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Abstract

Modern population-scale biobanks contain simultaneous measurements of many phenotypes, providing
unprecedented opportunity to study the relationship between biomarkers and disease. However, inferring
causal effects from observational data is notoriously challenging. Mendelian randomization (MR) has
recently received increased attention as a class of methods for estimating causal effects using genetic
associations. However, standard methods result in pervasive false positives when two traits share a
heritable, unobserved common cause. This is the problem of correlated pleiotropy. Here, we introduce
a flexible framework for simulating traits with a common genetic confounder that generalizes recently
proposed models, as well as simple approach we call Welch-weighted Egger regression (WWER) for
estimating causal effects. We show in comprehensive simulations that our method substantially reduces
false positives due to correlated pleiotropy while being fast enough to apply to hundreds of phenotypes.
We first apply our method to a subset of the UK Biobank consisting of blood traits and inflammatory
disease, and then a broader set of 411 heritable phenotypes. We detect many effects with strong literature
support, as well as numerous behavioral effects that appear to stem from physician advice given to people
at high risk for disease. We conclude that WWER is a powerful tool for exploratory data analysis in
ever-growing databases of genotypes and phenotypes.

1 Introduction

Modern population-scale biobanks contain genetic information with simultaneous measurements of many
phenotypes, providing unprecedented opportunity to study the relationship between biomarkers and disease.
However, inferring causal effects from observational data is notoriously challenging. Mendelian randomization
(MR) has recently received increased attention as a class of methods that can mitigate issues in causal inference
by using genetic variants (single nucleotide polymorphisms, SNPs) from genome-wide association studies
(GWAS) as instrumental variables to determine the causal effect of an exposure (A) on an outcome (B). To
estimate causal effects, MR methods must make strong assumptions that limit their ability to be applied
at scale. Perhaps the most problematic assumption is that the SNP only effects B through A, i.e. there is
no horizontal pleiotropy. Recent methods such as Egger regression and the mode-based-estimator are able
to relax this assumption, instead assuming there is no correlated horizontal pleiotropy or modal pleiotropy,
respectively [1, 2]. Correlated horizontal pleiotropy arises when both A and B share a common heritable factor
(U in Figure 1a), resulting in genetic correlation between the traits in the absence of a causal effect. This
kind of pleiotropy is both challenging to handle and thought to be pervasive, with computationally-intensive
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mixture models recently showing success at estimating causal effects in this setting [3, 4]. Another approach,
the latent causal variable (LCV) model, is able to detect causality under arbitrarily-structured pleiotropy [5].
However, the quantity that LCV calculates is not interpretable as the causal effect size of A on B.

Most MR studies also presuppose the direction of effect, specifying one phenotype as the outcome and
the other as the exposure. Pre-specifying the effect direction can be sound when the outcome is clearly
biologically downstream of the exposure, but many cases are less clear-cut and it is be preferable to learn
the direction of the effect from the data. Some researchers have instead explored bidirectional MR [6, 7],
which tests for an effect in each direction, or gwas-pw [8], which infers the effect direction from the data.
Others have used Steiger filtering to remove instruments that might be acting on the outcome, rather than
the exposure, which has been shown to reduce false positives due to misspecification of the exposure-outcome
relationship [9]. However, the utility of these approaches for complex traits, which might contain non-causal
correlated pleiotropy, is questionable [5].

Here, we introduce a flexible model for bi-directional MR that explicitly models the genetic architecture
of both the observed phenotypes and a heritable confounder while allowing for arbitrary linear dependencies
between them (Figure 1a). Our model captures recently proposed models for MR, including LCV [5] and
CAUSE [3], as special cases. We also introduce a simple method for producing causal effect estimates that
is based on filtering and down-weighting likely pleiotropic SNPs in an Egger-like regression, an approach
we call Welch-weighted Egger regression (WWER, Figure 1b-d). By filtering SNPs with indistinguishable
statistical effects on the exposure and the outcome, our method can be seen as an extension of Stieger
filtering. To our knowledge Steiger filtering has not been extensively evaluated as an approach to dealing
with non-causal association due to correlated pleiotropy. We show via extensive simulations varying the trait
and model architectures that our approach reduces false positives due to correlated pleiotropy while being
computationally efficient enough to apply in bi-directed exploratory data analyses of hundreds of phenotypes.
We first apply our method to a limited set of phenotypes from the UK Biobank (UKBB) consisting of blood
biomarker and blood cell composition traits, as well as common inflammatory diseases, and recover signals
corresponding to known disease risk factors. We next apply our method broadly to over 400 phenotypes from
the UKBB, again recovering known disease risk factors, while also finding broad signatures of risk factors on
behavior, likely reflecting patient response to common medical advice.

2 Results

Overview of methods

We introduce a flexible model that allows for both unidirectional and bidirectional causal effects while
explicitly modeling the genetic architecture of each trait. In contrast to previously proposed models [5, 3],
ours decouples the genetic architecture of the confounder from that of the exposure, allowing for arbitrary
linear effects of the confounder on the pair of observed phenotypes. Our model is also agnostic to the labeling
of either observed phenotype as the exposure or the outcome. In brief, we use A and B to denote the observed
traits in the study, and U to denote the unobserved genetic confounder. SNPs X effect each of A, B and
U with probabilities q, r, s and effect sizes βA, βB , βU sampled from a normal distribution with variances
σ2
A, σ

2
B , σ

2
U , respectively. The probability of effect and variance of the sampling distribution combine to

determine the genetic architecture of each trait independently of the others. Finally, η and ν specify the
effect of the hidden confounder U on A and B, while γ and δ model the causal effect of A on B and B on A,
respectively. Under this model, the phenotype values are given by

U = XβU ◦ ZU + εU , (1)

A = Uν +Bδ + XβA ◦ ZA + εA, (2)

B = Uη +Aγ + XβB ◦ ZB + εB , (3)

where Z’s represent indicator variables that the SNP effects that trait, sampled as indicated above, ◦ indicates
vector element-wise (hadamard) multiplication, and bolding represents matrices. In Section 4 we show how
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Figure 1: Our model for bi-directional Mendelian randomization, along with an example demonstrating
the utility of WWER as compared to standard Egger regression under both the null and 1-way alternative
hypothesis. a) A flexible model for bi-directional Mendelian randomization. SNPs X can effect the unobserved
phenotype (confounder) U as well as the observed phenotypes of interest A and B. η and ν represent the
per-variance effect of U on A and B, respectively, while γ and δ represent the per-variance causal effect of A
on B and B on A, respectively. The allelic architecture of each phenotype can be independently adjusted by
adjusting the proportion of effect variants, π, and variance of the distribution of effect sizes, β. b) The true
effect of each SNP on phenotype A vs B under (left) a null model with η = ν =

√
0.2 and γ = δ = 0 and

(right) an alternative (alt) model with η = ν = δ = 0 and γ =
√

0.2. c) In the first sample, WWER calculates
the Welch statistic, with large positive values (blue) indicating the SNP has a stronger effect on A and large
negative values (red) indicating the SNP has a stronger effect on B. SNPs with near-equal effects on the
diagonal axis get scores near 0. d) In the second sample, WWER filters SNPs with low Welch statistic, then
uses the Welch statistic as a weight for the remaining SNPs when regressing the effect of the outcome on the
exposure. Under the null (left) Egger regression produces a false positive, whereas WWER down-weights
pleiotropic SNPs and does not. Under the alternative (right) both methods produce nearly-identical results.
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to simulate from this model and parameterize it in terms of the heritability of each phenotype rather than
the variance of the effect size distribution. We also explicitly describe how to set the parameters to mimic
the models considered in [5] and [3]

To produce effect estimates, we introduce a simple method based on a modification to Egger regression [1]
that down-weights likely pleiotropic SNPs. Similarly to Steiger filtering [9], we leverage the intuition that
if A causes B and a SNP effects A directly, the per-variance effect of the SNP on B can be no larger than
the per-variance effect of the SNP on A times the per-variance effect of A on B. That is, the SNP must
have its per-variance contribution to B reduced by the effect of A on B. We use this to construct a novel
weighting scheme for Egger regression. First, we select a p-value threshold pt (usually 5× 10−8). For both
phenotypes A and B, we construct a set of marginally associated SNPs at threshold pt. For this set of SNPs,
we calculate a weight based on the Welch test statistic for a two-sample difference in mean with unequal
variances, and the standard inverse-variance weight. If β̂A,k and β̂B,k are our estimates of the effect of SNP k
on phenotypes A and B, respectively, with ŝA,k and ŝB,k their standard errors, the Welch test statistic [10] is

tk =
|β̂A,k| − |β̂A,k|√
ŝ2
A,k − ŝ2

B,k

(4)

and our weight is

wk =

{
tk

t̄ŝ2A,k
if |t| > tmin,

0 if |t| ≤ tmin

(5)

where t̄ is the mean Welch statistic, and tmin is the SNP inclusion threshold. We use these SNP weights in
the Egger regression of B on A and vice versa for the reverse direction. To avoid bias, we must use two sets
of summary statistics. The first set is for SNP selection and weight construction, and the second set is for
estimating the causal effect. This method has two parameters, pt and tmin. Here we choose not to tune them
and instead always set them to pt = 5× 10−8, corresponding to genome-wide significance, and tmin = 1.96,
corresponding to a two-sided p-value for a difference in mean effect of 0.05.

Simulations

WWER reduces false discoveries due to correlated pleiotropy

Our first goal was to assess the calibration of WWER under the two-way null as compared to other methods
under a broad range of simulation settings. In total we simulated 82 different combinations of simulation
parameters. The first 20 settings are designed to mimic the simulations in [5] (Figure 2a), the next 20 settings
are designed to mimic the simulations in [3] (Figure 2b), and the final 42 explore various combinations of
high and low polygenicity for each of the observed and unobserved traits (Figure 2c). In all cases we evaluate
the false positive rate (FPR) in both the A to B direction and the B to A direction. We also calculate the
mean absolute error (MAE) of the effect size estimate. We compare WWER to the standard methods of
inverse variance weighting (IVW) and Egger regression, as well as several more recently proposed methods:
CAUSE [3], MR Mix [4], MR PRESSO [11], raps [12], the weighted median estimator (WME) [13] and the
mode-based estimator (MBE) [2]. We also compare against Egger regression with Steiger filtering [9], which
has not previously been evaluated for the purpose of handling correlated pleiotropy in bi-directional MR.
We intentionally excluded methods such as gwas-pw [8] and LCV [5] that cannot produce bi-directed effect
estimates.

The simulations corresponding to the LCV null model are broadly defined by 1) an equal effect of the
hidden confounder (U) on both observed traits (A and B) and 2) a genetic architecture of U that results in
an equal per-variance contribution of each SNP to A and B both when it acts directly on the them or through
U (for more details, see Section 4). We evaluated settings where the studies for A and B had 1) equal sample
sizes of 100,000 individuals and an equal genetic architecture, 2) equal sample sizes but trait B had half as
many causal SNPs, 3) study B had reduced power (20, 000 individuals) and 4) study B had reduced power
while being less polygenic. In every setting we simulate 500, 000 total SNPs, 2, 500 of which are causal for
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each observed phenotype. In each of these categories we varied ν, η and the proportion of shared causal SNPs
such that the induced genetic correlation varied from 0.0 to 0.6. For complete settings for each simulation see
Table S1. WWER and Egger regression with Stieger filtering maintained a low false positive rate across all of
these simulation settings, while other methods had variable performance depending on the setting (Figure 2a).
CAUSE also performed well unless the genetic correlation was 0.4 or above and the studies had unequal
power, while MBE and MR-Mix also struggled with higher values of genetic correlation. Egger regression,
MR PRESSO, IVW and raps all performed poorly overall. For space constraints we have omitted (r)aps and
WME from Figure 2, for complete results see Tables S4-S5.

The simulations corresponding to the CAUSE model are broadly defined by 1) a much stronger effect of
U on the exposure (A) relative to the outcome (B) and 2) a genetic architecture of the hidden trait that
results in an equal per-variance contribution to the A whether the SNP acts directly on it or via U (again see
Section 4 for more details). Since our model does not make an exposure/outcome distinction, we choose to
use A as the exposure and B as the outcome, but we continue to evaluate performance in both directions.
In all settings we simulated 500, 000 SNPs with 1, 000 causal SNPs per observed phenotype. We chose four
broad categories wherein we adjusted the proportion of the causal variants effecting U from 0.0 to 0.33. The
four categories correspond to 1) equal power (100, 000 individuals) with a stronger shared effect (explaining
5% of the variance in B), 2) equal power with a weaker shared effect (explaining 2% of the variance in B),
3) study 2 having lower power (20, 000 individuals) with the stronger shared effect and 4) study 1 having
lower power (20, 000 individuals) with the stronger shared effect. For complete settings for each simulation
see Table S2. In this setting, CAUSE, all Egger-based methods as well as MR Mix and the MBE perform
similarly well with a well-controlled error rate at lower proportions of shared variants and some excess false
positives at higher levels. The WME, MR PRESSO, and (r)aps perform similarly to IVW which struggles to
control false positives even for relatively small fraction of pleiotropic SNPs in all settings. CAUSE seems to
perform better here than in similar situations in the original manuscript [3]. This is likely because we are
using pre-pruned variants without linkage disequilibrium (LD), unlike in [3] where CAUSE must additionally
handle LD. In the B to A direction, all methods are able to control the false positive rate. For complete
results see Tables S6-S7.

Finally, we exhaustively tested all combinations of 1) low (500 directly causal variants) and high (2000
directly causal variants) polygenicity for each of A, B, and U , 2) either equal (100,000 individuals per study)
or unequal (25,000 individuals in the under-powered study) sample sizes, and 3) either equal effects of U on
both traits (explaining 30% of the variance in each) or unequal effects (explaining 30% in one and 10% in
the other). For complete simulation settings see Table S3. Due to space limitations we present 8 of the 42
resulting combinations in Figure 2 and the rest in Tables S8-S9. Perhaps unsurprisingly, some settings favor
certain methods over others and there is no method that controls the FPR in every setting. WWER and
Egger regression with Steiger filtering worked well for most settings. However, there were notable settings
where these methods performed poorly. For example, when the polygenicity of A is high, the polygenicity of
U is low, U has a larger effect on A, and the sample size of A is large, both methods produce a false positive
> 95% of the time. (Table S8 lines 5 and 33, Table S9 lines 2 and 16). Another interesting setting is low
polygenicity of both A and B, high polygenicity of U , equal sample sizes and a larger effect of U on the
exposure (Table S9 line 14). In this setting WWER produces many excess false positives (FPR = 0.47±0.05),
but this is about half as many as standard Egger regression or Egger with Steiger filtering (FPR = 0.88(0.03)
and FPR = 0.80(0.04), respectively). With some exceptions, CAUSE and MBE also performed well in these
settings, while all other methods performed poorly overall.

We summarize our results in Table 1 by ranking the methods according to FPR and mean absolute
error (MAE) in each of the simulations settings in both directions. We also calculate the percentage of
settings where each method had an estimated FPR whose 95% confidence interval contained either 0.05,
indicating well-calibrated p-values, or 0.20, indicating that the excess false positives are limited to a useful
level. The MBE, CAUSE, and MR-Mix performed quite well overall. These three methods generally produced
the best-calibrated p-values and controlled the FPR at the 0.05 level in the highest percentage of tested
cases. However, WWER followed by Egger with Stieger filtering produced a controlled amount of excess
false positives (FPR < 20%) more frequently than other methods. WWER generally produced slightly less
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conservative p-values while having a lower MAE overall as compared to Egger with Stieger filtering. While
these two methods did perform similarly, as mentioned above we found evidence of cases where WWER
out-performed Egger with Stieger filtering by a large margin, but the opposite was never true (Tables S8-S9).
A final consideration, especially in exploratory data analysis applications, is run-time. Regression-based
methods are very fast, while more sophisticated methods can take much longer. CAUSE took nearly 50
minutes on average to calculate effects in both directions (Table 1). While the MBE and MR-Mix are
somewhat faster, we used only a small number of sampling iterations (1000) to generate p-values accurate to
two significant digits. In exploratory data analysis cases, where the multiple testing burden is likely to be
high, many more iterations will need to be used to generate p-values with more significant digits.

Method FPR rank MAE rank FPR < 5% FPR < 20% Runtime (s)

WWER 6.034 6.735 77.4 92.7 0.634
Steiger 5.329 7.372 76.2 92.1 0.634
CAUSE 4.210 4.671 81.7 90.9 2958.892
MBE 3.351 5.823 84.8 89.6 38.140
MMR Mix 4.125 6.134 76.8 87.2 79.670

Egger 6.683 9.183 59.8 67.1 0.632
WME 6.372 5.177 52.4 63.4 8.594
MR PRESSO 8.287 4.366 45.7 54.3 313.527
raps 8.381 6.421 39.0 50.0 0.684
IVW 9.418 6.683 36.0 40.2 0.640
aps 9.290 8.116 35.4 39.6 0.635

Table 1: A summary of the results from all of our null simulations. In each setting, we ranked every method
according to its false positive rate (FPR) and mean absolute error (MAE). Then, we calculated the mean
ranking of each method across all simulations settings (columns FPR rank and MAE rank, respectively). We
also calculated the percentage of settings in which each method had FPR < 5%, indicating well-calibrated
p-values, as well as the percentage of settings with FPR < 20%, indicating a controlled level of excess false
positives (columns FPR < 5% and FPR < 20%, respectively. Finally, we calculated the time required to
calculate an effect in each direction with each method (column Runtime).

WWER maintains power

Our next goal was to evaluate the power of WWER as compared to other methods when the alternative
hypothesis is true and there is no uncorrelated pleiotropy (γ and/or delta 6= 0, while ν = η = 0). We
considered both the unidirectional (A → B, γ > 0, δ = 0) and the bi-directional (A ↔ B, γ 6= 0, δ 6= 0)
alternate while varying the strength of the effects (γ or δ), the polygenicity of A and B, and the sample size
of each study (Figure 3).

In our simulations under the unidirectional alternative (Figure 3a-c), we varied the proportion of variance
in B explained by A from 1% (γ =

√
0.01) to 20% (γ =

√
0.2). In our first simulation, both studies had equal

power and we additionally tested high (2000 directly causal variants) and low (500 directly causal variants)
polygenicity with a heritability of 25%. For complete simulation settings see Table S10. WWER and the
other regression methods Egger regression and Stieger filtering performed similarly well, with generally strong
performance for effect sizes above

√
0.01 but reduced performance when A was highly polygenic but its study

was under-powered. MR PRESSO and CAUSE show generally improved power in these more difficult cases,
while the MBE can improve power when the study for A is under-powered but reduce it when the study for
B is under-powered. MR Mix generally performs poorly compared to the other methods. Complete results
are given in Table S13.

In our simulations under the bidirectional alternative (Figure 3d-f), we evaluated power to detect both
effects (A→ B and B → A) simultaneously. We set δ to either

√
0.01,

√
0.03,

√
0.10 and varied γ from −

√
0.1
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Figure 2: False positive rate in simulations under the bi-directional null for various settings of the simulation
parameters. In all cases we consider both the A to B direction (top) and B to A direction (bottom). a)
Simulations with parameters set to mimic the LCV model while varying the power and polygenicity of each
trait (panels) as well as the genetic correlation (x-axis). WWER and Steiger filtering perform well, while
other methods struggle with at least one setting. b) Simulations with parameters set to mimic the CAUSE
model while varying the power and strength of the effect of the hidden node (U) on the observed traits A
and B (panels). All methods with the exception of IVW and MR PRESSO perform well. c) Simulations
explicitly modeling the polygenicity of A, B¡ and U , while varying the relative power of each study (panels).
In the panels shown, there is a strong symmetric effect of the hidden node on the traits. Simulations with
asymmetric effects are shown in Tables S8-9. There is no method that performs well in every setting, but
WWER, Stieger filtering, CAUSE, the MBE, and MR Mix perform well overall. Our results are further
summarized in Table 1.
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to
√

0.1 and again adjusted the polygenicity of each trait and the sample size of each study. For complete
simulation settings see Table S12. Many trends from the unidirectional alternative were replicated here.
Specifically, CAUSE, IVW and MR PRESSO performed well overall. The regression based methods performed
similarly well in most settings, with lower power when the sample-sizes were unequal. The MBE was generally
out-performed by regression based methods when the studies had equal sample size, but the opposite was
true for unequal sample sizes, especially when the effects were larger. MR Mix again had poor power overall.
Interestingly, we found two settings where standard Egger regression was substantially out-performed by
both WWER and Egger with Steiger filtering: δ =

√
0.2, high polygenicity of A, low polygenicity of B, and

either equal sample sizes or a larger sample size for A (Figure 3d-f). Complete results are given in Table S17.
Since we are concerned with estimating effects in both directions, we must take care to verify that under

the unidirectional alternative, high power in the A to B direction (alternative hypothesis is true) does not
result in a high false positive rate in the B to A direction (null hypothesis is true). In Figure S1 we plot
the FPR in the B to A direction as a function of γ for each corresponding simulation in Figure 3a-c. All
methods except IVW, standard Egger regression, and MR PRESSO were able to control the reverse false
positive rate. This was primarily an issue for larger effects (γ =

√
0.1 and γ =

√
0.2) when study B had high

power. Complete results are given in Table S14.
Finally, we considered the one-way alternative hypothesis in the presence of correlated pleitropy (γ, η, ν > 0).

In this setup both studies had equal power and we varied the strength and symmetry of the effect of U ,
considering equal weak pleiotropy (η = ν =

√
0.02), equal stronger pleiotropy (η = ν =

√
0.05), or unequal

pleiotropy with a stronger effect on either A or B. For complete simulation parameters see Table S11. On
the one hand, pleiotropy increases the power to detect the non-null effect because it lends additional signal
supporting the effect of A on B (Figure S2). On the other hand, it also leads to additional false positives
in the reverse direction (Figure S3). Here MR PRESSO and IVW produce a false positive nearly all the
time if there is a strong pleiotropic effect on A. Standard Egger regression performs worse here than in the
simpler setting of a true alternative hypothesis with no pleiotropy, but WWER and Stieger filtering are able
to reduce this false positive rate substantially. Here, WWER clearly out-performs Steiger filtering in settings
where they both produce excess false positives, such as when the polygenicity of A and B are high but the
polygenicity of the confounder is low. For complete results see Table S15-16.

Application to blood traits and immune disorders in the UK Biobank

There are a number of common disorders involving immune system and inflammatory response disregulation
(immune mediated inflammatory disease, IMID), such as allergy, asthma, diabetes and psoriasis, among
others [14]. Blood is both an easily accessible tissue and a heterogeneous mixture of numerous cell types
with relevance to inflammatory and immune response, so there is a strong interest in intermediate blood
biomarkers of IMIDs for measuring disease risk, monitoring progression, and developing treatments [14,
15]. The UK Biobank contains measurements of clinical laboratory biomarkers, as well as blood cell-type
composition and disease phenotype data for > 480, 000 individuals [16]. We obtained summary statistics
for sex-split UK Biobank phenotypes from the Neale lab, who corrected for age, age2 and 20 principal
components of the genotype matrix [17]. For ease of interpretation, we transformed all effect sizes to the
per-variance scale. We filtered for phenotypes with an LD score regression heritability Z-score above 4 and at
least “medium” confidence, and removed one phenotype from every pair with genetic correlation above 0.9 to
avoid including what are effectively duplicate traits. We used male summary statistics for SNP selection
and weight estimation, and female summary statistics for effect estimation. We removed any trait with an
estimated male-female genetic correlation ρg < 0.5 or a Z-score for non-zero genetic correlation below 2. This
left us with 21 measurements of blood composition, 20 blood biomarkers and 10 IMIDs (Table S18). We used
LD-pruned SNPs attaining genome-wide significance (p ≤ 5× 10−8) as instruments with WWER to estimate
causal effects (CE) of each biomarker on each disease, and vice-versa (disease on biomarker).

We found 83 (of 410) significant effects at FDR 5% in the biomarker to disease direction after accounting
for multiple testing using the Benjamini-Hochberg (BH, we denote adjusted p-values with q in the following)
procedure (Figure 4a, Table S19). We observed a strong effect of platelet traits on asthma and allergy. For
example, increased platelet distribution width (PDW) decreases asthma risk (CE = −0.034, q = 4× 10−10)
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Figure 3: Power analysis of simulations under both the one way (A causes B, a-c) and bidirectional (A causes
B and B causes A, d-f) alternative, without additional pleiotropy. a) With equal sample sizes, all methods
except MR Mix show high power for all settings of the polygenicity of A and B (panels). b) When study A
has lower power and the polygenicity of A is higher, regression-based methods have reduced power and are
out-performed by the MBE. c) When study A has higher power, the opposite is true. (d-f) The power to
detect an effect in both directions for all combinations of polygenicity and power as a function of the effect of
A on B for various values of the effect of B on A.
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and allergy risk (CE = −0.016, q = 2 × 10−2), increased mean platelet volume (MPV) decreases asthma
risk(CE = −0.014, q = 2×10−2) and increased platelet-crit decreases allergy risk (CE = −0.066, q = 3×10−10).
Platelet traits have long been implicated in asthma and allergy [18, 19, 20], with lower MPV values observed
in individuals with asthma and allergy and lower PDW values observed in individuals with asthma. Platelet
traits are now thought to play an important role in both the innate and adaptive immune response [21].
We find that PDW is implicated in 7 of the 10 IMID studied, and MPV is implicated in 4 of the 10. This
gives evidence that platelet activity can have an effect on immune-system function, with broad downstream
consequences that include many common diseases.

Lymphocyte count, a marker of inflammation, is also implicated in 7 of the 10 IMID that we analyze.
We detect effects of increased lymphocyte count on psoriasis (CE = 0.159, q = 1× 10−9), Crohn’s disease
(CE = 0.057, q = 3× 10−5), and ulcerative colitis (CE = 0.037, q = 4× 10−2). We detect effects of decreased
lymphocyte count on asthma (CE = −0.12, q = 6 × 10−9), osteoarthritis (CE = −0.069, q = 4 × 10−6),
allergy (CE = −0.101, q = 3 × 10−5) and diabetes (CE = −0.04, q = 3 × 10−3). A lower neutrophil to
lymphocyte ratio has been observed in patients with each of these diseases [22, 23, 24, 25]. In several of
these results, our estimated CE and the genome-wide genetic correlation have opposite signs. For example,
the genetic correlation between lymphocyte count and asthma is positive (ρg = 0.054), as is the genetic
correlation between lymphocyte count and osteoarthritis (ρg = 0.212). In each of these cases, the negative
effect direction inferred by WWER is more consistent with the observed lower neutrophil to lymphocyte ratio
in these diseases. This indicates that the total genetic correlation can be misleading, even in the presence
of a causal effect, it is possible for a genetic confounder, or possibly random noise, to result in an observed
genetic correlation with a different sign than the true causal effect.

Total cholesterol also has several disease consequences. We observe protective effects of increased total
cholesterol level on diabetes (CE = −0.047, q = 4× 10−10), deep vein thrombosis (DVT, CE = −0.035, q =
3× 10−8), diverticulitis (CE = −0.025, q = 5× 10−4), and emphysema (CE = −0.016, q = 4× 10−2). We
also observe a protective effect of increased HDL cholesterol level on asthma (CE = −0.026, q = 2× 10−3)
These findings are particularly interesting in light of recent work suggesting that cholesterol can lower
inflammation [26], that higher cholesterol is a consequence of the body’s attempt to control inflammation,
rather than the cause of disease in itself [27]. Interestingly we observe a weak effect of increased cholesterol
on allergy risk(CE = 0.021, q = 4× 10−2) which is inconsistent with the genetic correlation between these
traits (ρg = −0.014). Cholesterol is known to effect development of allergy, but reports differ on the direction
of the effect [28].

Other notable effects we observe include a strong effect of eosinophil percentage on asthma (CE = 0.118, q =
5× 10−6), aspartate aminotransferase on ulcerative colitis (CE = 0.047, q = 5× 10−5), glucose on emphysema
(CE = 0.051, q = 9× 10−5), and a protective effect of vitamin D on diabetes (CE = −0.024, q = 5× 10−2).
Eosinophils are known to play an important role in the pathogenesis of asthma [29], with well-established
genetic evidence indicating a protective effect of lower eosinophil count on asthma risk [30]. Liver test
abnormalities are frequently observed in patients with inflammatory bowl diseases [31] and appear to be an
risk factor for complications in patients with Crohn’s disease [32]. Blood glucose has been observed to be
elevated in patients experiencing chronic obstructive pulmonary disease (COPD) exacerbations [33]. Vitamin
D has been linked to the onset of diabetes [34].

We found 36 (of 164) significant effects in the disease to biomarker direction after accounting for multiple
testing using the BH procedure (Figure 4b, Table S20). Most of these are driven by just two phenotypes: 20
are effects of psoriasis and 11 are effects of asthma. Some of the top effects of psoriasis are related to red blood
cells (RBC). We estimate that psoriasis decreases mean sphered cell volume (CE = −0.12, q = 1×10−7), mean
corpuscular volume (CE = −0.15, q = 1× 10−7), and mean reticulocyte volume (CE = −0.12, q = 4× 10−5),
while increasing red blood cell count (CE = 0.12, q = 1× 10−7). There is an established relationship between
red blood cell function and psoriasis [35, 36, 37]. There is disagreement in the literature about the correlation
of red blood cell count and psoriasis, with one study showing an increase in patients, consistent with our
results [37] and others showing a decrease, inconsistent with our results [35, 36]. However, the latter study
also shows that treatment of psoriasis can correct RBC damage, which might suggest that psoriasis is the
cause, rather than consequence, of RBC damage. We also observe effects of psoriasis on lipid profile. We infer
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Figure 4: An investigation into the relationship between immune-mediated inflammatory diseases and blood
biomarkers in the UK Biobank. (a) Estimated causal effects using blood traits as exposures and IMID
as outcomes replicates known disease biology. (b) Estimated causal effect using IMID as exposures and
blood traits as outcomes reveals many significant “reverse” causal effects. Dots indicate level of statistical
significance of p < 0.05 after FDR correction.

psoriasis increases HDL cholesterol (CE = 0.088, q = 3× 10−4), total cholesterol (CE = 0.097, q = 2× 10−3),
and triglycerides (CE = 0.123, q = 4× 10−7). Psoriasis is well-known to be co-morbid with cardiovascular
disease, and dislipidemia has long been observed in patients with psoriasis [38, 39]. However, we note that our
inferred direction of effect for HDL cholesterol is inconsistent with prior literature showing decreases in HDL
cholesterol level in patients with psoriasis, and with the genetic correlation between the traits (ρg = −0.21).
Psoriasis is known to have a complex effect on HDL cholesterol function [40], and it is likely that the genetic
instruments we use to estimate this effect on serum HDL levels do not reflect the complexity of this interaction.

Inferred effects of asthma include decreases in IGF-1 (CE = −0.308, q = 1×10−3), lymphocyte percentage
(CE = −0.354, q = 2 × 10−3), and monocyte percentage (CE = −0.205, q = 5 × 10−2), and increases in
C-reactive protein (CE = 0.226, q = 2 × 10−2) and glycated haemoglobin (CE = 0.233, q = 2 × 10−2).
Glycated haemoglobin and C-reactive protein have both been observed to be elevated in patients with
asthma [41, 42]. Monocytes and lymphocytes are both known to play an important role in asthma [43, 44,
45], however it is unclear how the impact of recruitment of specific monoctye and lymphocyte subsets to the
lungs in asthma patients would impact circulating blood levels of these broad cell types. IGF-1 is known
to play a function in the repair of lung tissue [46]. Serum IGF-1 level is known to be anti-correlated with
asthma incidence and severity in the UK Biobank [47]. Our results suggest this is a consequence rather than
a cause of asthma.
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Phenome-wide analysis in the UK Biobank

The simplicity and speed of our method allows it to easily scale to phenome-wide analysis. Therefore, we
obtained summary statistics for the remaining sex-split UK biobank phenotypes from the Neale lab [17], and
applied the same pre-processing and phenotype selection filters used in the previous section. This left us
with 411 phenotypes (Table S21). Of the 411 phenotypes chosen for analysis, 153 had at least 5 independent
GWAS significant loci (Table S21). We used WWER to estimate the CE of all 153 phenotypes with at least
5 GWAS-significant loci on all 411 phenotypes. This results in bi-directed effect estimates for the 11, 628
pairs of traits where both have at least 5 instruments, and uni-directional effect estimates for the remaining
39, 474 pairs for a total of in 62, 730 CE estimates. Of these, we found 5, 770 effects (9.2%) were significant at
a 5% FDR. Complete results for all tested pairs of phenotypes are given in Table S22.

We were curious to compare our CE estimates against estimates of genetic correlation in the same dataset.
First, we clustered phenotypes by genetic correlation to determine if the patterns observed are shared in
the CE estimates. While there are some similar patterns across the two matrices, the structure in the CE
estimates is not as well-defined (Figure 5). Indeed, we find that while the CE estimates and genetic correlation
estimates are correlated, that correlation is fairly weak (r = 0.175± 0.004). This weak correlation seems to
be driven by CE estimates with large standard error. Accordingly, restricting our analysis to CE estimates
with standard error below 0.05 yields a much stronger correlation (r = 0.573± 0.005). In general we found
that more significant CE estimates were more similar to estimates of genetic correlation (Figure S4). As
expected, the presence of genetic correlation does not indicate a detectable CE, and the causal effect and the
total genetic correlation need not even have the same sign. However, strong CEs do frequently result in a
total genetic correlation of similar magnitude.

There were several traits with numerous consequences. The top 5 were white blood cell count (WBCC) with
188 effects, cholesterol with 173 effects, lymphocyte count with 172 effects, sex-hormone binding globulin with
154 effects, and body mass index with 147 effects. The top consequence of higher WBCC was an increase in
“nervous feelings” (CE = 0.12, q = 1× 10−16). WBCC is known to be elevated in individuals with depression
and anxiety [48], and could reflect an effect of systemic inflammation on mood. The next strongest effect was
a decrease in whole body water mass (CE = −0.236, q = 1× 10−16). While dehydration is well-known to
cause elevated WBCC, our results suggest that the opposite may also be true - higher levels of circulating
WBCC could cause the body to retain less water. Two other strong effects of WBCC are on morphology,
with an increase in WBCC resulting in a decrease in hip circumference (CE = −0.179, q = 2× 10−16) and
sitting height (CE = −0.23, q = 9× 10−16). One study of Japanese men found that height and WBCC were
inversely correlated, and concluded that this association may result from the presence of inflammation [49].

Interestingly, several of the top consequences of high cholesterol seemed to reflect behavioral changes
resulting from common medical advice. For example, we found an effect on increased cholesterol on
decreased use of butter (CE = −0.096, q = 1 × 10−16) and increased use of “other spread/margerine”
(CE = −0.09, q = 1 × 10−16). We also found increased cholesterol caused a decrease in “salt added
to food” (CE = −0.048, q = 1 × 10−16), and a decrease in “major dietary changes in the last year:
no” (CE = −0.069, q = 1 × 10−16), indicating high cholesterol results in broad dietary changes. This
phenomenon extends to choice of pain medication. We detect a positive effect of high cholesterol on aspirin
use (CE = 0.048, q = 8× 10−13) and a negative effect on ibuprofen use (CE = −0.026, q = 5× 10−5). This
is likely to reflect common medical advice for patients at risk of heart disease to choose aspirin, which has
long been thought to reduce risk [50], and avoid ibuprofen, which is thought to reduce the effectiveness of
aspirin [51]. We also replicate cholesterol as a known risk factor for heart disease (CE = 0.086, q = 1× 10−16),
which likely also accounts for an observed effect of high cholesterol on earlier “fathers age at death” (CE =
−0.069, q = 1× 10−16).

Several of the top consequences of body mass index (BMI) were also behavioral. For example, we observed
a negative effect of BMI on using semi-skim milk (CE = −0.24, p < 1× 10−16), but a positive effect on using
skim milk (CE = −0.305, p < 1× 10−16). We also observe a negative effect of higher BMI on “major dietary
changes in the last year: no” (CE = −0.236, p < 1× 10−16) and a positive effect on “major dietary changes
in the last year: yes, because of other reasons [than illness]” (CE = 0.206, p < 1× 10−16). These could again
reflect behavioral consequences of common medical advice. Other effects of BMI were on blood biomarkers. For
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Figure 5: A comparison of genetic correlation (a) with the estimated causal effect (b). We calculated causal
effects for all pairs of phenotypes passing our inclusion criteria using LD-pruned GWAS-significant variants
as instruments. If both traits did not have significant variants, we calculate a unidirectional effect where the
trait with significant variants is the exposure, whereas if both traits have significant variants we calculate a
bidirectional estimate. Gray entries in (b) indicate pairs where the exposure had no remaining instruments
after filtering likely pleiotropic SNPs, resulting in an NA value. Phenotypes are arranged by clustering on
genetic correlation of traits that remain as exposures.

example, we observed an effect of higher BMI on higher C reactive protein (CRP, CE = 0.353, p < 1× 10−16),
lower albumin (CE = −0.222, p < 1× 10−16), and higher urate (CE = 0.383, p < 1× 10−16). Higher BMI is
well known to cause higher serum urate levels [52], adipose tissue is known to induce low-grade inflammation,
which can be measured by elevated CRP levels [53], and BMI is a known risk factor for hypoalbuminemia [54].
We find the known effect of BMI on diabetes (CE = 0.195, p < 1× 10−16), but also find that BMI has broad
effects on health and results in a lower “overall health rating” (CE = 0.149, p = 7× 10−8).

3 Discussion

We have introduced a model for bi-directional Mendelian randomization with correlated pleiotropy that allows
for flexibility in the specification of the genetic architecture for each trait, as well as a simple method for
estimating causal effects called Welch-weighted Egger regression (WWER). We have shown that our method
reduces false positives due to correlated pleiotropy compared to traditional methods in a broad range of
simulation settings that encompass other recently-proposed models, and is fast enough to be applied at-scale.

13

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 10, 2021. ; https://doi.org/10.1101/2021.04.09.439229doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.09.439229
http://creativecommons.org/licenses/by-nd/4.0/


We first applied WWER to a subset of the UK biobank comprising blood biomarkers and inflammatory
disorders, and then more broadly to all heritable phenotypes in the biobank. Our initial analysis reiterated
the role of platelet traits in the pathogenesis of asthma and allergy, and found that cholesterol and white
blood cell count contribute broadly to inflammatory disease, among other findings. Our broad analysis found
thousands of causal effects, many of which stem from a handful of broadly-impactful phenotypes. We replicate
several known risk factors for disease such as high cholesterol on heart disease and high BMI on diabetes, but
also detect numerous behavioral changes that seem to result from common physician advice.

Our approach builds on recent MR literature. By filtering genetic variants that have a statistically
indistinguishable effect on both the exposure and the outcome, our method is closely related to Steiger
filtering [9], which was conceptualized as a method for inferring the effect direction and has not received
attention as a method for controlling for correlated pleiotropy. The primary conceptual difference is that
we use the test statistic as a regression weight when calculating the effect of the exposure on the outcome
with the retained SNPs. Compared to Steiger filtering, we control the FDR in slightly more of the tested
settings, while also producing estimates with a lower mean absolute error. There are a small number of
settings in which WWER produces a much lower false positive rate than Stieger filtering, but the reverse is
never true. However, we find that both methods are generally useful for controlling for correlated pleiotropy.
Our approach can be viewed a simple heuristic for classifying variants as effecting the exposure, the outcome,
or the hidden variable. More sophisticated mixture model based methods, such as MR-mix and CAUSE,
are also based on fitting the causal effect using a subset of SNPs that appear to effect the exposure. While
these methods also work well in our simulations, they can take a prohibitively long time to run, preventing
their application at the scale considered here. By removing genetic instruments with ambiguous effects, our
method sometimes filters all potential instruments and cannot estimate the effect. We view this as both an
advantage and a disadvantage: we avoid estimating an effect in ambiguous cases, but cannot always produce
an estimate.

Despite its advantages, our approach has several limitations. First, our method requires that we split the
initial cohort into instrument discovery and effect estimation sub-cohorts. While this approach is common in
MR methods that must first identify instruments, this reduces power and two sets of summary statistics are
not always available. Other recent approaches, such as CAUSE and LCV, have the advantage of modeling the
entire spectrum of SNP-trait associations. Second, while our method reduces excess false positives, it does
not completely eliminate them. Therefore, a small but notable number of statistically significant results in
any large-scale analysis may be due to correlated pleiotropy. We have shown that these failure cases usually
correspond to situations where the hidden factor has a strong effect on the exposure, and the exposure does
not have many independent large-effect instruments. In this setting, the genetic signature of the exposure and
hidden variable are difficult to distinguish. However, the fact that the hidden trait is highly causal for the
exposure indicates that these cases may still be biologically interesting, even if they are not directly causal.
One advantage of our method is that it only requires GWAS summary statistics, which are both legally and
practically easier to share, and faster to work with when the primary data is large [55]. However, summary
statistics are inherently limiting. Their use relies on the assumption that the creator of the summary statistics
properly controlled for the relevant factors, which may not always be the case when the data are curated by
groups without specific expertise in each of the relevant phenotypes. A final limitation of our method is that
it estimates the total effect of the exposure on the outcome, which may be mediated by other measured or
unmeasured factors.

As biobanks continue to grow in size and scope, new methods that are able to leverage their power while
overcoming common pitfalls are required. These datasets offer unprecedented opportunity to study the causal
relationship between biomarkers, complex traits and diseases. Broad analysis of the shared genetic effects of
pairs of traits can be used to generate causal hypotheses that are much more likely to reflect biologically
or medically-relevant phenomena than correlative analyses. It is important to point out that MR analyses
without a mechanistic understanding of the biological action of each instrument are inherently speculative,
with some researchers suggesting that these instead be called “joint association studies” [56]. This is especially
true in large-scale analyses of noisy data, such as population-level biobanks. Indeed, we produce results
that are temporally impossible; someone’s cholesterol level cannot literally cause their father’s heart disease.
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Nevertheless, the interpretation of this result is clear; many of the risk alleles for cholesterol will be inherited
from the father, who will have had more time to develop heart disease, resulting in high power to detect an
effect. While a mechanistic understanding of the effects of each genetic instrument is ideal, there is substantial
interest in the community in both applying and developing methods for causal inference using statistically
associated genetic instruments. We have shown our approach is broadly useful for exploratory analysis of
putatively causal effects in ever-growing databases of genotypes and phenotypes.

4 Methods

Bi-direction Mendelian randomization model

We introduce a flexible model for bi-directional Mendelian randomization that encapsulates previous models
for MR as special cases. In particular our model allows for both the pair of observed traits and the unobserved
trait to have an arbitrary genetic architecture. It also allows for arbitrary effects of the unobserved trait on
the observed traits and arbitrary effects of the observed traits on each other, including bi-directional effects.
For ease of interpretation all effect sizes are modeled on a per-variance scale.

Our simulation framework (Figure 1) has 19 free parameters and 3 parameters that are a deterministic
function of the others, see Table 8 for an overview. We let NA and NB represent the sample sizes of the
studies for phenotypes A and B, respectively, and M be the number of SNPs. The effects of each phenotype
on each other are given by ν, η, γ, and δ for the effect of U on A, U on B, A on B and B on A, respectively. q,
r, and s control the proportion of variants effecting phenotypes U , A, and B, respectively, and h2

A, h2
B and h2

U .
As we describe below, these parameters allow us to determine the variance of the effect size distribution for
each phenotype, which we represent by σ2

A, σ2
B and σ2

U . We sample the M -vector of effect sizes β• ∼ N (0, σ2
•)

and determine which traits each SNP effects by sampling M -vector indicator variables Z• ∼ Bern(π•), with •
representing one of A,B or U , and π• being the proportion of SNPs with non-zero direct effects on •.

We derive the variance of the phenotypes in this model. The phenotype values are given by

U = XβUZU + εU , (6)

A = Uν +Bδ +XβAZA + εA, (7)

B = Uη +Aγ +XβBZB + εB , (8)

where ε• ∼ N (0, e•) = N (0, 1− h2
•) is the residual (environmental) contribution to each phenotype. Plugging

the expressions for U and B into A and solving for A we find that

A =
ν + ηδ

1− γδ
(XβUZU + εU ) +

δ

1− γδ
(XβBZB + εB) +

1

1− γδ
(XβUZA + εA), (9)

= RUA(XβUZU + εU ) +RBA(XβBZB + εB) +R(XβUZA + εA) (10)

where we have introduced the shorthand RUA = (ν + ηδ)/(1 − γδ), RBA = δ/(1 − γδ) and R = RAA =
RBB = 1/(1− γδ) to represent the total causal effect of U on A, B on A and A on itself, respectively. It is
important to notice that, because A can effect itself via a bi-directional effect on B that propagates back to
A, R = 1 if and only if at least one of γ or δ is 0.

Let g• = Var(Xβ•Z•) be the variance component of • contributed by direct genetic effects. By mirroring
the above derivation for B, the variance of phenotypes A and B can be broken down as

VarA = R2
UA(gU + eU ) +R2

BA(gB + eB) +R2(gA + eA), (11)

VarB = R2
UB(gU + eU ) +R2

AB(gA + eA) +R2(gB + eB) (12)

Thus if the parameters are set such that VarA = VarB = 1, then the heritabilities are given by

h2
A = R2

UAgU +R2
BAgB +R2gA, (13)

h2
B = R2

UBgU +R2
ABgA +R2gB (14)
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This is quite natural; the heritability of A is interpretable as the variance in A explained by U times the
genetic component of U , plus the variance in A explained by B times the genetic component of B, plus the
effect of A on itself times the genetic component of A (and likewise for B). The reverse is also true: if h2

• is
given as above and e• = 1− h2

•, then the variances of each phenotype (Var •) are 1.
Of course, the variances of A and B will not be 1 for arbitrary settings of the parameters. Next, we show

how to constrain them to be 1 so that parameters can be easily set on a per-variance scale. We manipulate
(13) and (14) to determine gA and gB and thus σA and σB . Specifically, let

QA = h2
A − gUR2

UA = gBR
2
BA + gAR

2, (15)

QB = h2
B − gUR2

UB = gAR
2
AB + gBR

2 (16)

solving for gA and gB gives

gA =
R2QA −R2

BAQB

R4 −R2
ABR

2
BA

, (17)

gB =
R2QB −R2

ABQA

R4 −R2
ABR

2
BA

(18)

so that σ2
A and σ2

B can be determined

σ2
A =

gA
M
, (19)

σ2
B =

gB
Ms

(20)

Under the null, γ = δ = 0, and therefore RUA = ν and RUB = η, while RBA = RAB = 0 and R = 1. In
this case, the genetic covariance between A and B is Cov(A,B) = h2

Uην. Therefore the genetic correlation is

ρG =
h2
Uην√
h2
Ah

2
B

=
g2
Uην√

(gUν2 + gA)(gUη2 + gB)
(21)

Relationship to other models

Our model is very flexible and therefore contains other recently proposed models as special cases. Here we
describe the relationship between our model and those used in LCV and CAUSE. Neither of these explicitly
model the genetic architecture of the unobserved trait, preferring to tie it into the architecture of the observed
traits. LCV is agnostic as to which trait is the exposure and which trait is the outcome, whereas CAUSE
explicitly models one trait as the exposure (M , in their notation) and the other as the outcome (Y in their
notation). For clarity when comparing to CAUSE we will use A as the exposure and B as the outcome, but
it is important to remember our model is also agnostic to which trait is the exposure.

In the LCV model, under the null, the genetic correlation is ρG = ην, which we can arrive at by setting
h2
U = h2

A = h2
B. Their method attempts to quantify the deviation from a symmetric effect of the latent

variable on the two observed variables, therefore the null case corresponds to ν = η (q1 = q2 in their notation).
Finally, their settings focus on the case where the effect distribution of the SNPs acting on the observed traits
is the same for SNPs acting directly and via the latent variable. In our model we can enact this assumption
via the constraints σ2

uν
2 = σ2

a and σ2
uη

2 = σ2
b . Finally, we assume that the SNPs effect a single trait in

expectation, that is q + r + s = 1. Under the null, h2
A = gUν

2 + gA. Using the assumption that h2
U = h2

A, we
have that gU = gUν

2 + gA. Rearranging and simplifying, we have Mqσ2
U (1− ν2) = Mrσ2

A = Mrσ2
Uν

2 and
thus r = q(1− ν2)/ν2 (and likewise for s). Plugging into q + r + s = 1 and simplifying leads to

q =
ν2

2− ν2
(22)

The CAUSE model also assumes that σ2
uν

2 = σ2
a. This is represented by the 1 on the arrow from the

latent factor to the exposure in their model, indicating that SNPs have the same effect distribution on the

16

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 10, 2021. ; https://doi.org/10.1101/2021.04.09.439229doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.09.439229
http://creativecommons.org/licenses/by-nd/4.0/


exposure when acting via the latent variable or directly. In that model, the proportion of variants effecting
the unobserved variable q controls the magnitude of the genetic correlation which then implicitly determines
the heritibility of the hidden variable h2

U . Again using h2
A = g2

Uν
2 + g2

A and substituting σ2
uν

2 = σ2
a we find

h2
A = Mqσ2

Uν
2 +Mrσ2

Uν
2. Solving for σ2

U and using the fact that h2
U = Mqσ2

U we find

h2
U =

Mq

Mq +Mr

h2
a

ν2
(23)

5 Data Availability

UK Biobank summary statistics are available from the Neal lab at https://www.nealelab.is/uk-biobank.
Our full data analysis results are available at https://zenodo.org/record/4605239.

6 Code Availability

All code used in the production of this manuscript is available at https://github.com/brielin/WWER.
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Symbol Definition Class Possible values Example

M Number of SNPs Fixed [1, ∞) 500, 000
NA Sample size of study for phenotype A Fixed [1, ∞) 50, 000
NB Sample size of study for phenotype B Fixed [1, ∞) 50, 000

ν Per-variance effect of U on A Fixed [-1, 1]
√

0.2

η Per-variance effect of U on B Fixed [-1, 1]
√

0.2

γ Per-variance effect of A on B Fixed [-1, 1]
√

0.2

δ Per-variance effect of B on A Fixed [-1, 1]
√

0.2
q Proportion of variants effecting U Fixed [0,1] 0.3
r Proportion of variants effecting A Fixed [0,1] 0.3
s Proportion of variants effecting B Fixed [0,1] 0.3
h2
A Heritability of phenotype A Fixed [0,1] 0.2
h2
B Heritability of phenotype B Fixed [0,1] 0.2
h2
U Heritability of phenotype U Fixed [0,1] 0.2
σA Variance of the effect size distribution for A Fixed NA 1e− 4
σB Variance of the effect size distribution for B Fixed NA 1e− 4
σU Variance of the effect size distribution for U Fixed NA 1e− 4

βA Effect of SNP on phenotype A, ∼ N (0, σA) Random [-1, 1]
√

0.01

βB Effect of SNP on phenotype B, ∼ N (0, σA) Random [-1, 1]
√

0.01

βU Effect of SNP on phenotype U, ∼ N (0, σA) Random [-1, 1]
√

0.01
ZA Indicator that SNP effects A, sampled from Bern(r) Random {0,1} 0
ZB Indicator that SNP effects B, sampled from Bern(s) Random {0,1} 0
ZU Indicator that SNP effects U, sampled from Bern(q) Random {0,1} 0

Table S1: A list of all parameters in our model, with examples and feasible ranges.

Figure S1: False positive rate in the reverse direction (B to A) when there is a causal effect in the A to B
direction (x-axis). Settings correspond to the settings of Figure 3a-c. IVW, MR Presso and Egger often
produce a false positive in the B to A direction when there is a strong effect in the A to B direction.
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Figure S2: Power of each method for various settings when there is both a causal effect and correlated
pleiotropy.
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Figure S3: False positive rate in the reverse direction (B to A) when there is a causal effect in the forward
direction (A to B) and correlated pleiotropy. Settings correspond to the settings in Figure S2. Both WWER
and Stieger filtering show a substantial improvement over Egger regression and other traditional methods.
Here WWER clearly outperforms Steiger filtering in several settings, although there are still two where it
produces a high FPR.
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Figure S4: Correlation of the estimated causal effect with the genetic correlation, as a function of the
significance of the estimated causal effect. The global correlation is low, but when the estimate of the causal
effect is more significant it is also more similar to the estimated genetic correlation.
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