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Abstract 

Tissue-resident macrophages (TRMΦ) a re important immune sentinels responsible for 

maintaining tissue and immune homeostasis within their specific niche. Recently, the origins of 

TRMΦ have undergone intense scrutiny where now most TRMΦ are thought to originate early 

during embryonic development independent of hematopoietic stem cells (HSCs). We previously 

characterized two distinct subsets of mouse peritoneal cavity macrophages (Large and Small 

Peritoneal Macrophages; LPM and SPM, respectively) whose origins and relationship to both 

fetal and adult long-term (LT)-HSCs have not been fully investigated. Here we employ highly 

purified LT-HSC transplantation and in vivo lineage tracing to show a dual ontogeny for LPM 

and SPM, where the initial wave of peritoneal macrophages is seeded from yolk sac-derived 

precursors, which later require LT-HSCs for regeneration. In contrast, transplanted fetal and 

adult LT-HSCs are not able to regenerate brain-resident microglia. Thus, we demonstrate that 

LT-HSCs retain the potential to develop into TRMΦ, but their requirement is tissue-specific. 42 
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Introduction 44 

Virtually all known organs in vertebrates contain tissue-resident macrophages (TRMΦ) that 45 

serve important roles in maintaining tissue and immune homeostasis therein (Davies et al., 46 

2013a; Li and Barres, 2018; Wynn et al., 2013). It was long assumed that all macrophages (MΦ) 47 

develop from monocytes generated by hematopoietic stem cells (HSCs) in the bone marrow 48 

(BM) (Osawa et al., 1996; Smith et al., 1991; Till and McCulloch, 1980; van Furth and Cohn, 49 

1968). However, in recent years, an overwhelming body of evidence has overtly challenged the 50 

notion that TRMΦ are solely derived from HSCs (Ginhoux et al., 2010; Gomez Perdiguero et al., 51 

2015a; Yona et al., 2013). Collectively, these studies have established that most TRMΦ 52 

populations develop during embryogenesis from yolk sac progenitors that emerge prior to, and 53 

independent of, long-term (LT)-HSCs. Tissue-resident macrophages, including brain microglia 54 

(Ginhoux et al., 2010) and skin Langerhans cells (Gomez Perdiguero et al., 2015a; Hoeffel et al., 55 

2015), emerge at around embryonic day 8 (E8) in a region of the yolk sac known as the blood 56 

island, before the development of the first definitive LT-HSC (which starts at E10.5) (Ghosn et 57 

al., 2019). Before birth, these yolk sac-derived MΦ migrate and take long-term residence in the 58 

various tissues (i.e., brain and skin) of the developing embryo. Fate-mapping (Buttgereit et al., 59 

2016; Ginhoux et al., 2010; Gomez Perdiguero et al., 2015a; Yona et al., 2013) and parabiosis 60 

(Ajami et al., 2007; Hashimoto et al., 2013; Huang et al., 2018) experiments show that TRMΦ 61 

are maintained throughout adulthood by in situ self-renewal, with minimal contribution from LT-62 

HSC-derived circulating monocytes. 63 

 64 

We previously identified and characterized two functionally distinct subsets of TRMΦ in the 65 

mouse peritoneal cavity (PerC), namely Large and Small Peritoneal Macrophages (LPM and 66 

SPM, respectively) (Ghosn et al., 2010). In subsequent years, various studies demonstrating that 67 

most TRMΦ (i.e., microglia, Kupffer cells, Langerhans cells, etc.) develop from HSC-68 

independent, yolk sac-derived fetal progenitors (Gomez Perdiguero et al., 2015a), have led some 69 

researchers to speculate that LPM and SPM are also likely to develop independently of LT-HSCs 70 

(Cassado et al., 2015). Although peritoneal macrophages are one of the most studied TRMΦ 71 

populations, with much previously done to identify the functional and developmental differences 72 

between LPM and SPM (Bain et al., 2016; Broche and Tellado, 2001; Cain et al., 2013; Ghosn et 73 

al., 2010), their origins and relationship to both fetal and adult LT-HSCs have not been fully 74 
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investigated and remains controversial. Despite the mounting evidence supporting the notion that 75 

TRMΦ originate from HSC-independent yolk sac-derived progenitors (Gomez Perdiguero et al., 76 

2015a; Gomez Perdiguero et al., 2015b) and/or fetal liver monocytes (Hoeffel et al., 2012; 77 

Hoeffel et al., 2015), opposing studies have suggested that all TRMΦ, with the exception of 78 

microglia and a fraction of Langerhans cells, are instead derived from fetal LT-HSCs (Sheng et 79 

al., 2015a, Sheng et al., 2015b). Although these two hypotheses are not necessarily mutually 80 

exclusively, they have not been tested simultaneously. Most importantly, the potential of highly 81 

purified and transplanted bona fide LT-HSCs, from both fetal and adult sources, to fully 82 

regenerate TRMΦ in vivo (including LPM, SPM, and microglia) has not been tested. 83 

 84 

To resolve these seemingly contradictory findings and determine whether certain TRMΦ show 85 

single or dual ontogeny, we directly tested the potential of highly purified fetal and adult LT-86 

HSCs to regenerate TRMΦ in the peritoneum and brain of lethally-irradiated recipient mice. We 87 

show that both fetal and adult LT-HSCs fully regenerate tissue-resident LPM and SPM 88 

populations, but completely fail to regenerate tissue-resident microglia. On the other hand, using 89 

Runx1 lineage-tracing, we show that, similar to brain microglia, E8 progenitors can also give rise 90 

to both LPM and SPM independently of LT-HSCs. In conclusion, our studies show a dual 91 

ontogeny for tissue-resident LPM and SPM (i.e., HSC-independent and HSC-dependent), and 92 

confirm the HSC-independent origin for brain microglia. Importantly, we directly demonstrate 93 

that brain microglia, unlike LPM and SPM, cannot be regenerated by transplantation of purified 94 

bona fide fetal LT-HSCs, even after the host received lethal, full-body irradiation. Collectively, 95 

these findings add a new layer to the complex developmental landscape of the myeloid lineage 96 

and challenge the current notion that LPM and SPM have divergent and distinct origins. 97 

  98 
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Materials and Methods 99 

Mice and Tissue Preparation. 100 

C57BL/6 and Gt(ROSA)26Sortm4(ACTB-tdTomato,-EGFP)Luo/J (ROSAmT/mG, Stock No: 007576) mice 101 

(8-10 wks) were purchased from Jackson Laboratory (Bay Harbor, ME, USA). Transgenic mice 102 

expressing enhanced green (pCx-eGFP) (Wright et al., 2001) or red (TM7-RFP) (Ueno and 103 

Weissman, 2006) fluorescent protein were kindly provided by the Weissman laboratory 104 

(Stanford). Runx1MerCreMer mutant mice were generated by Dr. Igor Samokhvalov and colleagues 105 

(Samokhvalov et al., 2007) and provided by Riken Center for Life Science Technologies 106 

(accession number CDB0524K; http://www.clst.riken.jp/arg/mutant%20mice%20list.html; 107 

Wako, Saitama Prefecture, Japan). Mice were housed and bred at Emory and Stanford animal 108 

facilities. Runx1MerCreMer mice were crossed with ROSAmT/mG mice to generate tamoxifen-109 

inducible fate mapping model (Runx1cre/eGFP). Timed pregnancies were confirmed via post-coital 110 

plug and embryonic ages were confirmed via microscopy. Peripheral blood from progeny mice 111 

was screened for multi-lineage eGFP+ cells to ensure LT-HSCs were not labeled prior to being 112 

used in experiments. All procedures were approved by both Emory and Stanford Institutional 113 

Animal Care and Use Committees (IACUC) in compliance with the recommendations in the 114 

Guide for the Care and Use of Laboratory Animals of the National Institutes of Health and 115 

follow administrative panel on laboratory animal care (APLAC) guidelines.  116 

 117 

Blood (~200 µL) was drawn via tail vein into EDTA-containing tubes (BD Diagnostics). 118 

Peritoneal cavity (PerC) cells were harvested by PerC lavage with 7 mL of custom RPMI-1640 119 

media deficient in biotin, L-glutamine, phenol red, riboflavin, and sodium bicarbonate, with 3% 120 

newborn calf serum and benzonase (defRPMI). Bone marrow (BM) from femurs and tibias were 121 

flushed with defRPMI using 28G needle and 30 mL syringe (BD Medical). Cells were passed 122 

through a 70 µm nylon filter (Corning) and erythrocytes were lysed using ACK lysis buffer. 123 

Whole brains from mice were mechanically dissociated using a Dounce homogenizer then gently 124 

passed through a 70 µm filter and centrifuged at 300 g, 4˚C, 10 min. Cells were resuspended in a 125 

28% isotonic Percoll cushion (GE Healthcare) and centrifuged (900 g, 4˚C, 30 min.) to remove 126 

myelin. Fetal livers were harvested from ≥E15 timed pregnant mice, digested at 37°C for 30 min. 127 

with 0.25% collagenase I (Stem Cell Technologies), then again using enzyme-free cell 128 
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dissociation buffer (Gibco). Liver cells were passed through 70 µm filter to obtain single cell 129 

suspensions.  130 

 131 

Tamoxifen treatment.  132 

Homozygous male ROSAmT/mG mice were mated with heterozygous female Runx1MerCreMer mice 133 

overnight (at 18:00). Female mice were examined for post-coital plug the following morning (at 134 

08:00), and those with a plug were considered pregnant and timed E0.5. Pregnant mice received 135 

a single dose of 0.1 mg/g body weight (Z)-4-Hydroxytamoxifen supplemented with 0.05 mg/g 136 

body weight progesterone resuspended in corn oil (all from Sigma-Aldrich) via intraperitoneal 137 

(i.p.) injection at E8. Progesterone supplementation counteracts estrogen receptor antagonism by 138 

tamoxifen to circumvent fetal abortions. 139 

 140 

18-parameter High-Dimensional (Hi-D) Flow Cytometry.  141 

Cells were resuspended at ≤1 x 107 cells/mL in defRPMI and stained on ice for 30 min. (or 60 142 

min. when staining for CD34) with the following fluorochrome-conjugated mAbs (see Table S1 143 

for clones and sources). Briefly, for recipient PerC: anti- CD5, CD19, F4/80, NK1.1, IgM, IgK, 144 

VH11, CD23, I-A/I-E, CD11b, Gr-1, CD45, and B220; Brain: anti- CD11b, F4/80, CX3CR1, 145 

CD5, CD19, CD11c, CD45, CD23, Gr-1, Ly-6C, CD43, I-A/I-E, and CD16/32; and blood: anti- 146 

TER-119, CD5, CD45, Ly-6C, Gr-1, CD11b, NK1.1, and CD19. Cells were stained on ice for 15 147 

min with Qdot605- or BV711-conjugated streptavidin to reveal biotin-coupled antibodies (see 148 

Table S1). Stained cells were re-suspended in 10 µg/mL propidium iodide (PI) to exclude dead 149 

cells. When cells were fixed, amine-reactive dyes were used to exclude dead cells. Both GFP and 150 

RFP were detected concomitantly with the reagents described above for a total of 18-parameter 151 

Hi-D FACS. Cells were analyzed on Emory Pediatric/Winship Flow Cytometry Core or Stanford 152 

Shared FACS Facility instruments (BD LSRII). Data were collected for 0.2–3 x 106 cells and 153 

analyzed with FlowJo (FlowJo LLC). To distinguish auto-fluorescent cells from cells expressing 154 

low levels of a particular surface marker, we established upper thresholds for auto-fluorescence 155 

by staining samples with fluorescence-minus-one (FMO) control stain sets in which a reagent for 156 

a channel of interest is omitted. 157 

 158 

Sorting and transfer.  159 
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Fetal liver from ~E15 TM7-RFP (RFP+) mice were processed as described above and stained 160 

with the following mAbs in a 15-color, 17-parameter staining combination: anti- SCA-1, CD38, 161 

CD150, CD34, CD48, CD117, CD41, CD45, CD127, CD135, CD19, and lineage markers (Lin) 162 

anti- CD3ε, B220, NK1.1, Gr-1, CD11b, TER-119 (Table S1). Cells were stained on ice for 15 163 

min with BV711-conjugated streptavidin to reveal biotin-coupled mAbs and re-suspended in PI, 164 

to exclude dead cells. RFP+ or GFP+ LT-HSCs were identified as Lin–, CD117hi, SCA-1hi, 165 

CD150+, CD48–, CD41–, CD34low, CD45+, CD38+, CD127–, and CD135– (Fig. S4). Sorted LT-166 

HSCs were re-suspended in serum free defRPMI and about 100 cells were transferred 167 

intravenously (i.v.) into lethally irradiated (two doses of 4.25 Gy delivered 4 h apart) C57BL/6 168 

mice along with ~2 x 105 BM rescue cells from 8 wks old congenic pCx-eGFP (eGFP+) mice. 169 

After 30+ wks, recipient PerC, Brain, and blood cells were harvested and LT-HSC-derived 170 

TRMΦ (RFP+) analyzed as described above. To determine TRMΦ reconstitution potential for 171 

adult BM LT-HSCs, BM from RFP+ mice were processed and stained as described for fetal liver. 172 

LT-HSCs were sorted on Emory Pediatric/Winship Flow Cytometry Core or Stanford Shared 173 

FACS Facility BD FACSAria II instruments. 174 

 175 

Chimerism.  176 

Lethally irradiated recipient C57BL/6 (10-20 wks) mice were injected i.v. with either ~100 177 

sorted fetal liver (~E15 embryos) or adult BM (>20 wks) LT-HSCs from donor RFP+ mice, 178 

along with ~2 x 105 adult BM rescue cells from congenic eGFP+ mice. Co-transfer of the rescue 179 

cells is necessary to prevent the lethally irradiated mice from succumbing from anemia during 180 

the first weeks post-irradiation. It readily provides red and white blood cells until the transferred 181 

LT-HSCs reconstitute all major blood cells. Blood was collected weekly from recipient mice to 182 

determine the level of chimerism, which we defined as the percentage of cells derived from the 183 

donor fetal liver or adult BM LT-HSCs (RFP+) found among total blood cells recovered from 184 

recipient mice. Here, we examined the recipient mice that showed full, long-term stable 185 

chimerism (i.e., development of all major hematopoietic lineages, including erythrocytes, 186 

myeloid cells, granulocytes, T cells, and B cells, see Fig. S5). All the reconstituted hematopoietic 187 

lineages from donor cells were still readily detectable in recipient blood when the mice were 188 

sacrificed, and tissues harvested at ≥33 wks post transplantation (Fig. S5). A total of 40 recipient 189 

mice received LT-HSC transplantation (13 adult BM and 27 fetal liver) in seven independent 190 
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transplantation experiments. Out of 40 mice, 26 became chimeric (11 adult BM and 15 fetal 191 

liver) and we chose the cohorts with the highest blood chimerism (4 adult BM and 11 fetal liver, 192 

see Fig. S5). The data shown in the various figures represent the fifteen fully chimeric mice that 193 

received purified LT-HSCs, and the FACS plots shown in each figure represent the analysis from 194 

the same recipient mouse. 195 

 196 

Fluidigm single-cell multiplexed qPCR.  197 

Single-cell multiplexed qPCR experiments were performed using Fluidigm’s (San Francisco, 198 

CA, USA) 96.96 qPCR DynamicArray microfluidic chips as previously described (Lawson et al., 199 

2015). PerC cells were stained with anti- F4/80, CD5, CD19, NK1.1, Gr-1, CD11b, and I-A/I-E, 200 

then single cells were FACS-sorted into individual wells of 96-well PCR plates, using the 201 

FACSAriaII. Experiments were performed following Fluidigm’s Advanced Development 202 

Protocol 41. The 96-well plates w preloaded with 9 μL of RT-STA solution: 5 μL of CellsDirect 203 

PCR mix (Invitrogen), 0.2 μL of SuperScript-III RT/Platinum Taq mix (Invitrogen), 1.0 μL of a 204 

mixture of all pooled primer assays (500 nM), and 2.8 μL of TE buffer (Promega). After sorting, 205 

PCR plates were either frozen (−80°C) or immediately run for reverse transcription (50°C for 15 206 

min, 95°C for 2 min) and target-specific amplification (20 cycles; each cycle: 95°C for 15 s, 207 

58°C for 4 min). Biological replicates were performed in lieu of technical replicates per the 208 

manufacturer’s recommendation, to yield more power and better sampling of the target 209 

populations. 3.6 μL of exonuclease reaction solution (2.52 μL sterile nuclease-free water, 0.36 210 

µL Exo reaction buffer, and 0.72 µL Exo-I, New England BioLabs) was then added to remove 211 

unincorporated primers (37°C for 30 min, 80°C for 15 min), then each well was diluted 1:3 with 212 

TE buffer (Promega). A 2.7 μL aliquot from each sample was mixed with 2.5 μL of SsoFast 213 

EvaGreen Supermix with Low Rox (Bio-Rad) and 0.25 μL of Fluidigm’s DNA Binding Dye 214 

Sample Loading Reagent in a separate plate and centrifuged to mix solutions. Individual primer 215 

assay mixes were generated in each well of a separate plate by loading 2.5 μL of Assay Loading 216 

Reagent (Fluidigm), 2.25 μL DNA Suspension Buffer (TEKnova), and 0.25 μL of 100 μM 217 

primer pair mix. Chips were primed by injecting control line fluid (Fluidigm) into each 218 

accumulator on the integrated fluidics circuit (IFC) and running the ‘Prime’ program prior to 219 

loading primer assays and samples. 5 μL of each sample and primer mix were loaded into each 220 

well of the chips. Samples and assays were then mixed in the chip by running the ‘Load Mix’ 221 
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program in the IFC Controller HX. Chips were loaded into the BioMark real-time PCR reader 222 

(Fluidigm) and run following the manufacturer’s protocol. A list of primer assays used in this 223 

study is provided in Table S2.  224 

 225 

In vivo phagocytosis.  226 

Chimeric mice received 500 µL i.p. injections of 1 mg/mL pHrodo-labeled Escherichia coli 227 

particles (Thermo Fisher Scientific) resuspended in defRPMI-1640. Peritoneal macrophages 228 

were isolated via PerC lavage 2 h after i.p. injection with pHrodo-labeled E. coli, then analyzed 229 

by Hi-D flow cytometry (as described above) and fluorescent microscopy.   230 

 231 

Fluorescent microscopy.  232 

LPM/SPM isolated from mice 2 h after receiving pHrodo-labeled E. coli injections were stained 233 

with anti-F4/80 (AF488), CD19, CD11c, I-A/I-E, and CD11b, then FACS sorted directly into an 234 

8-well chamber slide in a live cell imaging solution. Cells were mounted with a ProLong® 235 

diamond antifade mountant with DAPI (Thermo Fisher Scientific) and imaged using a Leica SP5 236 

multiphoton/confocal Laser Scanning microscope at Stanford’s Cell Sciences Imaging Facility.  237 

 238 

Statistical analyses.  239 

All graphing and statistical analyses were performed using GraphPad Prism v9. Unpaired t-tests 240 

were used to determine statistical differences (p<0.05) where indicated. Data were analyzed 241 

for distribution (normal (Gaussian) vs. lognormal) independently using the Shapiro-Wilk 242 

test for normality in both the untransformed and Log10 transformed data. When data 243 

passed both distribution tests, the likelihood of distribution (normal vs. lognormal) was 244 

computed and QQ-plots generated for both untransformed and Log10 transformed data. 245 

When Log10 transformed data had a higher likelihood of a normal distribution (passing 246 

normal distribution test) and/or failed lognormal distribution test, parametric analyses 247 

were performed. If the data had unequal variance (as determined by a F test on both 248 

the untransformed and Log10 transformed data), Welch’s T test was performed. All 249 

instances where lognormal distribution was more likely non-parametric (Mann-Whitney) 250 

tests were performed. 251 

 252 
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Results 254 

Tissue-resident macrophages develop and take residence during early fetal development. 255 

To investigate the moment in development that myeloid cells populate PerC and brain tissues, 256 

we determined the presence of immune cells in these compartments throughout embryonic and 257 

postnatal development in mice. This analysis demonstrated that both PerC and brain contain 258 

immune cells as early as E10, preceding development of the first LT-HSC, which has been 259 

shown to start at E10.5 (Kieusseian et al., 2012; Kumaravelu et al., 2002; Muller et al., 1994), 260 

and that these first immune cells are almost exclusively CD11b+ myeloid cells (Fig. 1). 261 

Throughout prenatal development, the majority of the immune cells in the PerC are myeloid 262 

(>85%). However, during peri- and postnatal development, other immune cells (CD45+, 263 

CD11blo, F4/80–) populate this tissue as well, resulting in ~20% of peritoneal cells being myeloid 264 

in the adult mouse (Fig. 1). Finally, we observed that in both newborn and adult animals, the 265 

majority of peritoneal MΦ are LPM (95% and 90%, respectively). Conversely, microglia remain 266 

the predominant leukocyte population in the brain throughout life. Together, these data indicate 267 

that the first wave of TRMΦ emerge and colonize tissues prior to the development of LT-HSCs. 268 

In addition, they demonstrate that the MΦ compartment in adult animals differs between 269 

peritoneal and brain tissue.   270 

 271 

Tissue-resident macrophages derive from an early myeloid progenitor separate from the fetal 272 

LT-HSC. 273 

The observation that myeloid cells are already present in peritoneal and brain tissue before the 274 

first LT-HSC develops infers that they are derived from a separate, LT-HSC-independent source. 275 

Therefore, we next determined the fetal origin of tissue resident myeloid cells. For this, we 276 

employed a lineage tracing method, using inducible Runx1cre/eGFP (Runx1MerCreMer ) mice to label 277 

yolk sac progenitors (Samokhvalov et al., 2007) and track their progeny into adult life. We 278 

labeled fetal Runx1+ immune progenitor cells at E8, at which time they have been shown to be 279 

located in the yolk sac (Samokhvalov et al., 2007) and which is well before the first LT-HSC 280 

develop (Fig. 2A). A fraction of both peritoneal (~10%) and brain (~6%) macrophages in 281 

animals are derived from yolk sac progenitors that were labeled at E8 (Fig. 2D) and were 282 

maintained until adulthood (Fig. S1). Furthermore, the distribution of labeled, E8 progenitor-283 
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derived MΦ in the peritoneum is very similar to that of unlabeled MΦ (i.e., the LPM/SPM ratio 284 

within GFP+ and GFP– compartments), suggesting that the composition of these populations is 285 

stable throughout adult life, where the majority of peritoneal MΦ are LPM (see Fig. 2D).   286 

To confirm that the E8-labeled progenitor-derived TRMΦ were not derived from fetal LT-HSC, 287 

we assessed whether any circulating LT-HSC-derived hematopoietic cells were labeled in adult 288 

animals. Assessing eGFP expression in the blood and in lymphocyte populations in the PerC 289 

confirmed the absence of multi-lineage labeling (Fig. 2B), indicating that the cells labeled at E8 290 

were not LT-HSCs, but indeed a separate myeloid progenitor, giving rise exclusively to TRMΦ. 291 

These data demonstrate that, similar to microglia, tissue-resident LPM and SPM are initially 292 

derived from a myeloid progenitor that emerges early during embryogenesis in the yolk sac and 293 

is separate from the fetal LT-HSC. 294 

 295 

Fetal and adult LT-HSC transplantation reveals a dual ontogeny for tissue-resident peritoneal 296 

macrophages, but not brain microglia. 297 

After determining that myeloid progenitors present in the yolk sac at E8 give rise to TRMΦ, we 298 

next asked whether LT-HSCs, which emerge at E10.5, retain the potential to generate these 299 

TRMΦ. To this end, we highly purified LT-HSCs from fetal liver (at E15) and adult bone 300 

marrow (at 24 wks of age) and transplanted ~100 purified cells into lethally irradiated mice (Fig. 301 

S4). We then analyzed the progeny of these transplanted cells in tissues of fully chimeric mice at 302 

least 33 wks after transplantation (Fig. 3A,B,S5). This analysis revealed that purified LT-HSCs 303 

from either source (fetal liver or adult BM) represent true HSCs, capable of generating all 304 

components of the immune system (Fig. 3A,S5). LT-HSCs from fetal liver exhibit a 305 

reconstitution advantage over host and rescue BM cells, which has been previously reported 306 

(Ghosn et al., 2016; van de Laar et al., 2016; Fig. 3A,S5). Moreover, both fetal and adult LT-307 

HSCs are capable of readily generating both LPM and SPM in the peritoneum (Fig. 3C,E). 308 

However, neither fetal nor adult LT-HSCs regenerate microglia in the adult brain, even after 309 

lethal, full-body irradiation of the recipient animals (Fig. 3D,F). In contrast, we confirmed that 310 

monocytes and other blood-derived immune cells that were present in the brain preparations are 311 

derived from LT-HSCs (Fig. 3D,F), suggesting that microglia residing in the brain parenchyma 312 

are maintained independent of fetal and adult LT-HSCs or circulating monocytes. Together, 313 
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these data indicate that TRMΦ in the adult peritoneum, but not in the brain, require LT-HSCs for 314 

regeneration. 315 

 316 

Tissue-resident peritoneal macrophages derived from LT-HSC transplants are functionally 317 

comparable to their naturally occurring counterpart. 318 

Because the TRMΦ in the peritoneum can regenerate from LT-HSCs, in addition to being 319 

derived from early HSC-independent myeloid progenitors, we assessed whether peritoneal 320 

macrophages derived from LT-HSC transplantation are functionally different from their naturally 321 

developed (native) counterparts. To test this, we performed a targeted single-cell transcriptomics 322 

assay (multiplex qPCR), assessing the expression of a curated set of 77 transcription factors, on 323 

single-captured MΦ (Fig. 4A) isolated from the PerC of adult mice that were fully chimeric for 324 

transplanted fetal RFP+ LT-HSCs. Analyzing the expression profile of this set of transcription 325 

factors allows for sensitive classification of cell types and hierarchical clustering of single cells 326 

into distinct cellular subtypes (Wu et al., 2014). Hierarchical clustering yielded only two distinct 327 

subsets, which, based on the size distribution of the captured cells, could be identified as LPM 328 

(Cluster 1) and SPM (Cluster 2; Fig. 4B). The transcription factor expression profiles of either 329 

LPM or SPM showed no further differences between LT-HSC-derived MΦ (RFP+) and native 330 

MΦ (RFP–) (Fig. 4C,D). Similarly, in vivo phagocytosis assays, assessing the uptake of E. coli 331 

by macrophages in the PerC, revealed that both LPM and SPM from either LT-HSCs (RFP+) or 332 

native origin (RFP–) phagocytose bacterial particles at comparable rates (Fig. 4E-G). 333 

Collectively, these findings demonstrate that transplanted fetal LT-HSC-regenerated peritoneal 334 

MΦ (RFP+) are functionally equivalent to their RFP– host counterpart. 335 

 336 

  337 
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Discussion 338 

During embryonic development, the first LT-HSC emerges at E10.5, most likely from 339 

hemogenic endothelium in the yolk sac and aorta-gonad-mesonephros (AGM) (Hoeffel and 340 

Ginhoux, 2015; Kumaravelu et al., 2002; Medvinsky and Dzierzak, 1996; Muller et al., 1994). 341 

The current paradigm postulates that these LT-HSCs are capable of continually regenerating all 342 

components of the immune system, including the erythroid, lymphoid, and myeloid lineages. 343 

However, recent studies have challenged this notion by demonstrating that TRMΦ in the brain 344 

(i.e. microglia) and other tissues originate from early progenitors (~E8) that emerge in the yolk 345 

sac prior to, and independent of, the development of LT-HSCs (Ginhoux et al., 2010; Gomez 346 

Perdiguero et al., 2015a). Though it is becoming increasingly accepted that TRMΦ in the central 347 

nervous system (CNS) originate from early yolk sac-derived progenitors that arise before LT-348 

HSCs are developed (Goldmann et al., 2016; Gomez Perdiguero et al., 2015a; Huang et al., 349 

2018; Schulz et al., 2012; Van Hove et al., 2019), there have been conflicting reports as to the 350 

origins of TRMΦ populations outside of the CNS (Gomez Perdiguero et al., 2015a; Hoeffel et 351 

al., 2015; Sheng et al., 2015a; Yona et al., 2013). In fact, Sheng and colleagues (2015b) proposed 352 

that nearly all TRMΦ (with the exception of microglia and a fraction of Langerhans cells) are 353 

derived solely from HSCs in the fetal liver, AGM, and/or BM. Here, we demonstrate that both 354 

the peritoneum and brain contain CD11b+ myeloid immune cells as early as E10 preceding 355 

development of the first LT-HSC and Runx1+ immune progenitor cells labeled at E8 contribute 356 

to TRMΦ populations in both the peritoneum and the brain. This suggests that, at a minimum, 357 

these populations of TRMΦ in the adult are derived from yolk sac progenitors that emerge from 358 

E7.5 until at least E9.5, because they were labeled during a limited time window (approximately 359 

24 h) at E8 (Cline and Moore, 1972; Moore and Metcalf, 1970; Palis et al., 1999; Palis et al., 360 

2001; Samokhvalov et al., 2007). Thus, our lineage tracing experiments demonstrate that tissue-361 

resident LPM and SPM, like CNS-resident microglia, are initially developed from a yolk sac-362 

derived myeloid progenitor that emerges early during embryogenesis and is separate from LT-363 

HSCs, and that these cells persist throughout life. 364 

 365 

To directly test the potential of bona fide LT-HSCs, from both fetal and adult sources, to 366 

regenerate TRMΦ in the peritoneum and brain, we employed adoptive LT-HSC transplantation 367 

of solely highly purified LT-HSCs from fetal liver (E15) and adult BM (24 wks). We show that, 368 
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although the first wave of TRMΦ in the peritoneum and brain originate from the early E8 369 

progenitors, LT-HSC transplants can regenerate peritoneal MΦ but not tissue-resident microglia 370 

in the brain. To determine whether LT-HSC-derived MΦ can be distinguished from their host 371 

counterparts with regard to their gene expression profile, we performed a targeted single-cell 372 

transcriptomic assay (Fluidgim, multiplexed qPCR) on 77 transcription factors. We were not able 373 

to detect any significant differences between the transplanted- (RFP+) and host- (RFP-) derived 374 

LPM and SPM, suggesting that purification and transplantation of LT-HSCs does not impact the 375 

phenotype and function of the peritoneal MΦ populations that they give rise to. Taken together 376 

with the results from our Runx1 lineage tracing experiments, we provide definitive evidence of 377 

dual ontogeny for peritoneal MΦ, but not brain microglia. Of note, for the first time, we show 378 

that LT-HSCs purified from fetal liver are also unable to generate microglia in the brain. These 379 

findings suggest that the microglia population within the CNS does not require LT-HSCs for 380 

TRMΦ regeneration, while peripheral tissues, such as the PerC, rely on LT-HSCs to supplement 381 

the E8 yolk sac-derived MΦ. 382 

 383 

We propose that this difference in sourcing of MΦ progenitors reflect an evolutionary difference 384 

in the barrier function of the TRMΦ they give rise to. TRMΦ are an integral part of the body’s 385 

first line of defense. However, depending on the tissue, this defense has varying requirements. 386 

The PerC is an area of the body that is prone to injury and infection, especially in rodents 387 

(Broche and Tellado, 2001; Heemken et al., 1997). Though most TRMΦ regenerate by local self-388 

renewal (Ajami et al., 2007; Ginhoux et al., 2010; Hashimoto et al., 2013; Huang et al., 2018; 389 

Jenkins et al., 2011; Yona et al., 2013), sterile injury or inflammation-induced MΦ recruitment 390 

(and/or cell death) can rapidly deplete some TRMΦ populations, altering their turnover kinetics 391 

(Dannenberg, 2003; Lai et al., 2018; Tay et al., 2017). For example, intestinal MΦ are one of the 392 

largest MΦ pools, exhibiting rapid turnover kinetics and reliance on LT-HSC-derived circulating 393 

precursors (i.e., monocytes) to maintain normal population densities during homeostasis and 394 

inflammation (Bain et al., 2014; Platt et al., 2010). Additionally, cardiac MΦ exhibit a similar 395 

trend, where circulating precursors supplement the TRMΦ population with age, even in the 396 

absence of inflammation (Epelman et al., 2014; Molawi et al., 2014). Indeed, recent studies have 397 

revealed that cavity MΦ, notably LPM and pericardial MΦ, are recruited to injured visceral 398 

organs to help mediate clearance of dead/dying cells, promote neovascularization, and prevent 399 
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fibrosis (Deniset et al., 2019; Gundra et al., 2017; Wang and Kubes, 2016). Therefore, MΦ in 400 

these tissues need to be able to regenerate quickly, in order to maintain a sufficient level of 401 

protection from infection and/or injury, making them dependent on monocyte-derived MΦ 402 

(MDMΦ) in addition to local self-renewal.  403 

 404 

In contrast, the CNS has developed in a way that minimizes the risk of inflammation, as 405 

bystander damage from inflammatory mediators could have detrimental effects on neurons, 406 

which have limited regenerative capacity. The role of microglia is to maintain and restore local 407 

homeostasis, only becoming activated if a pathogen does enter the CNS tissue, or, more often, to 408 

clear debris from dying CNS-resident cells or prune aberrant synapses (Buttgereit et al., 2016; Li 409 

and Barres, 2018; Shemer et al., 2015). They therefore self-renew to replenish, not only because 410 

they do not rely on a circulating pool of progenitors, but also because recruiting these cells from 411 

circulation could increase the risk of “unwanted” cells or pathogens entering as well. Only when 412 

there is a great need to increase MΦ numbers, due to an infection or inflammatory insult in the 413 

CNS (e.g., experimental autoimmune encephalitis), will the microglia pool be supplemented with 414 

MDMΦ (Ajami et al., 2007; Ajami et al., 2011; Huang et al., 2018). However, infiltrating 415 

MDMΦ are unable to differentiate into bona fide microglia and remain distinct from the resident 416 

microglia population, further supporting the notion that ontogeny, in addition to local 417 

microenvironment, influence MΦ heterogeneity (Cronk et al., 2018; Gosselin et al., 2014; Lavin 418 

et al., 2014; Shemer et al., 2018; Van Hove et al., 2019).  419 

 420 

There is a growing interest in understanding molecular mechanisms that dictate TRMΦ 421 

heterogeneity and whether ontogeny influences phenotypic and functional plasticity of these 422 

cells. There is a mounting body of evidence that suggests TRMΦ can have divergent responses 423 

when compared to infiltrating MDMΦ during inflammatory responses and disease pathogenesis 424 

(Ajami et al., 2011; Chen et al., 2019; Lai et al., 2018). In multiple visceral organs, TRMΦ 425 

populations that arise independent of LT-HSCs are supplemented or replaced by MDMΦ during 426 

inflammation, aging, and/or ablative therapy (Bain et al., 2014; Bain et al., 2016; Bain et al., 427 

2020; Cain et al., 2013; Epelman et al., 2014; Liu et al., 2019; van de Laar et al., 2016). 428 

Recruitment of LPM to sites of tissue damage, sterile injury, and/or inflammatory milieus 429 

(Deniset et al., 2019; Gundra et al., 2017; Wang and Kubes, 2016) places peritoneal MΦ into a 430 
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category of TRMΦ that exhibit a dual ontogeny arising from both early yolk sac progenitors and 431 

from LT-HSCs. It remains to be determined if these differences in ontogeny influence the 432 

functional capacity of MΦ in the peritoneum as evident in MΦ populations (resident vs. 433 

infiltrating) in the CNS and other tissues.  434 

 435 

In summary, we demonstrate that the requirement for LT-HSCs to regenerate TRMΦ is tissue-436 

specific. Though both peritoneal MΦ and microglia arise from early yolk sac-derived precursors, 437 

MΦ in the PerC, but not microglia in the brain, require LT-HSCs to maintain/regenerate their 438 

population. We propose that divergence in sourcing of MΦ progenitors, in part, reflects an 439 

evolutionary difference in the barrier function of the TRMΦ population they give rise to. These 440 

findings add a new layer to the complex developmental landscape of the myeloid lineage, where 441 

peritoneal MΦ populations exhibit a definitive dual ontogeny. Though we demonstrate that LT-442 

HSC transplant-derived LPM and SPM are phenotypically and functionally similar to their 443 

naturally occurring, host-derived counterparts, whether there is divergence in phenotype and 444 

function between those derived from yolk sac progenitors versus fetal and adult LT-HSCs is an 445 

outstanding question, warranting further investigation.  446 

 447 
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Figures 760 

 761 

 762 

Figure 1. Tissue-resident peritoneal and brain macrophages develop and take residence 763 

during early fetal development. The composition of total peritoneal and brain tissues from 764 

mice at various developmental ages, analyzed by flow cytometry. The percentages of myeloid 765 

cells, identified as CD11b+ (peritoneum and brain) and/or CX3CR1+ (brain), are shown in these 766 

tissues at embryonic day 10 (E10), embryonic day 17 (E17), 2 days after birth (newborn) and >8 767 

weeks (adult). SPM and LPM were additionally distinguished by F4/80 expression in peritoneal 768 

tissue of newborn and adult animals. Data shown are representative of >10 mice in 3 independent 769 

experiments. All cells shown were pre-gated to include only live, single cells, expressing CD45. 770 
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 772 

Figure 2. Tissue-resident SPM, LPM, and microglia emerge before the development of fetal 773 

LT-HSC. A. Schematic overview of the lineage-tracing assays to track the progeny of fetal (E8) 774 

progenitor cells. Tamoxifen was injected into pregnant Runx1MerCreMer x ROSA26mT/mG mice, 775 

then peritoneum and brain were analyzed for eGFP expression in adult offspring (Runx1Cre/eGFP). 776 
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B. Analysis of eGFP expression in circulating cells, as well as in lymphocytes in the peritoneum, 777 

of adult mice, showing that E8 tamoxifen injection did not label hematopoietic stem cells and 778 

other lymphoid lineages. C. Quantification of eGFP signal in peripheral blood and PerC 779 

lymphocytes (B) and SPM/LPM (D) of Runx1Cre/eGFP mice. D. Flow cytometry analysis of tissue-780 

resident macrophages (TRMΦ) (CD11b+) in the peritoneum and brain of adult mice, showing the 781 

percentage of TRMΦ that are derived from E8-labeled (GFP+) progenitors. Data shown are 782 

representative of 4 mice from 3 experiments. See Figs. S2 and S3 for representative gating 783 

strategies of PerC and brain. ND = not detected. 784 
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Figure 3. Transplanted LT-HSC from fetal and adult origin fully regenerate tissue-resident 787 

peritoneal macrophages, but not brain microglia. A. Blood chimerism rates of transplanted 788 

highly purified LT-HSC that were isolated from fetal liver (FL) or adult bone marrow (BM). 789 

Shown are the fraction of cells that were derived from transplanted (RFP+) LT-HSC, in different 790 

immune compartments in the blood of adult animals. B. Overview of the analysis/gating strategy 791 

to determine the progeny of transplanted purified LT-HSC. C–D. Analysis of RFP expression in 792 

C) SPM and LPM in the peritoneal cavity and D) microglia and monocytes in the brain of adult 793 

animals that were transplanted with purified LT-HSC that were isolated from fetal liver or adult 794 

bone marrow. E. Chimerism rates of transplanted (RFP+) fetal and adult LT-HSC-derived cells 795 

among SPM and LPM in the peritoneal cavity. F. Chimerism rates of transplanted (RFP+) fetal 796 

and adult LT-HSC-derived cells among microglia, and other immune cell subsets in the brain of 797 

recipient mice. Data shown are mean + SD (A, E and F) and representative (C and D) of the 15 798 

fully chimeric animals (4 adBM and 11 fetal). Comparisons between LT-HSC source * p = 799 

0.0255 (unpaired t-test), *** p = 0.0003 (Welch’s t-test), **** p = <0.0001 (unpaired t-test). ND 800 

= not detected, red points = RFP chimerism of individual replicates. 801 
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 803 

Figure 4. Tissue-resident peritoneal macrophages derived from LT-HSC transplants are 804 

functionally comparable to their host-derived counterpart. A. Microscopy image of the 805 

peritoneal cells after loading them into the Fluidigm C1 fluidics chip. Bright field and 806 

fluorescence microscopy images obtained after cell loading reveals the size (small vs. large) and 807 

source (RFP+ LT-HSC or RFP– host) of the SPM and LPM. B. Histograms depicting the size 808 

distribution of the two main cell clusters identified by hierarchical clustering of transcription 809 

factor expression profiles, shown in D. C. t-SNE visualization of the similarity of single isolated 810 

peritoneal macrophages derived from transplanted LT-HSC (RFP+) or host (RFP–), based on 811 

transcription factor expression profiles. The lack of defined clusters in t-SNE map indicate that 812 
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LT-HSC-derived macrophages are similar to their host-derived counterpart. D. Hierarchical 813 

clustering of transcription factor expression profiles, determined by Fluidigm Biomark single-814 

cell multiplexed qPCR, of single-sorted peritoneal macrophages derived from transplanted LT-815 

HSC (indicated with red bars) or host cells. Analysis yielded two main cell clusters that were 816 

identified as LPM (Cluster 1) and SPM (Cluster 2), based on their size distributions shown in B. 817 

E. Analysis of in vivo phagocytosis of pHrodo-labeled E. coli particles by LPM (I-A/I-E–) and 818 

SPM (I-A/I-E+) derived from transplanted LT-HSC (RFP+) or host cells (RFP–), 2 hr after i.p. 819 

injection. F. Quantification of in vivo phagocytosis of E. coli particles by LPM and SPM derived 820 

from transplanted LT-HSC (RFP+, red) or host cells (RFP–, gray), as percentage of cells that 821 

contained phagocytosed E. coli among the specific cell type. G. Example of morphology, F4/80 822 

expression and E. coli uptake by LPM and SPM. Data shown (E,F) are representative of 2 823 

independent experiments and are mean + SD of 5 total mice (2 control and 3 chimeric animals). 824 
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