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SUMMARY

Although morphological attributes of cells and their substructures are recognized

readouts of physiological or pathophysiological states, these have been relatively

understudied in amyotrophic lateral sclerosis (ALS) research. In this study we

integrate multichannel fluorescence high-content microscopy data with

deep-learning imaging methods to reveal - directly from unsegmented images -

novel neurite-associated morphological perturbations associated with

(ALS-causing) VCP-mutant human motor neurons (MNs). Surprisingly, we reveal

that previously unrecognized disease-relevant information is withheld in broadly

used and often considered ‘generic’ biological markers of nuclei (DAPI) and neurons

( III-tubulin). Additionally, we identify changes within the information content ofβ

ALS-related RNA binding protein (RBP) immunofluorescence imaging that is

captured in VCP-mutant MN cultures. Furthermore, by analyzing MN cultures

exposed to different extrinsic stressors, we show that heat stress recapitulates key

aspects of ALS. Our study therefore reveals disease-relevant information contained

in a range of both generic and more specific fluorescent markers, and establishes

the use of image-based deep learning methods for rapid, automated and unbiased

testing of biological hypotheses.

INTRODUCTION

Amyotrophic lateral sclerosis (ALS) is a relentlessly progressive and incurable

neurodegenerative disease characterized by the loss of motor neurons (MNs). Key

hallmarks of the disease include the mislocalization and accumulation of

ubiquitously expressed RNA binding proteins (RBPs) from the nucleus to the

cytoplasm including TAR DNA-binding protein of 43 kDa (TDP-43), Fused in

Sarcoma (FUS) and Splicing factor Proline and Glutamine rich (SFPQ) proteins 1–4.

While it is still unknown what drives pathological RBPs mislocalization and

aggregation in ALS, alteration in liquid-liquid phase separation dynamics and
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functions have been proposed to underlie this process 5–9. RBPs are highly dynamic

and have been shown to undergo changes in localization in response to various

stressors 10–16. Notably mitochondrial and oxidative stress are additional recognized

and robust phenotypes in ALS pathogenesis in vitro 17. The role of RBPs in ALS and

cellular stress highlights that a diverse and complex interplay exists.

Cell shape and morphology are recognized readouts of a cell’s physiological

state or phenotype 18. We previously reported common morphological descriptors

that strongly discriminate ALS from control tissue at single cell resolution 19, further

indicating that key information related to cellular state might be contained in

cellular shape in ALS. Dystrophic neurites are common pathological features in ALS

and disrupted synapse formation have been shown in valosin-containing protein

(VCP) mutant human induced pluripotent stem cell (iPSC) cultures of MNs 20. Taken

together, these studies suggest that the neuronal processes (collectively termed

neurites or the ‘neuritome’) may be a good cellular subcompartment to reveal ALS

pathomechanisms. However, neurites are challenging to study both in tissue

sections (as the arborization of processes is largely lost during sectioning) and in

vitro due to difficulty in accurate segmentation and association of neuronal

processes with individual cells. Consequently, neuronal processes remain

comparatively understudied in ALS and it is still unknown how and to what degree

the neuritome is affected in ALS pathogenesis, whether ALS-related stress insults

modify this compartment, or if cytoplasmic accumulation of RBPs in ALS MNs

relates to other aberrant cellular phenotypes such as dystrophic neurites.

We previously generated a high-content imaging data-set of control and

ALS-related VCP-mutant iPSC-derived MNs cultures co-labeled with a combination

of three fluorescent markers, specifically: i) a nuclear-specific marker (DAPI), ii) a

neuron-specific marker allowing to outline the neurites ( III-tubulin), and iii) anβ

antibody against one of five RBPs: TDP-43, SPFQ, FUS, heterogeneous nuclear

ribonucleoprotein A1 (hnRNPA1) or heterogeneous nuclear ribonucleoprotein K
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(hnRNPK) 16. In our previous study we specifically analyzed the spatiotemporal

responses of the aforementioned ALS-related RBPs to different stressors (oxidative,

heat and osmotic). Here we propose to apply deep-learning methods to this rich

imaging data-set to test in an automated fashion 1) whether aberrant cellular

morphological phenotypes, including neuronal processes, associate with ALS

pathogenesis; 2) whether these morphological phenotypes correlate to aberrant

ALS-related RBP phenotypes, and 3) whether extrinsic stress insults in control MN

cultures can recapitulate ALS phenotypic changes. Deep learning models such as

Convolutional Neural Networks (CNNs) are now widely used to efficiently perform

image classification and image segmentation 21–25. Such methods are able to analyze

images without prior image segmentation, feature selection or human-directed

training, and automatically extract features from raw data, removing significant bias

from this process. Importantly CNN-based image classifier performance largely

depends on whether sufficient information is contained in the provided set of

images. DAPI and III-tubulin capture complementary and non-overlappingβ

information related to the nuclear shape and neuronal morphology including the

neurite respectively. We propose that comparing the performance of different

classifiers trained with iterative combinations of fluorescent images can be used to

identify which cellular compartment or specific RBPs is most affected between any

two given culture conditions. Additionally we propose that the similitude in

phenotypes between different MNs culture conditions can be quantified using the

trained model predictions. We demonstrate the utility of this approach, which

enables the discovery of novel phenotypes in ALS MN cultures and the

identification of the relevant extrinsic stress condition that best approximates ALS

pathogenesis. The advantage of our method is that it is highly versatile and can

quickly guide the scientist towards the most promising hypothesis for further

experimental validation. By providing our fluorescence microscopy raw images

together with open-source implementations of the methods and trained models,
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we aim to allow other researchers to readily apply these methods and test

additional hypotheses. In summary, we propose the use of deep learning methods

to leverage the power of large image data-bases from ALS-related MN cultures to

automatically and rapidly generate testable biological hypotheses, a method that

could prove transformational in promoting innovative research directions,

diagnostics and therapies.

RESULTS

Repurposing image-based deep learning methods to test biological hypotheses

We previously studied the spatiotemporal responses of ALS-related RBPs to

different stressors in control versus ALS-related VCP-mutant iPSC-derived

electrically immature MN cultures using image-based analysis (Fig. 1A and

Supplementary Table S1) 16. These cultures were immunolabeled after one hour of

exposure to oxidative stress, heat stress and osmotic stress, along with recovery

timepoints from heat stress (two hours) and osmotic stress (one, two and six hours).

Specifically a combination of three specific markers was used: a nuclear marker

(DAPI), a neuronal marker allowing precise identification of neurites ( III-tubulin),β

and an antibody against one of the following RBPs: TDP-43, SPFQ, FUS, hnRNPA1 or

hnRNPK. Using this approach we generated a large-scale imaging data-set of

156,577 images (Figs. 1B-D). In our previous study we focused on

nuclear-to-cytoplasmic ratio measurements of the aforementioned RBPs. Here we

aimed to capitalise on the richness of information contained within this

high-dimensional image data-set to test whether different MN stressors (including

extrinsic stressors and endogenous ALS-causing mutations in the VCP gene) are

characterised by detectable phenotypes in cellular compartments and/or RBP

fluorescent images. Specifically we hypothesized that ALS-related phenotypic

changes will be recapitulated by one of our aforementioned stress conditions.

CNN-based classifiers are powerful deep learning models that can be trained to
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discriminate images from different conditions by identifying complex relationships

between pixels. Here we trained the following 52 CNNs-based classifiers to

recognize cellular phenotypes associated with i) ALS, ii) oxidative stress, iii) heat

stress or iv) osmotic stress using 13 different combinations of immunolabeled

images, ranging from DAPI fluorescent images only to the combination of three

channels i.e DAPI, III and an RBP (Fig. 1E and Supplementary Table S2): 13β

classifiers trained to discriminate untreated ALS from untreated control MN

cultures (hereafter called ALS classifiers), 13 classifiers trained to discriminate

untreated control MN cultures from control MN cultures exposed to oxidative

stress (hereafter called OX classifiers), 13 classifiers trained to discriminate

untreated control MN cultures from control MN cultures exposed to heat stress

(hereafter called HS classifiers), and 13 classifiers trained to discriminate untreated

control MN cultures from control MN cultures exposed to osmotic stress (hereafter

called OSM classifiers). The CNN-based classifiers were obtained through transfer

learning from MobileNetV2, which has been pre-trained using the ImageNet dataset
21. The performance of each classifier was evaluated using the total area under the

receiver operating characteristic (ROC) curve (AUC). AUC was calculated using

10-fold cross validation, training on 90% of the data-set, testing on the remaining

10% of the dataset, and repeating with 10 different train/test combinations

(Supplementary Table S3). The 52 trained classifiers assigned class (e.g. ALS,

stress) probabilities for all the ~10 views from each cell culture (control versus ALS;

untreated versus stressed; different time-points) that were then averaged to obtain

a final per-culture classification probability (Supplementary Tables S4-S7 and

Supplementary Fig. 1).

Noting that the information content of images determines the performance

of a CNN-based classifier to discriminate between conditions, we harnessed

distinct fluorescent markers (DAPI, III-tubulin and RBPs) to capture differentβ

cryptic attributes that reveal cellular state. Against this background, we propose
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that the performance of the 13 different classifiers trained to identify a specific MN

culture condition can reveal the relevant cellular compartment or RBP. During

training, a classifier learns to identify a phenotype associated with a specific MN

culture condition (ALS versus control; stressed versus untreated). Therefore, we

propose that once trained, this classifier can be used to predict whether similar

phenotypes are shared among different conditions. Consequently, we use

image-based deep learning methods in two novel ways that are expected to greatly

facilitate and accelerate the process of hypothesis testing in biology. In the

following sections we first validate our approach by recapitulating previous

findings. We next specifically demonstrate the utility of this approach by testing

the following hypotheses: 1) ALS-causing VCP mutations result in previously

unrecognized phenotypes contained within the information content of DAPI

and/or III-tubulin fluorescence images alone; 2) addition of ALS-related RBPsβ

immunofluorescence images will improve phenotype detection in an RBP-specific

manner, and 3) conventional extrinsic stressors can recapitulate phenotypic

aspects of  ALS.

Post-stress recovery of RBP- and neuritome-related phenotypes are closely

correlated

Cell shape and morphology are recognized readouts of cell state or phenotype 18.

Here we first sought to test whether oxidative, heat or osmotic stress are

characterized by changes in cell shape. We analyzed and compared the

performance of CNN-based models trained to discriminate images of untreated

control MN cultures from images of stress-treated control MN cultures either using

the DAPI staining only (hereafter named stress|DAPI classifier), either the β

III-tubulin immunolabeling only (hereafter named stress|BIII classifier) or the

combination of two fluorescent markers (hereafter named stress|DAPI:BIII

classifier). As shown in Fig. 2A, stress|DAPI and stress|BIII classifiers outperform a
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random classifier ( and ) across all stress conditions,𝐴𝑈𝐶
𝐷𝐴𝑃𝐼

> 0. 5 𝐴𝑈𝐶
β𝐼𝐼𝐼

> 0. 5

indicating that DAPI and III-tubulin fluorescent images capture relevantβ

information related to stressed MNs. This supports the hypothesis that MNs

stressed with oxidative, osmotic or heat exhibit previously unrecognized

phenotypic changes in both nuclear and neuritome compartments. Furthermore,

comparing the performance of these classifiers revealed that the III-tubulinβ

immunolabeling consistently leads to a significantly higher performance across all

three stress conditions, suggesting that the compartment most affected by the all

three stressors is the neuritome. Although we cannot rule out the possibility that

the increase in model performance between stress|DAPI and stress|BIII is due to the

larger surface occupied by the neuronal processes compared to the nuclei, the

minor increase in model performances across the three stress conditions between

stress|BIII and stress|DAPI:BIII supports the hypothesis that DAPI-stained images are

not major contributors in these classifiers. The greater performance of osm|DAPI

compared to ox|DAPI and heat|DAPI finally suggests larger nuclear-related changes

upon osmotic stress compared to the other stress insults.

We previously showed that different stressors affect the localization of

ALS-associated RBPs in control MNs 16. Thus we next aimed to test whether our

image-based deep learning approach could shed light on the most relevant RBPs to

each stress condition in order to replicate these previous findings. Examining the

performances of the stress|RBPs models to discriminate untreated MN cultures

from those exposed to osmotic-, heat- or oxidative-stress, and comparing these

with the performance of stress|DAPI models revealed significantly higher

performances of all five stress|RBPs models compared to stress|DAPI irrespective of

the stress (Supplementary Figs. 2A,B). This result indicates that, although these

RBPs mostly localize to the nucleus 16, their respective fluorescent images carry

information beyond nuclear shape or texture as identified by DAPI. We next

compared the performance of the stress|DAPI:BIII:RBPs models with the
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stress|DAPI:BIII models in each stress condition in order to test whether the

integration of RBPs fluorescent images together with those of DAPI and III-tubulinβ

enables the identification of additional stress-related phenotypes. This analysis

revealed that TDP-43 significantly increases the ability of the classifier to identify

MN cultures under oxidative stress (Fig. 2B). While CNN-based models are not

suited to specifically address the subcellular localization of RBPs, our finding that

TDP-43 images in conjunction with nuclear and neurite fluorescent markers enable

relevant oxidative-stress related phenotypic information to be captured, suggests

that TDP-43 exhibits changes in localization upon oxidative stress. This result is

consistent with our prior finding that TDP-43 - but not the other four RBPs

analyzed - exhibits a reduction in nuclear-to-cytoplasmic ratio upon oxidative

stress 16. We also find that all five stress|DAPI:BIII:RBPs perform significantly better

than stress|DAPI:BIII to discriminate untreated from heated MN cultures.

Furthermore, we find that the most informative RBPs to heat stress are TDP-43,

FUS and hnnRNPK. While in our previous study we detected significant reduction in

nuclear-to-cytoplasmic ratio for TDP-43 and FUS upon heat stress, we can

speculate that the present approach captures more subtle changes beyond the

previously studied cellular relocalization that could explain the detected relevance

of hnRNPK to heat stress. Finally, while we previously found that all five RBPs

exhibit nuclear-to-cytoplasmic relocalization upon osmotic stress, here we find

that TDP-43 and SFPQ immunolabeling only contribute to significantly increase the

stress|DAPI:BIII performance to identify MN cultures under osmotic stress. It is

however important to note that osm|DAPI:BIII exhibits an AUC of ~1.0, implying that

a significant improvement is difficult to achieve in this case and that in the case of

osmotic stress, this analysis may underestimate the contribution of the RBP

immunolabeling. Altogether these results indicate that the performance of a

classifier is a reliable approach to prioritize which RBPs are most relevant to a

specific cell culture condition.
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Next the extent of recovered cellular compartment- and RBP-related

phenotypes after heat and osmotic stress were assessed using linear mixed effects

analyses of the individual classifier predictions, accounting for idiosyncratic

variations due to either individual cell lines or experiments. As shown in Fig. 2C,

two hours after recovery from heat stress, the nuclear compartment has fully

recovered, as predicted by heat|DAPI, while the neuritome compartment still

exhibits some degree of aberrant phenotype, as predicted by heat|BIII. As opposed

to heat stress, the nuclear compartment takes longer to recover after osmotic

stress compared to the neuritome compartment, however both compartments

exhibit full recovery 6 hours after treatment (Fig. 2D). Next looking at the

RBP-related phenotypes, we find large heterogeneity in their predicted recovery

pattern after both heat and osmotic stresses, with no complete recovery for any of

the analysed RBPs two hours after heat stress (Supplementary Figs. 2C,D) and

long-term effects for several RBPs after osmotic stress (Supplementary Figs. 2E,F).

In particular we find that two hours after heat stress, MN cultures still exhibit high

heat|TDP-43 and heat|SFPQ model predictions and lower (albeit still elevated)

heat|FUS model prediction (Fig. 2E). The results indicate that the TDP-43- and

SFPQ-related phenotypes are still present at this stage, and that the FUS-related

phenotype is only partially resolved, partly reflecting on our previous study, where

we did not detect reconstitution of nuclear TDP-43 and FUS to basal levels

following 2 hours of recovery from heat stress 16. Our previous study also revealed

slower nuclear relocalization dynamics for TDP-43 and FUS after osmotic stress,

with FUS exhibiting exceptionally aberrant nuclear-to-cytoplasmic distribution as

long as 6 hours post-stress 16. Here we find that TDP-43-related phenotype is fully

resolved 2 hours after treatment while FUS-related phenotype is not resolved 6

hours after treatment (Fig. 2F). We also find delayed hnRNPK-related phenotype

recovery. Notably we find that the recovery kinetics for most RBPs after both heat

and osmotic stress correlate over time with the neuritome-related phenotype,
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suggesting that changes in neuritome relate to change in RBP-related phenotype or

vice-versa. Finally, and in line with our previous study, we do not find any major

difference between control and ALS-related VCP mutant MNs cultures in their

response to stress (Supplementary Figs. 2D,F). While these results at least in part

recapitulate our previous findings, thereby confirming the validity of our approach,

it is important to note that the trained classifiers do not necessarily capture a

phenotype related to the previously studied nuclear-to-cytoplasmic relocalization

and that this may relate to more complex cellular response. Altogether these results

indicate that the performance of a classifier is a reliable approach to prioritize

which RBPs are most relevant to a specific cell culture condition and that the

CNN-based method can, at least in part, reproduce previous results showing slower

TDP-43 and FUS relocalization dynamics following heat and osmotic stress 16 that in

some cases these might relate to changes in neuritome.

Heat stress-related changes in the MN neuritome resemble those occurring in

ALS

We previously reported common morphological descriptors that strongly

discriminate ALS from control control tissue at the single cell level 19, indicating that

key information related to ALS cellular state might be contained in cellular shape.

Having found that our approach is suitable to reproduce prior findings related to

stress in MNs, we next sought to test whether ALS-related VCP-mutant MNs are

characterised by changes in cellular shape in the nucleus, neuritome or the

combination of both. This was achieved by comparing the performances of

CNN-based classifiers trained to discriminate images of untreated control MN

cultures from images of VCP-mutant MN cultures either using the DAPI staining

only (hereafter named ALS|DAPI classifier), either the III-tubulin immunolabelingβ

only (hereafter named ALS|BIII classifier) or the combination of two markers

(hereafter named ALS|DAPI:BIII classifier). As shown in Fig. 3A, both ALS:DAPI and
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ALS|BIII classifiers outperform a random classifier ( and𝐴𝑈𝐶
𝐷𝐴𝑃𝐼

> 0. 5 𝐴𝑈𝐶
β𝐼𝐼𝐼

> 0. 5

), indicating that, similarly to stress-related conditions, both compartments exhibit

phenotypic changes associated with VCP mutation. Further comparing the

performances of these classifiers revealed that the inclusion of the III-tubulinβ

immunolabeling leads to consistently significantly higher performance (

> > ), indicating that the𝐴𝑈𝐶
𝐷𝐴𝑃𝐼+β𝐼𝐼𝐼

= 0. 85 𝐴𝑈𝐶
β𝐼𝐼𝐼

= 0. 83 𝐴𝑈𝐶
𝐷𝐴𝑃𝐼

= 0. 65

compartment most affected by VCP mutation at this early disease stage is the

neuritome. Notably the consistently high model predictions among the four mutant

cells lines according to both classifiers confirms the absence of experimental or cell

line bias, as further confirmed by linear mixed model analysis (Fig. 3B). Additionally,

the significant correlation between the ALS|DAPI and ALS|BIII model predictions for

each MN culture further indicates that the ALS-related changes identified by these

classifiers in the nucleus or the neuritome respectively co-occur in the same MNs

cultures (Pearson correlation coefficient = 0.67 and P=2.93e-33; Fig. 3C).

We next aimed to understand what information is used by these ALS

classifiers to discriminate images from control and VCP-mutant MN cultures.

Integrated gradients (IG) is one popular approach for CNN model interpretation

enabling the visualisation of the relevant pixels for a specific image that contribute

to its classification 26. Looking at the IGs of randomly selected images with high

ALS|DAPI model predictions showed relevant pixels mostly overlapping with the

outline of the nuclei, with some contribution from the pixels located inside the

nuclei (Fig. 3D). This indicates that the ALS-related phenotype identified by the

ALS|DAPI classifier primarily relates to the nuclear shape (including the size) rather

than to other DAPI-related measurements such as texture or intensity. Next looking

at the IGs of randomly selected images with high ALS|DAPI:BIII model predictions

showed relevant pixels primarily located at the edges of the neurites, indicating

that relevant information mostly arises from the outline of the neurites rather than
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from the texture or the intensity of the III-tubulin immunolabeling (Fig. 3E).β

Altogether these results indicate the network of neurites carries most ALS-related

phenotype information.

Mitochondrial and oxidative stress are recognized and robust phenotypes in

ALS development in vitro, and thus in vitro models of cellular stress are important

tools to investigate ALS disease17. However it remains unknown which type of

cellular stress is most physiologically relevant to study ALS pathogenesis. Thus we

next sought to test whether heat, osmotic or oxidative extrinsic stress insults

induce similar nuclear and/or neuritome-related phenotypic changes in control

MNs cultures as those captured by ALS|DAPI and ALS|BIII classifiers. First looking at

the scatter plot of these two model predictions for individual MN cultures

color-coded according to the stress conditions showed that heated MN cultures

consistently score high according to both classifiers forming a coherent cluster, as

opposed to oxidative and osmotic conditions (Fig. 3F). We next quantified the

extent of ALS-related nuclear versus neuritome phenotypes induced by each

individual treatment (oxidative, heat, osmotic) by analysing the ALS|DAPI or ALS|BIII

model predictions of individual stressed MN cultures using linear mixed modelling

(see Materials and Methods). This analysis revealed that heat stress, and to some

extent osmotic stress, induces a minor however non-significant ALS-related

nuclear phenotypic change in control MN cultures, as indicated by the increase in

ALS|DAPI model predictions for these two MNs cultures (Fig. 3G). This is in contrast

with the neuritome compartment which ALS|BIII model predicts significant

phenotypic changes in heated MNs cultures only (Fig. 3H). Altogether these results

indicate that the neuritome is the compartment most affected by ALS-related VCP

mutation and that heat stress induces similar neurite-associated changes in control

MN cultures.

12

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 9, 2021. ; https://doi.org/10.1101/2021.04.08.439054doi: bioRxiv preprint 

https://paperpile.com/c/eKUtOq/CzGV
https://doi.org/10.1101/2021.04.08.439054
http://creativecommons.org/licenses/by/4.0/


FUS immunolabeling best captures ALS-related phenotypes that are

recapitulated by heat stress

Two-thirds of RBPs are expressed in a cell type-specific and temporally regulated

manner 27. While previous studies showed RBP-specific mislocalization in various

ALS models 2–4,28,29, it remains unknown which RBP is most predictive of ALS at a

particular disease stage. Thus we next sought to test whether different ALS-related

RBPs capture distinct ALS-related information in VCP-mutant MN cultures by

analyzing the model performances of ALS classifiers trained with images

immunolabeled with antibodies against TDP-43, FUS, SFPQ, hnRNPK or hnRNPA1

only (hereafter named ALS|RBPs classifiers). Since all five aforementioned RBPs

exhibit predominant nuclear localization 16, we first tested whether ALS|RBPs

classifiers exhibit significant improvement compared to the ALS|DAPI classifiers.

This analysis showed that all 5 ALS|RBP classifiers outperforms ALS|DAPI classifier (

), ruling out the possibility that the phenotypic changes𝐴𝑈𝐶
𝐴𝐿𝑆|𝑅𝐵𝑃𝑠

> 𝐴𝑈𝐶
𝐴𝐿𝑆|𝐷𝐴𝑃𝐼

captured by these classifiers simply overlap with those identified by the ALS|DAPI

classifier and indicating that they identify ALS-related phenotypes beyond changes

in the nuclear shape (Fig. 4A). Comparing their individual performances further

revealed large differences in the individual RBP-based classifiers’ ability to

discriminate ALS from control MN cultures, with ALS|TDP-43 exhibiting the best

performance and ALS|SFPQ the least ( =0.7 < <𝐴𝑈𝐶
𝐴𝐿𝑆|𝑆𝐹𝑃𝑄

𝐴𝑈𝐶
𝐴𝐿𝑆|ℎ𝑛𝑅𝑁𝑃𝐾

= 0. 73

< < ). Examining the IGs for𝐴𝑈𝐶
𝐴𝐿𝑆|𝐹𝑈𝑆

= 0. 79 𝐴𝑈𝐶
𝐴𝐿𝑆|ℎ𝑛𝑅𝑁𝑃𝐴1

= 0. 85 𝐴𝑈𝐶
𝐴𝐿𝑆|𝑇𝐷𝑃43

= 0. 9

randomly selected images with high ALS|RBP model predictions indicated that the

relevant pixels in all five ALS|RBPs classifiers are excluded from the nuclear areas as

opposed to the most relevant pixels of the ALS|DAPI classifier that are most

commonly localized at the inner nuclear membrane or inside the nucleus (Fig. 4B).

This demonstrates that the better the performance of the classifier, the less

relevant the intranuclear pixels. For example relevant pixels in the ALS|TDP-43
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classifier are fully excluded from the nuclear area. Altogether these results suggest

that the different performance of ALS|RBPs classifiers in identifying ALS MNs

cultures result from distinct RBPs localization rather than nuclear shape. We

previously showed that considering DAPI and III-tubulin together significantlyβ

increases the performance of both ALS|DAPI and ALS|BIII classifiers. We next

analyzed how the performance of the ALS classifier would change by adding a third

channel composed of RBPs immunolabeling and compared the performances of the

ALS|DAPI:BIII classifier with the 5 ALS|DAPI:BIII:RBP classifiers. This analysis

indicates that all five RBPs significantly increase the ability of the trained CNN to

discriminate VCP-mutant from control MN cultures, however while hnRNPK leads

to the most modest improvement, TDP-43 and FUS immunolabeling lead to the

highest increases in classification performance (Supplementary Fig. 4A). These

results support the hypothesis that TDP-43 and FUS exhibit changes in localization

that are detected by these classifiers. Indeed, our prior studies have shown that in

the same experimental model used here and at the same development stage,

TDP-43 and FUS mislocalization already occur 16,20,30, thus we can expect similar RBP

mislocalization. These results further suggest that all five RBPs exhibit

mislocalization at different degrees which previous studies could not demonstrate

possibly due to lower sensitivity.

We next sought to test whether the ALS-related changes identified by the

individual ALS|RBPs models are recapitulated in any of the extrinsic stressor

cultures conditions. We first considered the effect size, as obtained by linear fixed

effect analysis (Materials and Methods), of each extrinsic stressor culture

condition on the predictions of the seven ALS classifiers (ALS|DAPI, ALS|BIII,

ALS|hnRNPK, ALS|SFPQ, ALS|FUS, ALS|hnRNPA1, ALS|TDP-43) trained using a single

channel. This revealed that oxidative and osmotic stress recapitulate only one or

two ALS-related phenotypes out of the seven captured by the ALS classifiers.

However, heat stress induced more than a 10% increase in ALS prediction across 5
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out of 7 classifiers (Fig. 4C). ALS|TDP-43 classifier, which performs best in ALS MN

classification, is indeed the unique model which leads to significant, however

modest, model prediction across the three stress conditions (Fig. 4D and

Supplementary Figs. 4B,C). Additionally we find that heat stress is the unique

condition which leads to similarly high disease model prediction in control MN

cultures and in untreated VCP-mutant MN cultures, given the ALS|FUS and

ALS|hnRNPK classifiers (Fig. 4E and Supplementary Figs. 4B,C). Hierarchical

clustering of the untreated ALS MN cultures together with the three stress

conditions according to the effect size of each classifier (euclidean distance and

Ward clustering) eventually confirmed that heat stress induces overall the most

similar cellular changes to ALS (Fig. 4F). Altogether these results confirm that MNs

exposed to heat stress most closely resemble ALS cells with respect to phenotypes

captured by the majority of ALS classifiers. Additionally, it shows that while TDP-43

is the RBPs that carries the strongest information related to ALS, it is the FUS

immunolabeling which captures most similar phenotypes between heat stress and

ALS MNs cultures.

DISCUSSION

In this study, we combine multichannel fluorescence high-content microscopy data

with deep-learning imaging methods to unveil - directly from unsegmented images

- novel neurite-associated morphological perturbations. This approach can be used

to leverage existing high content imaging datasets to gain new phenotypic insight

into the original biological questions asked, as established by this study. We

uncovered a surprising degree of previously unrecognized disease-relevant

information in broadly used and often considered ‘generic’ biological markers of

nuclei (DAPI) and neurons ( III-tubulin) in the context of our human stem cellβ

model of VCP-related ALS. Additionally, we reveal changes associated with

ALS-related RBP immunofluorescence imaging that can be captured in VCP-mutant
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MN cultures. We were also able to systematically examine whether heat, oxidative

or osmotic stress induce similar modifications that could therefore reinforce their

utility in modeling aspects of MN dysfunction in ALS. Our study establishes the use

of CNN-based methods for rapid, automated and unbiased testing of biological

hypotheses.

CNN-based methods are now widely used for image classification and

segmentation, and have been successfully applied to medical imaging data for

disease detection and prediction 31–33. Here CNN-based image classifiers have been

trained to identify stress- and ALS-related phenotypic changes in unsegmented

images of multiple MN cultures. We further showed that the performance of such

classifiers is a reliable approach to prioritize which RBPs are most relevant to a

specific cell culture condition, although refined analysis will be required to

interpret their precise relevance to the underlying disease/stress process.

CNN-based classifiers face challenges with interpretability and are not suited to

specifically address the subcellular localisation of RBPs as previously described with

conventional methods based on image segmentation 16,30. Nevertheless here we

showed that the phenotypes identified in the DAPI or III-tubulin fluorescentβ

images are indeed contained in the outlines of the nuclei and in the edges of the

neurites respectively. Furthermore, we could demonstrate that training a classifier

with fluorescent images of a given RBP in conjunction with nuclear and neurite

fluorescent markers enables the recapturing of previously found phenotype related

to RBP cellular localization. Specifically we could reproduce previous results

showing TDP-43 and FUS mislocalization in ALS iPSC-derived MNs 3,20,30.

Additionally our study suggests that SFPQ, hnRNPA1 and hnRNPK also exhibit

mislocalization however at different degrees. Notably, hnRNPA1 is a component of

RNA transport granules in neurons 34 and we can speculate that the extent of

cytoplasmic relocalisation for this primarily nuclear RBP 16 may be too subtle to be

captured by analysing its nuclear-to-cytoplasmic ratio.
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DAPI and III-tubulin are often considered ‘generic’ biological markers andβ

the usage of their fluorescent images are most often intended for nuclear or

neuronal segmentation. Our study uncovers previously unrecognized

disease-relevant information that is contained within DAPI and III-tubulinβ

fluorescent images. Given that DAPI and III-tubulin are broadly used markers, andβ

given that our method can be easily implemented in other biological conditions,

future studies might use DAPI and III-tubulin fluorescent images from differentβ

biological systems and experimental paradigms to reveal innovative research

directions. For example, this approach could be useful in interrogating the presence

and onset of aberrant cellular morphologies in time course experiments and across

neurological disorders.

Morphological attributes of cells and their substructures are recognized

readouts of physiological or pathophysiological states 18, however these have been

relatively understudied in ALS research. Here we demonstrate that the neuritome

compartment exhibits aberrant phenotypes in ALS pathogenesis, as evidenced by

the high efficiency of deep-learning classifier to identify ALS MN cultures uniquely

based on III-tubulin fluorescent images. We also show modest (albeit significant)β

perturbations in the nuclear compartment given the predictive value of the DAPI

fluorescent images in identifying ALS MN cultures. While it remains unclear

whether these are strictly pathogenic events, the similar phenotypes detected in

the neuritome of MN cultures exposed to heat stress suggests that these events

relate to a form of MN stress. Through a thorough comparison of heat, oxidative

and osmotic stress induced changes in both cellular shape and ALS-related RBP

immunolabeling, we further demonstrate that neuritome-associated perturbations

were also detected in control MNs cultured in three different stress conditions.

These findings support the notion that the neuronal processes exhibit large

perturbations across various stress conditions and argue for increased focus on this

cellular subcompartment in future research. Another striking finding is the
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correlation between recovery kinetics of the neuritome compartment after osmotic

and heat stresses, and those of several RBP-related phenotypes. Assuming that the

RBP-related phenotypes captured by the CNN-based classifier relate to an RBP

change in cellular localization, this result suggests that previously observed

stress-induced RBPs mislocalizations are coupled to global changes in the

neuritome 16. Indeed neurite degeneration has been shown to occur upon oxidative

stress through the cytoplasmic sequestration of two proteins (PRMT1 and Nd1-L) in

in vitro models of FUS mutant-related ALS 35. Furthermore TDP-43 mislocalization

and aggregation has also been demonstrated in dystrophic neurites 1,28, while we

recently reported an increase in wild-type FUS within neuronal processes in

VCP-mutant motor neurons 30. Finally, a regulatory role for FUS has also been

shown in synaptic formation and function 35–38 and aberrant FUS activity in the

axonal compartment has been evidenced in a FUS mutant ALS mouse model 39.

Altogether these studies support the hypothesis of an association between RBP

mislocalization and aberrant neuronal processes in ALS. The finding that several

RBP-related phenotypes present similar recovery patterns as the neuritome further

suggests that additional ALS-related RBPs might exhibit similar aberrant neurite

localization in ALS. Future work will directly address the nature of these

perturbations using classic approaches which necessitate nuclear and neurite

segmentation and the acquisition of hundreds of measurements from each cellular

compartment.

Several lines of evidence support the hypothesis that cellular stress is one

central mechanism by which MN death occurs in ALS and in vitro models of cellular

stress are therefore important tools to investigate ALS disease 17. It remains

however unknown which type of extrinsic cellular stress most closely approximates

ALS pathogenesis, and relatively little is known about the effect of thermal

stimulation, hyperosmolarity or oxidative stress on the neuritome compartment.

Here we find that iPSC-derived MNs exposed to heat stress, as opposed to

18

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 9, 2021. ; https://doi.org/10.1101/2021.04.08.439054doi: bioRxiv preprint 

https://paperpile.com/c/eKUtOq/YHig
https://paperpile.com/c/eKUtOq/J95r
https://paperpile.com/c/eKUtOq/VtAa+F5PA
https://paperpile.com/c/eKUtOq/TsNU
https://paperpile.com/c/eKUtOq/ZS6O+uwQu+8WGq+J95r
https://paperpile.com/c/eKUtOq/iqHWV
https://paperpile.com/c/eKUtOq/CzGV
https://doi.org/10.1101/2021.04.08.439054
http://creativecommons.org/licenses/by/4.0/


hyperosmolarity or oxidative stress, closely recapitulate the phenotypes of ALS MN

cultures captured by several classifiers. This result suggests that heat stress more

closely approximates ALS pathogenesis compared to osmotic and oxidative

stressors, which is in line with previous studies in yeast implicating heat stress as

being relevant to the study of neurodegeneration 40. In particular, our study

demonstrates the ability of heat stress to induce subtle ALS-related cellular

changes associated within the neuritome compartment and within the FUS

fluorescent images. Interestingly we previously found that heat stress alone caused

cell death in a iPSC-derived model of MNs 16. Furthermore, heat stress 41,42, ageing

and neurodegeneration 43–45 all associate with intron retention 2,4,46,47 . Future

research will investigate the molecular mechanisms by which elevated

temperatures lead to similar responses as those observed in patient-specific ALS

MN cultures.

MATERIALS AND METHODS

Compliance with ethical standards

Informed consent was obtained from all patients and control controls in this study.

Experimental protocols were all carried out according to approved regulations and

guidelines by UCLH’s National Hospital for Neurology and Neurosurgery and UCL’s

Institute of Neurology joint research ethics committee (09/0272). Cell culture,

stress treatments, immunohistochemistry and image acquisition were performed

as in 16. Indeed these data are utilised in the current manuscript and no additional

experiment was required.

High-content Imaging Dataset

The imaging dataset used in this study consists of fluorescence microscopy images

of iPSC-derived motor neurons as previously reported 16. The neurons either came
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from control cell lines or cell lines with the ALS-related VCP mutation and

underwent experimentation after six days of terminal differentiation. Details of

iPSC lines are provided in Table S1. To induce stress the cultures were subject to

one hour of oxidative stress, one hour of osmotic stress and one hour of heat stress.

To examine recovery, the cultures were subject to one hour of stress and then

returned to untreated conditions for two hours following heat stress and one, two

and six hours following osmotic stress. Following stress treatments or recovery,

cultures were fixed and then immunostained with a combination of three markers,

specifically a nuclear-specific marker (DAPI), a neuron-specific marker allowing to

outline the neurites ( III-tubulin) and an antibody against TDP-43, SPFQ, FUS,β

hnRNPA1 or hnRNPK. The dataset is divided in different experiments (repeats done

different days), each with several 96-well plates. Each well corresponds to one cell

line, one stress condition and one combination of fluorescent markers. Each well

has several non-overlapping fields of view (ranging from 10 to 12) and each field of

view has several planes or z-stacks (ranging from 3 to 5) with 1µm steps, generating

a large-scale imaging dataset of 156,577 images (Figs. 1A,B). The data-set will be

deposited on IDR in a close future.

Image Pre-Processing

All images went through preprocessing steps described in Supplementary Figure 1.

Raw images are 16-bit images. 16-bit raw z-stack images (1080 x 1080 pixels) from

the same field of view were first merged using Maximum Intensity Projection,

where the pixel with maximum intensity across all z-stacks is selected at each

location in the image. Following conversion of MIP images to 8-bit images, channels

were merged together to form an RGB image. We created 13 types of RGB images,
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either composed of one, two or three channels, to train image classifiers with 13

different combinations of immunostained images (Figure 1E). For images with three

channels, DAPI was assigned to blue channel, III-tubulin to the red channel andβ

the RBP to green channel. For images with one or two channels, pitch-black images

were assigned to the remaining channels so that the image would still be

considered RGB. Images were then enhanced using Python Image Library Pillow

ImageOps 48 auto contrast function, to normalize image contrast. This function

calculates a histogram of the input image, removes 0.1% of the lightest and darkest

pixels from the histogram, and remaps the image so that the darkest pixel becomes

black (0), and the lightest becomes white (255). In the fourth step, the enhanced

images were divided into 16 smaller images of size 270 x 270 pixels, which allowed

better resolution and more images. Structures at this scale proved to be more

distinguishable with integrated gradients, and yielded similar results than with

whole images. This division also made sense for the fifth step, which consisted in

resizing images to 224 x 224 pixels. Finally, images were normalized using mean

intensity = [0.485, 0.456, 0.406] and std = [0.229, 0.224, 0.225] across the images

from the ImageNet dataset. The last two steps were added in order to fulfill the

requirements when using pre-trained models, which expect input images to be

normalized in the same way as the dataset on which they were trained.

Data augmentation

In order to improve accuracy and reduce overfitting, we performed five

augmentations on each image of the training set as follows and as previously

described 49: 1) 90 degrees rotation, 2) one horizontal mirror, 3) one vertical mirror,

4) 90 degrees rotation of horizontal mirror and 5) 90 degrees rotation of vertical
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mirror. This results in a 6-fold increase of the number of available images for

training (five rotations + original).

CNN-based Image Classifiers Training

We trained 52 Convolutional Neural Network (CNN)-based classifiers to

discriminate 1) ALS from control MNs cultures (isALS test), untreated MNs cultures

from MNs cultures exposed to 2) oxidative (isOXIDATIVE test), 3) heat (isHEAT test)

and 4) osmotic stress (isOSMOTIC test) using 13 combinations of RGB images

composed of different channels: either a single channel was used (DAPI, BIII or

RBP), either two channels (DAPI:BIII) or three channels (DAPI:BIII:RBP), pitch-black

images being assigned to the unused channels (Table S2). Instead of training a full

new neural network, we performed transfer learning which can be used to address

the relatively small number of available images by introducing information from

another domain 50. For training, images were fed into torchvision MobileNetV2

model which has been pre-trained on ImageNet 51,52. MobileNetV2 is a CNN based

on a streamlined architecture that uses depth-wise separable convolutions to build

lightweight deep neural networks and which is effective for fine-grained image

classification. MobileNetV2 is a lightweight neural network of 3.5 millions

parameters, as opposed to the widely used ResNet which contained 11.7 millions

parameters, making it suitable for fine-tuning with limited number of images 53. All

layers of the pre-trained CNN classifier were fine-tuned on our dataset, allowing

the training of a highly accurate model with a relatively small training dataset 54.

The last layer was modified so that it turned the features into predictions for two

classes instead of the thousand classes from ImageNet. Training was performed by

stochastic gradient descent with learning rate 0.001, batch size 32, using the cross
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entropy loss function. The training was stopped after 10 epochs. A 10-fold cross

validation scheme has been used to evaluate the accuracy of the classification

predictions generated by the trained classifiers: the images were shuffled randomly

and divided into 10 stratified folds, preserving the percentage of samples for each

class; each fold was used once as a test dataset, while the remaining folds were

used for the training dataset. Receiver operating characteristic (ROC) curves were

generated to evaluate the model’s ability to distinguish two cell culture conditions.

Receiver operating characteristics (ROC) curves plot the true positive rate

(sensitivity) versus the false positive rate (1 – specificity). The area under the ROC

curve was used as the performance measure or classification accuracy. The

classification accuracy over all folds is reported in Table S3. We evaluated the 52

trained models on all MN cultures when the right combination of markers were

available (typically FUS, DAPI and BIII are available for some MNs cultures while

SFPQ, DAPI and BIII are available for others). The probabilities to belong to one of

the four tested conditions (iALS, isOXIDATIVE, isOSMOTIC, isHEAT) outputted by

the classifiers are then aggregated by computing the average probability over all of

the 16 cropped images originating from a single image, thereby obtaining a single

probability per original-sized images. A single probability per MN culture is

reported for each of the fours test by averaging the signal over all images (typically

7 per MN culture) as reported in Tables S4-S7.

Model Explainability and Integrated Gradient

The integrated gradient (IG) is a widely used interpretability algorithm that allows

to identify what pixels of an image have the strongest effect on the model’s

predicted class probabilities and therefore allowing to visualize which parts or the
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image are important for classification 26, by computing the gradient of the model’s

prediction output to its input features. We used the Captum Insights method 55 to

obtain the IG for randomly selected images associated with high classifier

prediction scores.

Model prediction data analysis

We used R and lme4 56 to perform linear mixed effects analysis of the relationship

between individual model predictions and either stress MNs culture condition (at

the corresponding time after treatment) or VCP-mutant MNs cultures, accounting

for idiosyncratic variation due to either cell line or experiments. As fixed effects, we

either entered the stress condition or the VCP-mutation variable into the model. As

random effects, we had intercepts for either cell lines (CTRL1, CTRL2, CTRL3, MUT1,

MUT2, MUT3, MUT4) and experiments. P-values were obtained by likelihood ratio

tests of the full model with the effect in question against the model without the

effect in question, i.e. comparing a full linear model fitting the classifier predictions

using both the fixed effect (the stress or disease) and the random effects (cell line

and experiments), with a reduced linear model, which only considers the random

effects.

Data and software availability

We provide raw images, complete source code and trained models to readily

reproduce figures, tables, and other results that involve computation in order to

facilitate the development and evaluation of additional profiling methods. The

image data that support the findings of this study will be uploaded to the Image

Data Resource 57,58. As this requires some more time given the size of the data (1TB),

we have uploaded a subset of the data on Zenodo under the accession number

4664177. The 52 trained deep learning models have been uploaded on Zenodo under
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the accession number 4664252. The code for obtaining the models as well as the

Jupyter notebooks are available at https://github.com/idiap/als-classification.
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FIGURES AND TABLES

Figure 1 | Overview of the high-dimensional immunofluorescent image data-set

and paradigm to evaluate the relevance of markers in stress and ALS
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pathogenesis. (A) Experimental design for obtaining immunofluorescence

microscopy images of motor neurons (MNs). Control (n = 3 cell lines) and

VCP-mutant (n = 4 cell lines) induced pluripotent stem cells (iPSC)-derived MNs in

different cellular stress (untreated, osmotic, heat, oxidative) and stress recovery (2h

after heat stress, 1, 2 and 6h after osmotic stress) conditions were fluorescently

labeled with DAPI, III-tubulin (BIII) and key ALS-linked RNA-binding proteinsβ

(RBPs) and then imaged, resulting in 156,577 images. (B,C) Total number of images in

CTRL and ALS cell lines grouped by stress conditions: untreated (UT) in grey,

oxidative (OX) in purple, heat (HS, 2h recovery) in blue and osmotic (OSM, 1h

recovery, 2h recovery and 6h recovery) in yellow. (D) Representative images of

nuclear marker DAPI, neuronal marker III-tubulin and ALS-linked RBPs inβ

iPSC-derived motor neurons. Scale bars = 25μm. (E) 52 CNN-based classifiers have

been trained in this study to discriminate 1) ALS from control MN cultures (isALS

test), or untreated MN cultures from MN cultures exposed to 2) oxidative

(isOXIDATIVE test), 3) heat (isHEAT test) and 4) osmotic stress (isOSMOTIC test)

using 13 combinations of RGB images composed of different channels: either a

single channel was used (DAPI, BIII or RBP), either two channels (DAPI:BIII) or three

channels (DAPI:BIII:RBP) and pitch-black images were assigned to the unused

channels (Table S2). For each of the four tests (siALS, isOXIDATIVE, isHEAT,

isOSMOTIC), the 13 classifiers’ performance as obtained from the Area Under the

Receiver Operating Characteristic Curve (AUC) were extracted and compared to

uncover the importance of those markers in discriminating two conditions (Tables

S3). Additionally 13 model predictions for each of the 4 tests have been extracted

for each MN culture (Tables S4-S7).
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Figure 2 | Different kinetics of stress recovery related to distinct cellular changes

captured by CNN-based classifiers. (A) Boxplots showing the distributions of model

performances as evaluated using the AUC for classifiers trained using DAPI, IIIβ

tubulin (BIII) and the combination of DAPI and III tubulin markers, respectively, toβ

discriminate untreated from stressed MN cultures. Each classifier was submitted to

10-fold cross-validation in 5 different subsets of the data, resulting in 50 points per

classifier. Boxplots display the five number summary of median, lower and upper

quartiles, minimum and maximum values. P-values obtained from a one-sided

Mann-Whitney test. (B) Bar graphs representing the increase in performance as

obtained from -log10(P-values) of one-sided Mann-Whitney test comparing the

AUCs from the stress|DAPI:BIII classifier and the AUCs from individual
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stress|DAPI:BIII:RBP classifiers for oxidative, heat and osmotic stresses. (C) Effect

size (mean standard errors) of heat|DAPI-based (blue) and heat|BIII-based (red)±

classifier predictions of control MN cultures after one hour exposure to heat stress

and two hours of recovery from heat stress. Effect size of the treatment at each

time-point is obtained using linear mixed effects analysis accounting for

idiosyncratic variations due to cell lines and experiment bias. (D) Effect size (mean

standard errors) of osm|DAPI (blue) and osm|BIII (red) classifier predictions of±

control MN cultures one hour after osmotic stress and one, two, and six hours after

recovery from osmotic stress. (E) Same as (C) for heat|TDP43, heat|FUS and

heat|SFPQ classifier predictions. Solid lines = control MN cultures. Dashed lines =

VCP-mutant MN cultures. (F) Same as (D) for osm|TDP43, osm|FUS and osm|SFPQ

classifier predictions. Solid lines = control MN cultures. Dashed lines = VCP-mutant

MN cultures.
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Figure 3 | Heat stress-related changes in the MN neuritome resemble those

occurring in ALS. (A) Boxplots showing the distributions of model performances as

evaluated using the AUC for classifiers trained using DAPI, III-tubulin (BIII) and theβ

combination of DAPI and III-tubulin markers to discriminate control fromβ

VCP-mutant MN cultures. Each classifier was submitted to 10-fold cross-validation

in 5 different subsets of the data, resulting in 50 points per classifier. P-values are

from a one-sided Mann-Whitney test. Data shown as in Fig. 2A. (B) Distributions of

the ALS|DAPI (left) and ALS|BIII (right) model predictions for the individual MN
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cultures originating from 3 control cell lines (grey dots) and 4 VCP-mutant cell lines

(green dots). Linear mixed effects analysis of the relationship between each model

prediction and VCP mutation to account for idiosyncratic variation due to cell line

or experiment differences. VCP mutation significantly increases ALS|DAPI

predictions [ and ] by about (standard errors),χ2 1( ) = 14 𝑃 = 2. 28𝑒−04 0. 13 ± 0. 023

and ALS|BIII predictions [ and ] by aboutχ2 1( ) = 23 𝑃 = 2. 1𝑒−06 0. 4 ± 0. 033

(standard errors). (C) Scatter plot of ALS|DAPI and ALS|BIII model predictions on

individual control and VCP-mutant MN cultures. Grey = control MN cultures. Green

= VCP-mutant MN cultures. PCC = Pearson Correlation Coefficient. (D,E) Randomly

selected images with high model prediction according to the ALS|DAPI (D) and

ALS|DAPI:BIII (E) classifiers. Images shown are the original image (upper) and the

corresponding attribution magnitude image overlayed on the original image (lower).

The magnitudes range from 0 (white), indicating no contribution of the pixel, to 1

(blue), indicating the strongest contribution of the pixel to the model prediction.

Scale bars = 25μm. (F) Scatter plot of the ALS|DAPI and ALS|BIII model predictions

on individual control MN cultures one hour after oxidative, heat and osmotic stress.

Magenta = MN cultures one hour after oxidative stress. Blue = MN cultures one

hour after heat stress. Yellow = MN cultures one hour after osmotic stress. (G)

Boxplots showing the distributions ALS|DAPI model predictions on untreated

control and VCP-mutant MN cultures, and control MN cultures one hour after

oxidative, heat and osmotic stress. Magenta = MN cultures one hour after oxidative

stress. Blue = MN cultures one hour after heat stress. Yellow = MN cultures one

hour after osmotic stress. Stress treatment effect analysis on model prediction

obtained using linear mixed effects analysis. P-value is indicated when significant.

(H). Same as (G) for ALS|BIII model.
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Figure 4 | Heat stress as the most physiologically relevant stress condition to

study ALS pathogenesis. (A) Boxplots showing the distributions of model

performances as evaluated using the AUC for classifiers trained using the

ALS-related RBPs markers SFPQ, hnRNPK, FUS, hnRNPA1 and TDP-43 to

discriminate control from VCP-mutant MN cultures, and compared to ALS|DAPI

classifier performance. Each classifier was submitted to 10-fold cross-validation in

5 different subsets of the data, resulting in 50 points per classifier. P-values are

from a one-sided Mann-Whitney test. Data shown as in Fig. 2A. (B) Randomly

selected images with high model prediction according to the ALS|DAPI and

ALS|RBPs classifiers. Images shown are the original image (upper) and the

corresponding attribution magnitude image overlayed on the original image (lower).

The magnitudes range from 0 (white), indicating no contribution of the pixel, to 1

(blue), indicating the strongest contribution of the pixel to the model prediction.
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Scale bars = 25μm. (C) Comparisons of the effect sizes of each stress treatment on

control MNs cultures ALS|DAPI, ALS|BIII and the 5 ALS|RBPs model predictions one

hour after treatment. Magenta = oxidative stress. Blue = heat stress. Yellow =

osmotic stress. Stress treatment effect analysis on model prediction obtained using

linear mixed effects analysis. (D) Boxplots showing the distributions ALS|TDP-43

model predictions on untreated control and ALS MN cultures, and control MN

cultures one hour after oxidative, heat and osmotic stress. Magenta = oxidative

stress. Blue = heat stress. Yellow = osmotic stress. Stress treatment effect analysis

on model prediction obtained using linear mixed effects analysis. P-values obtained

from linear mixed models are indicated when significant. (E) Same as (D) however

for ALS|FUS. (F) Unsupervised hierarchical clustering of treatment effect sizes on

ALS|DAPI, ALS|BIII and the 5 ALS|RBPs model prediction groups. Oxidative and

osmotic stresses cluster together while heat stress is the closest to the ALS group.

Euclidean distance and ward clustering.
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Supplementary Figure 1 | Schematic depicting the CNN-based approach.

Preprocessing: (1) 16-bit z-stack raw images are merged using the Maximum

Intensity Projection (MIP); (2) the MIP images are then converted to 8-bit images

and the different channels are merged together, depending on the protocol (either
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1, 2 or 3 channels); (3) contrast is enhanced with a cutoff of 0.1%; (4) each image

(size=1080x1080 pixels) is divided into 16 images of 270x270 pixels; (5) images are

then resized into 224x224 pixels; (6) images are normalized the same way as the

ImageNet dataset, using mean = [0.485, 0.456, 0.406] and std = [0.229, 0.224, 0.225].

Training: Concept illustration of training a neural network for binary classification

of one condition against another. The train set is composed of labeled images for

both conditions and is used to train the network, which assigns more weight to

discriminating features in the images. Performance Evaluation: A distinct set of

labeled images, the test set, is used to evaluate the performance of the trained

network using metrics such as the Area Under the receiver operating characteristic

Curve (AUC). The performances of different classifiers trained with different

markers can be compared to uncover the relevance of specific markers in

discriminating two conditions. Prediction: The trained model can then evaluate the

probability for a given unlabeled image to belong to either one or the other

condition.
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Supplementary Figure 2 | (A) Boxplots showing the distributions of model

performances as evaluated using the AUC for classifiers trained using DAPI or

ALS-related RBP markers to discriminate untreated from stressed MN cultures.

Each classifier was submitted to 10-fold cross-validation in 5 different subsets of

the data, resulting in 50 points per classifier. Boxplots display the five number

summary of median, lower and upper quartiles, minimum and maximum values.

P-values obtained from a one-sided Mann-Whitney test. (B) Bar graphs

representing the increase in performance as obtained from -log10(P-values) of

one-sided Mann-Whitney test comparing the AUCs from the stress|DAPI classifier

and the AUCs from individual stress|DAPI:RBP classifiers for oxidative, heat and

osmotic stresses. (C) Effect size (mean standard errors) of heat|RBPs classifier±

predictions of control MN cultures one hour after heat stress and two hours after

recovery from heat stress. Effect size of the treatment at each time-point is

obtained using linear mixed effects analysis accounting for idiosyncratic variations

due to cell lines and experiment bias. (D) Same as (C) for individual heat|RBPs

classifiers predictions. Solid lines = control MN cultures. Dashed lines =

VCP-mutant MN cultures. (E) Effect size (mean standard errors) of osm|RBPs±

classifiers predict control MN cultures one hour after osmotic stress and one, two

and six hours after recovery from osmotic stress. (F) Same as (E) for individual

osm|RBPs classifiers predictions. Solid lines = control MN cultures. Dashed lines =

VCP-mutant MN cultures.
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Supplementary Figure 3 | (A) Distributions of the ALS|DAPI (left), ALS|BIII (center)

and ALS|DAPI:BIII (right) model predictions for the individual MN cultures

originating from 3 control cell lines (grey dots) and 4 VCP-mutant cell lines (green

dots). Linear mixed effects analysis of the relationship between each model

prediction and VCP mutation to account for idiosyncratic variation due to cell line

or experiment differences. VCP mutation significantly increases ALS|DAPI

predictions [ and ] by about (standard errors),χ2 1( ) = 14 𝑃 = 2. 28𝑒−04 0. 13 ± 0. 023
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ALS|BIII predictions [ and ] by about (standardχ2 1( ) = 23 𝑃 = 2. 1𝑒−06 0. 4 ± 0. 033

errors), and ALS|DAPI:BIII predictions [ and ] by aboutχ2 1( ) = 29 𝑃 = 8. 4𝑒−08

(standard errors). (B) Distributions of the ALS|DAPI model predictions0. 47 ± 0. 031

for the individual MN cultures originating from three control cell lines after one

hour of oxidative (magenta), heat (blue) and osmotic (yellow) stress. Linear mixed

effects analysis of the relationship between each model prediction and individual

treatment effect to account for idiosyncratic variation due to cell line or

experiment differences. (C) Distributions of the ALS|BIII model predictions for the

individual MNs cultures originating from 3 control cell lines after one hour of

oxidative (magenta), heat (blue) and osmotic (yellow) stress. Linear mixed effects

analysis of the relationship between each model prediction and individual

treatment effect to account for idiosyncratic variation due to cell line or

experiment differences.
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Supplementary Figure 4 | (A) Bar graphs representing the increase in performance

as obtained from -log10(P-values) of one-sided Mann-Whitney test comparing the

AUCs from the ALS|DAPI:BIII classifier and the AUCs from individual

ALS|DAPI:BIII:RBP classifiers. (B) Boxplots showing the distributions ALS|RBPs

model predictions on untreated control and ALS MN cultures, and control MN

cultures after one one hour of oxidative, heat and osmotic stress. Magenta =

oxidative stress. Blue = heat stress. Yellow = osmotic stress. Stress treatment effect

analysis on model prediction obtained using linear mixed effects analysis. P-values
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obtained from linear mixed models are indicated when significant. (C) Same as (B)

for ALS|DAPI:BIII:RBPs model predictions.

Electronic supplementary material

Supplementary Tables 1-7 can be accessed here.

Table S1 | Description of human sample origin and mutations.

Table S2 | List of the ALS and stress trained CNN-based classifiers.

Table S3 | Performances of the 52 trained classifiers across the 10 folds.

Table S4 | ALS classifier assigned class probabilities for all the views from a cell

culture (~ 10 per cell culture) that are then averaged to obtain a single per-culture

classification probability.

Table S5 | Same as Table S4 for oxidative stress classifier.

Table S6 | Same as Table S4 for heat stress classifier.

Table S7 | Same as Table S4 for osmotic stress classifier.
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