 or 3 seconds, a single probe was shown on 
each trial. In the B2 and B4 condition, a probe could be one of three types: Matched, 
New-Feature, or Mis-Conjunction. A Matched probe had the same color and location 
as one of the items in the memory array. A New-Feature probe had either an old color 
but was located at a novel location, or was at an old location but had a novel color. 
Mis-conjunction probes had an old color and an old location, both present in the 
memory array, but the conjunction between them was novel. In the F2 condition, there 
were only two types of probes, namely Matched probes and New-Feature probes. A 
Matched probe in this condition was either presented at the center of the screen in an 
old color contained in the memory array, or a black item shown at an old location. 
Finally, a New-feature probe in this condition was a probe either presented at the 
center of the screen with a color that did not appear in the previous memory array or 
an item in black presented at a new location.  

Experimental procedure 
Each trial started with 700 ms a fixation cross presented at the center of the screen. 
Next, the memory array appeared for 100 ms. This memory array was followed by 
delay period of either 1,2 or 3 seconds blank screen, in equal proportions. Trials with 
the 3 delay durations were randomly mixed within a block. Following the delay 
period, a probe item was presented and subjects had to press a key to indicate if the 
probe item was an “old” or a “novel” item. The probe disappeared when the response 
was made (with a limit of 2 seconds), followed by the initial fixation of the next trial.  
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Figure  1. Illustration of an example trial in the three conditions : Left – Two-Item feature 
condition (F2) with Matched probe , middle – Two-Item binding condition (B2) with Mis-
conjunction probe , right – Four-Item binding condition (B4) with New-feature probe. 
 
There were 3 conditions in the experiment, each consisting of 288 trials. In the B2 and 
B4 conditions, the delay period was followed by match probes in 144 trials, new 
feature probes in 48 trials, and Mis-conjunction probes in 96 trials, and a probe was 
regarded as an old item only when the probe had both the color and the location of 
one of the items shown in the memory array. In the F2 condition, the delay period was 
followed by match-feature probes in 144 trials and the new-feature probes in the 
remaining 144 trials, and a probe was regarded old when either the color or the 
location of the probe had been shown in the memory array. Each condition began with 
64 practice trials and each condition was divided into 2 consecutive blocks, resulting 
in 6 blocks in total. Each block took about 15 mins, and subjects were instructed to 
take a break between blocks.  

As the memory arrays in B2 and F2 both included 2 items with 2 relevant features 
each, the contrast between B2 and F2 was intended to reveal the effect of retaining 
feature conjunctions in addition to individual feature values. The contrast between B4 
and B2 was conducted to reveal a load effect (maintaining 4 vs. 2 items). The order of 
these three conditions was counterbalanced across participants. 

All analyses and figures for the behavior results were made using JASP 0.8.5.1 
(https://jasp-stats.org/).  Response accuracy of 11 subjects was entered into a 3 
( Delay duration: 1 vs 2 vs 3 sec delay) × 3 (Condition: F2 vs B2 vs B4) repeated-
measures two-way ANOVA. Degrees of freedom were adjusted for violations of the 
assumption of sphericity with the Greenhouse–Geisser correction when necessary.  

EEG recording and data analysis 
EEG data were recorded using an Active 2 system (BioSemi, the Netherlands) from 
64 active electrodes spread out across the scalp according to the extended 10–20 
system with the addition of two mastoid electrodes and a nose electrode 
(https://www.biosemi.com/pics/cap_64_layout_medium.jpg). Horizontal electro-
oculogram (EOG) was recorded from electrodes placed at the outer canthi of both 
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eyes. Vertical EOG was recorded from electrodes placed above and below the left eye. 
The EEG was continuously sampled at 1024 Hz with an anti-aliasing low pass filter 
with a cutoff of 1/5 the sampling rate, and stored for off-line analysis. The data was 
referenced online to the Common Mode Sensor (CMS) which was placed in the space 
between POz, PO3, Pz, and P1 . 

Data preprocessing and analysis were done with the FieldTrip  toolbox (version 
20191213 http://www.fieldtriptoolbox.org/) implemented in Matlab 2018 (Mathworks, 
Natick, MA, USA). Preprocessing was applied to continuous data. During 
preprocessing, EEG and EOG signals were firstly filtered with Butterworth zero-
phase (forward and reverse filter) Bandpass filter of 0.1–180 Hz and then referenced 
to the nose channel. Extremely noisy or silent channels, which contributed more than 
20% of all artifacts (Criteria: more than 100μV absolute difference between samples 
within segments of 100 ms; absolute amplitude > 100μV) were deleted. No more than 
2 channels in a single subject were deleted, see details below. Next, data were re-
referenced to an average of all remaining EEG electrodes. Ocular and muscular 
artifacts were removed from the EEG signal using the ICA method by manual 
selection of artifact components based on correlation with the EOG channels, power 
spectrum typical to muscle activity, and typical component scalp topographies. After 
ocular and muscle artifacts were removed, automatic artifact rejection was applied 
(http://www.fieldtriptoolbox.org/tutorial/automatic_artifact_rejection/). Time points 
larger than 12 standard deviation from the mean of the corresponding channel were 
marked, together with 200 msec before and after, ensuring that the (subthreshold) 
beginning and end of an artifactual event will be accounted for. A visual inspection of 
the data followed in order to detect rare artifacts which were missed by the automatic 
procedure. Finally, previously deleted channels were recreated by mean interpolation 
of the neighboring electrodes (FC5, F6 were interpolated in subject 01, AFz in 
subjects 02, 04, and 06, AF8 and Iz in subjects 05, 07, and 09,  and PO3 and CP1 in 
subject 08). Data were then down-sampled to 512 Hz, filtered with a Butterworth 
zero-phase lowpass filter at a cutoff at 20 Hz and parsed into 1800 msec segments 
starting 500 msec before the memory array onset, and averaged within each subject 
and condition. The average of 100 msec before the onset of stimuli over each trial was 
defined as baseline and subtracted from all data points of each segment. 

There were two planned contrasts in our experiments: a) the difference between F2 
and B2, potentially revealing the effect of task (retaining features or bound objects) on 
the ERPs, given the same visual input, and (b) the difference between  B2 and B4, 
revealing the working memory load effect on the ERP, given the same task. To 
compare ERP amplitudes between conditions across all electrodes and time samples, 
cluster-based permutation tests (Maris & Oostenveld, 2007) were performed in 
Experiment 1, the exploratory phase. This approach allowed for a sensitive 
comparison between conditions at the level of spatiotemporal clusters without a 
predefined region of interest (ROI) and provided relevant correction for multiple 
comparisons with Monte Carlo based cluster-correction. The cluster-based 
permutation test included the following procedure: a) A paired sample t-test was 
applied to each time point and channel, resulting in one t-value for each data point. b) 
A threshold of p <.05 was applied to each time point on each channel, and a cluster 
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was defined as the collection of above threshold data points, adjacent to each other 
either spatially or temporally. c)  t-values were summed up within each cluster 
resulting in sum-t values. d) Repeating steps a-c for 1000 times on data while 
switching the condition labels within a randomly selected set of subjects for each 
iteration. Within each iteration, the largest positive and the smallest negative sum-t 
entered into the “positive” and the “negative” null distribution, respectively.  e) The 
sum-t value of each cluster calculated in step c was compared with the two null 
distributions. Clusters with the sum t-value larger than of 97.5% of the largest null 
distribution were defined as significant positive clusters, while clusters with the sum-t 
value smaller than 97.5% of the smallest null distribution were defined significant 
negative clusters. 

Results 

Behavioral results 
A 3 (Delay duration : 1 sec vs 2 sec vs 3 sec delay) × 3 (Condition: 2F vs 2B vs 4B) 
repeated-measures two-way ANOVA of  response accuracy revealed a main effect of 
Condition, F(2,20) = 13.70, p < .001,  η2 =.58 (Figure 2). Follow-up pairwise 
comparison (with Bonferroni correction) showed a significantly lower  response 
accuracy in condition B4 than both condition B2 , Mdiff  = - .095, SE = .03, t = -3.30, 
p =.011, Cohen’d =-.996, and condition F2,  Mdiff  = - .15, SE = .03, t = -5.18, 
p  < .001, Cohen’d = -1.56,  whereas no significant differences were found between 
B2 and F2 condition on the response accuracy, Mdiff  = - .054, SE = .03, t = -.56, 
p = .23. The main effect of Delay Duration was also significant, F(2,20) = 4.89, p 
= .002,  η2 =.328. Follow-up pairwise comparison showed a marginal significant 
decrease of response accuracy from the 1 sec to the 3 sec delay ,  
Mdiff  = .03, SE = .01, t = 2.49,  p = .065 , Cohen’d = .75, and the 2  sec to the 3 sec 
delay,  Mdiff  = - .026, t = 3.96, SE = .007, p = .006 , Cohen’d = .75, but not from 1 to 
2 sec delay, Mdiff  = - .003, SE = .01,  t = -.26, p = 1, reflecting some memory 
decrement following extended delays. The interaction between Delay Duration and 
the Condition was not significant,  F(4,40) = .69, p = .60,  η2 =.07. These results 
indicated that B4 condition, as expected, was more difficult than the other conditions, 
and that F2 and B2 conditions did not significantly differ in their overall exertion. 
Therefore, any results gained from comparing F2 and B2 conditions in EEG could not 
be explained by differences in task difficulty.  
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ERP results 
Comparing B4 and B2 condition 
We examined the effect of enhanced memory load by comparing the EEG signal 
amplitude in the B4 and B2 conditions up to the first second after the onset of the 
memory array (as this period was common to all 3 delays). Figure 3 shows that 
maintaining four-bound objects (B4 condition) evoked larger ERP amplitude than 
maintaining two-bound objects (B2 condition) at right-frontal and middle-central 
electrodes.  

A spatiotemporal cluster-based permutation test showed that this significant cluster of 
difference (p < 0.05, cluster-corrected) extended from 394 msec to 847 msec after the 
onset of the memory array1. Figure 4 shows the grand average waveforms across 
subjects for each of the 25 channels included in this significant positive cluster2. 

 

                                                 
1Note that the cluster analysis does not ensure that the effect in any single point in the cluster is 
independently significant (Sassenhagen & Draschkow, 2019) 
2Note that a negative cluster on the left-temporal region is occasionally significant (P<.05), but it was 
not stable across multiple run in permutation.  

  
Figure 2:  Percentage of correct responses on each condition following 1, 2, or 3sec 
delay between the memory and test. Error bar represents standard error across 
subjects. 
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Figure 3: Difference in topographies of response amplitudes between B4 and B2 condition, 
in 100 msec bins, from 200 msec before until 1sec after the memory array onset. Yellow 
colors show higher positivity for B4 than B2. Asterisks stand for channels included in 
significant clusters based on the cluster permutation procedure. See figure 4 for the identity 
of the electrodes in the cluster. 
 

 
Figure 4: Channels included in the significant cluster showing significant difference 
between B4 condition (in blue line) and B2 condition (in orange line). Dark green shading 
highlight periods in which a given channel was included in the significant cluster (together 
forming the “Cloud” ROI, see text) while light green shading highlight the period which 
was included in any channel (together forming the “Rectangle” ROI, see text). Error 
margins around the lines represent standard error (SE) between subjects. 0 on the X-axis 
corresponds to the onset of the memory array. 
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Comparing F2 and B2 condition 
We compared ERP amplitude when subjects were required to remember two items 
with (B2) and without (F2) the need to maintain the conjunction (binding) between 
color and location. As the memory array was identical in both conditions, a difference 
between the two conditions could not be due to differences in visual information. This 
contrast thus indicated whether the visual information had been maintained in a task-
specific manner and further revealed whether maintaining bound-objects consume 
more or less resources relative to maintaining separated features. Considering the 
results above from the contrast between B4 and B2, as well as previous studies 
(Mecklinger & Pfeifer, 1996; Ruchkin & Johnson, 1990), stronger central positivity 
could be taken as indicating higher memory load. Under the premise that binding 
entails extra load in comparison to feature maintenance we would expect B2 to elicit 
more positive ERPs than F2 condition. A difference in the other direction would 
suggest the less intuitive alternative that maintaining isolated, unbound, features is the 
more tasking situation.  

Cluster-based permutation test showed that F2 elicited stronger positivity than B2 
with a significant cluster in centro-parietal electrodes between  220 msec to 589 msec 
after the onset of the memory array (Figure 5). Figure 6 shows the amplitude averaged 
across subjects for each of the 20 channels included in this significant positive cluster. 
Tentatively, this result indicates the involvement of less resources in maintaining 
bound objects relative to separate features. Before discussing this result, we note that 
this surprising result is found through an exploratory method rather than a hypothesis-
driven approach. Therefore, in experiment 2, we recruited a new group of subjects in 
an attempt to replicate this finding with the same paradigm.   

 
Figure 5 : Difference topographies between F2 and B2 conditions, in every 100 ms 
bins from 200 ms before memory array onset. Yellow color indicates higher positivity 
in F2 conditions than in B2 condition while blue colors indicate the opposite. Asterisks 
stand for channels included in significant clusters. 
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Experiment 2 
Method  

We replicated experiment 1 using the same experimental material and procedure. 

Participants 
Eighteen healthy volunteers from the Hebrew University of Jerusalem participated for 
either course credits or payment (40NIS/hrs). All subjects had normal or corrected-to-
normal sight and reported no psychiatric or neurological history. Five subjects were 
excluded from analysis due to noisy recordings (Subjects in which more than two 
neighboring channels were noisy were excluded). The final sample was composed of 
thirteen subjects (6 males, 7 females aged range 21-30). Informed consents were 
obtained after the experimental procedures were explained to the subjects. The 
experiment was approved by the ethics committee of the Hebrew University of 
Jerusalem. 

EEG recording and data analysis 
Data preprocessing and analysis were the same as in Experiment 1. Briefly, 
preprocessing started with deleting extremely noisy channels. A Butterworth 
Bandpass filter of 0.1–180 Hz was applied. Ocular and muscular artifacts were 
extracted with ICA and removed. Then an automatic and manual artifact rejection was 

    

 
Figure 6: Channels included in the cluster shows significant difference between F2 
condition and B2 condition. See legend for Figure 4 for explanation of the green shaded 
areas.  Shading around the waveforms indicate the standard error (SE) across subjects. 0 on 
the X-axis corresponds to the onset of memory array. 
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applied. Finally, previously deleted channels were recreated by mean interpolation of 
the neighboring electrodes (CP3 and P1 in subject 01; AF7, F7, P9 in subject 03; FC5 
in subject 04; POz, Fp2 in subject 05; T7,TP8 and P9 in subject 06; F8 in subject 08, 
CP3, T7 in subject 09 ; T7, CP3 in subject 12) . After preprocessing, data were down-
sampled to 512 Hz and were low-pass filtered with a Butterworth bandpass filter at a 
cutoff of 20 Hz, segmented, and corrected for the baseline. 

In Experiment 2, the confirmatory phase, with a new group of subjects, we used pre-
defined ROIs based on the significant spatio-temporal clusters found in experiment 1. 
“Rectangle ROI” for the contrast between two conditions was defined as all channels 
that were included in the significant cluster, spanning the interval from the earliest 
time to the latest time in that cluster across all channels. “Cloud ROI “ included all 
channels within the significant clusters but including, for each channel, only the time 
points inside the significant cluster of that channel (Figure S2). One-tailed-paired-
sample t-tests were then applied to compare amplitudes averaged over pre-defined 
ROIs (Rectangle ROI & Cloud ROI) between B2 and B4 conditions and F2 and B2 
conditions respectively. The direction of the one-tailed test followed the expected 
effect as observed in Experiment 1.  

Results 

Behavior results 
A 3 (Delay duration : 1 sec vs 2 sec vs 3 sec delay ) × 3 (Condition: 2F vs 2B vs 4B) 
repeated-measures ANOVA revealed a main effect of Condition on response accuracy, 
F(2,24) = 27.38, p  < .001,  η2 = .70. Follow-up pairwise comparisons (all with 
Bonferroni corrections) showed a significantly lower response accuracy in condition 
B4 than both condition B2,    Mdiff  = - .15, SE = .023, t = -6.65, p < .001, Cohen’d = 
-1.85, and condition F2,Mdiff  = - .14, SE = .023, t = -6.13, Cohen’d = -1.70, p < .001, 
while no significant differences were found between B2 and F2 , Mdiff  = 
001, SE = .023, t = 0.52, Cohen’d = 0.14 , p = 1. These results are similar to the 
pattern of behavioral results in Experiment 1 and confirmed that B2 Condition and F2 
Condition were not significantly different in terms of task difficulty, while B4 
Condition was more tasking than the other two.  As in experiment 1, a main effect 
was found on Delay Duration, F(2,24) = 7.70, p = .003,  η2 = .39 (Figure 7). Follow-
up pairwise comparison showed a significant decrease of response accuracy following 
3 secs delay compared with 1 sec delay ,  Mdiff = - .032, SE = .01, t = -3.91, p = .009 , 
Cohen’d = -1.09, while no significant difference in response accuracy was found 
between 1 sec delay and 2 sec delay,  Mdiff = -.014, SE = .008, t = -1.74,  p = .28 , 
Cohen’d = -0.48, nor between 2 sec delay and 3 sec delay, Mdiff = - .02, SE = .008, t 
= -2.17,  p = .12 , Cohen’d = -.62. These results reflect forgetting of visual 
information over time.  The interaction between Delay Duration and Condition was 
marginally significant, F(4,48) = 2.56, p = .05,  η2 =.18. Altogether, behavior results 
confirmed what was found in experiment 1, suggesting that B4 condition is more 
demanding than the other two conditions, while any result gained from comparing F2 
and B2 conditions in EEG could not be explained by differences in task difficulty.  
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Figure 7: Percentage of correct responses on each condition following 1, 2, or 3sec 
delay between the memory and test in Experiment 2. Error bars represent standard 
error across subjects. 
 
ERP results 
Comparison between B4 and B2  

 
Figure 8 : a: ERPs elicited by the B4 and B2 conditions, averaged over subjects and channels 
included in the a priori cluster defined in Experiment 1. The light green rectangle highlights 
the temporal duration for the “Rectangle ROI”.  Shading around the waveforms represents 
standard error of the mean across subjects. 0 on the X-axis corresponds to the onset of 
memory array. b: Mean amplitudes elicited by B4 and B2 condition averaged over the 
Rectangle ROI for each subject. Eleven out of thirteen subjects are above the diagonal, 
reflecting larger positivity in B4 than in B2 condition. 
 
Experiment 2 served as a confirmation stage following the exploratory stage of 
Experiment 1. Thus, the ROIs obtained from Experiment 1 were used to test for 
Condition Effect in Experiment 2, performed on a new group of subjects. We 
averaged the amplitudes of the ERPs across the channels for the “Rectangle” ROI 
(Figure.S1) including the channels consisting the significant cluster of Experiment 1, 
and all the time points within the cluster which were significant in any of the channels. 
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Figure 8a shows the average ERP over subjects and channels included in the ROI. 
The normality of the data was confirmed with Shapiro-Wilk test. A one-tailed paired 
sample t-test confirmed that, as in Experiment 1, the B4 condition (M = 1.13, SE = 
0.24) evoked significantly higher positivity than the B2 condition (M = 0.68, SE = 
0.20), t(12) = 3.14, p = .004, Cohen’d = 0.87. This direction of difference was found 
in eleven out of thirteen subjects (Figure 8b). Similar result (Figure S3) was found 
using the “Cloud ROI”, which was the exact cluster found significant in Experiment 1, 
by  channels and time-points. Taken together, we successfully replicated the results 
showing that maintaining additional bound items in memory lead to larger positive 
response in frontal-right and middle-central channels within the time window ranging 
from ~390 msec to ~850 msec after the offset of the memory array.  

Comparing F2 and B2 condition 

 
Figure 9 : a:ERPs elicited in the F2 and  B2 conditions, averaged over subjects and channels 
in the ROI defined in Experiment 1. Light green rectangle highlights the duration of 
Rectangle ROI.  Shading around waveforms represent standard error of the mean across 
subjects. 0 on the X-axis corresponds to the onset of memory array. b: ROI amplitude in the 
F2 condition and B2 condition averaged across the Rectangle ROI for each subject. Seven 
out of thirteen subjects are above the diagonal, indicating higher averaged positivity in F2 
compared with B2 condition.   
 
Next, the amplitude for F2 and B2 condition were averaged respectively within the 
spatial-temporal Rectangle ROI (Figure 9a). A One-tailed paired-sample t-test showed 
that the F2 condition evoked larger positivity (M = 0.73, SE = 0.18) than B2 
condition (M = 0.40, SE = 0.22) within the Rectangle ROI. However this difference 
was not significant, t(12) = 1.54, p =.08, Cohen’s d = 0.43. Seven out of thirteen 
subjects exhibited larger averaged positivity in F2 than in B2 condition (Figure 9b).  
A similar result was found when the Cloud ROI was applied (Figure S4).  

To complement inferential frequentists statistics, we used JASP 0.8.5.1 software 
(Marsman & Wagenmakers, 2017; van Doorn et al., 2020) to conduct Bayesian 
Paired-Sample t-tests and examine the null hypothesis that B2 and F2 evoked the 
same amplitude ERP within the ROI. The alternative hypothesis was that F2 evoked a 
less positive ERP than B2 condition. That is, we compared H0 : δ = 0 and H- : δ < 0, 
where δ is the standardized effect size of F2-B2 (Figure S5a). The prior distribution 
was assigned a Cauchy prior distribution (see Jeffreys, 1961; Liang et al., 2008) with 
r= 1/√2, truncated to allow only negative effect size values. For parameter estimation, 
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we used the two-sided t test model and plotted the posterior distribution of δ (Figure 
S5b). We found relatively strong evidence against H- (BF-0 = .13 Figure S5a ). The 
posterior distribution of δ had a median of -0.436 with a 95% credible interval ranging 
from -1.19 to 0.24 (Figure S5b). This result was robust across a wide range of prior r, 
with BF-0 ranging from about 0.3 to 0.05 (i.e., H0 is 3 to 20 times more likely than H- , 
see Figure S4c), confirming that B2 condition did not evoke larger positivity than F2. 
Similar results were  gained using the cloud ROI (Figure S6). Next we tested the same 
null hypothesis H0 : δ = 0 against the alternative H+ : δ > 0, that is, that F2 evoked a 
more positive ERP than B2. The Cauchy prior distribution was now truncated to allow 
only positive values. Here, we did not find strong evidence in favor of either 
hypothesis (BF+0 = 1.31,see Figure S5d &Figure S6d). In summary, we confirmed 
that remembering bound objects does not consume more cognitive resource 
(putatively reflected by greater positivity within the ROI) than remembering separate 
features, and found a trend towards the result of Experiment 1 that showed higher 
positivity in F2 than in the B2 condition.  

Post-hoc analysis 
The ERP over channels within the pre-defined ROI during the maintenance period 
reveals a clear trend for F2 condition to evoke larger positive ERP than the B2 
condition, with a somewhat longer delay than in the first experiment (see Figure 9). A 
possible reason that the difference between F2 and B2 in Experiment 1 did not fully 
replicate is that the effect differs in the temporal domain across individuals. That is, a 
large difference between F2 and B2 conditions might appear soon after the offset of 
the memory array for some subjects, whereas for other subjects the difference 
between these two conditions takes longer time to develop. Such individual 
differences can be seen in Figure 11, where the differences in amplitude between the 
F2 and B2 conditions for electrodes included in the pre-defined ROI are drawn for 
each subject, for every 200 msec bin from 200 msec to 1000 msec after memory array 
onset. It can be seen that the difference (F2-B2) was positive in most of the subjects 
and most of the time bins, although subjects varied as to the latency of the maximum 
difference. Therefore, we extended the temporal ROI into the whole maintenance 
period from 200 msec to 1000 msec after the array onset and segregated it into four 
200 msec segments. We then averaged the amplitudes across the ROI channels for 
each segment. For each subject, we then selected the temporal bin that elicited the 
largest difference between F2 and B2, and compared the amplitudes of the F2 and B2 
conditions across subjects with paired sample t-test. We compared the result to a 
distribution under the null hypothesis generated through a permutation procedure. In 
each iteration of this procedure we randomly permuted the labels of the B2 and F2 
conditions and then applied the same procedure of segmentation and peak difference 
selection to compare the surrogate conditions with a paired sample t-test. Thus, each 
permutation contributed one value to the null distribution and this procedure was 
repeated 5000 times. The t-value of the empirical data (red vertical line in Figure 12a) 
was larger than 99.48 % of t-values in the permutated trials (Histogram in Figure 12a), 
which is unlikely to be obtained by chance. Thus, allowing temporal variance in the 
ROI of each individual leads to replication of the effect found in experiment 1, 
showing that the F2 condition elicits larger positivity compared with B2 condition 
during the maintenance duration. Critically, we repeated the procedure, now looking 
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for the maximum negative (F2<B2) difference between F2 and B2, but the result was 
far from significant in this case (Figure 12b).  

 

 
Figure 11 : Amplitude differences between F2 condition and B2 condition (F2-B2) averaged 
across pre-defined spatial ROI for each subject within each 200 msec time window covering 
from 200 msec to 1000 msec after the memory array onset.  
.  
 

 
Figure 12 : The histograms, built by 5000 times randomly shuffling the label of B2 and F2 
condition, represent the null distribution of t-values. The red lines represent the t-value of the 
empirical data. a: The t-value of maximum positive differences between F2 and B2 from 200 
msec to1000 mesc after the onset of memory array is larger than 99.48 % results in null 
distribution. b: The t-value of maximum negative differences between F2 and B2 from 200 
msec to1000 mesc after the onset of memory array is only smaller than 28.94% of the null 
distribution.  

Discussion  
In two experiments, we found significant differences in EEG signals between tasks 
requiring short term maintenance of visual features and maintenance of bound objects, 
even when the visual input was identical across tasks. This provides evidence of task-
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dependent maintenance processes and against the notion, implicitly embedded in 
previous literature that a fixed default mode of item representation is maintained in 
visual working memory. Furthermore, our results suggest that maintaining 
information in the bound-object condition may require less processing resources than 
in the separate-feature condition.  

As expected, the ERP results reflected stronger central positivity in the more 
demanding B4 condition, compared to the B2 condition. Indeed, the behavioral results 
indicated that the B4 condition was more challenging than the other conditions. 
Considering the topographical distribution of this difference, as well its long latency, 
it is reasonable to take this increased positivity as a marker of memory load, but we 
cannot rule out a pure visual effect as the number of items on the display differed 
between B4 and the other conditions. Conversely, the B2 and F2 conditions consisted 
of identical arrays of two items, and lead to similar report accuracy. Still, a significant 
difference between the ERPs in these conditions was observed. Thus, the difference 
between the F2 and the B2 conditions was task-related rather than stimulus-related. 
The F2 condition elicited a higher central positivity and was more akin to the B4 
(high load) condition than to the B2 condition in that respect. This pattern could 
reflect either (a) a larger number of units (i.e. 4 feature values vs. 2 bound objects) 
maintained during the delay period of F2 vs. B2 or (b) extra activity in the F2 
condition when bound objects had to be decomposed into separate features to 
efficiently fulfill the task requirement. We note a more frontal topography for the B2 
and B4 difference relative to the B2 and F2 difference, which might suggest different 
processes, favoring option (b) above. These two explanations are not mutually 
exclusive and cannot be completely differentiated in the current study.  

A previous visual search study (Berggren & Eimer, 2018) provided some intuition on 
how the brain represents information in a format that is compatible with the test 
demands. In this experiment, subjects answered whether the search display contained 
one of two target items held in working memory. When the search array included only 
one object with a target matching feature, targets and incorrect conjunction objects 
elicited identical N2pc component and sustained posterior contralateral negativity 
(SPCN). The N2pc is assumed to index a shift of spatial attention to the location of 
the potential target (Eimer, 1996; Kiss, Van , & Eimer, 2008), and the SPCN is 
assumed to index attentional activation of visual working memory representations of 
the potential target (Jolicoeur, Brisson, & Robitaille, 2008). These results suggest that 
in this condition only features were used as searching templates.  In another condition, 
it was insufficient to detect a certain feature, as all objects had target-matching 
features, and both a target and an incorrect conjunction object could be present in the 
same display. In this case, the target evoked a larger N2pc than the incorrect 
conjunction objects, and only targets elicited SPCN components. Therefore, in this 
condition a bound object, rather than an isolated feature template, was used. Taken 
together, the results of this study are compatible with the possibility that working 
memory templates guiding attention in visual search were encoded or used flexibly, to 
effectively distinguish match and no-match probes, based on the task demand.  

In our study, a color probe in the feature condition (F2) always appeared in the center 
(a location never used in the memory arrays) and a location probe was always colored 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 14, 2021. ; https://doi.org/10.1101/2021.04.12.439333doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.12.439333


black (a color never used in the memory arrays). Thus, the matched-probes in F2 
(feature) condition matched only one feature dimension of the stimuli in the memory 
array, whereas the other feature of the probe was fixed across trials, with a value that 
never appeared in the memory array. In this condition, it is more efficient to maintain 
feature values which are not yoked to other feature dimensions. Since the memory 
array contained two colors and two locations, 4 different feature values had to be 
maintained. The matched-probes in the B2 (binding) condition, on the other hand, 
matched an item from the memory array in both feature dimensions. In this case, 
retaining bound objects allows a direct comparison between the representation in the 
working memory and the upcoming probe, and may lead to more efficient 
performance.  

Task-specific encoding and retention of visual stimuli have been observed by other 
studies addressing working memory more directly. For example, one study found that 
memory for different features can be differentially affected by retro-cues indicating 
which feature dimension would be tested (Park, Sy, Hong, & Tong, 2017). Woodman 
and Vogel (2008) suggested that object colors and orientations could be represented in 
working memory either separately, or together, according to the task requirement. A 
lower contralateral delay activity (CDA), a marker for memory load, was observed 
when only color was task-relevant compared to the case both color and orientation 
were relevant. Using CDA, a recent study (McCants, Katus, & Eimer, 2020) showed 
that objects were represented separately by their parts when parts appeared as probes, 
whereas a single compound object was maintained when objects were used as probes. 
McCants et al. concluded that not only can top-down control determine which of 
several feature dimensions (e.g. color, orientation) to maintain, but also whether parts 
of objects or their gestalt would be maintained. Here, we showed that the system is 
even more flexible – it allows selection between the maintenance of separate feature 
dimensions vs. a bound object according to the task goal and the nature of the probe. 

The finding that objects are retained either as separate features or as bound items 
based on task requirements may explain some of the seemingly conflicting results in 
the literature, although not all of them. This is based on the idea that although two 
tasks are similar in their explicit instructions, subtle differences in the relationship 
between the memory array and the probe might affect the way that the memory array 
is maintained in memory. For example, Luck and Vogel (1997; extended in Vogel, 
Woodman, & Luck, 2001) observed that the ability to detect a change in a stimulus 
array of a given set size is the same regardless of the number of features. In contrast, 
Wheeler and Treisman (2002) found memory capacity is determined merely by the 
number of total features when two features from the dimension were combined into 
one object. In Luck and Vogel (1997), each item presented in the memory array 
contained features randomly selected from all possible feature values with 
replacement (e.g., more than one item could be red) and the non-match probe could 
include an erroneous conjunction of features that appeared in the memory array. In 
contrast, in the study by Wheeler and Treisman (2002, Experiments 1 and 2), items on 
the memory array were generated by selecting from possible feature values without 
replacement (e.g. only one item could be red). Moreover, to generate a non-matched 
probe, the probe included a feature that had not been used by any item in the memory 
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array. This design, where no replacement was allowed when assigning feature value 
to a single memory array, can be also found on other studies claiming that increased 
features to be remembered for each object impaired change detection (Oberauer & 
Eichenberger, 2013). In the study by Luck and Vogel (1997), bound objects had to be 
maintained to detect a non-match probe, while in studies showing contradictory 
observations, remembering a list of all features in the memory array was sufficient to 
distinguish between matched and non-match probe. The different results regarding 
representation format might therefore reflect the fact that such format is flexibly 
shaped by task goal. Our findings, therefore, draw attention to subtle details between 
experimental designs which could have an impact on the pattern of information that is 
maintained in memory.  

Whereas the electrophysiological difference between the B2 and B4 condition was 
accompanied by a difference in task accuracy, the same difference between B2 and F2 
conditions did not result in an observable change in accuracy. This highlights a 
dissociation between the activity measured continuously during the maintenance 
period, and the decision recorded after the presentation of the probe. Taking the 
results together, one can speculate that more units held in working memory are 
reflected by enhanced positivity (and possibly an enhancement of the CDA when 
stimuli are lateralized), whereas diminished accuracy reflects increase in difficulty of 
comparing the probe with what was retained in working memory. For example, 
Alvarez and Cavanagh (2007) showed that working memory capacity is inversely 
correlated with item complexity. However, Awh et al (2007) showed that the sample-
test similarity is highly correlated with item complexity, and that the item complexity 
effect on memory performance was not observed when the sample-test similarity was 
low. This suggests that the retrieval process, rather than the maintenance stage, limits 
memory performance. Further studies could test this hypothesis more directly. 

It is worth noting that we have used location-to-color binding in our study, and this 
kind of binding has some unique aspects that might not generalize to other types of 
binding. There is some evidence suggesting that objects are automatically encoded 
together with location.  For example, some studies showed the task-irrelevant location 
of a stimulus can also be directly decoded from EEG data during the delay period of a 
working memory task (Elsley & Parmentier, 2015; Foster, Bsales, Jaffe, & Awh, 2017; 
Olson & Marshuetz, 2005). EEG studies show that spatial attention can be drawn to 
items in WM even when the cue is non-spatial and the location is entirely irrelevant 
for the task (Eimer & Kiss, 2010; Kuo, Rao, Lepsien, & Nobre, 2009). There are 
studies supporting an even stronger claim that non-spatial features binding is 
mediated by binding to locations (Schneegans & Bays, 2017; Treisman & Gelade, 
1980; Pertzov & Husain, 2014), perhaps due to the fact that most neurons selective to 
visual features also exhibit some spatial selectivity (Schneegans and Bays, 2019). 
Further studies are needed to test whether the results in the current test generalize to 
cases in which objects are defined by two non-spatial features.  

To conclude, our study suggests that working memory should not be construed as a 
passive storage of environmental input, but a dynamic system actively engaging in the 
task and preparing to carry out an effective response. Specifically, it provides a novel 
piece of evidence that the format of objects represented in the working memory, either 
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as bound objects that integrate different feature dimensions or as separated features, is 
task-dependent. The finding of flexible maintenance of features and bound objects 
calls for attention to how experimental manipulations, either implicitly or explicitly,  
influence the format of objects maintained in working memory. Additionally, 
although the underlying mechanism demands further investigation, throughout two 
studies we found evidence to reject an intuitive suggestion that maintaining bound 
objects is more resource-demanding than maintaining the same number of features 
included in that object.  
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Supplementary material     

         

Figure S1: Memory arrays consisted of items of identical irregular shapes in clearly different 
colors. Each item had 6 possible colors, which are , a: red (RGB: [250 ,0 , 0]), b:green 
(RGB:[0, 250, 0]), c: yellow (RGB: [250 ,250, 0]), d: blue (RGB:[0, 0, 250]), e: 
violet(RGB:[250,250,0])   f: white(RGB:[0,0,0])  .  
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Figure S2: The Green rectangle represents the “rectangle ROI” in the B2 and F2 contras. 
The yellow shading represents the “cloud ROI” in the same contrast. The rectangle ROIs 
applies the maximal temporal extent of the significant cluster to all the electrodes included in 
the significant cluster.  
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Figure S3: Mean amplitude of ERPs elicited by B4 and B2 condition averaged over the cloud 
ROI for each subject. Each dot represents the results of a single subject. B4 condition (M = 
1.012,  SE = 0.261) evoked significant higher positivity than B2 condition (M = 0.506, SE = 
0.254),  t(12) = 3.064, p =.005, Cohen’s d = 0.850. 
 
 

 
Figure S4 : Mean amplitude of ERPs elicited by F2 and B2 condition averaged over the 
Cloud ROI for each subject. Each dot represents the results of a single subject. 2F condition 
(M = 1.056, SE = 0.691) evoked larger positivity than 2B condition(M = 0.816, SE = 0.216),  
t(12) = 1.466, 
 p =.086. 
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Figure S5 : a:  Bayesian One Sample T-Test for averaged amplitude within the Rectangle 
ROI in F2 is smaller than (BF-0 ) or equal to (BF0-) in B2.  
b:  Two sides estimation of  δ (F2-B2) distribution.  
c:  The Bayes factor robustness plot for  H0 ( δ = 0) against H- ( δ < 0) with  Cauchy prior 
r range  from 0 to 1.5.  
d: Bayesian One Sample T-Test that the averaged amplitude within the ROI in F2 is larger 
than ((BF+0) or equal to ( BF0+) B2 condition.  
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Figure S6 : a:  Bayesian One Sample T-Test for averaged amplitude within the Cloud ROI 
in F2 is smaller than (BF-0 ) or equal to (BF0-) in B2.  
b:  Two sides estimation of  δ (F2-B2) distribution.  
c:  The Bayes factor robustness plot for  H0 ( δ = 0) against H- ( δ < 0) with  Cauchy prior 
r range  from 0 to 1.5.  
d: Bayesian One Sample T-Test that the averaged amplitude within the ROI in F2 is larger 
than ((BF+0) or equal to ( BF0+) B2 condition.  
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