
Recursive MAGUS: scalable and accurate multiple sequence
alignment

Vladimir Smirnov1,*

1 Department of Computer Science, University of Illinois at Urbana-Champaign,
Urbana, IL, United States

* smirnov3@illinois.edu

Abstract

Multiple sequence alignment tools struggle to keep pace with rapidly growing sequence
data, as few methods can handle large datasets while maintaining alignment accuracy.
We recently introduced MAGUS, a new state-of-the-art method for aligning large
numbers of sequences. In this paper, we present a comprehensive set of enhancements
that allow MAGUS to align vastly larger datasets with greater speed. We compare
MAGUS to other leading alignment methods on datasets of up to one million sequences.
Our results demonstrate the advantages of MAGUS over other alignment software in
both accuracy and speed. MAGUS is freely available in open-source form at
https://github.com/vlasmirnov/MAGUS.

Introduction 1

One of the principal problems in computational biology is multiple sequence alignment 2

(MSA), being necessary for a wide range of downstream applications. This challenge is 3

well-studied, and a good number of strong methods have been developed [1–8]. Most of 4

these leading methods follow the paradigm of “progressive alignment”, and are able to 5

show reasonable accuracy and speed on datasets of modest size (a few hundred to a few 6

thousand sequences). 7

Unfortunately, datasets with more sequences and greater evolutionary diameters 8

require a different approach. Accurate progressive alignment methods rely on heuristics 9

whose runtimes scale very poorly, and early mistakes are compounded over large 10

numbers of pairwise alignments. As a consequence, a family of divide-and-conquer 11

methods was developed to meet the demands of larger datasets [9–11]. 12

MAGUS (Multiple Sequence Alignment using Graph Clustering) was recently 13

introduced [12] as a new evolution of this family. MAGUS uses the GCM (Graph 14

Clustering Merger) technique to combine an arbitrary number of subalignments, which 15

allows MAGUS to align large numbers of sequences with highly competitive accuracy 16

and speed. In its original form, MAGUS is able to align up to around 40,000 sequences. 17

In this paper, we extend MAGUS to handle datasets of much greater size, 18

demonstrating alignments of up to one million sequences. The next section briefly 19

explains how MAGUS operates, and presents our extensions to enable scalability. Next, 20

we describe our experimental study and show our results, comparing MAGUS to other 21

methods with regard to alignment accuracy and speed over ultra-large datasets. Finally, 22

we discuss our findings and future work. 23
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Design and Implementation 24

Overview of MAGUS 25

MAGUS is a recently developed divide-and-conquer alignment method that inherits the 26

basic structure of the earlier PASTA [11] algorithm: MAGUS decomposes the dataset 27

into subsets, aligns them piecewise, and merges these subalignments together. The basic 28

algorithm is itemized below. 29

Subalignments Backbone AlignmentsSubsetsUnaligned Sequences Aligned Sequences

GCM

MAGUS

Fig 1. MAGUS overview. The unaligned sequences are decomposed into disjoint
subsets, which are individually aligned and merged together with GCM.

Input: a set of unaligned sequences. 30

1. Construct a guide tree over the unaligned sequences. (Our default way of doing 31

this is explained below.) 32

2. Use the guide tree to break the dataset into subsets. This is done by “centroid 33

edge decomposition” [11], deleting edges to break the tree into sufficiently small, 34

balanced pieces. 35

3. Align each subset with MAFFT -linsi [3]. 36

4. Construct a set of backbone alignments spanning our subsets. Each backbone is 37

composed of equal-sized random subsets from each subalignment and aligned with 38

MAFFT -linsi. 39

5. Compile the backbones into an alignment graph. Each node represents a 40

subalignment column, and the edges are weighted by how often they are matched 41

by the backbone alignments. 42

6. Cluster the alignment graph with MCL [13]. 43

7. Order the clusters into a valid alignment. We use a heuristic search to resolve 44

conflicts with minimal changes. 45

8. Output the full alignment. 46
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Please refer to the original paper [12] for more information. Steps 5-8 comprise 47

GCM (Graph Clustering Merger, Fig S1), the method by which MAGUS merges 48

subalignments and its biggest departure from previous divide-and-conquer methods. 49

The pipeline was built to be flexible: the user can supply their own subalignments in 50

lieu of steps 1-4, their own guide tree for step 2, and their own backbones for step 5. 51

The number and size of subsets and backbones can also be controlled. 52

Motivation for MAGUS Enhancement 53

Despite its advantages, the original version of MAGUS (“MAGUS 1”) suffers from a 54

number of constraints on its scalability. We motivate the need for improvement by 55

glancing ahead to our experimental study, where MAGUS 1 is seen to struggle with 56

increasing dataset sizes; Fig 6 shows MAGUS 1 taking over 20 hours to align 50,000 57

sequences, and Table 2 shows MAGUS 1 failing on larger datasets due to memory issues. 58

In the next section, we explain the limitations of MAGUS 1 and present the 59

improvements that comprise the paper. 60

MAGUS Improvements 61

Recursion 62

First, there is a soft limit on how many sequences MAGUS 1 can reasonably align. 63

MAFFT -linsi [3], which is used for building subset and backbone alignments, starts to 64

really slow down past around 200 sequences. Additionally, the cluster ordering step 65

(step 8 above) tends to struggle with more than about 200 subsets. Therefore, assuming 66

a practical limit of about 200 subsets of 200 sequences each, unmodified MAGUS can be 67

expected to handle up to around 200× 200 = 40, 000 sequences. 68

We parry this limitation with a fairly straightforward recursive structure, shown in 69

Figure 2. Instead of automatically aligning our subsets with MAFFT, subsets larger 70

than a threshold are recursively aligned with MAGUS. This threshold can be set by the 71

user and is, by default, the greater of the backbone size and the target subset size used 72

for decomposition. Our subalignments are merged with GCM just as before, regardless 73

of whether each subalignment was estimated with MAFFT or MAGUS. 74

Parallelism 75

The next issue is parallelism. MAGUS 1 already implements thread-parallelism: it runs 76

on a single compute node, and it can use all available threads on that node to run 77

MAFFT tasks in parallel. This is more than enough for a few tens of thousands of 78

sequences on a decent machine. However, with ultra-large datasets, we definitely want 79

to benefit from node-parallelism, when multiple compute nodes can collaborate. We 80

implement node-parallelism by extending MAGUS 1’s task management code. MAGUS 81

1 maintains task files with MAFFT alignments and other self-contained tasks that are 82

pending or running, which allows worker threads to divide the jobs and MAGUS to 83

easily resume in case of failure. Reworking this system to allow for multiple compute 84

nodes to use the same set of files effectively permits any number of nodes to join and 85

take tasks to work on. 86

Guide Tree 87

MAGUS decomposes the dataset into subsets by estimating a rough guide tree with 88

FastTree [14], a fast maximum likelihood tree estimation method. Since FastTree 89

requires an alignment, we first compile a rough alignment by aligning 300 random 90

sequences with MAFFT and adding the remaining sequences with HMMER [15]. The 91

April 5, 2021 3/15

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 9, 2021. ; https://doi.org/10.1101/2021.04.09.439137doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.09.439137
http://creativecommons.org/licenses/by/4.0/


MAGUS

MAFFT

MAGUS

GCM

Fig 2. Recursive MAGUS overview. Instead of aligning all of our subsets with
MAFFT, subsets larger than a given threshold are recursively aligned with MAGUS.
Subsets below the threshold are aligned with MAFFT. As before, all subalignments are
merged with GCM.

guide tree is recursively broken apart until the subsets are small enough. This is the 92

same strategy used in PASTA, and seems very difficult to improve upon. On very large 93

alignments, however, even FastTree becomes painfully slow (around 5 days on a million 94

sequences, as will be shown below). 95

The new version of MAGUS presents a wider range of guide tree options, intended 96

for situations where FastTree might not be fast enough or fails due to numerical issues. 97

The guide tree can now also be generated with Clustal Omega’s [2] initial tree method, 98

MAFFT’s PartTree [16] initial tree method, and FastTree’s minimum evolution tree (i.e. 99

limited to distance-based calculations without maximum likelihood). In extremis, the 100

dataset can be decomposed randomly for maximum speed. 101

Memory Management and Alignment Compression 102

Memory management becomes a salient problem when handling very large datasets. For 103

example, without modifications, MAGUS alignments on the full million-sequence 104

RNASim dataset fall between 1 and 3 terabytes (Fig S2). Moreover, simply having too 105

many subalignments loaded into memory at the same time can overrun the available 106

RAM at such dataset sizes. 107

We solve the latter problem by reworking the code to ensure that at most one 108

subalignment may be fully loaded into memory at any time. With large dataset sizes, 109

this limits the memory complexity of MAGUS to the size of the largest subalignment. 110

The problem of excessively large alignments is addressed by introducing a method of 111

conservative lossy compression. If MAGUS calculates that the size of the uncompressed 112

alignment will exceed a threshold (100GB by default, may be set by the user), MAGUS 113

will compress the alignment to the threshold size. The compression scheme is fairly 114

straightforward and works by “dissolving” columns: the letters are set to lower-case and 115

shunted to neighboring columns. If the neighboring columns already contain 116

lower-case letters from the same sequences, these are also shunted away in a recursive 117

domino effect. (If the neighboring columns already contain upper-case letters from the 118
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same sequences, then the move is invalid.) Columns are dissolved one at a time, starting 119

with those containing the fewest letters, until the threshold is reached or no more valid 120

moves remain. 121

Results 122

Experimental Design 123

Our experimental design is outlined below. 124

The preliminary portion of our study that explores the effects of our MAGUS 125

extensions described above, using MAGUS 1 as our baseline. We test the impact of 126

compression on alignment error, the use of different guide trees, and the benefit of 127

node-parallelism. Due to space limitations, these results are available in the 128

Supplementary Materials. 129

Our subsequent experiments compare MAGUS against a range of competing 130

methods across all of our datasets. This is the most important part of our study, 131

intended to exercise the current state-of-the-art in the alignment of ultra-large 132

nucleotide and protein datasets. We present our results below. 133

Datasets 134

Our study uses a number of simulated and biological datasets from previous 135

publications [4, 11]. Please see Table 1 for dataset statistics. These datasets were 136

selected to provide suitably large and varied alignment problems with reference 137

alignments, containing both nucleotide and amino acid sequences. 138

• RNASim: [11] This is a simulated RNA dataset, generated under a 139

non-homogeneous model of evolution that does not conform to the usual GTR 140

model assumptions. We use subsamples ranging from 10,000 to the full one 141

million sequences, with one replicate per size. 142

• 16S: [17] We use three large biological nucleotide datasets from the Comparative 143

Ribosomal Website: 16S.3, 16S.T, and 16S.B.ALL, with 6,323, 7,350, and 27,643 144

sequences, respectively. 145

• HomFam: [2] Finally, we include 19 amino acid HomFam datasets from, which 146

have small Homstrad reference alignments on 5–20 sequences each. These datasets 147

range from 10,099 to 93,681 sequences and allow us to evaluate our methods on 148

large protein datasets. (Following the PASTA paper, we exclude the “rhv” dataset 149

due to having a weak alignment.) 150

Methods 151

We compare the following methods in our study, taken from previous publications [4,11]. 152

To the best of our knowledge, these methods are presently the best-equipped to tackle 153

very large multiple sequence alignments. Regressive T-Coffee [18] is another recent 154

development, but we were unable to run it on Blue Waters. 155

• MAGUS 1 We use the original MAGUS as a baseline. This version does not use 156

recursion or compression, uses a FastTree decomposition, and can only run on a 157

single node. 158
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Dataset # Seqs Avg. p-dist. Max p-dist. % gaps align. length type
RNASim 10,000-1,000,000 0.41 0.61 93 18,268 sim NT
16S
- 16S.3 6,323 0.32 0.83 82 8,716 bio NT
- 16S.T 7,350 0.35 0.90 87 11,856 bio NT
- 16S.B.ALL 27,643 0.21 0.77 80 6,857 bio NT
HomFam
- gluts 10,099 0.60 0.81 8 235 bio AA
- myb-DNA-binding 10,398 0.59 0.77 12 61 bio AA
- tRNA-synt-2b 11,293 0.81 0.88 34 467 bio AA
- biotin-lipoyl 11,833 0.71 0.84 26 112 bio AA
- hom 12,037 0.64 0.84 35 98 bio AA
- ghf13 12,607 0.72 0.84 25 626 bio AA
- aldosered 13,277 0.57 0.79 19 386 bio AA
- hla 13,465 0.24 0.33 0 178 bio AA
- Rhodanese 14,049 0.76 0.89 31 216 bio AA
- PDZ 14,950 0.69 0.84 15 110 bio AA
- blmb 17,200 0.79 0.90 30 344 bio AA
- p450 21,013 0.79 0.87 20 512 bio AA
- adh 21,331 0.36 0.47 0 375 bio AA
- aat 25,100 0.71 0.87 15 476 bio AA
- rrm 27,610 0.77 0.91 45 157 bio AA
- Acetyltransf 46,285 0.75 0.87 29 229 bio AA
- sdr 50,157 0.77 0.89 28 361 bio AA
- zf-CCHH 88,345 0.65 0.85 25 39 bio AA
- rvp 93,681 0.63 0.76 19 132 bio AA

Table 1. Dataset properties. Statistics taken from [11]. P-distance denotes the
normalized Hamming distance, or the fraction of non-gap letter pairs that do not match.
Alignment length shows the length of the reference alignment.

• MAGUS The latest version takes advantage of the new features detailed above. 159

We enable recursion and compress alignments above 100GB. In addition to the 160

default FastTree decomposition, we explore other guide trees: FastTree without 161

Maximum Likelihood, MAFFT’s PartTree, Clustal Omega’s initial tree method, 162

and a random decomposition. Henceforth, we indicate the guide tree and use of 163

recursion in parentheses. For example, MAGUS(Recurse, Clustal) denotes 164

MAGUS using Clustal Omega’s guide tree and with recursion enabled. 165

• PASTA [11] 166

• UPP [4] 167

• UPP(Fast) We use the “Fast” mode described in the UPP paper. 168

• Muscle [1] 169

• Clustal Omega [2] 170

• MAFFT -auto [3]. The “auto” mode directs MAFFT to choose an appropriate 171

alignment strategy based on the input dataset. 172

Error Metrics 173

We evaluate alignment accuracy using SPFP/SPFN (Sum-of-Pairs False Positives and 174

Negatives) rates, computed using FastSP [19]. These values represent the fractions of 175

missing and incorrect homologous pairs in the estimated alignment. For convenience, we 176

show the average of SPFP and SPFN as a single “SP error” in the main paper; SPFP 177

and SPFN are shown separately in the Supplementary Materials. Our estimated 178

alignments are compared against the true alignment on RNASim and the curated 179
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reference alignments on 16S. The HomFam datasets provide reference alignments over a 180

small number of included sequences; we compute our alignment error over just these 181

reference sequences. 182

Computing Resources 183

We used the NCSA Blue Waters supercomputer for our experiments. Our jobs were run 184

on nodes with 32 cores, 64GB of RAM, and a maximum wall time of 7 days. 185

Experimental Results 186

The preliminary part of our study, which investigates the impacts of compression, guide 187

tree selection, and node-parallelism, is available in the Supplementary Materials (due to 188

space constraints). These results provide us with two natural guide tree choices for 189

MAGUS: using FastTree (the default, described above) is the most accurate, while using 190

Clustal Omega’s initial tree is the faster alternative. Here, we present the principal part 191

of our study, where we compare MAGUS to our other methods across all of our datasets. 192

HomFam 193

Our first set of results concern the HomFam protein datasets. The error rates are 194

averaged in Fig 3, and the complete results for all datasets are available in Table S3. 195

These results show more variability than the other datasets, but the general trends are 196

as follows. Muscle and Clustal trail the others, averaging 46.6% and 27.2% error, 197

respectively. MAFFT, UPP, and PASTA are all on par, averaging about 21-23% error. 198

The MAGUS versions perform markedly better: MAGUS(Recurse, Clustal) yields 17.9% 199

error, MAGUS(Recurse, FastTree) shows 16.5%, and MAGUS 1 leads with 15.5%. 200

Furthermore, MAGUS 1 achieves the best result on 12 of the 19 datasets. Recursive 201

MAGUS (both versions) accounts for 2 of the others, while Clustal and UPP each do 202

best on 2. 203

Muscle Clustal Omega MAFFT(auto) UPP UPP(Fast) PASTA MAGUS 1 MAGUS(R,F) MAGUS(R,C)
Method

0.0

0.1

0.2

0.3

0.4

0.5

(S
PF
N+

SP
FP
)/2

HomFam Average Alignment Error

Fig 3. Average SP error on HomFam datasets. Error is the average of SPFP
and SPFN. Results are averaged over the datasets where all methods completed (Muscle
segfaulted on two). Error bars show standard error. MAGUS was run with the default
25 subsets.
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The HomFam runtime results are shown in Fig 4 and Fig S14. PASTA is visibly the 204

slowest, taking about 2-5 hours on the smaller datasets and up to 20 hours on the larger 205

ones. MAFFT, UPP(Fast), Clustal Omega, and MAGUS(Recurse, Clustal) are the 206

fastest, generally finishing in a few minutes to an hour. Notably, we see MAGUS 1 207

begin to dramatically slow down without recursion, running longer than 208

MAGUS(Recurse, FastTree) on the largest datasets. 209

PDZ
(14950)

blmb
(17200)

p450
(21013)

adh
(21331)

aat
(25100)

rrm
(27610)

Acetyltransf
(46285)

sdr
(50157)

zf-CCHH
(88345)

rvp
(93681)

Dataset

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Ho
ur
s

HomFam Runtimes
Muscle
Clustal Omega
MAFFT(auto)
UPP
UPP(Fast)

PASTA
MAGUS 1
MAGUS(Recurse, FastTree)
MAGUS(Recurse, Clustal)

Fig 4. Homfam (largest 10 datasets) runtime, all methods. MAGUS was run
with the default 25 subsets. Muscle segfaulted on the two largest datasets.

16S 210

The next set of results pertain to the biological 16S datasets, shown in Fig 5. As above, 211

Muscle and Clustal trail the other methods in accuracy. On the smallest dataset, 16S.3, 212

the results are fairly close: UPP(Fast), PASTA, and all versions of MAGUS are at 213

about 19% SP error. There is a larger difference on 16S.T, with PASTA at around 23%, 214

UPP and UPP(Fast) around 21%, and all versions of MAGUS at about 20%. Lastly, 215

UPP, PASTA, and MAGUS are again fairly close on 16S.B.ALL; PASTA shows about 216

11% error, while both versions of UPP and MAGUS have about 10.5% error. 217

In terms of runtime, we see that UPP, PASTA, and both versions of recursive 218

MAGUS are the slowest methods on 16S.3 and 16S.T, running around 4-5 hours. The 219

fastest method is MAFFT(auto) at about 2 minutes, while Muscle and UPP(Fast) take 220

about half an hour. The picture is a little different on 16S.B.ALL, where Muscle, UPP, 221

and PASTA seem to drastically slow down; they take about 11, 14, and 17 hours, 222

respectively. MAGUS 1 also falters here, taking 18 hours, while recursive MAGUS with 223

FastTree and Clustal only increases to 8 and 4 hours, respectively. MAFFT and 224

UPP(Fast) remain the fastest, only taking 1-2 hours. 225

RNASim 226

In the final part of our study, we probe the limits of scalability on the RNASim datasets. 227

Fig 6 shows us the error and runtime results, while Table 2 summarizes all method 228

failures. Muscle is the worst performer here, with 65-70% error and segfaulting after 229

50,000 sequences. Clustal Omega does better, with errors between about 30% and 60%, 230

running out of time after 200,000 sequences. Then comes MAFFT -auto, with a steady 231
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16S.3 (6,323) 16S.T (7,350) 16S.B.ALL (27,643)
Dataset

0.0

0.1

0.2

0.3

0.4

(S
PF

N+
SP

FP
)/2

16S Alignment Error
Muscle
Clustal Omega
MAFFT(auto)
UPP
UPP(Fast)

PASTA
MAGUS 1
MAGUS(Recurse, FastTree)
MAGUS(Recurse, Clustal)

16S.3 (6,323) 16S.T (7,350) 16S.B.ALL (27,643)
Dataset

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Ho
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s

16S Runtimes
Muscle
Clustal Omega
MAFFT(auto)
UPP
UPP(Fast)

PASTA
MAGUS 1
MAGUS(Recurse, FastTree)
MAGUS(Recurse, Clustal)

Fig 5. 16S alignment error (top) and runtime (bottom), all methods. Error
is the average of SPFP and SPFN. Runtime is shown in hours. MAGUS was run with
the default 25 subsets. MAFFT -auto completed in a few minutes on 16S.3 and 16S.T.

error of 25-30% up to 100,000 sequences. Oddly, even though it is one of the fastest 232

methods at 100,000 sequences (about 3.6 hours), it runs out of time at 200,000 233

sequences. 234

The accuracy of our remaining methods is shown more clearly in Fig 7. UPP(Fast) 235

trails the other methods in accuracy, with about 2% higher error than PASTA and UPP. 236

PASTA and UPP are about the same at around 10% error. MAGUS 1 and recursive 237

MAGUS (both versions) have the best accuracy. MAGUS 1 is the most accurate at 238

10,000-50,000 sequences (8.2-7.8% error), but can’t proceed beyond that. 239

MAGUS(Recurse, FastTree) is second-best at about 8.5-8%. MAGUS(Recurse, Clustal) 240

consistently trails MAGUS(Recurse, FastTree) by about 0.5% below 200,000 sequences, 241

and declines to about 8.3% on 1,000,000 sequences. 242

Aside from MAGUS(Recurse, Clustal), UPP(Fast) is the only other method that 243

aligned all 1,000,000 sequences in a week; UPP took about 77 hours to align all 244

1,000,000 sequences, while MAGUS(Recurse, Clustal) took about 128 hours. PASTA 245
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Method Highest # Aligned Failure
Muscle 50,000 “segmentation fault”
Clustal Omega 200,000 Max runtime elapsed (7 days)
MAFFT(auto) 100,000 Max runtime elapsed (7 days)
UPP 200,000 Max runtime elapsed (7 days)
PASTA 50,000 “Error detected during page fault processing. Process terminated via bus error.”
MAGUS 1 50,000 “OOM killer terminated this process.”

Table 2. Method failures on RNASim. PASTA and MAGUS 1 failed due to
excessive memory usage; compute nodes had 64GB of memory.

10,000 20,000 50,000 100,000 200,000 500,000 1,000,000
Number of sequences

0.0
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0.4
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0.7

(S
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N+
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)/2

RNASim Alignment Error
Muscle
Clustal Omega
MAFFT(auto)
UPP
UPP(Fast)
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MAGUS 1
MAGUS(Recurse, FastTree)
MAGUS(Recurse, Clustal)
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MAFFT(auto)
UPP
UPP(Fast)
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MAGUS(Recursive, FastTree)
MAGUS(Recurse, Clustal)

Fig 6. RNASim alignment error (top) and runtime (bottom), all methods.
Error is the average of SPFP and SPFN. Runtime is show in hours. ’X’ markers
indicate that compression was used (MAGUS alignments above 100GB). MAGUS was
run with 100 subsets on RNASim to reduce load on Blue Waters. Compute nodes had
64GB of RAM and a maximum wall time of 7 days.

encountered memory issues, while UPP and MAGUS(Recurse, FastTree) ran out of 246

time. Notably, UPP, Clustal Omega, and MAGUS(Recurse, FastTree) showed 247

comparable runtime scaling, all three just meeting the 1 week time limit at 200,000 248

sequences. MAGUS 1 initially scales better than recursive MAGUS on a single node, 249

April 5, 2021 10/15

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 9, 2021. ; https://doi.org/10.1101/2021.04.09.439137doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.09.439137
http://creativecommons.org/licenses/by/4.0/


but only reaches 50,000. 250
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Fig 7. RNASim alignment error, best methods. Error is the average of SPFP
and SPFN. ’X’ markers indicate that compression was used (MAGUS alignments above
100GB). MAGUS was run with 100 subsets on RNASim to reduce load on Blue Waters.
Compute nodes had 64GB of RAM and a maximum wall time of 7 days.

Discussion 251

The accuracy of MAGUS convincingly exceeds the other methods we tried on the 252

datasets in our study. As shown in Figs 6, 5, and 3, this is true regardless of whether 253

recursion is used, and whether FastTree or Clustal is used for decomposition. The more 254

difficult question we need to tease apart concerns the different ways of running MAGUS, 255

and how they affect scalability and accuracy. We do this by considering recursion, guide 256

tree, and node-parallelism in turn. 257

On one hand, recursion actually slows MAGUS down on smaller datasets. On the 258

other hand, this is rapidly reversed as MAGUS chokes on larger datasets without 259

recursion. This can be seen from our 16S results, where MAGUS is much faster without 260

recursion on 6,000-7,000 sequences, but much slower on 27,000. This reversal can also 261

be seen on the HomFam datasets. On RNASim, MAGUS without recursion is faster on 262

10,000-50,000 sequences, but simply fails after that. 263

The nature of this limitation is fairly clear: given N sequences and S subsets, 264

MAGUS without recursion must run MAFFT -linsi on chunks of N
S sequences. Thus, 265

MAGUS without recursion is only viable for as long as MAFFT -linsi can handle these 266

chunks. Our results suggest that subsets approaching around 1,000 sequences really 267

become a problem: this is about where RNASim fails and 16S.B.ALL takes an 268

inordinate amount of time. There is less of a problem on HomFam, where the amino 269

acid sequences are much shorter. 270

Moreover, recursion does not improve accuracy; MAGUS without recursion is 271

noticeably more accurate on HomFam, about the same on 16S, and slightly better on 272

10,000 sequences of RNASim. These observations suggest that recursion should be 273

avoided if possible, and only engaged when the dataset becomes too large for the 274

subsets to be reasonably aligned with the base method. 275

As far as decomposition strategy is concerned, the FastTree method remains the most 276

accurate. The runtime becomes an issue on the largest datasets, where the tree takes 277
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about 5 days to compute on 1 million sequences. The best alternative, as suggested by 278

our results, is to use the Clustal Omega guide tree. This gives the best compromise 279

between accuracy and runtime, and only takes 14 hours on 1 million sequences. 280

Taking advantage of our newfound node-parallelism has a considerable impact on 281

runtime. If we exclude the FastTree computation from the MAGUS runtime on 1 million 282

sequences, the actual alignment stage takes about 9 days on a single node, but only 283

about 17 hours on 10 nodes and 2.5 hours on 100 nodes. Thus, given enough compute 284

nodes, the total runtime is mostly dominated by the guide tree method, rather than the 285

alignment itself; this is the motivation for considering Clustal as a FastTree alternative. 286

Conclusions 287

We presented a powerful set of improvements to our MAGUS method, allowing it to 288

scale from 50,000 to a full million sequences. Moreover, MAGUS is able to align such 289

vast datasets more accurately than the other methods we compared against. 290

UPP(Fast) remains the fastest way to effectively align a million sequences on a 291

single compute node, but suffers from consistently worse alignment accuracy. Other 292

methods are able to finish quickly on smaller datasets, but struggle to complete on 293

larger numbers of sequences, while also trailing MAGUS in accuracy. 294

We conclude by distilling our results into a number of concrete recommendations for 295

interested practitioners. 296

Recursion is harmful on smaller datasets, but necessary on larger datasets. 297

If the dataset is small enough, MAGUS will run considerably faster without recursion 298

and might have slightly better accuracy. On larger datasets, MAGUS will rapidly grind 299

to a halt without recursion. Thus, it is advised to avoid recursion if the dataset permits 300

this. This threshold is dictated by subset size ( # sequences
# subsets ). Given our data, we found 301

the “threshold” subset size to be somewhere around 1,000 sequences of a few thousand 302

nucleotides, or somewhere above 4,000 sequences of a few hundred amino acids. 303

The importance of node-parallelism and guide tree. The default 304

FastTree-based subset decomposition gives the best accuracy, and is fast enough for 305

most purposes. For huge datasets of half a million or more, the Clustal Omega-based 306

decomposition runs much faster and is nearly as accurate. As one might expect, using 307

as many compute nodes as possible will improve the runtime. However, using more 308

nodes than subsets will decrease the added gains from node-parallelism. 309

Running MAGUS. Putting all of the above together, the most accurate way of 310

running MAGUS is to use the default FastTree-based decomposition without recursion, 311

preferably on as many compute nodes as are available. If the dataset is too large to 312

allow the subsets to align in a reasonable amount of time, recursion should be enabled. 313

Finally, if the dataset is too large to allow FastTree to finish in a reasonable amount of 314

time, the Clustal-based decomposition should be used. 315

Availability and Future Directions 316

MAGUS is open-source and freely available at https://github.com/vlasmirnov/MAGUS. 317

The datasets used in this study can be downloaded from the Illinois Data Bank at 318

https://doi.org/10.13012/B2IDB-1048258 V1. 319

We plan to explore several future directions towards further improving MAGUS. The 320

first is to comprehensively investigate the performance of MAGUS on fragmentary data. 321
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Fragmentary sequences can potentially confound effective methods, and we will extend 322

MAGUS to reliably handle such scenarios. 323

The second avenue of improvement is to consider alternative procedures for 324

assembling backbone alignments, and is intended to further increase alignment accuracy. 325

Currently, MAGUS uses the simple expedient of building backbones with equal, random 326

samples from each subset. We will develop and evaluate ways to build more compact 327

(and, thus, more accurate) backbone sets that still sufficiently span the subsets. 328

Thirdly, we have mostly developed MAGUS to be able to align vast numbers of 329

sequences accurately. In the future, we hope to also extend MAGUS “in the other 330

direction” - to handle datasets with arbitrarily long, even genome-scale sequences. 331
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Commands Used 335

MAGUS 336

python3 magus.py -d tempdir -o result.txt -i unalign.txt 337

-t <guide tree option or path> --recurse <true|false> 338

--maxnumsubsets <25|100> 339

PASTA 1.8.3 340

python3 run\_pasta.py -i unalign.txt -o result.txt 341

--temporaries tempdir -d <dna|rna|protein> --keeptemp 342

UPP 4.3.10 343

python3 run\_upp.py -s unalign.txt -p result.txt -m rna 344

UPP(Fast) 4.3.10 345

python3 run\_upp.py -s unalign.txt -p result.txt -B 100 -m rna 346

Muscle 3.8.425 347

muscle -maxiters 2 -in unalign.txt -out result.txt 348

Clustal Omega 1.2.4 349

clustalo -i unalign.txt -o result.txt --threads=32 350

MAFFT 7.450 –auto 351

mafft --auto --ep 0.123 --quiet --thread 32 --anysymbol 352

unalign.txt > result.txt 353

FastSP 1.6.0 (Computing alignment error) 354

java -Xmx256G -jar FastSP\_1.6.0.jar -r reference\_align.txt 355

-e estimated\_align.txt -ml 356
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Supplementary Materials 1

GCM Overview 2

Input: Subalignments Step 0: Build Backbone 
Alignments

Step 1: Build Alignment Graph

Step 2: Cluster the GraphStep 3: Find a TraceStep 4: Optimizer

Fig S1. GCM overview. Given a set of disjoint subalignments, we first compile (or
are given) a set of backbone alignments that span our subsets. These are used to build
a weighted alignment graph, where each node is a subalignment column, and the edge
weights represent our confidence that these columns should be aligned. Then, we use
MCL to cluster the graph. The clusters are further refined into a “trace”, which
corresponds to a valid multiple sequence alignment. Optionally, the trace can be further
optimized with respect to the Maximum Weight Trace criterion.

Preliminary Study: Comparing MAGUS Variants 3

The Effect of Compression 4

This part of our study addresses the issues alignment sizes and compression. Fig. S2 5

and Table S1 show the rapid growth of estimated uncompressed MAGUS alignment 6

sizes with increasing dataset size. The size of the true alignment on the full 7
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million-sequence dataset is 21.4 gigabytes, compared to about 3.4 terabytes produced by 8

recursive MAGUS with PartTree and random decompositions, and about 1 terabyte 9

with the other guide trees. 10

10,000 20,000 50,000 100,000 200,000 500,000 1,000,000
Number of sequences

100

101

102

103

GB

RNASim Alignment Sizes
MAGUS 1
MAGUS(Recurse, FastTree)
MAGUS(Recurse, Random(RFT))
MAGUS(Recurse, PartTree(RFT))

MAGUS(Recurse, FastTree-NoML(RFT))
MAGUS(Recurse, Clustal(RFT))
MAGUS(Recurse, Clustal)

Fig S2. RNASim log-scale alignment sizes (in GB), MAGUS variants only.
MAGUS was run with 100 subsets on RNASim to reduce load on Blue Waters.

# M(R,Random) M(R,PT) M(R,FT) M(R,FT-NoML) M(R,Clustal) M1
10,000 0.6 0.5 0.4 0.4 0.4 0.4
20,000 1.8 2.2 1.3 1.4 1.5 1.1
50,000 15.0 14.9 7.5 7.5 8.6 5.0
100,000 55.6 55.4 25.3 25.3 29.3
200,000 208.9 207.6 83.1 83.1 97.5
500,000 1,085.4 1,076.9 365.5 364.9 432.9
1,000,000 3,441.8 3,424.4 1,037.3 1,036.5 1,228.5

Table S1. RNASim alignment sizes (in GB) of MAGUS variants. “R”
indicates recursion, PT denotes PartTree, FT denotes FastTree. MAGUS was run with
100 subsets on RNASim to reduce load on Blue Waters.

.

Consequently, we measure the increase in SP error from subjecting our alignments to 11

the MAGUS compression. Table S2 shows the delta SP error of recursive MAGUS 12

(using the FastTree guide tree), with different dataset sizes being compressed down to 13

varying size thresholds. Even under the most aggressive compression policies (e.g. 14

compressing 83 gigabytes to 5), the error increases by minuscule amounts. Looking at 15

the full dataset, we see that compressing the full 1-terabyte alignment to 25 gigabytes 16

only increases the SP error by 1.2e-7 compared to the 100 gigabyte compression. 17

Therefore, we can safely say that our compression scheme for managing huge alignment 18

sizes has negligible effect on alignment accuracy and can be safely used in subsequent 19

experiments. 20

The Effects of Different Guide Trees 21

Next, we compare MAGUS 1 to MAGUS with recursion and a selection of different 22

guide trees. Fig S3 shows the resulting SP error. The runtime analysis is slightly more 23

complicated. We note that the guide tree portion of MAGUS currently always runs on a 24

April 5, 2021 2/12

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 9, 2021. ; https://doi.org/10.1101/2021.04.09.439137doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.09.439137
http://creativecommons.org/licenses/by/4.0/


10,000 20,000 50,000 100,000 200,000 500,000 1,000,000
Uncompressed GB 0.4 1.3 7.5 25.3 83.1 365.5 1,037.3
100 GB
50 GB 0.0 4.3e-09 3.6e-08
25 GB 0.0 1.3e-09 3.6e-08 1.2e-07
10 GB 8.5e-10 1.6e-08 1.8e-07
5 GB 0.0 7.1e-09 1.2e-07
1 GB 0.0 5.9e-08

Table S2. Delta error from lossy compression, MAGUS(Recurse, FastTree)
alignments on RNASim. Values show the increase in SP error over the
uncompressed alignment. 500K and 1M show increase over the 100GB-compressed
alignment. Missing values indicate that the original alignment could not be compressed
to that threshold, or was already below it.

single compute node, and node parallelism only affects the remaining portion of 25

MAGUS. Thus, we first show all of the guide tree runtimes separately in Fig S4, and 26

the full end-to-end runtime comparison with FastTree and Clustal guide trees in Fig S5. 27
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MAGUS 1
MAGUS(Recurse, FastTree)
MAGUS(Recurse, Random(RFT))
MAGUS(Recurse, PartTree(RFT))

MAGUS(Recurse, FastTree-NoML(RFT))
MAGUS(Recurse, Clustal(RFT))
MAGUS(Recurse, Clustal)

Fig S3. RNASim alignment error, MAGUS variants only. Error is the average
of SPFP and SPFN. ’X’ markers indicate that compression was used (MAGUS
alignments above 100GB). ’RFT’ denotes that FastTree guide trees were used in
recursive subalignments. MAGUS was run with 100 subsets on RNASim to reduce load
on Blue Waters.

Guide Tree Runtimes 28

Firstly, we note that MAGUS 1 wasn’t able to proceed past 50,000 sequences, due to 29

out-of-memory issues. MAGUS 1’s accuracy is about 0.5% better than 30

MAGUS(Recurse, FastTree) on 10,000 sequences. Notably, where it did finish on 31

10-50,000 sequences, MAGUS 1 is much faster than MAGUS(Recurse, FastTree) on a 32

single node - about 23 hours vs. about 74 hours. 33

Comparing recursive MAGUS with different decompositions, we see that the 34

accuracy of using PartTree is about the same as decomposing randomly, with both 35

being predictably the fastest; the PartTree decomposition takes about 4 hours on a 36

million sequences, while the random decomposition is nearly instant. Next, we see that 37
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Fig S4. RNASim runtimes (in hours) of MAGUS guide trees only.

using FastTree(no ML) yields about the same accuracy as using Clustal (about 1% 38

better than random), but takes more time on larger datasets: on the full million 39

sequences, it takes about 76 hours to compute the FastTree(no ML) tree, vs. about 14 40

hours to compute the Clustal Omega tree. Finally, we see that using FastTree seems to 41

give the best accuracy overall, usually giving a small advantage (0-0.5%) over 42

Clustal/FastTree(no ML). Obviously, this is also the most expensive option: the tree 43

takes about 5 days to compute on a million sequences. 44

From these results, we glean two natural guide tree choices for MAGUS. Using 45

FastTree will constitute our “slowest-but-most-accurate” option, while using Clustal 46

Omega becomes our “fast” option. We choose Clustal Omega, because the resulting 47

accuracy is considerably better than PartTree/random, while the runtime is 48

considerably better than FastTree(no ML), giving us the most practical compromise 49

between speed and accuracy. Consequently, we carry these two variants of MAGUS into 50

our next experiment. 51

The Impact of Node-Parallelism 52

Fig S5 compares the runtime behavior of these two variants, also demonstrating the 53

effects of node parallelism on MAGUS(Recurse, FastTree). On a million sequences, 54

computing a FastTree guide tree takes about 5 days, and the alignment stage on a 55

single node takes about 9 more days. This reduces to about 17 hours on 10 nodes, and 56

about 2.5 hours on 100 nodes. Using Clustal takes about 14 hours for the guide tree, 57

and then about 5 more days to align on a single node. 58
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Clustal Guide Tree
MAGUS(Recurse, Clustal, 1 node)

Fig S5. RNASim runtimes (in hours), MAGUS variants only. MAGUS was
run with 100 subsets on RNASim to reduce load on Blue Waters. Compute nodes were
restricted to a maximum walltime of 7 days, but MAGUS(Recurse, FastTree, single
node) was run to completion by restarting when time ran out.

April 5, 2021 5/12

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 9, 2021. ; https://doi.org/10.1101/2021.04.09.439137doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.09.439137
http://creativecommons.org/licenses/by/4.0/


Additional Figures 59
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Fig S6. RNASim SPFN alignment error, MAGUS variants only. Dashed
lines indicate that lossy compression was used (MAGUS alignments above 100GB).
MAGUS was run with 100 subsets on RNASim to reduce load on Blue Waters.
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Fig S7. RNASim SPFP alignment error, MAGUS variants only. Dashed
lines indicate that lossy compression was used (MAGUS alignments above 100GB).
MAGUS was run with 100 subsets on RNASim to reduce load on Blue Waters.
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Fig S8. RNASim SPFN alignment error, all methods. Dashed lines indicate
that lossy compression was used (MAGUS alignments above 100GB). MAGUS was run
with 100 subsets on RNASim to reduce load on Blue Waters.
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Fig S9. RNASim SPFP alignment error, all methods. Dashed lines indicate
that lossy compression was used (MAGUS alignments above 100GB). MAGUS was run
with 100 subsets on RNASim to reduce load on Blue Waters.
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Fig S10. 16S SPFN alignment error, all methods. MAGUS was run with the
default 25 subsets.
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Fig S11. 16S SPFP alignment error, all methods. MAGUS was run with the
default 25 subsets.
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Fig S12. HomFam (smallest 9 datasets) alignment error, all methods. Error
is the average of SPFP and SPFN. MAGUS was run with the default 25 subsets.
(Errors on “hla” are near-zero.)
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Fig S13. Homfam (largest 10 datasets) alignment error, all methods. Error
is the average of SPFP and SPFN. MAGUS was run with the default 25 subsets.
Muscle segfaulted on the two largest datasets.
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Fig S14. Homfam (smallest 9 datasets) runtime, all methods. MAGUS was
run with the default 25 subsets.
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Muscle Clustal MAFFT UPP UPP-F PASTA MAGUS 1 MAGUS(R,F) MAGUS(R,C)
gluts 0.369 0.078 0.174 0.268 0.326 0.179 0.049 0.059 0.057
myb-DNA-binding 0.138 0.097 0.081 0.061 0.102 0.089 0.089 0.077 0.068
tRNA-synt-2b 0.529 0.552 0.454 0.379 0.420 0.417 0.359 0.369 0.384
biotin-lipoyl 0.062 0.060 0.061 0.101 0.085 0.075 0.075 0.073 0.076
hom 0.069 0.053 0.081 0.049 0.109 0.035 0.034 0.043 0.038
ghf13 0.732 0.379 0.374 0.282 0.303 0.304 0.244 0.256 0.330
aldosered 0.480 0.151 0.089 0.087 0.110 0.112 0.069 0.072 0.085
hla 0.031 0.000 0.000 0.000 0.003 0.000 0.000 0.000 0.000
Rhodanese 0.458 0.509 0.371 0.298 0.295 0.305 0.210 0.239 0.238
PDZ 0.534 0.168 0.173 0.176 0.129 0.178 0.117 0.101 0.139
blmb 0.817 0.518 0.375 0.238 0.349 0.305 0.211 0.219 0.255
p450 0.909 0.422 0.340 0.385 0.300 0.369 0.205 0.217 0.246
adh 0.191 0.013 0.017 0.321 0.324 0.156 0.148 0.152 0.018
aat 0.738 0.221 0.199 0.150 0.142 0.243 0.124 0.122 0.205
rrm 0.525 0.421 0.215 0.199 0.202 0.269 0.184 0.207 0.213
Acetyltransf 0.652 0.491 0.461 0.410 0.441 0.325 0.281 0.355 0.409
sdr 0.692 0.497 0.413 0.268 0.279 0.271 0.240 0.246 0.281
zf-CCHH segfault 0.314 0.116 0.113 0.123 0.137 0.139 0.134 0.137
rvp segfault 0.337 0.233 0.217 0.190 0.235 0.184 0.234 0.214
Average 0.466 0.272 0.228 0.216 0.231 0.214 0.155 0.165 0.179

Table S3. SP Error over all homfam datasets. MAGUS(R,F) and MAGUS(R,C)
indicate recursive MAGUS with FastTree and Clustal, respectively. Error is the average
of SPFP and SPFN. MAGUS was run with the default 25 subsets. Values in bold show
the best performer on each dataset. The average is shown over the datasets where all
methods completed.

Muscle Clustal MAFFT UPP UPP-F PASTA MAGUS 1 MAGUS(R,F) MAGUS(R,C)
gluts 0.399 0.093 0.194 0.475 0.524 0.304 0.048 0.061 0.059
myb-DNA-binding 0.164 0.140 0.076 0.096 0.142 0.118 0.130 0.118 0.106
tRNA-synt-2b 0.522 0.626 0.509 0.543 0.578 0.552 0.498 0.511 0.524
biotin-lipoyl 0.054 0.064 0.064 0.138 0.124 0.106 0.107 0.115 0.099
hom 0.088 0.070 0.080 0.071 0.193 0.052 0.050 0.064 0.054
ghf13 0.785 0.433 0.405 0.382 0.434 0.402 0.358 0.384 0.494
aldosered 0.588 0.213 0.091 0.129 0.157 0.146 0.086 0.099 0.127
hla 0.042 0.000 0.000 0.000 0.006 0.000 0.000 0.000 0.000
Rhodanese 0.544 0.607 0.393 0.386 0.404 0.407 0.298 0.350 0.360
PDZ 0.610 0.196 0.184 0.220 0.189 0.207 0.169 0.157 0.181
blmb 0.876 0.637 0.411 0.319 0.441 0.357 0.292 0.311 0.364
p450 0.947 0.540 0.388 0.619 0.357 0.576 0.244 0.274 0.295
adh 0.192 0.013 0.017 0.639 0.642 0.221 0.277 0.286 0.024
aat 0.809 0.304 0.218 0.184 0.176 0.291 0.168 0.167 0.255
rrm 0.631 0.577 0.227 0.255 0.266 0.325 0.226 0.251 0.266
Acetyltransf 0.745 0.634 0.484 0.632 0.662 0.481 0.462 0.561 0.621
sdr 0.750 0.623 0.457 0.425 0.438 0.401 0.366 0.382 0.429
zf-CCHH segfault 0.399 0.143 0.186 0.192 0.205 0.192 0.197 0.205
rvp segfault 0.388 0.250 0.242 0.244 0.241 0.190 0.254 0.226
Average 0.515 0.339 0.247 0.324 0.337 0.291 0.222 0.241 0.251

Table S4. SPFN Error over all homfam datasets. MAGUS(R,F) and
MAGUS(R,C) indicate recursive MAGUS with FastTree and Clustal, respectively.
MAGUS was run with the default 25 subsets. Values in bold show the best performer
on each dataset. The average is shown over the datasets where all methods completed.

April 5, 2021 11/12

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 9, 2021. ; https://doi.org/10.1101/2021.04.09.439137doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.09.439137
http://creativecommons.org/licenses/by/4.0/


Muscle Clustal MAFFT UPP UPP-F PASTA MAGUS 1 MAGUS(R,F) MAGUS(R,C)
gluts 0.338 0.062 0.153 0.061 0.128 0.055 0.050 0.057 0.056
myb-DNA-binding 0.111 0.053 0.085 0.026 0.061 0.060 0.048 0.035 0.030
tRNA-synt-2b 0.537 0.478 0.399 0.215 0.262 0.281 0.219 0.227 0.243
biotin-lipoyl 0.070 0.057 0.058 0.064 0.046 0.044 0.043 0.031 0.052
hom 0.049 0.037 0.082 0.027 0.026 0.019 0.018 0.022 0.021
ghf13 0.679 0.325 0.344 0.182 0.172 0.206 0.130 0.128 0.165
aldosered 0.372 0.090 0.087 0.045 0.064 0.077 0.052 0.044 0.042
hla 0.020 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Rhodanese 0.371 0.411 0.348 0.210 0.185 0.204 0.123 0.128 0.116
PDZ 0.458 0.140 0.162 0.133 0.069 0.150 0.065 0.045 0.096
blmb 0.757 0.400 0.339 0.157 0.257 0.252 0.129 0.126 0.145
p450 0.871 0.305 0.292 0.151 0.243 0.162 0.167 0.159 0.197
adh 0.191 0.012 0.017 0.003 0.006 0.091 0.019 0.018 0.012
aat 0.666 0.138 0.180 0.117 0.109 0.195 0.080 0.077 0.155
rrm 0.420 0.264 0.204 0.143 0.138 0.212 0.141 0.163 0.160
Acetyltransf 0.558 0.349 0.438 0.188 0.221 0.169 0.099 0.148 0.197
sdr 0.634 0.371 0.369 0.112 0.120 0.142 0.114 0.109 0.132
zf-CCHH segfault 0.230 0.090 0.041 0.054 0.069 0.086 0.072 0.068
rvp segfault 0.286 0.216 0.192 0.136 0.229 0.178 0.214 0.201
Average 0.418 0.205 0.209 0.108 0.124 0.136 0.088 0.089 0.107

Table S5. SPFP Error over all homfam datasets. MAGUS(R,F) and
MAGUS(R,C) indicate recursive MAGUS with FastTree and Clustal, respectively.
MAGUS was run with the default 25 subsets. Values in bold show the best performer
on each dataset. The average is shown over the datasets where all methods completed.
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