
 

 

 

1 

Experiment level curation identifies high confidence 1 

transcriptional regulatory interactions in 2 

neurodevelopment 3 

Eric Ching-Pan Chu1,2,3, Alexander Morin1,2,3, Tak Hou Calvin Chang1, Tue Nguyen1, Yi-Cheng 4 

Tsai1, Aman Sharma1, Chao Chun Liu1, Paul Pavlidis1,2 5 

1. Michael Smith Laboratories, University of British Columbia, Vancouver, BC Canada 6 

2. Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada 7 

3. Graduate Program in Bioinformatics, University of British Columbia, Vancouver, BC, 8 

Canada 9 

 10 

*Corresponding author:  11 

Paul Pavlidis  12 

177 Michael Smith Laboratories  13 

2185 East Mall  14 

University of British Columbia  15 

Vancouver BC V6T1Z4 16 

Canada  17 

604 827 4157  18 

paul@msl.ubc.ca  19 

 20 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 12, 2021. ; https://doi.org/10.1101/2021.04.11.439248doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.11.439248
http://creativecommons.org/licenses/by/4.0/


 

 

 

2 

Abstract 21 

To facilitate the development of large-scale transcriptional regulatory networks (TRNs) 22 

that may enable in-silico analyses of disease mechanisms, a reliable catalogue of experimentally 23 

verified direct transcriptional regulatory interactions (DTRIs) is needed for training and 24 

validation. There has been a long history of using low-throughput experiments to validate single 25 

DTRIs. Therefore, we hypothesize that a reliable set of DTRIs could be produced by curating the 26 

published literature for such evidence. In our survey of previous curation efforts, we identified 27 

the lack of details about the quantity and the types of experimental evidence to be a major gap, 28 

despite the importance of such details for the identification of bona fide DTRIs. We developed a 29 

curation protocol to inspect the published literature for support of DTRIs at the experiment level, 30 

focusing on genes important to the development of the mammalian nervous system. We sought 31 

to record three types of low-throughput experiments: Transcription factor (TF) perturbation, TF-32 

DNA binding, and TF-reporter assays. Using this protocol, we examined a total of 1,310 papers 33 

to assemble a collection of 1,499 unique DTRIs, involving 251 TFs and 825 target genes, many 34 

of which were not reported in any other DTRI resource. The majority of DTRIs (965, 64%) were 35 

supported by two or more types of experimental evidence and 27% were supported by all three. 36 

Of the DTRIs with all three types of evidence, 170 had been tested using primary tissues or cells 37 

and 44 had been tested directly in the central nervous system. We used our resource to document 38 

research biases among reports towards a small number of well-studied TFs. To demonstrate a use 39 

case for this resource, we compared our curation to a previously published high-throughput 40 

perturbation screen and found significant enrichment of the curated targets among genes 41 

differentially expressed in the developing brain in response to Pax6 deletion. This study 42 
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demonstrates a proof-of-concept for the assembly of a high confidence DTRI resource in order to 43 

support the development of large-scale TRNs.  44 

Author Summary 45 

The capacity to computationally reconstruct gene regulatory networks using large-scale 46 

biological data is currently limited by the absence of a high confidence set of one-to-one 47 

regulatory interactions. Given the lengthy history of using small scale experimental assays to 48 

investigate individual interactions, we hypothesize that a reliable collection of gene regulatory 49 

interactions could be compiled by systematically inspecting the published literature. To this end, 50 

we developed a curation protocol to examine and record evidence of regulatory interactions at 51 

the individual experiment level. Focusing on the area of brain development, we applied our 52 

pipeline to 1,310 publications. We identified 3,601 individual experiments, providing detailed 53 

information about 1,499 regulatory interactions. Many of these interactions have verified activity 54 

specifically in the embryonic brain. By capturing reports of regulatory interactions at this level of 55 

granularity, we present a resource that is more interpretable than other similar resources. 56 

Introduction 57 

Reconstruction of transcriptional regulatory networks (TRNs) has the potential to enable 58 

in-silico analysis of developmental processes and disease mechanisms. As such, using high-59 

throughput biological data to infer large scale TRNs is an area under active research; recent 60 

examples include (1–4). However, the utility of these TRNs has been hindered by the absence of 61 

a high confidence set of regulatory interactions for training and validation. Researchers have 62 

historically used less scalable experimental techniques to investigate direct transcriptional 63 

regulatory interactions (DTRIs). While low-throughput, such methods tend to be considered 64 
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reliable, especially if there are multiple independent lines of evidence supporting a DTRI. Thus, 65 

there would be value in having resources that aggregate high-quality reports of DTRIs, forming 66 

the topic of the current work. Our particular interest is in DTRIs of relevance to the developing 67 

nervous system, as mutations in transcription factor (TF) genes (5–7) and regulatory regions (8–68 

10) have been highly implicated in neurodevelopmental disorders. 69 

We define DTRIs as pairwise interactions between a transcription factor (TF) and a target 70 

gene where the TF modulates target expression by physically binding to a cis-regulatory element 71 

(cRE). There are three types of low-throughput experimental paradigms commonly used to 72 

elucidate DTRIs, including TF perturbation, TF-DNA binding, and TF-reporter assays (Fig 1A). 73 

In TF perturbation assays, manipulation of TF expression is followed by an assessment of target 74 

gene expression. In TF-DNA binding assays, protein-DNA interactions between the TF and the 75 

cRE are evaluated. Finally, TF-reporter assays measure the functional impact of the TF binding 76 

on the associated cRE sequence. While low-throughput assays are not infallible, they generally 77 

yield higher confidence than high-throughput alternatives by evading the need for large scale 78 

inferential statistics and enabling detailed and readily replicable characterization of single 79 

DTRIs; examples: (11,12) (Fig 1B). Notably, such low-throughput experiments are routinely 80 

used to validate putative targets identified by more scalable approaches. Given the importance 81 

and wide acceptance of these types of evidence, it would be useful to assemble a centralized 82 

catalogue of DTRIs that is supported by low-throughput experimental evidence in the published 83 

literature.  84 

There have been a number of earlier efforts to aggregate DTRIs from the literature: 85 

ENdb: (13), TRRUST: (14,15), CytReg: (16), OReganno: (17–19), HTRIdb: (20), TFe: (21), 86 

TFactS: (22), InnateDB: (23). None of these curation efforts were tailored to the 87 
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neurodevelopment context. More importantly, these studies generally record annotations of pairs 88 

of interacting genes but capture little information about the underlying experimental evidence. 89 

This is notable because the type and quantity of evidence is expected to affect the reliability of a 90 

reported interaction. Specifically, each individual type of evidence provides only a limited view 91 

of any given DTRI. TF perturbation assays enable the assessment of the TF’s ability to modulate 92 

target gene expression but cannot decipher its functional dependence on direct physical binding. 93 

Likewise, while TF binding at a cRE is necessary for regulation, detection of TF-DNA binding 94 

alone is insufficient for demonstrating functional activity. TF-reporter assays simultaneously 95 

demonstrate both functional modulation and physical binding but often by examining the given 96 

DTRI outside of the native genomic and cellular context. As such, integration across these types 97 

of experiments should help establish DTRIs with high confidence.  98 

 We hypothesize that curation of details at the individual experiment level would 99 

facilitate identification of bona fide DTRIs. In this study, we undertook a systematic effort to 100 

curate the literature at a high level of detail. Consequently, we present a resource that is highly 101 

interpretable and more suitable for the evaluation of high-throughput predictions than other 102 

similar resources. Finally, our curation effort provides a partial summary snapshot of the 103 

literature landscape surrounding transcriptional regulation in the developing brain.  104 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 12, 2021. ; https://doi.org/10.1101/2021.04.11.439248doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.11.439248
http://creativecommons.org/licenses/by/4.0/


 

 

 

6 

105 

Fig	1.	Summary	of	curation.		106 
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(A)	A	schematic	of	the	three	types	of	low-throughput	experimental	evidence	we	considered.	(B)	Curated	records	for	the	107 

interaction	between	PAX6	and	NEUROG2	provided	as	an	example.	(C)	Overall	curation	workflow.	The	count	of	papers	and	108 

the	corresponding	number	of	TFs	in	each	stage	of	curation	are	printed.	Summary	statistics	of	the	final	curation	output	are	109 

displayed	at	the	bottom	(D)	The	manually	curated	regulatory	network.	TFs	are	diamond	shaped	and	colored	blue.	Targets	110 

are	circles	and	colored	orange.	The	sizes	of	TFs	correspond	to	the	number	of	targets.	TFs	with	10	or	more	targets	are	111 

labeled	with	the	official	HGNC	gene	symbol.	Edge	transparency	corresponds	to	the	number	of	types	of	experiments.	Red	112 

edges	represent	DTRIs	with	experimental	validation	in	primary	CNS	tissues	or	cells.	Only	the	largest	network	component	113 

with	946	nodes	and	1481	edges	is	displayed. 114 

Results 115 

Overview of curation 116 

Our curation pipeline is summarized in Fig 1C (see Methods for details). Briefly, for each 117 

TF, we assembled a set of candidate papers (S. Table S1). Next, we manually prioritized TFs for 118 

curation based on annotated associations with central nervous system (CNS) development and 119 

the number of candidate papers retrieved (S. Table S2). For each paper examined, we recorded 120 

the details of all reported experiments that lend support to any DTRI in humans or mice (Table 1, 121 

S. Table S3). For reporting, we mapped all genes to human orthologs while retaining the species 122 

information as an additional feature. Applying this pipeline to a total of 1,310 papers, we 123 

established a collection of 1,499 unique DTRIs, involving 251 TFs and 825 targets, from 828 124 

papers. This manually curated network is displayed in Figure 1D and the complete set of curated 125 

interactions are provided in S. Table S4. In the following sections, we present a detailed 126 

summary of the curated data resource and compare it to a high-throughput TF perturbation 127 

screen. 128 

Experiment Type One of three types of experiment being curated.  
Value: TF Perturbation, TF-DNA Binding, or TF-Reporter. 
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Context Type A broad classification of the cellular context tested.  
Value: Primary Tissue, Primary Cells, Cell Line, or In-Vitro. 

Cell Type An ontology term that best corresponds to the tissue or cell type used.  
Example: UBERON:0001017 (central nervous system) 

TF Species  The species of the TF protein or sequence.  
Value: Human or Mouse. 

Target Species The species of the target protein or regulatory element.  
Value: Human or Mouse. 

TFBS Position  A broad classification of the distance between the transcription factor binding 
site (TFBS) and the target transcription start site (TSS).  
Value: Proximal or Distal. 

Mode The mode or direction of regulation.  
Value: Activation or Repression. 

1Details TF Perturbation 
Effect: Knock Out, Knock Down or Overexpression 
2Type: Constitutive or Induced 

 
TF-DNA Binding 

Method: ChIP-assay or EMSA (Electrophoretic Mobility Shift Assay)  
3TF Source Type: Primary Tissue, Primary Cells, or Cell Line 

 
TF-Reporter 

Mutated: TRUE or FALSE 
4Binding Verified: Putative, EMSA, or None 

 129 

Table 1. Experimental details recorded during curation. 130 

1Different sets of details are recorded for different types of experiments. 2Constitutive perturbation refers to mutations 131 

that are present throughout the course of development, as opposed to induced perturbations using Cre-loxP or RNA 132 

interference that are triggered closer to the time of assay. 3The TF protein used in EMSA experiments may be 133 

sourced differently across experiments. In many cases, it is obtained from cell lines after TF transfection. In other 134 

cases, the endogenous protein is obtained directly from primary tissues or cells. 4For TF-reporter assays where the 135 

cRE sequence is mutated and tested, the impact of the mutation on TF-DNA binding is sometimes verified using 136 

additional EMSA experiments.  137 

 138 
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Identification of candidate papers highlights biases in TF coverage 139 

The input to our curation was a corpus of candidate publications. To establish this corpus, 140 

we started by taking advantage of previous curation efforts. We obtained 14,364 papers from 141 

seven external resources, covering 1,305 TFs Fig 2A, S. Table S1). TRRUST, the largest 142 

database of literature curated DTRIs, provided more than 10,000 publications but only recovered 143 

about ~20% of those recorded in the other resources (Fig 2B, 2C). Further, overlaps among the 144 

other resources are generally small (0%-22%). These observations suggest that there may be 145 

additional papers in the literature containing reports of DTRIs. As such, we expanded the pool of 146 

candidate papers by searching PubMed using several relevant Medical Subject Headings (MeSH) 147 

terms (see Methods for details). We identified an additional set of 6,989 candidate papers for 148 

1,140 TFs (Fig 2A). In particular, for TFs directly associated with CNS development, we were 149 

able to increase the total number of candidate papers from 5,729 to 9,839. Together, we 150 

assembled a set of 21,353 candidate papers covering 1,486 TFs. 151 
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152 

Fig 2. Overview of the candidate literature corpus.  153 

(A) Venn diagrams showing the overlap between candidate papers sourced from external data resources versus our 154 

independent PubMed query, broken down by all TFs (top) and those associated with neurodevelopmental TFs 155 

(bottom) (B) Number of candidate papers retrieved from each data resource. Papers associated with 156 

neurodevelopmental TFs are highlighted in blue. (C) Pairwise overlap of candidate papers among the different 157 

sources shown as fractions of the “target” source (horizontal axis). For example, TRRUST contains 0.48 of the 158 

papers recorded in CytReg whereas CytReg contains only 0.05 of the papers in TRRUST. Only values of 0.05 or 159 

higher are displayed. External resources are ordered by the number of recorded publications. (D) Summary of 160 

associations between TFs and candidate papers. Each point on the left vertical axis is a TF, ordered by the number 161 

of candidate papers assigned (TFs with the highest number of candidate papers are at the bottom). 162 

Neurodevelopmental TFs are highlighted in blue. Each point on the right vertical axis is a candidate paper, ordered by 163 

the number of associated TF (papers with the highest number of candidate papers are at the bottom). Each line 164 

denotes a TF-paper association. For example, TBR1 (highlighted) is associated with eight candidate papers (red 165 

lines), the PubMed IDs of three papers are printed as examples.  166 

We assessed coverage of TFs among the retrieved set of candidate papers. We found that 167 

90% of all the publications recorded in previous curation databases were covered by the top 316 168 

TFs. Similarly, 90% of all candidate papers queried from PubMed were covered by the top 289 169 

A B

C D
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TFs. The set of top TFs in previous curation databases overlaps substantially with the set of top 170 

TFs identified in our independent PubMed query (Jaccard Index = 0.52), suggesting shared 171 

biases. The overall pattern is shown in Fig 2D. Further, a substantial fraction of TFs (749; 34%) 172 

had no candidate papers. Importantly, some key neurodevelopmental TFs appear to have had 173 

very limited investigation. For example, TBR1 is a TF recently implicated in Intellectual 174 

Disability (ID) and Autism Spectrum Disorder (ASD) (24). Despite this, we were able to identify 175 

only eight candidate papers for this gene (Fig 2D), suggesting that TBR1 was not previously 176 

popular enough to warrant much attention. We hypothesized that this bias in TF coverage 177 

reflects gene popularity differences in general. As expected, we found that the total number of 178 

papers per TF in PubMed is highly correlated with the number of candidate papers retrieved 179 

(Spearman’s correlation = 0.86). As we discuss later, these biases in the literature influence the 180 

resulting database of interactions and its interpretation. 181 

Identification of 1,499 experimentally verified TF-target interactions 182 

 In total, we recorded 3,601 experiments by examining 1,310 research publications, 183 

providing high resolution evidence for 1,499 unique DTRIs involving 251 TFs and 825 targets 184 

(Fig 3A, S. Table S3). A small fraction (204; 14%) of all DTRIs were supported by evidence in 185 

both humans and mice (Fig 3A). About half (798; 53%) were reported only for mice and the 186 

remainder (497; 33%) only for humans. We were able to annotate 39 TFs with 10 or more DTRIs 187 

(Fig 3C). Collectively, these top 39 TFs regulate more than half (1018; 68%) of all curated 188 

DTRIs. The remaining 481 (32%) DTRIs were distributed across 212 TFs (S. Fig S1). 189 

Unsurprisingly given our TF selection criteria, 31 of the top 39 TFs, are associated with 190 

neurodevelopment (Fig 3C). Notably, PAX6, a key TF implicated in corticogenesis (25,26) has 191 

63 recorded targets. Further, we identified 12 targets with ten or more recorded TF regulators (S. 192 
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Fig S2). Eight of these 12 targets are themselves neurodevelopmental TFs including HES1, 193 

ASCL1, NEUROG2, MEF2C among others (S. Fig S3). In particular, HES1, a TF known to be 194 

involved in the proliferation of neural progenitors (27), has 14 experimentally verified TF 195 

regulators.  196 

197 

Fig 3. Summary of recorded DTRIs.  198 

(A) Breakdown of recorded experiments across experiment types and context types. The “in-vitro” category only 199 

includes EMSA experiments for testing TF-DNA binding. (B) Breakdown of DTRIs across different combinations of 200 

experiment types. Colors correspond to cellular contexts indicated in the color legend. (C) Number of targets per TF 201 

for the top 50 TFs. Color coding is the same as in (B). Neurodevelopmental TFs are indicated by blue circles. There 202 

are 39 TFs with more than ten targets (denoted by the horizontal dotted line). 203 

Next, we looked at the overall patterns of experimental evidence underlying the recorded 204 

DTRIs. TF-DNA binding experiments were most common (1,463), followed by 1,208 TF 205 

perturbation and 930 TF-reporter assays (Fig 3A). The majority of all three types of experiments 206 

A B

C
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have been performed using immortalized cell lines (2,181 experiments) rather than primary 207 

tissues or cells (951 experiments). This was especially true for reporter assays where close to 208 

95% (876/930) of the experiments were performed using cell lines (Fig 3A). Despite the overall 209 

small number of experiments using primary tissue or cells, close to half of all DTRIs (620; 41%) 210 

were validated using at least one such experiment. Further, we found that the majority (965; 211 

64%) of DTRIs were supported by two or more types of evidence and 398 (27%) DTRIs were 212 

supported by all three (Fig 3B). Of the DTRIs with all three types of evidence, 170 had been 213 

tested using primary tissues or cells and 44 had been tested directly in the CNS (Fig 3B). 214 

For each type of experiment, we further explored a number of factors that may influence 215 

reliability of the reported DTRI (Table 1). For instance, in TF perturbation assays, there have 216 

been reported concerns with artifacts in using overexpression, reviewed in (28). The majority 217 

(845; 70%) of TF perturbation experiments recorded were performed by knocking down or 218 

knocking out TF expression, although we identified a fraction (363; 30%) of experiments that 219 

used overexpression (S. Fig S4, S. Table S5). Further, in TF perturbation experiments that use 220 

primary tissues or cells, time-limited modifications may be preferred. Importantly, we found that 221 

it is common (373 experiments) to induce a constitutive loss-of-function mutation in the TF and 222 

then compare the resulting target gene expression to that of wildtype samples (S. Fig S4). 223 

Because the genetic manipulation is present throughout development, the resulting differences 224 

may not be entirely attributable to direct regulation by the perturbed TF. Of the 550 TF 225 

perturbation experiments performed using primary tissues or cells, 177 (32%) induced the 226 

perturbation closer to the time of assay by employing strategies such as Cre-LoxP or RNA 227 

interference. For TF-DNA binding experiments, we found that the majority of experiments (994; 228 

68%) used chromatin immunoprecipitation to test for in-vivo binding events in either primary 229 
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samples (345 experiments) or immortalized cell lines (649 experiments) (S. Fig S5, S. Table S6). 230 

However, EMSAs were also commonly employed to test for in-vitro TF protein-DNA 231 

interactions (469 experiments). The reliability of EMSAs might be improved by using the 232 

endogenous TF protein, as opposed to using recombinant versions. We found a small number of 233 

EMSA experiments (48) that used TF proteins obtained by nuclear extractions directly from 234 

primary tissues or cells (S. Figure S5; S. Table S6). Finally, for TF-reporter experiments, we 235 

recorded whether mutated versions of the TFBS sequence were assayed to confirm a direct 236 

binding mechanism. We found that 407 of the 930 reporter gene assays examined the functional 237 

consequence of mutating the corresponding TFBS sequence (S. Fig S6, S. Table S6). Overall, the 238 

granularity of our curation highlighted a wide range in the quality and quantity of evidence 239 

supporting the reported DTRIs. 240 

Our curation also accounted for tissues and cell types, which we recorded at the highest 241 

resolution possible with existing ontologies. This allows subdivision of the data in terms of 242 

relevance to particular contexts. In total, 951 (26%) experiments recorded (for 620 DTRIs) were 243 

performed using primary tissues or cells. In terms of anatomical systems, among these 244 

experiments, the most represented was the CNS, with 243 experiments (155 DTRIs) (S. Fig S7). 245 

The set of DTRIs in the CNS is highly enriched for neurodevelopmental TFs (p-value < 5.6x10-9, 246 

hypergeometric test). Further, a large fraction (181; 74%) of these experiments used embryonic 247 

CNS samples, thus providing evidence of activity in the developing CNS (S. Figure S7). For 248 

example, ASCL1, FGF19, and SOX2 were reported to regulate targets in the embryonic 249 

telencephalon (29), diencephalon (30), and neural stem cells (31), respectively. We also found 250 

some DTRIs involving known neurodevelopmental TFs that were assayed only in other tissues, 251 

such as a small number of PAX6 targets in pancreatic islets (32,33) and small and large intestine 252 
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(34). Over half (2,181; 60%) of all experiments were performed in cell lines, regardless of the 253 

experiment type (Fig 3A). Among these, the most popular were kidney derived cell lines (S. 254 

Figure S8). As expected, cell line experiments accounted for a larger proportion of human 255 

samples compared to primary tissue or cells (Fig 3A). Our detailed information about cellular 256 

contexts allows efficient and accurate data subsetting based on user requirements.  257 

Next, we assessed overlaps with other DTRI resources. Since we sourced many candidate 258 

papers directly from such earlier curation efforts, a significant amount of overlap is expected. By 259 

examining 657 previously curated papers, we managed to extract 809 DTRIs from 467 papers 260 

but failed to identify low-throughput experimental evidence in the remaining 190 papers (Fig 4A, 261 

S. Table S1). At the level of DTRIs, 40% of our database overlaps with TRRUST while other 262 

resources contain up to 8% of our records (S. Fig S9). Limited overlap is common among the 263 

other resources as well, with the overwhelming majority of DTRIs having been recorded only in 264 

a single database (Fig 4B). This demonstrates the general incomplete coverage of the literature 265 

even by the most comprehensive curation efforts to date. Despite being smaller than most other 266 

resources (Fig 4C), we still managed to identify 775 DTRIs that were not previously curated in 267 

any other database, 541 of which directly involved a neurodevelopmental TF (Fig 4D). 268 

Importantly, 449 (58%) of these newly identified interactions were supported by multiple lines of 269 

experimental evidence (Fig 4E). Taken together, our curation has expanded the repertoire of 270 

annotated DTRIs among the existing DTRI data resources. 271 
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272 
Figure 4. Comparison with external resources. (A) Flow chart of candidate papers obtained from seven external 273 

resources. (B) Distribution of DTRIs across the number of resources. Most DTRIs are only recorded in a single 274 

database whereas 29 DTRIs are recorded in five databases. No DTRIs have been recorded by more than five 275 

databases. (C) Number of DTRIs in each database. DTRIs involving neurodevelopmental TF regulators are 276 

highlighted in blue. (D) Venn diagrams showing the overlap between DTRIs recorded in previous curation databases 277 

versus the current study, broken down by all TFs (top) and those associated with neurodevelopmental TFs (bottom). 278 

(E) Breakdown of DTRIs unique to our curation across different combinations of experiment types. Colors correspond 279 

to cellular contexts indicated in the color legend.  280 

Because we curated only a fraction of the literature, it is of interest to estimate the total 281 

number of DTRI reports with low-throughput experimental evidence in the remainder. We base 282 

our estimate on the observation that of the 1,310 candidate papers that we examined, 63% (828) 283 

were found to contain at least one report of DTRI. It follows that approximately >12,000 of the 284 

remaining 20,043 candidate papers contain experimental evidence of DTRI. With an average of 285 

1.9 DTRIs reported by any single publication (S. Fig S10), there would be >22,000 DTRIs 286 

remaining in the literature, in addition to the 1,499 DTRIs already curated. Limiting to the 8,730 287 

A B C

D E
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candidate papers annotated with neurodevelopmental TFs, there would be >10,000 more DTRIs. 288 

As noted above, we found that under a third (398/1,499) of all recorded DTRIs were supported 289 

by all three types of experimental evidence. Further, about half (170) of these high confidence 290 

DTRIs had been tested in primary tissues or cells, and of these, 44 were tested directly in the 291 

CNS. Assuming the set of candidate papers is representative, there would be around >6,000 292 

(0.3*22,000) more DTRIs that are supported by all three types of evidence and >600 293 

(0.03*22,000) of these would have been tested using primary CNS tissues or cells. By extension, 294 

we estimate our curation of 44 DTRIs with high confidence verification of activity in the CNS 295 

captures up to 7% of all such DTRIs reported in the literature. Taken together, we estimate that 296 

there remain many thousands of additional high-confidence DTRIs in the published literature 297 

which could be the subject of future curation efforts.  298 

Network properties reflect potential research biases 299 

Given the literature biases in coverage of TFs (Fig 2D), we suspected that similar biases 300 

may exist in the selection of regulatory targets. Specifically, researchers may be more likely to 301 

choose to investigate interactions between genes that are suspected to be related. If this is true, 302 

the manually curated network should be more connected than expected if the targets were chosen 303 

randomly. To test this, we integrated all DTRIs in our database to construct a directed network 304 

consisting of 955 nodes and 1,499 edges (Fig 1D). We measured network connectivity in three 305 

ways. First, we counted the number of valid gene-to-gene paths in the network. Briefly, for every 306 

gene in the network, we counted the number of other genes that are within reach via at least one 307 

continuous path. The total count was then obtained by summing across all genes. Because the 308 

edges are directed and the network consists of multiple components, not every gene is reachable 309 

from every other gene in the network. In total, we observed more than 77,000 gene-to-gene paths 310 
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in the curated network, which is significantly higher than the mean of 55,411 paths among a null 311 

constructed from random networks (p < 0.01; see Methods). This indicates a high degree of 312 

global connectivity within the network. Next, we counted the number of cliques with three or 313 

more nodes, ignoring directionality. We found 215 cliques in the curated network, which is 314 

higher than a mean of 140 cliques among the random networks (p-value < 0.01), demonstrating a 315 

large number of locally interconnected modules. Finally, we observed only four independent 316 

components in the curated network whereas a typical random network had 26 components (p-317 

value < 0.01), implying that even peripheral genes with low node degrees remain connected to 318 

the rest of the network. Taken together, the manually curated network is highly interconnected, 319 

even after controlling for biases in TF coverage. This strongly suggests substantial biases in the 320 

selection of targets by investigators, as observed for TF selection.  321 

Continuing our investigation of biases in the data, we hypothesized that TSS proximal 322 

cREs would be enriched among the reported DTRIs since distal elements are likely more 323 

difficult to identify. We define proximal regulatory elements to be either promoters or regulatory 324 

elements that fall within 3 kb of the target TSS, as indicated by the original publication. We 325 

found that most (595 of 663 DTRIs where the TFBS position was annotated) of the reported 326 

DTRIs involve proximal cREs and only 68 DTRIs have been annotated with distal regulatory 327 

sites (S. Fig S11, S. Fig S12). Distal sites include the well-documented interaction between 328 

SOX2 and SHH where the corresponding enhancer is 5 kb downstream of the TSS (Favaro et al., 329 

2009). Such cases are, by far, the minority in our curation. In addition to TFBS proximity, we 330 

also annotated whether a regulatory interaction is activating or repressive, referred to as the 331 

mode of regulation (Table 1). We found that about less than a third (313/1,317) of the DTRIs are 332 

repressive (S. Fig S11). It is less clear whether this trend reflects underlying biological trends or 333 
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another form of investigator bias in the selection of interactions to study. Notably, several 334 

repressive DTRIs involve TFs that are generally characterized as repressors including HES1, 335 

GLI3, and REST (S. Fig S13). In particular, HES1 was annotated to repress 16 of its 26 targets 336 

(among the 23 targets where the mode of regulation was reported). The majority of other TFs 337 

have been found to upregulate the expression of the majority of their target genes. For example, 338 

RUNX1 represents a typical example that activates expression of 80% (30/37) of its recorded 339 

targets. A small number (23) of DTRIs have been reported to be both activating and repressive in 340 

different experiments. Overall, of all 557 DTRIs where both the mode of regulation and the cRE 341 

positions are known, 411 (74%) involve activation of proximal cREs and only five (<1%) are 342 

repression of a distal cRE.  343 

Comparison with a high throughput TF perturbation screen in the embryonic mouse 344 

forebrain 345 

One application of our curated DTRI resource is to benchmark high-throughput screens. 346 

To demonstrate this use case, we analyzed a previously published TF perturbation screen for 347 

Pax6 (Fig 5A). In this study, the authors sought to identify Pax6 targets in the embryonic mouse 348 

forebrain by examining genome wide differential expression between wildtype and Pax6 mutant 349 

mice using microarrays (35). We assessed enrichment of our curated PAX6/Pax6 targets in this 350 

dataset (this includes targets validated in either humans or mice). We found that 22 of all 56 351 

curated PAX6/Pax6 targets were differentially expressed at a false discovery rate (FDR) of 0.1 352 

(p-value < 4.4x10-6, hypergeometric test; similar results were obtained with a threshold-free 353 

comparison (S. Fig S14)). Among these include several known neurodevelopmental genes such 354 

as ASCL1, SOX2, and NEUROG2 (Fig 5A). We conclude there is significant correspondence 355 

between the curated targets and the high-throughput differential expression screen.  356 
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357 

Figure 5.  Comparison with a high-throughput Pax6 perturbation screen. (A) Summarized result of the comparative 358 

analysis. Curated PAX6/Pax6 targets are organized by tissue and number of types of experimental evidence. Genes 359 

differentially expressed at FDR of 0.1 are bolded and underlined. (B) Volcano plot of differential expressions between 360 

wildtype and Pax6-Sey mouse embryonic forebrains. Curated PAX6/pax6 targets are highlighted with tissue 361 

specificity as depicted in the color legend. Fold change (log2) is displayed in x-axis. Multiple test corrected q-values 362 

(Benjamini-Hochberg Procedure) are plotted on the y-axis on a log10 scale. Dotted line indicates 0.1 FDR for 363 

reference. Curated CNS targets are highly overrepresented in the differentially expression profile (p-value < 1.4x10-7, 364 

hypergeometric test) whereas no overrepresentation was detected for the targets in the “Other” category (p-value < 365 

0.8, hypergeometric test).  366 

 367 

In the analysis above, we ignored context, but it is plausible that low-throughput 368 

experiments performed in the same tissue as Walcher et al. (2013) would yield even higher 369 

correspondence. To test for this, we divided the PAX6/Pax6 targets into three tissue types: the 370 

CNS, the eye, and “other”, with the latter containing mostly DTRIs validated in cell lines. Since 371 

the differential expression profile was generated in the embryonic mouse forebrain, we 372 

hypothesized that the targets supported by low-throughput CNS evidence would be most highly 373 

enriched. We found that this is indeed the case. Thirteen of 18 CNS targets were differentially 374 

expressed at an FDR of 0.1 (p-value < 8.5x10-9, hypergeometric test) (Fig 5B). This is nearly a 375 

twofold improvement over the set of all curated PAX6/Pax6 targets. Again, this observation was 376 

A B
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corroborated by an additional threshold-free analysis (S. Fig S15). Further, we confirmed that the 377 

increase in the level enrichment for CNS targets over the set of all PAX6/Pax6 targets was 378 

statistically significant by using a resampling strategy to estimate the 95th percentile confidence 379 

intervals of the enrichment values (S. Fig S16). The level of enrichment for targets validated in 380 

the eye is approximately the same as the set of all targets (7 of 22 targets were differentially 381 

expressed at FDR of 0.1; p-value < 1.5x10-2, hypergeometric test). Finally, we did not observe 382 

enrichment for the set of targets in the “other” category (2 of 16 targets were differentially 383 

expressed at FDR of 0.1; p-value < 0.47, hypergeometric test) (Fig 5B, S. Fig S15, S. Fig S16). 384 

Similar to cellular contexts, we also found significant difference in the level of enrichment 385 

between the curated targets with single vs. multiple types of recorded experiments (S. Fig S16, S. 386 

Fig S17). These results provide a proof-of-principle for using our curation resource to evaluate 387 

high-throughput screens.  388 

Discussion 389 

The elucidation of the genetic circuits underpinning neurodevelopmental disorders has 390 

been a major challenge. While there has been progress in the development of TRN 391 

reconstruction methods using high-throughput data, it is reasonable to ask how much has already 392 

been captured in the lengthy history of low-throughput experiments, and to make maximal use of 393 

this information. Because low-throughput methods appear to be considered reliable (they are 394 

often used to validate high-throughput methods), especially when there are multiple lines of 395 

evidence, having a high-quality assembly of such data would be beneficial. In our survey of 396 

previous efforts to produce such resource, we identified the lack of detail about the amount and 397 

type of low-throughput evidence to be a major gap. To this end, we undertook a systematic and 398 

detailed effort to inspect the published literature for support of DTRIs at the individual 399 
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experiment level. We show that this approach improves interpretability of a curated DTRI data 400 

resource. Here, we release the result of our curation for use by the wider research community.  401 

The significance of having experiment level details is emphasized by our observation of 402 

the variation in confidence levels across the reported DTRIs in the published literature. A 403 

summary analysis of our database has revealed that only a fraction of all reported DTRIs is 404 

supported by all three types of experimental evidence. Similarly, most experiments were carried 405 

out using cell lines that may not recapitulate in-vivo activity. Even within a single type of 406 

experiment, we observed important differences in approach that may further impact reliability. 407 

This pattern of varied confidence among the reported DTRIs was largely unreported in previous 408 

curation efforts. The practical utility of our curation is further demonstrated by the comparison 409 

with the high-throughput Pax6 perturbation screen. The significantly higher levels of enrichment 410 

among the targets verified directly in the CNS and by multiple evidence types further confirms 411 

that our curation approach is appropriate for compiling bona fide DTRIs in the low-throughput 412 

literature.  413 

Among all the external resources reviewed, CytReg (16) and ENdb (13) were the only 414 

studies with explicit consideration of different types of experimental evidence. In CytReg, the 415 

authors classified experiments into functional or binding assays, abstracting away other details 416 

that would further enhance interpretability. In ENdb, the authors focused on the annotation of 417 

enhancers, with limited curation of details on specific TF-target interactions. TFe, on the other 418 

hand, took a more implicit approach to account for reliability (21). Instead of using a systematic 419 

curation approach, TFe relied on annotations of TF-target interactions by community experts, 420 

who in turn evaluate the merits of individual studies on an ad hoc basis. A recent report provided 421 

evidence to support the quality of the DTRIs recorded in TFe (36). However, the fractured 422 
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curation process makes this approach have questionable scalability. TRRUST is the largest 423 

literature-based resource to date (14,15). Using a semi-automated text mining approach, 424 

TRRUST recorded pairs of interacting genes from publication abstracts, purposely overlooking 425 

the underlying experimental details. The remaining databases including OReganno (17–19), 426 

HTRIdb (20), TFactS (22), and InnateDB (23) rely solely on TF binding experiments to indicate 427 

direct regulation. Finally, with the exception of InnateDB and ENdb, none of the previous 428 

curation efforts recorded information about the cellular context.  429 

There are still a number of limitations to our work. In general, manual curation can have 430 

errors. In order to minimize mistakes, we established and strictly followed a formal curation 431 

protocol. In particular, we introduced controlled vocabularies for all recorded attributes to 432 

simplify the curation process. All records were checked twice, and any conflicts were resolved 433 

by the first author. Next, incomplete retrieval of candidate papers is a potential concern. While 434 

we strived to find as many papers as possible using both previous curation resources and 435 

independent PubMed queries, it is plausible that we have missed some candidate papers given 436 

our selection of and reliance on the MeSH search terms. Nonetheless, the pronounced popularity 437 

biases we report are unlikely to be an artifact of our search strategy. Further, since we aimed to 438 

curate only a handful of DTRIs for a small set of TFs of interest, an incomplete pool of candidate 439 

papers was not a major issue. However, for a more comprehensive curation effort with the goal 440 

of increasing coverage of less popular TFs, it is possible that a future study may benefit from 441 

using more elaborate text mining approaches for retrieving candidate papers. 442 

In order to establish a direct binding mechanism for regulatory interactions with the 443 

highest possible confidence, the effect of modifying cREs in their endogenous chromosomal loci 444 

should be considered. Emerging studies are using CRISPR-KRAB and related approaches to 445 
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perform this analysis; recent examples include (37,38). However, such studies are few, and 446 

therefore have not been included in our curation protocol. Instead, we focused only on the three 447 

most commonly reported types of experimental evidence. In the future, it may be possible to 448 

integrate such data types in order to improve reliability beyond current standards. 449 

The lack of a negative set may limit the utility of this resource for validation. For 450 

example, in the PAX6/Pax6 analysis we could only assess sensitivity of the high-throughput 451 

perturbation study with respect to our database, not specificity. This is because our attempts to 452 

find negative examples was largely unsuccessful. During curation, we took note of any TF 453 

perturbation or TF-reporter experiments that yielded negative results in the papers that we 454 

examined. We only found 11 such cases (S. Table S11). There are two possible reasons for this. 455 

First, our search for candidate papers may be biased against experiments with negative results. If 456 

this is the case, it may be possible to improve the search strategy to identify more relevant 457 

papers. However, it is more plausible that the literature itself is depleted of negative reports, due 458 

to “the file-drawer problem” (39). Future work should attempt to identify negative examples by 459 

performing further experimentation or by developing alternative heuristics.  460 

It is also important to emphasize that the network we obtained here cannot and should not 461 

be used for large scale biological inference, because the structure of the network is strongly 462 

influenced by research biases and the relationship with the true regulatory network is very 463 

uncertain. The highly skewed TF coverage among the candidate papers, coupled with the 464 

correlation between the number of candidate papers and gene popularity implies that researchers 465 

generally choose to study DTRIs involving TFs of previously known significance. Conversely, 466 

some genes, such as TBR1, are functionally important but lack experimental characterization, 467 

perhaps due to their more recently discovered functional roles. This general research bias, 468 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 12, 2021. ; https://doi.org/10.1101/2021.04.11.439248doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.11.439248
http://creativecommons.org/licenses/by/4.0/


 

 

 

25 

combined with biases of our curation, has obvious impacts on the resulting network structure. 469 

Previous work by our group has documented the impact of bias towards well studied, 470 

multifunctional genes in other types of network analyses (40). Our observation of the high 471 

internode connectivity in the curated network demonstrates the presence of DTRI biases beyond 472 

gene popularity. Likewise, it is unclear whether the skewed representation of DTRIs involving 473 

activation of proximal cREs is the result of research bias or a real biological pattern. As such, we 474 

caution against interpretations based on the properties of the manually curated network. 475 

We curated what we estimate to be a substantial, but still small, fraction of the relevant 476 

literature. Fortunately, our curation protocol can be scaled up to produce a considerably larger 477 

collection of high confidence DTRIs. According to our estimates, our current curation has 478 

captured less than ten percent of all experimentally verified DTRIs reported in the published 479 

literature. The bulk of our curation was performed in four months by two full time curators. 480 

Given this experience, we estimate an exhaustive curation effort could be completed by a team of 481 

ten curators in approximately 12 months. Importantly, we predict that about a third of all 482 

reported DTRIs would be supported by all three types of experimental evidence. However, we 483 

take note of the scarcity of specific DTRIs in particular contexts. In particular, we found less 484 

than 5% of all recorded DTRIs to have reliably demonstrated activity specifically in the CNS. 485 

While we postulate that a manual curation approach is required to establish a high confidence 486 

DTRI catalogue for training and validating high-throughput predictions, the aforementioned 487 

biases and scarcity of low-throughput experiments will prevent the use of manually curated 488 

networks directly for analysis. To elucidate the architecture of gene regulation underpinning 489 

neurodevelopment and disease, it is imperative to develop effective means for accurately 490 
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predicting DTRIs based on high-throughput data. This curation effort supports progress towards 491 

this end. 492 

Methods 493 

All data analyses and visualizations were performed using R and R-Studio (2015). Data 494 

plots were made using ggplot2 (Wickham, 2011). For data manipulation, we used Tidyverse 495 

(Wickham et al., 2019). 496 

Obtaining records from external resources 497 

We obtained records from eight external databases: ENdb, TRRUST, CytReg, 498 

OReganno, HTRIdb, TFe, TFactS, and InnateDB. We downloaded the ENdb records from 499 

http://www.licpathway.net/ENdb/ on Sept. 14th, 2020. Records from the remaining databases 500 

were downloaded between Dec. 9 and Dec. 16, 2019. We obtained the CytReg records from the 501 

supplementary data of the original publication. For TRRUST, we downloaded both the human 502 

and mouse data tables directly from https://www.grnpedia.org/trrust/. An additional column was 503 

added to preserve the species annotation before joining the two tables. The most recent version 504 

of the records in ORegAnno were obtained from http://www.oreganno.org/. Here, we retained 505 

only records with valid Entrez or Ensembl ID, and PubMed ID annotations. In addition, records 506 

annotated as miRNA regulation or those resulting from high-throughput screens were excluded. 507 

We downloaded InnateDB records from https://www.innatedb.com/ and filtered for records 508 

reporting protein-DNA interactions. The TFe records were retrieved from the now deprecated 509 

web API, http://cisreg.cmmt.ubc.ca/cgi-bin/tfe. Species information was inferred from the TF 510 

gene symbols recorded in TFe. The TFactS records were downloaded from 511 

http://www.tfacts.org/. A union set was derived by merging both signed and signless data tables 512 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 12, 2021. ; https://doi.org/10.1101/2021.04.11.439248doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.11.439248
http://creativecommons.org/licenses/by/4.0/


 

 

 

27 

in TFactS. Finally, for HTRIdb, we downloaded the data from http://www.lbbc.ibb.unesp.br/htri. 513 

Here, we filtered for literature curated records with valid PubMed ID annotations. 514 

From each database we retained records of one-to-one regulator-target interactions with 515 

annotations in either human or mouse. We indexed genes using Entrez IDs. In cases where only 516 

the gene symbols were available, we mapped the symbols to Entrez IDs, first by using the 517 

official HGNC or MGI symbols and then by gene aliases. With the exception of ENdb, which 518 

was published after we completed curation, the retrieved set of publications was used as a source 519 

of candidate papers for curation in the present study (S. Table S1). Each publication was 520 

assigned to one or more TFs based on the recorded DTRIs. Additionally, we also retained 521 

species information and modes of regulation where available. For all analysis and reporting, we 522 

matched all TF and target genes to human orthologs using NCBI HomoloGene (Maglott et al., 523 

2005, Mancarci and French, 2019: https://cran.r-524 

project.org/web/packages/homologene/index.html). When there are no human orthologs, the 525 

mouse Entrez gene is used directly. Independent regulatory interactions were defined as unique 526 

combinations of the human TF and target genes.  527 

Identification of neurodevelopmental TFs 528 

 We define TFs to be either the genes annotated with least one regulatory target in any of 529 

the previous resources or those identified as TFs by Lambert et al. (41). Collectively, this TF set 530 

consists of 2,235 genes. Given our particular focus in this study on neurodevelopment, we 531 

further designated 438 TFs as neurodevelopmental TFs based Gene Ontology annotations, and 532 

disease association records from SFARI (S. Table S2) (42,43). We downloaded the list of genes 533 

annotated with the central nervous system development GO term (GO:0007417) or any of its 534 
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descendent terms for both human and mouse from AmiGO (http://amigo.geneontology.org/). 535 

Next, we downloaded the list of genes associated with neurodevelopmental disorders from the 536 

SFARI database (https://gene.sfari.org/). The list of TFs is provided in S. Table S2. Finally, we 537 

manually prioritized these TFs for curation based on the annotated association with 538 

neurodevelopment and the number of candidate papers retrieved. 539 

Obtaining candidate publications for curation 540 

 In addition to the candidate papers derived from the external resources, we also 541 

performed an independent PubMed query for each TF (refer to the previous section for the 542 

operational definition of a TF). We took advantage of the E-Utilities API provided by NCBI to 543 

perform searches programmatically (44). We selected six MeSH terms that indicate experimental 544 

evidence for: "Regulatory Sequences, Nucleic Acid”, "Transcription, Genetic”, “Intracellular 545 

Signaling Peptides and Proteins”, “Gene Expression Regulation”, "Chromatin 546 

Immunoprecipitation”, and "Electrophoretic Mobility Shift Assay”. The set of the selected search 547 

terms were appended to the gene symbol of each TF to form an independent search query to 548 

obtain the corresponding set of candidate papers. To approximate gene popularity of TFs, we 549 

performed another round of PubMed query for each TF using only the gene symbol without the 550 

MeSH terms.  551 

Experiment-centric curation of DTRIs 552 

For each paper that we examined, we recorded all low-throughput experimental evidence 553 

of DTRIs. Specifically, we look for three types of experiments: TF perturbation, TF-DNA 554 

binding, and TF-reporter assays. As such, each experiment constitutes an independent record in 555 

the database and is assigned a unique identifier (S. Table S3). Gene identifiers were translated 556 
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into Entrez IDs at the time of recording. Species information was recorded separately for the TF 557 

and the target genes. The context type may be cell lines, or primary tissue or cells. In the case of 558 

EMSA experiments, the context types are designated to be in-vitro. In addition to the context 559 

type, we further annotated each experiment with a specific ontology term in order to retain the 560 

highest context resolution possible. We used terms from the UBERON ontology (45) for primary 561 

tissue, the CL ontology (46) for primary cells, and the CLO ontology (47) for cell lines. Where 562 

the appropriate ontology term could not be found in the aforementioned ontologies, we 563 

additionally used terms from the BTO (48) and the EFO (49) ontologies. When all else fails, we 564 

directly recorded the name provided in the original publication. Age was also recorded as a 565 

separate attribute for experiments that used primary tissues or cells. Where available, we also 566 

recorded the direction of regulation as well as whether the reported regulatory element is 567 

proximal or distal to the TSS of the target gene. Proximal elements were defined to be either 568 

promoters or cREs within 3 kb upstream or downstream of the TSS. Table 1 contains the full list 569 

of recorded attributes and the corresponding descriptions. 570 

For each type of experiment, we selected a number of details. For TF perturbation 571 

experiments, we recorded whether the TF was overexpressed, down regulated, or knocked out. 572 

We also recorded whether the perturbation was dynamically induced before the time of assay or 573 

constitutively modified at the beginning of life. For TF-DNA binding experiments, we recorded 574 

both ChIP-assay and EMSA experiments. For EMSA, we further annotated the source of the TF 575 

protein. Finally, for reporter assays, we recorded whether mutations were introduced to the cRE 576 

sequence for comparison.  577 

Network analysis 578 
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To assess the connectivity of the manually curated network, we used the iGraph package 579 

in R (50). First, we constructed a directed network consisting of all curated DTRIs. Three metrics 580 

were computed to measure internode connectivity: the number of valid gene-to-gene paths, the 581 

number of cliques with three or more nodes, and the number of independent components. To 582 

assess statistical significance, we constructed 1000 network permutations by randomly swapping 583 

all edges while preserving both in and out degrees of all nodes. This set of random networks 584 

were then used to generate empirical null distributions for each of the three metrics. One-tailed 585 

p-values were computed by obtaining the fraction of random values larger or smaller than the 586 

observed values.  587 

Comparison with the high-throughput Pax6 perturbation screen 588 

 We selected PAX6/Pax6, the TF with the highest number of recorded targets, for 589 

assessing correspondence with a high-throughput screen. We obtained the genome wide 590 

expression data generated by previous study (35) along with the metadata from Gemma (51). 591 

This dataset was selected for its relevance to brain development. We then performed a 592 

differential expression analysis between the wild type and the Pax6-Sey samples using limma 593 

(52). This resulted in a list of genes with p-values representing significance of differential 594 

expression upon Pax6 knockout. For hit list analyses, we used a cut-off FDR of 0.1. We used the 595 

ranking of nominal p-values for AUROC analyses. The Entrez IDs for the mouse genes were 596 

mapped to human orthologs using HomoloGene so that the results could be compared with the 597 

current curation.  598 

 Next, we took all 56 curated targets for PAX6/Pax6 that were present in the microarray 599 

dataset and sliced it according to cellular context and quality of evidence. To retrieve targets with 600 
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demonstrated activity in the CNS, we retrieved all interactions for PAX6/Pax6 where there is at 601 

least one experiment annotated with the CNS ontology term (UBERON:0001017) or any of its 602 

descendent terms. Similarly, we searched for all targets annotated with the eye term 603 

(UBERON:0000970). Targets with evidence in both the CNS and the eye were placed only in the 604 

CNS category so that the categories are mutually exclusive. The remaining targets were 605 

classified as “other”. To subset by quality of evidence, we binned all PAX6/Pax6 targets into 606 

those with multiple types of experiments vs. only a single type of experiment.  607 

Each of these target subsets were then tested for enrichment in the high-throughput 608 

differential expression screen. Enrichment was tested in two ways. First, a hit list of 2,780 609 

differentially expressed genes were generated using an FDR threshold. Overrepresentation of the 610 

curated targets in this list was tested by using the hypergeometric distribution, yielding a p-value 611 

for each set of curated targets. Next, we generated a ranking of differentially expressed genes 612 

using nominal p-values and used the AUROC method to test enrichment for each set of curated 613 

targets towards the top of this ranking. AUROCs were computed by using the Mann-Whitney U 614 

Test. To test for significant differences among the AUROCs for the different target subsets, we 615 

estimated the variance of the AUROC for each subset by bootstrapping 1000 random samples for 616 

each set of curated targets. Significant differences were determined by assessing the overlaps 617 

among 95th percentile confidence intervals.  618 
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 841 

Supplementary Figure S1. Distribution of TFs by the number of targets.  842 

Only TFs with at least one curated target are plotted. Most (212/251) TFs have less than ten 843 

targets recorded. 844 
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 851 

Supplementary Figure S2. Distribution of targets by the number of recorded TF regulators.  852 

Only targets with at least one recorded TF regulator are included.  853 
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862 

Supplementary Figure S3. Number of TF regulators per target for the top 50 target genes.  863 

Target genes that are also neurodevelopmental TFs are indicated by blue dots. Bar colors 864 

correspond to cellular contexts indicated in the color legend. There are eight targets with more 865 

than 10 recorded TF regulators (denoted by the horizontal dotted line). 866 
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 873 

Supplementary Figure S4. Details of TF perturbation experiments.  874 

Colors correspond to cellular contexts as indicated in the legend. Top left: Breakdown of 875 

experiments by species. The “mixed” column refers to experiments where the TF and the target 876 

genes originated from different species, which is possible in TF overexpression experiments. 877 

Top right: Breakdown of experiments by context type. Bottom left: Breakdown of experiments 878 

by the mode of TF perturbation. “Knock Out” refers perturbations at the genetic level including 879 

naturally occurring mutations. Further breakdown into heterozygous or homozygous knock 880 
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outs are provided in Supplementary Table S5. “Knock Down” refers to transcript level 881 

perturbation by RNA interference. Bottom right: Breakdown of experiments by the effect of TF 882 

perturbation in primary tissues or cells. “Constitutive” perturbations are present throughout 883 

development versus “induced” perturbations are triggered closer to the time of assay.  884 
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 893 

Supplementary Figure S5. Details of TF-DNA binding experiments.  894 

Colors correspond to cellular contexts as indicated in the color legend. Top left: Breakdown of 895 

experiments by species. The “mixed” column refers to experiments where the TF and the target 896 

genes originated from different species, which is possible in EMSA experiments. Top right: 897 

Breakdown of experiments by context type. All EMSA experiments were classified as “in-vitro” 898 

for context type. Bottom left: Breakdown of experiments by method. Bottom right: Breakdown 899 

of experiments by source of the TF protein in EMSA experiments. Forty-eight EMSA 900 
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experiments used endogenous TF proteins sourced from primary tissues or cells. In most cases 901 

(292), TF proteins were sourced from cell lines following TF transfection.  902 
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 909 

Supplementary Figure S6. Details of TF-reporter experiments.  910 

Colors correspond to cellular contexts as indicated in the color legend. Top left: Breakdown of 911 

experiments by species. The “mixed” column refers to experiments where the TF and the target 912 

genes originated from different species. Top right: Breakdown of experiments by context type. 913 

Few TF-reporter experiments were performed using primary tissues or cells. Bottom left: 914 

Breakdown of TF-reporter experiments that did or did not investigate the effect of mutating the 915 
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corresponding cRE sequence. Bottom right: Breakdown of whether the effect of the mutation 916 

on the TF-DNA interaction was confirmed experimentally by EMSA.  917 
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 929 

Supplementary Figure S7. Breakdown of experiments performed using primary tissues or cells 930 

across anatomical systems.  931 

DTRI counts are plotted on the left and experiment counts are plotted on the right. Additional 932 

columns are shown for experiments performed using embryonic tissue or cells. DTRIs and 933 

experiments involving neurodevelopmental TF regulators are highlighted in blue.  934 

 935 

 936 

 937 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 12, 2021. ; https://doi.org/10.1101/2021.04.11.439248doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.11.439248
http://creativecommons.org/licenses/by/4.0/


 

 

 

50 

 938 

Supplementary Figure S8. Breakdown of experiments performed using cell lines across broad 939 

cell type categories. 940 

DTRI counts are plotted on the left and experiment counts are plotted on the right. DTRIs 941 

involving neurodevelopmental TF regulators are highlighted in blue. 942 
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 945 

Supplementary Figure S9. Pairwise overlap of DTRIs among the different data resources.  946 

Overlap values are reported as fractions of the “target” resource (x-axis). Only values of 0.05 or 947 

higher are printed. For example, TRRUST contains 0.4 of the DTRIs recorded in our curation 948 

whereas we captured less than 0.05 of the DTRIs in TRRUST. External resources are ordered by 949 

the number of recorded DTRIs. 950 

 951 

 952 

 953 

 954 

 955 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 12, 2021. ; https://doi.org/10.1101/2021.04.11.439248doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.11.439248
http://creativecommons.org/licenses/by/4.0/


 

 

 

52 

 956 

Supplementary Figure S10. Distribution of papers by the number of DTRIs reported.  957 

Only papers with at least one curated DTRI are included. The majority of papers report only a 958 

single DTRI.  959 

 960 

 961 

 962 

 963 

 964 

 965 

 966 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 12, 2021. ; https://doi.org/10.1101/2021.04.11.439248doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.11.439248
http://creativecommons.org/licenses/by/4.0/


 

 

 

53 

 967 

Supplementary Figure S11. Breakdown of DTRIs by mode of regulation and TFBS position.  968 

For “TFBS Position” (y-axis), “Proximal” refers to promoters or cREs that are within 3 kb of the 969 

target TSS as reported in the original publication. The “Distal” category includes cREs further 970 

than 3 kb upstream or downstream from the target TSS. “Both” includes DTRIs with both 971 

proximal and distal regulatory elements. For “Mode of Regulation”, “Activation” refers to TF 972 

perturbation or TF-reporter assays where the direction of change in target gene expression is 973 

the same as direction of the corresponding TF perturbation. Similarly, “Repression” includes 974 
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results where expression of the target gene changes in the opposite direction. “Both” refers to 975 

DTRIs with alternative results from different experiments.   976 
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989 

Supplementary Figure S12. TFBS Position of DTRIs per TF for the top 50 TFs.  990 

Colors correspond to TFBS position annotations. Dotted line indicates 10 targets on the y-axis 991 

for reference.  992 
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 1004 

Supplementary Figure S13. Mode of regulation of DTRIs per TF for the top 50 TFs.  1005 

Colors correspond to the mode of regulation annotations. The dotted line indicates 10 on the y-1006 

axis for reference. Most TFs appear to be primarily activators whereas a small number of TFs 1007 

such as HES1, GLI3, and REST repress the majority of their recorded targets.  1008 
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 1016 

Supplementary Figure S14. Enrichment of all curated PAX6/Pax6 targets among differentially 1017 

expressed genes in the Pax6 TF perturbation dataset.  1018 

AUROC and the corresponding p-value (Mann-Whitney U Test) are displayed in the panel.  1019 
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 1022 

Supplementary Figure S15. Enrichment of curated PAX6/Pax6 targets among differentially 1023 

expressed genes in the Pax6 TF perturbation dataset by tissue types.  1024 

Targets are classified based on the reported cellular contexts. AUROCs and the corresponding 1025 

p-values (Mann-Whitney U Test) are displayed in the panel. Color coding corresponds to 1026 

categories of targets. Targets with experimental validation in primary CNS tissues are most 1027 

enriched in the perturbation screen. No statistically significant enrichment is observed for 1028 

targets tested in tissues or cell types other than the CNS or the eye.   1029 
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 1031 

Supplementary Figure S16. AUROC values for the different categories of curated PAX6/Pax6 1032 

targets.   1033 

Confidence intervals (95th percentile) were derived by bootstrapping 1000 random samples 1034 

from each category. Statistically significant differences were observed between the CNS versus 1035 

“other” as well as between targets with multiple versus a single type of low-throughput 1036 

experimental evidence. Dotted line of AUROC = 0.5 indicates random expectation.  1037 
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  1039 

Supplementary Figure S17. Enrichment of curated PAX6/Pax6 targets among differentially 1040 

expressed genes in the Pax6 TF perturbation dataset.  1041 

AUROCs and the corresponding p-values (Mann-Whitney U Test) are displayed in the panel. 1042 

Color coding corresponds to categories of targets. No statistically significant enrichment is 1043 

observed for targets tested only in a single type of experiment.  1044 
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