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Abstract 

Gallbladder cancer (GBC) has a lower incidence rate among the population relative to other 

cancer types but majorly contributes to the total cancer cases of the biliary tract system. GBC is 

distinguished from other malignancies due to its high mortality, marked geographical variation 

and poor prognosis. To date no systemic targeted therapy is available for GBC. The main 

objective of this study is to determine the molecular signatures correlated with GBC 

development using integrative system level approaches. We performed analysis of publicly 

available transcriptomic data to identify differentially regulated genes and pathways. Co-

expression network analysis and differential regulatory network analysis identified hub genes 

and hub transcription factors (TFs) associated with GBC pathogenesis and progression. We then 

assessed the epithelial-mesenchymal transition (EMT) status of the hub genes using a 

combination of three scoring methods. The hub genes such as; CDC6, MAPK15, CCNB2, 

BIRC7, L3MBTL1 identified are regulators of cell cycle components which suggests that cell 

cycle regulatory genes are significantly linked to GBC pathogenesis and progression. 
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1. Introduction 

Gallbladder is a small sac like structure located beneath the liver and forms an integral 

component of the biliary tract system. It is the sixth most frequent cancer of the gastrointestinal 

tract worldwide. Gallbladder cancer (GBC) is an aggressive malignancy  with rapid progression, 

poor prognosis and a high mortality rate characterized with an overall 5-year survival rate of 5%  

[1][2]The incidence rate of GBC  is highly marked by distinct geographic and ethnic disparity. 

This regional and ethnic discrepancy in the incidence ratios of GBC cases indicates the 

differences in GBC etiology in different populations [3][4]. According to the Globocan report, 

GBC ranks at 20th position among the most frequent cancer types with approximately 0.2 million 

cases diagnosed annually (http:// globocan.iarc.fr). GBC incidence frequency is maximum in the 

region of Eastern Europe, East Asian countries and Latin American populations. The incidence 

ratio of GBC cases is the highest among South American countries such as Chile, Bolivia and 

Ecuador and Asian countries which mainly include Korea, India, Japan and Pakistan [5][6]. 

GBC is an orphan disease and its etiology is multifactorial. The pathological spectrum of GBC 

mainly progresses from metaplasia to dysplasia with subsequent carcinoma-in-situ and 

cancer metastasis which suggests that an Epithelial Mesenchymal Transition (EMT) event might 

be an important phenomenon in GBC development. The detailed molecular mechanism of 

associated risk factors in GBC is not understood yet. There is no targeted therapy available for 

GBC treatment. Hence, understanding of GBC pathogenesis is urgently needed for the 

development of targeted therapy and to improve the treatment outcome of GBC patients [7][8].  

At present, the most common approach for treating GBC is radical resection. However, the 

majority of patients with GBC cannot undergo surgical resection due to aberrant clinical 

manifestations. The symptoms become noticeable in cases where the cancer has already invaded 

the nearby organs. In such cases, non-surgical therapies such as chemo and radiotherapy are the 

only options for treatment. According to the National Comprehensive Cancer Network, the 

single-agent therapy, which includes fluoropyrimidine or gemcitabine-based treatment, and 

combination therapy regimen, which includes oxaliplatin, cisplatin and capecitabine are the two 

chemotherapeutics option for GBC patients but both of these are still undergoing clinical trials. 

Till now there is no diagnostic & prognostic biomarker that can detect GBC at the initial stage to 

potentially select patients who are most likely to benefit from chemotherapy [9][10][11][12]. 
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Systems biology has been responsible for some of the most important developments in the field 

of human health. It is a multidisciplinary approach to determine the complexity of biological 

systems and is used to discover new biomarkers for disease, drug targets and other treatments. 

The advancement of high throughput next generation sequencing (NGS) strategies in recent 

years such as transcriptome sequencing has helped to generate robust cancer based datasets and 

the analysis of these datasets using integrated system biology approaches has provided a basis for 

investigation of genes and their pathological functions in malignancy and its implication in 

cancer treatment strategies [13][14]. Weighted gene co-expression network analysis (WGCNA) 

is a frequently used systems biology based method for determining the gene-gene correlation 

across samples which can be used to identify modules containing clusters of highly correlated 

gene networks [15]. 

To this end, we have carried out transcriptomic analysis of GBC RNAseq dataset downloaded 

from NCBI-GEO database. We have identified potential genes and TFs associated with GBC 

progression and pathogenesis through co-expression network analysis on normal and GBC 

samples followed by regulatory network analysis. Functional enrichment analysis and EMT 

score calculation has also been carried to identify crucial genes for GBC pathogenesis. 

2. Results 

2.1 Differential gene expressions in gallbladder cancer 

To identify the differential expressed molecular signature in GBC, we have carried out 

transcriptomic analysis in 10 tumor samples and 10 tumors’ adjacent control samples of  GBC 

patients and subsequently visualized the normalized and transformed data using dispersion and 

principal component analysis [Fig1A-B]. Two separate clusters for GBC and control samples 

were identified in the PCA plot. However, the PCA plot also showed that three control samples 

were diverted towards the GBC cluster. This might be due to invasion of cancer cells to the 

adjacent control samples of GBC patients. From the transcriptomic analysis, 2980 significant 

DEGs were identified in GBC as compared to that of controls by taking Padj ≤ 0.05. The 

hierarchical clustering analysis of significant DEGs [Fig 1C] showed that the GBC and the 

adjacent control samples showed different gene expression cluster. The significant DEGs 

identified in GBC are largely linked to the cell cycle regulation and development processes [Fig 
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1D]. This suggests that genes related to cell cycle progression and checkpoints regulatory 

proteins might be crucial for GBC development. 

2.2 Construction of gene co-expression network and module detection 

To identify significant DEGs module, WGCNA analysis was performed by taking 2980 

significant and log2 transformed DEGs. The co-expression networks were constructed for GBC 

and control condition separately. The co-expression network construction needs the selection 

of soft thresholding power β against which the adjacency (Adjij) matrix of the selected DEGs 

were calculated which is required to build standard scale-free coexpression network. The soft-

thresholding power β for GBC and control are 18 and 20 respectively (Supplementary Fig 1). 

The Hierarchical clustering is performed for identification of modules from the constructed 

network of both GBC and control [Fig 2A-B]. The eigenmodules were clustered through 

dissimilarity of module eigengenes. If the correlation between the module eigenegenes are 

greater than 0.75, then those modules were combined into a single module. A total of 21 and 19 

modules were extracted from GBC network and control network respectively. The heatmap plot 

for the genes in control and GBC network is represented in Fig 2C-D  

2.3 Detection of nonpreserved module from GBC and control co-expression network 

In this study, the module preservation analysis was performed by the following approaches: (i) 

GBC vs. control, where the cancer data is considered as the test data and the reference data is the 

control data. (ii) Control vs. GBC, in which the control data is considered as the test data and the 

GBC data is the reference data. The identification of nonpreserved modules in both control [Fig 

3A] and GBC networks [Fig 3B] can give insights of distinct molecular signatures in GBC 

modules compared to that of control modules. 

In GBC to control module preservation analysis, three modules, salmon, tan and grey60 were 

identified as the non preserved module in GBC with Zsummary- 1.1, 1.4, 0.86 and median rank- 

20, 18, 19 respectively (Supplementary Table1). For control to GBC preservation analysis, two 

nonpreserved modules have been detected which are midnightblue and royalblue with Zsummary 

preservation- 0.91, 1.2. The Median Rank of both midnight and royalblue modules were 16 

respectively (Supplementary Table 2). 
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2.4 Hub gene identification from nonpreserved modules 

The genes which have high degree of connectivity or high correlations in significant modules are 

regarded as hub genes. The hub genes play a significant role in network biology study. For hub 

gene identification, we have considered the nonpreserved modules identified from both GBC and 

control network and determined their topological measure with respect to intra-modular 

connectivity. A total of five genes have been considered as potential candidate in terms of 

correlation weight (degree). The weight of the potential candidate genes identified through intra-

modular connectivity analysis is given in (Table 1). The gene with highest intra-modular 

connectivity from each module (hub gene) were AL009178.3 (novel transcript), ADAM18 

(ADAM Metallopeptidase domain 18), MAPK (Mitogen Activated Protein Kinase 15), 

L3MBTL1 (Lethat(3) nalignant brain tumor-like protein 1) and ALPPL2 (Alkaline phospatase, 

placental-like 2). Subsequently, PPI networks for each of the non-preserved modules were 

constructed (Fig 4) and the hub genes were identified based on degree centrality (Table 2). 

These genes are BIRC7 (Baculoviral IAP repeat-containing protein 7), CCNB2 (Cyclin B2), 

CDC6 (Cell division cycle 6), L3MBTL1 and WDR88 (WD repeat domain 88). All the identified 

hub genes are found to be upregulated in GBC as compared to controls. This indicates that 

upregulation of these hub genes might drive GBC development and progression.  

2.5 Functional and annotation and pathway associated with genes of the nonpreserved 

modules 

The functional GO terms and pathways associated with the gene modules were identified using 

DAVID. The statistical significance of p-value<0.05 were considered for finding important 

biological processes and KEGG pathways related to GBC progression. The functional annotation 

analysis identified that the module genes were mainly associated with cell cycle regulation 

processes, metabolic pathways and signal transduction processes. The top ranked significant 

biological processes and pathways were tabulated in Table 3A and 3B respectively  

2.6 Identification of hub transcription factors in GBC through TG-TF regulatory network 

analysis 

Out of the 2980 DEGs, 106 of the DEGs code for transcription factors (TFs). Considering these 

TFs as the source nodes and the DEGs (including the TFs) as the target nodes, we created a 
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transcription network. The degree distribution did not follow a Poisson distribution (mean of 

degree distribution = 78.88603; variance of degree distribution = 41142.97) and hence, the 

network is not a random network. The topological parameters of the network such as clustering 

coefficient, path length, assortavity were calculated using the R package igraph. The assortavity 

degree of the network is negative i.e.  -0.1024318, meaning the nodes with higher degrees tend to 

interact with nodes of smaller degrees. This is in compliance with the observation that real-world 

networks tend to have negative assortavity. The degree coefficient ,Ɣ, of the degree distribution 

was calculated to be 5.467 and a power-law was fitted in the distribution The hub TFs identified 

in GBC were PAX6, KLF15, NR2F1, TFAP2C, FOXJ2 and FLR [Fig 5A] Among these, PAX6, 

TFAP2C and FOXJ2 were present in modules identified from GBC co-expression network. 

2.7 EMT analysis identified differential EMT patterns in hub Transcription Factors 

Next, we quantified the extent of epithelial-mesenchymal transition (EMT) that the GBC 

samples have gone through. We used three different algorithms (76GS, KS, MLR) that score the 

degree of EMT in transcriptomic data – while higher KS and MLR scores indicate a more 

mesenchymal states, a higher 76GS score indicates a more epithelial phenotype (Supplementary 

Table 3). Thus, 76GS scores are expected to correlate negatively with KS and MLR scores for 

GBC samples, based on previous observations [16]. Indeed we observed a positive significant 

correlation between MLR and KS scores and both the scores are negatively correlated with 76GS 

scores. This consistency indicates that these EMT scoring methods well recapitulate the extent of 

EMT in GBC samples. Further, we examined how the six hub TFs identified in GBC were 

associated with coordinating a more epithelial vs. a more mesenchymal phenotype. Levels of 

KLF15 and NR2F1 associated with a more mesenchymal state (i.e. positive correlation with KS 

and MLR scores and negative correlation with 76GS scores). FOXJ2 also showed similar trends 

but they were not statistically significant. On the other hand, FLR, PAX6 and TFAP2C were 

associated with an epithelial state (i.e. positive correlation with 76GS scores, and negative 

correlation with KS and MLR scores). Thus, the six hub TFs identified in GBC associate 

differentially with epithelial vs. mesenchymal status, seemingly forming two ‘teams’ of players – 

one promoting EMT, the other set inhibiting EMT [Fig 5B]. 

3. Discussions 
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Gallbladder cancer is a fatal malignancy of the biliary tract system. Standard molecular screening 

of GBC is the utmost necessity to detect the onset of GBC at an early stage and to reduce 

mortality rate of patients suffering from GBC. The use of next generation sequencing techniques 

is being widely used in cancer related studies. However, limited integrative omics based studies 

have been carried out in GBC due to the rarity of the disease. The therapeutic strategies of GBC 

are also limited due to lack of specific molecular targets. Hence, the main objective of this study 

was to identify important genes and TFs related to GBC pathogenesis.  

To this end, we have carried out system based approach to screen hub genes/systems biomarker 

in GBC. Here we have analyzed transcriptomic dataset consisting of 10 GBC and 10 adjacent 

control samples. In total 2980 significant DEGs were identified in GBC samples compared to 

that of the controls. The identified DEGs were then used to construct gene co-expression 

network and to determine significant co-expressed modules in both GBC and control samples. 

The functional annotations and KEGG pathway analysis were further evaluated to identify 

significant biological processes and pathways enriched in nonpreserved modules. We analyzed 

and identified the hub transcription factors from significant DEGs that might have important role 

in gene regulation process during GBC development. The hub genes identified from the 

nonpreserved coexpressed modules were largely associated with cell cycle machinery and 

signaling processes. 

The cell cycle machinery is a highly regulated and intricate process which governs the cell 

growth, cell proliferation and cell division through its cell cycle regulatory genes. The cell cycle 

regulatory molecule majorly involves growth-regulatory signaling proteins- CDK and CDKI and 

associated genes/proteins that checks for any anomalies throughout the genome. Disruption in 

the regulation of cell cycle machinery/components are frequently observed in several 

malignancies where it contributes to malignant transformation and resistant to cancer drugs [17, 

18]. Numerous studies in the last two decades have reported the significance of cell cycle 

aberration towards human cancer development. The cell cycle defects in cancer mainly involves 

uncontrolled proliferation through dysregulation in any of its cell cycle components either due to 

CDK function misregulation and/or decrease in the negative regulator of CDKI [19, 20]. The 

most important component of cell cycle machinery is the DNA replication initiation process and 

pathway. The DNA synthesis process acts as a relay system of the cell cycle process the connects 
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various growth signaling network with DNA replication complex and therefore this component 

serves as an important diagnostic and prognostic target[21]. The DNA replication and the mitotic 

process regulation are considered to be the central players involved in these cell cycle phase 

transitions and therefore they are not only as useful cancer biomarkers but also as potent  targets 

for mechanism based therapies [22]. But the initiation of oncogenesis process is not only 

associated with cell cycle components alone. The development of malignant tumors involves 

mis-regulation of the cell death machinery and cell–cell and/or cell–matrix interactions that co-

operate with cell cycle defects[23]. 

The hub genes identified through gene co-expression network analysis followed by PPIs analysis 

were directly or indirectly associated with components of the cell cycle system, apoptotic 

regulation and cell-cell adhesion process that ultimate give rise to uncontrolled cell proliferation 

and later on to a full bloom malignancy. The hub genes L3MBTL1, MAPK15, CCNB2 and 

CDC6 are crucial element that acts as a control system for coordinated regulation of cell cycle 

system. The L3MBTL1 is known to be a potential tumor suppressor gene in drosophila fly. It 

binds to the chromatin complex during S-phase of the cell cycle also regulates the target genes of 

E2F-RB negatively that are necessary for S-phase initiation. L3MBTL1 was reported to be 

associated with breast cancer and myeloid leukemia including AML [24–26]. The family of 

MAPK proteins plays a key role in different cellular events such as cell differentiation, cell 

growth and development, cellular transformation and apoptosis. It involves a sequence of protein 

kinase signaling cascade which is important for regulation of cellular proliferation[27]. MAPK15 

is known to be an important extracellular signal transducing kinase which is known to be 

activated by human serum. The MAPK15 gene is unique as it does not have specific MEK 

upstream regulation like other MAP kinases. The activity of MAPK15 is found to be modulated 

by several oncogenes and recent study reported the association of MAPK15 with BCR-ABL 

mediated autophagy and functions in oncogene dependent cancer cell proliferation and 

progression[28, 29]. CCBN2 has been found to be  linked with poor survival outcome in gastric 

and hepatocellular cancer[30, 31]. CDC6 also acts as an crucial player in cell cycle system and 

acts as a replication licensing factor and governs the DNA replication process through 

maintenance of the cell cycle checkpoints machinery. CDC6 is found to be reported in initial 

stages of many cancers and also contributes to the oncogenic activities in tumor development[32, 

33].Aberrant CDC6 expression is reported to be  associated with several malignancies [34] 
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The ADAM18, a membrane anchored gene (matrix metalloproteinase) of the ADAM family 

proteins that regulates cell adhesion via their interaction with integrins. It plays an important role 

in the release of biologically important ligands, such as tumor necrosis factor-alpha, epidermal 

growth factor, transforming growth factor-alpha, and amphiregulin[35].In human cancer, 

overexpression of specific ADAMs is related to tumor progression and poor outcome. It is 

regarded as a potential targets for the cancer therapeutics, particularly those cancers that are n 

human epidermal growth factor receptor (EGFR)  ligands or TNF-alpha dependent [36, 37]. 

ALPPL2 belongs to the member of ALPP alkaline phosphate which is reported to be associated 

with tumor initiation. It was reported as a specific and targeted tumor cell surface antigen. It is 

significantly associated with gastric cancer and pancreatic cancer and also acts as a novel protein 

in pancreatic cancer[38, 39]. 

BIRC7 is a novel member of the IAP family and is found to be highly overexpressed in various 

cancer types. BIRC7 was found to be overexpressed in 66% of the cancers and remain absent in 

normal cells/tissues. The function of BIRC7 gene is mainly related to apoptotic regulation and 

signaling process. The overexpression of BIRC7 in cancers is reported to be associated with 

cancer drug and radio resistances, disease recurrence and poor survival[40, 41]. Moreover, 

increased expression of BIRC7 was found in extrahepatic cholangiocarcinoma and was 

significantly associated with poor prognosis and overall survival of the patient[42].WDR88 (WD 

repeat domain 88) present on chromosome 19 is known to be important biomarker for early 

prostate cancer development.  This gene is evolutionary conserved and can found in 167 

organisms as an ortholologus genes. Hence this gene might act as an important target in GBC 

[43]. 

We observed that genes related to cellular processes were essential and significant in 

pathogenesis of GBC. The genes and TFs identified from the nonpreserved modules may play 

key roles in the pathogenesis of GBC. The identified hub genes provided the basis for further in 

depth studies. In summary, this study used co-expression network analysis and transcriptional 

regulatory network analysis to identify key hub genes associated with GBC pathogenesis.  

 

4. Materials and methods 
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 4.1 Retrieval of GBC RNA-seq dataset 

A comprehensive and thorough search was conducted in NCBI database for relevant dataset on 

GBC. The datasets were checked carefully to ascertain whether it can be considered for our study 

based on the following criteria- (i) the dataset must include case-control studies, (ii) the dataset 

must be paired end and (iii) the sequencing platform for generating the data and experimental 

protocol should be described in details. Based on the above mentioned criteria, we found 

GSE139682 from NCBI-GEO database (GEO). The dataset includes 20 samples in total obtained 

through resection surgery (10 samples of GBC tissues and 10 normal matched tissue samples). 

 The GBC dataset was downloaded from NCBI-GEO database in the SRA format. The SRA files 

were converted to fastq using fastq-dump [http://ncbi.github.io/sra-tools]. Quality check of the 

fastq files was done using fastQC. The reads after quality control were aligned using Hisat2 [44] 

against the  reference human genome Homo sapiens (GRCh38). The mapped reads were  

quantified at the gene level to obtain the count matrix for each gene using featureCounts [45]. 

DESeq2[46] was used for identifying  differentially expressed genes (DEGs). The GBC count 

data was normalized and transformed in DESeq2. The level of shrinkage of each gene and the 

overall covariates has been estimated using dispersion plot (Fig 1A) and principle component 

analysis (Fig 1B) respectively. Finally, the significant DEGs of GBC were sorted by considering 

p-adjusted value<0.05.  

4.2 Differential Gene Co-expression network analysis  

The gene co-expression network gives a cluster of genes that are highly correlated. In 

comparison to other biological network analysis, differential co-expression networks can be used 

to build cancer specific sub-network[47]. The significant DEGs were used as input to build gene 

co-expression network using an R package WGCNA[15]. Using WGCNA package, two 

weighted gene co-expression network were constructed for cancer and control condition. For 

each cancer and control dataset, Pearson's correlations analysis of each gene pair was used to 

build an adjacency matrix using the adjacency function of the WGCNA package. Subsequently, 

the adjacency matrix was used to create a scale-free co-expression network based on a soft-

thresholding parameter βeta (β) that is used to enrich strong correlations between gene pairs [48]. 

The calculated adjacency matrix was converted into Topological Overlap Matrix (TOM) by 

using the function TOMsimilarity. This topological overlap matrix was then used as an input for 
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performing hierarchical clustering using the flashClust function for module identification. 

Finally, the network modules for cancer and control dataset were identified using 

dynamicTreeCut (an R package) with a minimum module size (minClusterSize = 30) and 

minimum sensitivity (deepSplit=2) for the gene dendrogram. 

4.3 Module preservation analysis  

The preservation analysis was performed to assess the nonpreserved module between the cancer 

network and control network. The basic statistics behind the module preservation is to evaluate 

the preservation of genes within-module between (GBC and control) a test network and 

reference network [15]. It has been assumed that the genes embodied in nonpreserved modules in 

cancer network might play a role in the pathogenesis process as compared to control network. 

The preservation analysis was carried out using the WGCNA function modulePreservation to 

determine the connectivity and weight of each module of cancer and control networks. The 

Preservation analysis statistics- Z-summary and medianRank gives overall significance of the 

preservation of a module based on degree and connectivity. The  Z-summary preservation<2 

indicates no preservation, 2≤Z-summary≤10 have weak to moderate preservation, and Z-

summary preservation>10 means strong preservation [15] 

4.4 Gene ontology and pathway analysis of the nonpreserved module 

For interpreting the biological role of significant DEGs identified from nonpreserved modules, 

functional enrichment and pathway analysis were performed using DAVID [49].. The significant 

DEGs for GBC were used for the GO analysis and KEGG pathway analysis for identification of 

important cellular processes and pathways in GBC. The top five GO terms for biological 

processes and KEGG pathway terms were estimated with p-value less than 0.05. 

4.5 Screening of hub genes from nonpreserved modules through Intramodular connectivity 

and PPIs network analysis 

In network concept, connectivity is generally considered as the degree. In this study, we have 

used the intramodular connectivity approach for the screening of hub genes within weakly 

preserved modules. The intramodular connectivity basically measures the degree of each gene 

within a module. The criteria of this approach are to calculate the connectivity from the whole 
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network (kTotal) and the connectivity within modules (kWithin). This measure of connectivity is 

useful to determine the biologically significant modules by calculating the degree of genes 

within modules. STRING database (version 10.0)[50] was used to predict potential interactions 

between gene candidates at the protein level. A combined score of > 0.4 was considered 

significant and the PPI networks of the nonpreserved modules were created using the Network 

analyst tool [51]. The genes with high number of connections with other genes/proteins were 

considered as hub gene.  

4.6 Gene Regulatory Network (GRN) analysis 

From the gene regulatory network (GRN) the information regarding the regulatory interactions 

between regulators and their target genes can be obtained [52]. Transcription factors are the key 

players in regulatory network interaction as they influence the gene expression by binding to the 

start site of the gene promoter region. We have used the significant DEGs as input to construct 

the regulatory network. The human TFs and their position weight matrices (PWMs) were 

downloaded from the cis-BP database [53].The matrix scan was used to predict the interaction 

between the TFs and its target genes. The results of the matrix-scan were filtered by setting a p-

value cut off 10-4 The TG-TF interactions data along with their prediction scores were 

represented in the form of interactive network using Cytoscape software [54] (Fig. 5). Later, we 

have selected the top six unique hub genes considering the highest degree centrality. 

4.7 EMT scores calculation. 

In this study, we have quantified the Epithelial-Mesenchymal Transition (EMT) scores for each 

sample using three different scoring metrics- 76Gs, MLR and KS [55–57]  
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Figure 1 

Fig 1:  Differential gene expression in GBC. A. An estimate of the dispersion plot for mean of 

normalized counts. B. Principle component analysis of 10 GBC and 10 normal matxhed control 

samples. C. Hierarchical clustering of top 100 significant DEGs in GBC compared to that of 

control. D. Significant biological processes associated with GBC. 
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Figure 2 

 

Fig 2: Gene co-expression network analysis: A-B. Clustering dendogram of genes in GBC and 

control network respectively. C-D. Clustering dendogram heatmap based on topological 

overlapping for GBC samples and control samples respectively.   
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Figure 3 

 

Fig 3: Preservation analysis of modules based on Zsummary and MedianRank.  A. 

Identification of modules in the control condition. The modules in midnightblue and royalblue 

color is nonpreserved B. Identification of modules in the GBC condition. The modules in tan, 

salmon and grey60 color is nonpreserved. 
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Figure 4 

 

Fig 4:  PPI network analysis of nonpreserved modules. The small blue circles represent the 

proteins and large red node represents the genes in the modules 
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Figure 5 
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Fig 5: Regulatory network analysis of DEGs in GBC. A. Identification of hub TFs in GBC. 

The red node represents the top hub TFs and the small blue node represents target genes.  B. 

Pairwise correlation of hub transcription factor identified through TG-TF interaction.   
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Control to GBC GBC to control 

midnightblue royalblue salmon tan grey60 

Gene  weight Gene weigh

t 

Gene weight Gene weight Gene weight 

AL009178.3 2.87 ADAM18 2.87 MAPK15 12.51 L3MBTL1 11.38 ALPPL2 8.87 

SPATC1 2.71 CNTN4 2.71 TRAPPC9 12.08 ZNF337-AS1 10.47 PATE4 8.01 

CTSV 2.70 NUP62CL 2.70 OPLAH 11.72 AC099661.1 9.64 AP00842.3 7.85 

AL353746.1 2.64 QTRT2 2.64 OTUD6B 10.97 AC240565 8.68 GPATCH1 7.80 

AL360270.1 2.61 LINCO151

7 

2.61 TAF2 10.72 C1QTNF 8.14 AP000977.1 7.06 

Table1. Identification of gene through intra-modular connectivity analysis 

 

Control to GBC GBC to control 

midnightblue Degree royalblue Degree salmon Degree tan Degree grey60 Degree 

CDC6 30 BIRC7 12 CCNB2 30 L3MBTL1 34 WDR88 31 

MCM3 28 CASP12 11 CCNE2 25 ABCG2 23 RPL3 31 

SMURF1 22 UBC 6 E2F5 22 CTPS2 12 TIC6 23 

PIK3AB 17 EPH7 6 MAPK15 15 SIM2 7 FOXA1 22 

SHANK2 14 LINGO2 5 TONSL 12 PTP4A1 7 HIST3H2A 18 

Table2. Hub gene identification through PPI network analysis 

Table 3A. Enriched biological processes associated with nonpreserved modules identified from GBC 

network 

Modules                  Biological processes (GO terms) Counts Genes P-value 

midnight blue intracellular signal transduction 4 NEK11, DGKB, GUCY1B2, 

NUDT4 

3.9E-2 

royalblue negative regulation of DNA replication 2 S100A11, CDC6 3.9E-2 

salmon dorsal/ventral axis specification 2 PAX6, RGS20 3.7E-2 

neuron migration 3 CELSR3, PAX6, PTK2 4.2E-2 

negative regulation of keratinocytes 

proliferation 

2 CTSV, EPPK1 4.3E-2 

interphase of mitotic cell cycle  4 CCNB2, CCNE2, E2F5, TAF2 0.0382 

grey60 Negative regulation of translation 2 FXF1, EIFAK1 0.00824 

Cell fate commitment 3 FOXA1, HOXA11, TFAP2C 0.0131 

Developmental growth  HOXA11, TFAP2C, PLAC1 0.0186 

    

tan planar cell polarity pathway involved in 

axon guidance 

2 VANGL2, RYK 1.2E-2 

Epidermal cell differentiation 2 OVOL2, SPINK5 1.6E-2 

Negative regulation of serine type 

endopeptidase activity 

2 SPINK1, SPINK5 2.8E-2 
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Module KEGG pathways counts genes p-value 

midnightblue Glycerolipid metabolism 2 HLA-DMA 0.00683 

Toxoplasmosis 2 DGKB, LIPC 0.0222 

Apoptosis 2 CTSV, CASP12 0.0313 

Glycosaminoglycan degradation 1 HYAL4 0.0382 

royalblue Phosphotidyl inositol signaling 2 PIK3CB, ITPKA 0.00762 

Cell cycle 2 MCM3, CDC6 0.0204 

salmon Cell cycle 3 E2F5, CCNB2, CCNE2 4.5E-2 

Small cell lungs cancer 2 CCNE2, PTK2 0.0385 

P53 signaling 2 CCNE2, CCEB2 0.0240 

Ubiquine biosynthesis 1 COQ2T 0.0364 

grey60 Thiamine metaboilism 1 ALPPL2 0.0266 

Necroptosis 2 H2AW, RNF103-CHMP3 0.0292 

Alcoholism 2 H2AW, H2BO1 0.0355 

Histidine metabolism 1 ALDH3B2 0.0380 

tan Wnt signaling pathway 2 VANGL2, RYK 0.0321 

Steroid biosynthesis  CYP24A1 0.0339 

Table 3B. Enriched KEGG pathways associated with nonpreserved modules identified from GBC 

network 
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